1
|
Qu Y, Davey K, Sun Y, Middelberg A, Bi J. Engineered Design of the E-Helix Structure on Ferritin Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:3167-3179. [PMID: 35770389 DOI: 10.1021/acsabm.2c00154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insertion of an immunogenic epitope at the C-terminus of ferritin has shown the potential to produce a stable and efficacious vaccine. There is however limited understanding of how C-terminus insertion affects ferritin protein stability. The E-helix at the C-terminus has attracted interest because there are contradictory reports as to whether it has a role in protein stabilization. Here, we report, for the first time, combining molecular dynamics simulation (MDS) with experiment to engineer the design of the E-helix at the C-terminus of engineered human ferritin heavy chain (F1) inserted with Epstein-Barr nuclear antigen 1 (EBNA1, E1) and flexible linker (L3) residues (to afford F1L3E1). Hot spots on the E-helix of the C-terminus were predicted by MDS at aa 167 (Glu) and aa 171 (Asp). Five (5) variants of F1L3E1 were constructed by considering hot spots and alteration of electrostatic or hydrophobic interfaces, namely, (1) C1, hot spots substituted with noncharged residue Gln; (2) C2, hot spots substituted with positively charged residue Arg; (3) C3, hydrophobic residues substituted with the most hydrophobic residues Val and Ile; (4) C4, hydrophobic residues substituted with the most hydrophilic residues Gln and Asn; and (5) C5, a heptad repeat structure in the E-helix disrupted by substituting "a" and "d" heptad residues with noncharged polar residue Gln. It was found that the E-helix is essential to maintain integrated protein stability and that changing the hydrophobic interface (C3 and C4) had more significant effects on protein folding and stability than changing the electrostatic interface (C1 and C2). It was confirmed by both MDS and experiment that variants C1, C2, and C5 were able to fold to form stable conformational structures with protein surface hydrophobicity similar to that of F1L3E1. However, they are less thermally stable than F1L3E1. Significant changes in hydrophobicity drove significant protein aggregation for variants C3 and C4. It is concluded that the molecular design of the C-terminus in engineered ferritin, especially the E-helix, is important to ensure the epitope-based chimeric vaccine is safe (aggregate free) and efficacious.
Collapse
Affiliation(s)
- Yiran Qu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anton Middelberg
- Division of Research and Innovation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jingxiu Bi
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Chatterjee S, Basak AJ, Nair AV, Duraivelan K, Samanta D. Immunoglobulin-fold containing bacterial adhesins: molecular and structural perspectives in host tissue colonization and infection. FEMS Microbiol Lett 2021; 368:6045506. [PMID: 33355339 DOI: 10.1093/femsle/fnaa220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulin (Ig) domains are one of the most widespread protein domains encoded by the human genome and are present in a large array of proteins with diverse biological functions. These Ig domains possess a central structure, the immunoglobulin-fold, which is a sandwich of two β sheets, each made up of anti-parallel β strands, surrounding a central hydrophobic core. Apart from humans, proteins containing Ig-like domains are also distributed in a vast selection of organisms including vertebrates, invertebrates, plants, viruses and bacteria where they execute a wide array of discrete cellular functions. In this review, we have described the key structural deviations of bacterial Ig-folds when compared to the classical eukaryotic Ig-fold. Further, we have comprehensively grouped all the Ig-domain containing adhesins present in both Gram-negative and Gram-positive bacteria. Additionally, we describe the role of these particular adhesins in host tissue attachment, colonization and subsequent infection by both pathogenic and non-pathogenic Escherichia coli as well as other bacterial species. The structural properties of these Ig-domain containing adhesins, along with their interactions with specific Ig-like and non Ig-like binding partners present on the host cell surface have been discussed in detail.
Collapse
Affiliation(s)
- Shruti Chatterjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Aditya J Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Asha V Nair
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| |
Collapse
|
3
|
Subedi P, Paxman JJ, Wang G, Hor L, Hong Y, Verderosa AD, Whitten AE, Panjikar S, Santos-Martin CF, Martin JL, Totsika M, Heras B. Salmonella enterica BcfH Is a Trimeric Thioredoxin-Like Bifunctional Enzyme with Both Thiol Oxidase and Disulfide Isomerase Activities. Antioxid Redox Signal 2021; 35:21-39. [PMID: 33607928 DOI: 10.1089/ars.2020.8218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aims: Thioredoxin (TRX)-fold proteins are ubiquitous in nature. This redox scaffold has evolved to enable a variety of functions, including redox regulation, protein folding, and oxidative stress defense. In bacteria, the TRX-like disulfide bond (Dsb) family mediates the oxidative folding of multiple proteins required for fitness and pathogenic potential. Conventionally, Dsb proteins have specific redox functions with monomeric and dimeric Dsbs exclusively catalyzing thiol oxidation and disulfide isomerization, respectively. This contrasts with the eukaryotic disulfide forming machinery where the modular TRX protein disulfide isomerase (PDI) mediates thiol oxidation and disulfide reshuffling. In this study, we identified and structurally and biochemically characterized a novel Dsb-like protein from Salmonella enterica termed bovine colonization factor protein H (BcfH) and defined its role in virulence. Results: In the conserved bovine colonization factor (bcf) fimbrial operon, the Dsb-like enzyme BcfH forms a trimeric structure, exceptionally uncommon among the large and evolutionary conserved TRX superfamily. This protein also displays very unusual catalytic redox centers, including an unwound α-helix holding the redox active site and a trans-proline instead of the conserved cis-proline active site loop. Remarkably, BcfH displays both thiol oxidase and disulfide isomerase activities contributing to Salmonella fimbrial biogenesis. Innovation and Conclusion: Typically, oligomerization of bacterial Dsb proteins modulates their redox function, with monomeric and dimeric Dsbs mediating thiol oxidation and disulfide isomerization, respectively. This study demonstrates a further structural and functional malleability in the TRX-fold protein family. BcfH trimeric architecture and unconventional catalytic sites permit multiple redox functions emulating in bacteria the eukaryotic PDI dual oxidoreductase activity. Antioxid. Redox Signal. 35, 21-39.
Collapse
Affiliation(s)
- Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Lilian Hor
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Anthony D Verderosa
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Santosh Panjikar
- Macromolecular Crystallography, Australian Synchrotron, ANSTO, Clayton, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Carlos F Santos-Martin
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Jennifer L Martin
- Griffith Institute for Drug Discovery, Brisbane Innovation Park, Nathan, Australia.,Vice-Chancellor's Unit, University of Wollongong, Wollongong, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| |
Collapse
|
4
|
Zalewska-Piątek B, Olszewski M, Lipniacki T, Błoński S, Wieczór M, Bruździak P, Skwarska A, Nowicki B, Nowicki S, Piątek R. A shear stress micromodel of urinary tract infection by the Escherichia coli producing Dr adhesin. PLoS Pathog 2020; 16:e1008247. [PMID: 31917805 PMCID: PMC7004390 DOI: 10.1371/journal.ppat.1008247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 02/06/2020] [Accepted: 11/28/2019] [Indexed: 11/25/2022] Open
Abstract
In this study, we established a dynamic micromodel of urinary tract infection to analyze the impact of UT-segment-specific urinary outflow on the persistence of E. coli colonization. We found that the adherence of Dr+ E. coli to bladder T24 transitional cells and type IV collagen is maximal at lowest shear stress and is reduced by any increase in flow velocity. The analyzed adherence was effective in the whole spectrum of physiological shear stress and was almost irreversible over the entire range of generated shear force. Once Dr+ E. coli bound to host cells or collagen, they did not detach even in the presence of elevated shear stress or of chloramphenicol, a competitive inhibitor of binding. Investigating the role of epithelial surface architecture, we showed that the presence of budding cells–a model microarchitectural obstacle–promotes colonization of the urinary tract by E. coli. We report a previously undescribed phenomenon of epithelial cell “rolling-shedding” colonization, in which the detached epithelial cells reattach to the underlying cell line through a layer of adherent Dr+ E. coli. This rolling-shedding colonization progressed continuously due to “refilling” induced by the flow-perturbing obstacle. The shear stress of fluid containing free-floating bacteria fueled the rolling, while providing an uninterrupted supply of new bacteria to be trapped by the rolling cell. The progressive rolling allows for transfer of briefly attached bacteria onto the underlying monolayer in a repeating cascading event. Uropathogenic E. coli (UPEC) equipped with Dr fimbriae are associated with recurrent and chronic urinary tract infections (UTIs). The fimbriae assembled by the chaperone-usher pathway provide strong host-specific adherence which is, however, strongly modulated by the dynamically changing urine flow in the urinary tract (UT). In this paper, we use a dynamic in vitro micro-model of UTI to analyze the UT segment-specific impact of urinary outflow on the persistence and spread of Dr+ E. coli during host colonization. We conclude that the adhesive envelope formed by Dr fimbriae promotes strong and irreversible multivalent adherence of Dr+ E. coli to host receptors under flow conditions. We also observed that budding host cells–a model of any form of epithelial roughness, including carcinogenesis or physical injuries–facilitate the adherence of bacteria at flow conditions typically found in the UT, and our numerical simulations provided a mechanistic explanation for this effect. Finally, we combined the results to propose a rolling-shedding-refilling colonization model that shows how the wash off of detached colonized host cells may provoke a massive spread of UPEC. Our findings shed new light on UTI development and may be instrumental in the development of novel therapeutics.
Collapse
Affiliation(s)
- Beata Zalewska-Piątek
- Department of Molecular Microbiology and Biotechnology, Gdańsk University of Technology, Gdańsk, Poland
| | - Marcin Olszewski
- Department of Molecular Microbiology and Biotechnology, Gdańsk University of Technology, Gdańsk, Poland
| | - Tomasz Lipniacki
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Sławomir Błoński
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Miłosz Wieczór
- Department of Physical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Piotr Bruździak
- Department of Physical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Anna Skwarska
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Bogdan Nowicki
- Nowicki Institute for Woman’s Health Research, Brentwood, Tennessee, United States of America
| | - Stella Nowicki
- Nowicki Institute for Woman’s Health Research, Brentwood, Tennessee, United States of America
| | - Rafał Piątek
- Department of Molecular Microbiology and Biotechnology, Gdańsk University of Technology, Gdańsk, Poland
- * E-mail:
| |
Collapse
|
5
|
Abstract
The chaperone-usher (CU) pathway is a conserved secretion system dedicated to the assembly of a superfamily of virulence-associated surface structures by a wide range of Gram-negative bacteria. Pilus biogenesis by the CU pathway requires two specialized assembly components: a dedicated periplasmic chaperone and an integral outer membrane assembly and secretion platform termed the usher. The CU pathway assembles a variety of surface fibers, ranging from thin, flexible filaments to rigid, rod-like organelles. Pili typically act as adhesins and function as virulence factors that mediate contact with host cells and colonization of host tissues. Pilus-mediated adhesion is critical for early stages of infection, allowing bacteria to establish a foothold within the host. Pili are also involved in modulation of host cell signaling pathways, bacterial invasion into host cells, and biofilm formation. Pili are critical for initiating and sustaining infection and thus represent attractive targets for the development of antivirulence therapeutics. Such therapeutics offer a promising alternative to broad-spectrum antibiotics and provide a means to combat antibiotic resistance and treat infection while preserving the beneficial microbiota. A number of strategies have been taken to develop antipilus therapeutics, including vaccines against pilus proteins, competitive inhibitors of pilus-mediated adhesion, and small molecules that disrupt pilus biogenesis. Here we provide an overview of the function and assembly of CU pili and describe current efforts aimed at interfering with these critical virulence structures.
Collapse
|
6
|
Nemtseva EV, Gerasimova MA, Melnik TN, Melnik BS. Experimental approach to study the effect of mutations on the protein folding pathway. PLoS One 2019; 14:e0210361. [PMID: 30640946 PMCID: PMC6331109 DOI: 10.1371/journal.pone.0210361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022] Open
Abstract
Is it possible to compare the physicochemical properties of a wild-type protein and its mutant form under the same conditions? Provided the mutation has destabilized the protein, it may be more correct to compare the mutant protein under native conditions to the wild-type protein destabilized with a small amount of the denaturant. In general, is it appropriate to compare the properties of proteins destabilized by different treatments: mutations, pH, temperature, and denaturants like urea? These issues have compelled us to search for methods and ways of presentation of experimental results that would allow a comparison of mutant forms of proteins under different conditions and lead to conclusions on the effect of mutations on the protein folding/unfolding pathway. We have studied equilibrium unfolding of wild-type bovine carbonic anhydrase II (BCA II) and its six mutant forms using different urea concentrations. BCA II has been already studied in detail and is a good model object for validating new techniques. In this case, time-resolved fluorescence spectroscopy was chosen as the basic research method. The main features of this experimental method allowed us to compare different stages of unfolding of studied proteins and prove experimentally that a single substitution of the amino acid in three mutant forms of BCA II affected the native state of the protein but did not change its unfolding pathway. On the contrary, the inserted disulfide bridge in three other mutant forms of BCA II affected the protein unfolding pathway. An important result of this research is that we have validated the new approach allowing investigation of the effect of mutations on the folding of globular proteins, because in this way it is possible to compare proteins in the same structural states rather than under identical conditions.
Collapse
Affiliation(s)
- Elena V. Nemtseva
- Siberian Federal University, Krasnoyarsk, Russia
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russia
| | | | - Tatiana N. Melnik
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Bogdan S. Melnik
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
7
|
Zhang Y, Chen T, Zheng W, Li ZH, Ying RF, Tang ZX, Shi LE. Active sites and thermostability of a non-specific nuclease from Yersinia enterocoliticasubsp . palearcticaby site-directed mutagenesis. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1489738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Yu Zhang
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Tao Chen
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Wei Zheng
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Zhen Hua Li
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Rui-Feng Ying
- Department of Food Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, PR China
| | - Zhen-Xing Tang
- Hangzhou Tianlong Group Co. Ltd, Hangzhou, Zhejiang, PR China
| | - Lu-E Shi
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| |
Collapse
|