1
|
Kostritskaia Y, Pervaiz S, Klemmer A, Klüssendorf M, Stauber T. Sphingosine-1-phosphate activates LRRC8 volume-regulated anion channels through Gβγ signalling. J Physiol 2024. [PMID: 39496493 DOI: 10.1113/jp286665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Volume-regulated anion channels (VRACs) formed by leucin-rich repeat containing 8 (LRRC8) proteins play a pivotal role in regulatory volume decrease by mediating the release of chloride and organic osmolytes. Apart from the regulation of cell volume, LRRC8/VRAC function underlies numerous physiological processes in vertebrate cells including membrane potential regulation, glutamate release and apoptosis. LRRC8/VRACs are also permeable to antibiotics and anti-cancer drugs, representing therefore important therapeutic targets. The activation mechanisms for LRRC8/VRACs are still unclear. Besides through osmotic cell swelling, LRRC8/VRACs can be activated by various stimuli under isovolumetric conditions. Sphingosine-1-phosphate (S1P), an important signalling lipid, which signals through a family of G protein-coupled receptors (GPCRs), has been reported to activate LRRC8/VRACs in several cell lines. Here, we measured inter-subunit Förster resonance energy transfer (FRET) and used whole-cell patch clamp electrophysiology to investigate S1P-induced LRRC8/VRAC activation. We systematically assessed the involvement of GPCRs and G protein-mediated signal transduction in channel activation. We found that S1P-induced channel activation is mediated by S1PR1 in HeLa cells. Following the downstream signalling pathway of S1PR1 and using toxin-mediated inhibition of the associated G proteins, we showed that Gβγ dimers rather than Gαi or Gαq play a critical role in S1P-induced VRAC activation. We could also show that S1P causes protein kinase D (PKD) phosphorylation, suggesting that Gβγ recruits phospholipase Cβ (PLCβ) with the consequent PKD activation by diacylglycerol. Notably, S1P did not activate LRRC8/VRAC in HEK293 cells, but overexpression of Gβγ-responsive PLCβ isoform could facilitate S1P-induced LRRC8/VRAC currents. We thus identified S1PR1-mediated Gβγ-PLCβ signalling as a key mechanism underlying isosmotic LRRC8/VRAC activation. KEY POINTS: Leucin-rich repeat containing 8 (LRRC8) anion/osmolyte channels are involved in multiple physiological processes where they can be activated as volume-regulated anion channels (VRACs) by osmotic cell swelling or isovolumetric stimuli such as sphingosine-1-phosphate (S1P). In the present study, using pharmacological modulation and gene-depleted cells in patch clamp recording and optical monitoring of LRRC8 activity, we find that LRRC8/VRAC activation by S1P is mediated by the G protein-coupled receptor S1PR1 coupled to G proteins of the Gi family. The signal transduction to LRRC8/VRAC activation specifically involves phospholipase Cβ activation by βγ subunits of pertussis toxin-insensitive heteromeric Gi proteins. S1P-mediated and hypotonicity-induced LRRC8/VRAC activation pathways converge in protein kinase D activation.
Collapse
Affiliation(s)
- Yulia Kostritskaia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Sumaira Pervaiz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anna Klemmer
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Malte Klüssendorf
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Wijayaratna D, Sacchetta F, Pedraza-González L, Fanelli F, Sugihara T, Koyanagi M, Piyawardana S, Ghotra K, Thotamune W, Terakita A, Olivucci M, Karunarathne A. In-silico predicted mouse melanopsins with blue spectral shifts deliver efficient subcellular signaling. Cell Commun Signal 2024; 22:394. [PMID: 39118111 PMCID: PMC11312219 DOI: 10.1186/s12964-024-01753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Melanopsin is a photopigment belonging to the G Protein-Coupled Receptor (GPCR) family expressed in a subset of intrinsically photosensitive retinal ganglion cells (ipRGCs) and responsible for a variety of processes. The bistability and, thus, the possibility to function under low retinal availability would make melanopsin a powerful optogenetic tool. Here, we aim to utilize mouse melanopsin to trigger macrophage migration by its subcellular optical activation with localized blue light, while simultaneously imaging the migration with red light. To reduce melanopsin's red light sensitivity, we employ a combination of in silico structure prediction and automated quantum mechanics/molecular mechanics modeling to predict minimally invasive mutations to shift its absorption spectrum towards the shorter wavelength region of the visible spectrum without compromising the signaling efficiency. The results demonstrate that it is possible to achieve melanopsin mutants that resist red light-induced activation but are activated by blue light and display properties indicating preserved bistability. Using the A333T mutant, we show that the blue light-induced subcellular melanopsin activation triggers localized PIP3 generation and macrophage migration, which we imaged using red light, demonstrating the optogenetic utility of minimally engineered melanopsins.
Collapse
Affiliation(s)
| | - Filippo Sacchetta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Francesca Fanelli
- Department of Life Sciences, Dulbecco Telethon Institute, University of Modena and Reggio Emilia, Modena, I-41125, Italy
| | - Tomohiro Sugihara
- Department of Biology, Osaka Metropolitan University, O 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Mitsumasa Koyanagi
- Department of Biology, Osaka Metropolitan University, O 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
- The OMU Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
| | - Senuri Piyawardana
- Department of Chemistry, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Kiran Ghotra
- Department of Biology, Siena Heights University, Adrian, MI, 49221, USA
| | - Waruna Thotamune
- Department of Chemistry, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Akihisa Terakita
- Department of Biology, Osaka Metropolitan University, O 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
- The OMU Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, Saint Louis, MO, 63103, USA.
| |
Collapse
|
3
|
Thotamune W, Ubeysinghe S, Rajarathna C, Kankanamge D, Olupothage K, Chandu A, Copits BA, Karunarathne A. AGS3-based optogenetic GDI induces GPCR-independent Gβγ signaling and macrophage migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597473. [PMID: 38895415 PMCID: PMC11185739 DOI: 10.1101/2024.06.04.597473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
G protein-coupled receptors (GPCRs) are efficient Guanine nucleotide exchange factors (GEFs) and exchange GDP to GTP on the Gα subunit of G protein heterotrimers in response to various extracellular stimuli, including neurotransmitters and light. GPCRs primarily broadcast signals through activated G proteins, GαGTP, and free Gβγ, and are major disease drivers. Evidence shows that the ambient low threshold signaling required for cells is likely supplemented by signaling regulators such as non-GPCR GEFs and Guanine nucleotide Dissociation Inhibitors (GDIs). Activators of G protein Signaling 3 (AGS3) are recognized as a GDI involved in multiple health and disease-related processes. Nevertheless, understanding of AGS3 is limited, and no significant information is available on its structure-function relationship or signaling regulation in living cells. Here, we employed in silico structure-guided engineering of a novel optogenetic GDI, based on the AGS3's G protein regulatory (GPR) motif, to understand its GDI activity and induce standalone Gβγ signaling in living cells on optical command. Our results demonstrate that plasma membrane recruitment of OptoGDI efficiently releases Gβγ, and its subcellular targeting generated localized PIP3 and triggered macrophage migration. Therefore, we propose OptoGDI as a powerful tool for optically dissecting GDI-mediated signaling pathways and triggering GPCR-independent Gβγ signaling in cells and in vivo.
Collapse
Affiliation(s)
- Waruna Thotamune
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO 63103, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO 63103, USA
| | - Chathuri Rajarathna
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO 63103, USA
| | - Dinesh Kankanamge
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO 63110 USA
| | - Koshala Olupothage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Aditya Chandu
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
| | - Bryan A. Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO 63110 USA
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO 63103, USA
| |
Collapse
|
4
|
Ubeysinghe S, Kankanamge D, Thotamune W, Wijayaratna D, Mohan TM, Karunarathne A. Spatiotemporal Optical Control of Gαq-PLCβ Interactions. ACS Synth Biol 2024; 13:242-258. [PMID: 38092428 DOI: 10.1021/acssynbio.3c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Cells experience time-varying and spatially heterogeneous chemokine signals in vivo, activating cell surface proteins including G protein-coupled receptors (GPCRs). The Gαq pathway activation by GPCRs is a major signaling axis with broad physiological and pathological significance. Compared with other Gα members, GαqGTP activates many crucial effectors, including PLCβ (Phospholipase Cβ) and Rho GEFs (Rho guanine nucleotide exchange factors). PLCβ regulates many key processes, such as hematopoiesis, synaptogenesis, and cell cycle, and is therefore implicated in terminal-debilitating diseases, including cancer, epilepsy, Huntington's Disease, and Alzheimer's Disease. However, due to a lack of genetic and pharmacological tools, examining how the dynamic regulation of PLCβ signaling controls cellular physiology has been difficult. Since activated PLCβ induces several abrupt cellular changes, including cell morphology, examining how the other pathways downstream of Gq-GPCRs contribute to the overall signaling has also been difficult. Here we show the engineering, validation, and application of a highly selective and efficient optogenetic inhibitor (Opto-dHTH) to completely disrupt GαqGTP-PLCβ interactions reversibly in user-defined cellular-subcellular regions on optical command. Using this newly gained PLCβ signaling control, our data indicate that the molecular competition between RhoGEFs and PLCβ for GαqGTP determines the potency of Gq-GPCR-governed directional cell migration.
Collapse
Affiliation(s)
- Sithurandi Ubeysinghe
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Dinesh Kankanamge
- Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Waruna Thotamune
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Dhanushan Wijayaratna
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Thomas M Mohan
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| |
Collapse
|
5
|
Ubeysinghe S, Kankanamge D, Thotamune W, Wijayaratna D, Mohan TM, Karunarathne A. Spatiotemporal optical control of Gαq-PLCβ interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552801. [PMID: 37609229 PMCID: PMC10441412 DOI: 10.1101/2023.08.10.552801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cells experience time-varying and spatially heterogeneous chemokine signals in vivo, activating cell surface proteins, including G protein-coupled receptors (GPCRs). The Gαq pathway activation by GPCRs is a major signaling axis with a broad physiological and pathological significance. Compared to other Gα members, GαqGTP activates many crucial effectors, including PLCβ (Phospholipase Cβ) and Rho GEFs (Rho guanine nucleotide exchange factors). PLCβ regulates many key processes, such as hematopoiesis, synaptogenesis, and cell cycle, and is therefore implicated in terminal - debilitating diseases, including cancer, epilepsy, Huntington's Disease, and Alzheimer's Disease. However, due to a lack of genetic and pharmacological tools, examining how the dynamic regulation of PLCβ signaling controls cellular physiology has been difficult. Since activated PLCβ induces several abrupt cellular changes, including cell morphology, examining how the other pathways downstream of Gq-GPCRs contribute to the overall signaling has also been difficult. Here we show the engineering, validation, and application of a highly selective and efficient optogenetic inhibitor (Opto-dHTH) to completely disrupt GαqGTP-PLCβ interactions reversibly in user-defined cellular-subcellular regions on optical command. Using this newly gained PLCβ signaling control, our data indicate that the molecular competition between RhoGEFs and PLCβ for GαqGTP determines the potency of Gq-GPCR-governed directional cell migration.
Collapse
|
6
|
Wijayaratna D, Ratnayake K, Ubeysinghe S, Kankanamge D, Tennakoon M, Karunarathne A. The spatial distribution of GPCR and Gβγ activity across a cell dictates PIP3 dynamics. Sci Rep 2023; 13:2771. [PMID: 36797332 PMCID: PMC9935898 DOI: 10.1038/s41598-023-29639-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Phosphatidylinositol (3,4,5) trisphosphate (PIP3) is a plasma membrane-bound signaling phospholipid involved in many cellular signaling pathways that control crucial cellular processes and behaviors, including cytoskeleton remodeling, metabolism, chemotaxis, and apoptosis. Therefore, defective PIP3 signaling is implicated in various diseases, including cancer, diabetes, obesity, and cardiovascular diseases. Upon activation by G protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs), phosphoinositide-3-kinases (PI3Ks) phosphorylate phosphatidylinositol (4,5) bisphosphate (PIP2), generating PIP3. Though the mechanisms are unclear, PIP3 produced upon GPCR activation attenuates within minutes, indicating a tight temporal regulation. Our data show that subcellular redistributions of G proteins govern this PIP3 attenuation when GPCRs are activated globally, while localized GPCR activation induces sustained subcellular PIP3. Interestingly the observed PIP3 attenuation was Gγ subtype-dependent. Considering distinct cell-tissue-specific Gγ expression profiles, our findings not only demonstrate how the GPCR-induced PIP3 response is regulated depending on the GPCR activity gradient across a cell, but also show how diversely cells respond to spatial and temporal variability of external stimuli.
Collapse
Affiliation(s)
- Dhanushan Wijayaratna
- grid.267337.40000 0001 2184 944XDepartment of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606 USA ,grid.262962.b0000 0004 1936 9342Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, Saint Louis, MO 63103 USA
| | - Kasun Ratnayake
- grid.267337.40000 0001 2184 944XDepartment of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606 USA
| | - Sithurandi Ubeysinghe
- grid.267337.40000 0001 2184 944XDepartment of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606 USA ,grid.262962.b0000 0004 1936 9342Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, Saint Louis, MO 63103 USA
| | - Dinesh Kankanamge
- grid.267337.40000 0001 2184 944XDepartment of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606 USA ,grid.4367.60000 0001 2355 7002Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110 USA
| | - Mithila Tennakoon
- grid.267337.40000 0001 2184 944XDepartment of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606 USA ,grid.262962.b0000 0004 1936 9342Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, Saint Louis, MO 63103 USA
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, 43606, USA. .,Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, Saint Louis, MO, 63103, USA.
| |
Collapse
|
7
|
Xu X, Wu G. Non-canonical Golgi-compartmentalized Gβγ signaling: mechanisms, functions, and therapeutic targets. Trends Pharmacol Sci 2023; 44:98-111. [PMID: 36494204 PMCID: PMC9901158 DOI: 10.1016/j.tips.2022.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
G protein Gβγ subunits are key mediators of G protein-coupled receptor (GPCR) signaling under physiological and pathological conditions; their inhibitors have been tested for the treatment of human disease. Conventional wisdom is that the Gβγ complex is activated and subsequently exerts its functions at the plasma membrane (PM). Recent studies have revealed non-canonical activation of Gβγ at intracellular organelles, where the Golgi apparatus is a major locale, via translocation or local activation. Golgi-localized Gβγ activates specific signaling cascades and regulates fundamental cell processes such as membrane trafficking, proliferation, and migration. More recent studies have shown that inhibiting Golgi-compartmentalized Gβγ signaling attenuates cardiomyocyte hypertrophy and prostate tumorigenesis, indicating new therapeutic targets. We review novel activation mechanisms and non-canonical functions of Gβγ at the Golgi, and discuss potential therapeutic interventions by targeting Golgi-biased Gβγ-directed signaling.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
8
|
Cellular Electrical Impedance as a Method to Decipher CCR7 Signalling and Biased Agonism. Int J Mol Sci 2022; 23:ijms23168903. [PMID: 36012168 PMCID: PMC9408853 DOI: 10.3390/ijms23168903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The human C-C chemokine receptor type 7 (CCR7) has two endogenous ligands, C-C chemokine ligand 19 (CCL19) and CCL21, displaying biased agonism reflected by a pronounced difference in the level of β-arrestin recruitment. Detecting this preferential activation generally requires the use of separate, pathway-specific label-based assays. In this study, we evaluated an alternative methodology to study CCR7 signalling. Cellular electrical impedance (CEI) is a label-free technology which yields a readout that reflects an integrated cellular response to ligand stimulation. CCR7-expressing HEK293 cells were stimulated with CCL19 or CCL21, which induced distinct impedance profiles with an apparent bias during the desensitisation phase of the response. This discrepancy was mainly modulated by differential β-arrestin recruitment, which shaped the impedance profile but did not seem to contribute to it directly. Pathway deconvolution revealed that Gαi-mediated signalling contributed most to the impedance profile, but Gαq- and Gα12/13-mediated pathways were also involved. To corroborate these results, label-based pathway-specific assays were performed. While CCL19 more potently induced β-arrestin2 recruitment and receptor internalisation than CCL21, both chemokines showed a similar level of Gαi protein activation. Altogether, these findings indicate that CEI is a powerful method to analyse receptor signalling and biased agonism.
Collapse
|
9
|
Lone AM, Giansanti P, Jørgensen MJ, Gjerga E, Dugourd A, Scholten A, Saez-Rodriguez J, Heck AJR, Taskén K. Systems approach reveals distinct and shared signaling networks of the four PGE 2 receptors in T cells. Sci Signal 2021; 14:eabc8579. [PMID: 34609894 DOI: 10.1126/scisignal.abc8579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anna M Lone
- Department of Cancer Immunology, Institute of Cancer Research, Oslo University Hospital, 0424 Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy and K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0317 Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Piero Giansanti
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, 3584 CH Utrecht, Netherlands.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising 85354, Germany
| | - Marthe Jøntvedt Jørgensen
- K.G. Jebsen Centre for Cancer Immunotherapy and K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0317 Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Enio Gjerga
- Joint Research Centre for Computational Biomedicine (JRC-Combine), RWTH-Aachen University Hospital, Faculty of Medicine, Aachen 52074, Germany.,Faculty of Medicine, Institute for Computational Biomedicine, Heidelberg University Hospital, Bioquant, Heidelberg University, Heidelberg 69120, Germany
| | - Aurelien Dugourd
- Joint Research Centre for Computational Biomedicine (JRC-Combine), RWTH-Aachen University Hospital, Faculty of Medicine, Aachen 52074, Germany.,Faculty of Medicine, Institute for Computational Biomedicine, Heidelberg University Hospital, Bioquant, Heidelberg University, Heidelberg 69120, Germany
| | - Arjen Scholten
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, 3584 CH Utrecht, Netherlands
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine (JRC-Combine), RWTH-Aachen University Hospital, Faculty of Medicine, Aachen 52074, Germany.,Faculty of Medicine, Institute for Computational Biomedicine, Heidelberg University Hospital, Bioquant, Heidelberg University, Heidelberg 69120, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, 3584 CH Utrecht, Netherlands
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute of Cancer Research, Oslo University Hospital, 0424 Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy and K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0317 Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| |
Collapse
|
10
|
Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, Ubeysinghe S, Martins-Cannavino K, Hébert TE, Karunarathne A. Subtype-dependent regulation of Gβγ signalling. Cell Signal 2021; 82:109947. [PMID: 33582184 PMCID: PMC8026654 DOI: 10.1016/j.cellsig.2021.109947] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) transmit information to the cell interior by transducing external signals to heterotrimeric G protein subunits, Gα and Gβγ subunits, localized on the inner leaflet of the plasma membrane. Though the initial focus was mainly on Gα-mediated events, Gβγ subunits were later identified as major contributors to GPCR-G protein signalling. A broad functional array of Gβγ signalling has recently been attributed to Gβ and Gγ subtype diversity, comprising 5 Gβ and 12 Gγ subtypes, respectively. In addition to displaying selectivity towards each other to form the Gβγ dimer, numerous studies have identified preferences of distinct Gβγ combinations for specific GPCRs, Gα subtypes and effector molecules. Importantly, Gβ and Gγ subtype-dependent regulation of downstream effectors, representing a diverse range of signalling pathways and physiological functions have been found. Here, we review the literature on the repercussions of Gβ and Gγ subtype diversity on direct and indirect regulation of GPCR/G protein signalling events and their physiological outcomes. Our discussion additionally provides perspective in understanding the intricacies underlying molecular regulation of subtype-specific roles of Gβγ signalling and associated diseases.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kanishka Senarath
- Genetics and Molecular Biology Unit, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dhanushan Wijayaratna
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Koshala Olupothage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | | | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
11
|
Medapati MR, Singh N, Bhagirath AY, Duan K, Triggs-Raine B, Batista EL, Chelikani P. Bitter taste receptor T2R14 detects quorum sensing molecules from cariogenic Streptococcus mutans and mediates innate immune responses in gingival epithelial cells. FASEB J 2021; 35:e21375. [PMID: 33559200 DOI: 10.1096/fj.202000208r] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022]
Abstract
Host-pathogen interactions play an important role in defining the outcome of a disease. Recent studies have shown that the bacterial quorum sensing molecules (QSM) can interact with host cell membrane proteins, mainly G protein-coupled receptors (GPCRs), and induce innate immune responses. However, few studies have examined QSM-GPCR interactions and their influence on oral innate immune responses. In this study, we examined the role of bitter taste receptor T2R14 in sensing competence stimulating peptides (CSPs) secreted by cariogenic bacterium Streptococcus mutans and in mediating innate immune responses in gingival epithelial cells (GECs). Transcriptomic and western blot analyses identify T2R14 to be highly expressed in GECs. Our data show that only CSP-1 from S. mutans induces robust intracellular calcium mobilization compared to CSP-2 and CSP-3. By using CRISPR-Cas9, we demonstrate that CSP-1 induced calcium signaling and secretion of cytokines CXCL-8/IL-8, TNF-α, and IL-6 is mediated through T2R14 in GECs. Interestingly, the NF-kB signaling activated by CSP-1 in GECs was independent of T2R14. CSP-1-primed GECs attracted differentiated HL-60 immune cells (dHL-60) and this effect was abolished in T2R14 knock down GECs and also in cells primed with T2R14 antagonist 6-Methoxyflavone (6-MF). Our findings identify S. mutans CSP-1 as a peptide ligand for the T2R family. Our study establishes a novel host-pathogen interaction between cariogenic S. mutans CSP-1 and T2R14 in GECs leading to an innate immune response. Collectively, these findings suggest T2Rs as potential therapeutic targets to modulate innate immune responses upon oral bacterial infections.
Collapse
Affiliation(s)
- Manoj Reddy Medapati
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Nisha Singh
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Anjali Yadav Bhagirath
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, Canada
| | - Kangmin Duan
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, Canada
| | - Barbara Triggs-Raine
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, Canada.,Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Eraldo L Batista
- Department of Dental Diagnostic and Clinical Sciences, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, Canada
| |
Collapse
|
12
|
Optical approaches for single-cell and subcellular analysis of GPCR-G protein signaling. Anal Bioanal Chem 2019; 411:4481-4508. [PMID: 30927013 DOI: 10.1007/s00216-019-01774-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 01/05/2023]
Abstract
G protein-coupled receptors (GPCRs), G proteins, and their signaling associates are major signal transducers that control the majority of cellular signaling and regulate key biological functions including immune, neurological, cardiovascular, and metabolic processes. These pathways are targeted by over one-third of drugs on the market; however, the current understanding of their function is limited and primarily derived from cell-destructive approaches providing an ensemble of static, multi-cell information about the status and composition of molecules. Spatiotemporal behavior of molecules involved is crucial to understanding in vivo cell behaviors both in health and disease, and the advent of genetically encoded fluorescence proteins and small fluorophore-based biosensors has facilitated the mapping of dynamic signaling in cells with subcellular acuity. Since we and others have developed optogenetic methods to regulate GPCR-G protein signaling in single cells and subcellular regions using dedicated wavelengths, the desire to develop and adopt optogenetically amenable assays to measure signaling has motivated us to take a broader look at the available optical tools and approaches compatible with measuring single-cell and subcellular GPCR-G protein signaling. Here we review such key optical approaches enabling the examination of GPCR, G protein, secondary messenger, and downstream molecules such as kinase and lipid signaling in living cells. The methods reviewed employ both fluorescence and bioluminescence detection. We not only further elaborate the underlying principles of these sensors but also discuss the experimental criteria and limitations to be considered during their use in single-cell and subcellular signal mapping.
Collapse
|
13
|
Kankanamge D, Tennakoon M, Weerasinghe A, Cedeno-Rosario L, Chadee DN, Karunarathne A. G protein αq exerts expression level-dependent distinct signaling paradigms. Cell Signal 2019; 58:34-43. [PMID: 30849518 DOI: 10.1016/j.cellsig.2019.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/16/2022]
Abstract
G protein αq-coupled receptors (Gq-GPCRs) primarily signal through GαqGTP mediated phospholipase Cβ (PLCβ) stimulation and the subsequent hydrolysis of phosphatidylinositol 4, 5 bisphosphate (PIP2). Though Gq-heterotrimer activation results in both GαqGTP and Gβγ, unlike Gi/o-receptors, it is unclear if Gq-coupled receptors employ Gβγ as a major signal transducer. Compared to Gi/o- and Gs-coupled receptors, we observed that most cell types exhibit a limited free Gβγ generation upon Gq-pathway and Gαq/11 heterotrimer activation. We show that cells transfected with Gαq or endogenously expressing more than average-levels of Gαq/11 compared to Gαs and Gαi exhibit a distinct signaling regime primarily characterized by recovery-resistant PIP2 hydrolysis. Interestingly, the elevated Gq-expression is also associated with enhanced free Gβγ generation and signaling. Furthermore, the gene GNAQ, which encodes for Gαq, has recently been identified as a cancer driver gene. We also show that GNAQ is overexpressed in tumor samples of patients with Kidney Chromophobe (KICH) and Kidney renal papillary (KIRP) cell carcinomas in a matched tumor-normal sample analysis, which demonstrates the clinical significance of Gαq expression. Overall, our data indicates that cells usually express low Gαq levels, likely safeguarding cells from excessive calcium as wells as from Gβγ signaling.
Collapse
Affiliation(s)
- Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Amila Weerasinghe
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Luis Cedeno-Rosario
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA
| | - Deborah N Chadee
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
14
|
Tennakoon M, Kankanamge D, Senarath K, Fasih Z, Karunarathne A. Statins Perturb G βγ Signaling and Cell Behavior in a G γ Subtype Dependent Manner. Mol Pharmacol 2019; 95:361-375. [PMID: 30765461 DOI: 10.1124/mol.118.114710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/25/2019] [Indexed: 01/08/2023] Open
Abstract
Guanine nucleotide-binding proteins (G proteins) facilitate the transduction of external signals to the cell interior, regulate most eukaryotic signaling, and thus have become crucial disease drivers. G proteins largely function at the inner leaflet of the plasma membrane (PM) using covalently attached lipid anchors. Both small monomeric and heterotrimeric G proteins are primarily prenylated, either with a 15-carbon farnesyl or a 20-carbon geranylgeranyl polyunsaturated lipid. The mevalonate [3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase] pathway synthesizes lipids for G-protein prenylation. It is also the source of the precursor lipids for many biomolecules, including cholesterol. Consequently, the rate-limiting enzymes of the mevalonate pathway are major targets for cholesterol-lowering medications and anticancer drug development. Although prenylated G protein γ (Gγ) is essential for G protein-coupled receptor (GPCR)-mediated signaling, how mevalonate pathway inhibitors, statins, influence subcellular distribution of Gβγ dimer and Gαβγ heterotrimer, as well as their signaling upon GPCR activation, is poorly understood. The present study shows that clinically used statins not only significantly disrupt PM localization of Gβγ but also perturb GPCR-G protein signaling and associated cell behaviors. The results also demonstrate that the efficiency of prenylation inhibition by statins is Gγ subtype-dependent and is more effective toward farnesylated Gγ types. Since Gγ is required for Gβγ signaling and shows a cell- and tissue-specific subtype distribution, the present study can help understand the mechanisms underlying clinical outcomes of statin use in patients. This work also reveals the potential of statins as clinically usable drugs to control selected GPCR-G protein signaling.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio
| | - Kanishka Senarath
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio
| | - Zehra Fasih
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio
| |
Collapse
|
15
|
Abstract
Photoreceptor chromophore, 11-cis retinal (11CR) and the photoproduct, all-trans retinal (ATR), are present in the retina at higher concentrations and interact with the visual cells. Non-visual cells in the body are also exposed to retinal that enters the circulation. Although the cornea and the lens of the eye are transparent to the blue light region where retinal can absorb and undergo excitation, the reported phototoxicity in the eye has been assigned to lipophilic non-degradable materials known as lipofuscins, which also includes retinal condensation products. The possibility of blue light excited retinal interacting with cells; intercepting signaling in the presence or absence of light has not been explored. Using live cell imaging and optogenetic signaling control, we uncovered that blue light-excited ATR and 11CR irreversibly change/distort plasma membrane (PM) bound phospholipid; phosphatidylinositol 4,5 bisphosphate (PIP2) and disrupt its function. This distortion in PIP2 was independent of visual or non-visual G-protein coupled receptor activation. The change in PIP2 was followed by an increase in the cytosolic calcium, excessive cell shape change, and cell death. Blue light alone or retinal alone did not perturb PIP2 or elicit cytosolic calcium increase. Our data also suggest that photoexcited retinal-induced PIP2 distortion and subsequent oxidative damage incur in the core of the PM. These findings suggest that retinal exerts light sensitivity to both photoreceptor and non-photoreceptor cells, and intercepts crucial signaling events, altering the cellular fate.
Collapse
|
16
|
Kankanamge D, Ratnayake K, Samaradivakara S, Karunarathne A. Melanopsin (Opn4) utilizes Gα i and Gβγ as major signal transducers. J Cell Sci 2018; 131:jcs.212910. [PMID: 29712722 DOI: 10.1242/jcs.212910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/23/2018] [Indexed: 01/16/2023] Open
Abstract
Melanopsin (Opn4), a ubiquitously expressed photoreceptor in all classes of vertebrates, is crucial for both visual and non-visual signaling. Opn4 supports visual functions of the eye by sensing radiance levels and discriminating contrast and brightness. Non-image-forming functions of Opn4 not only regulate circadian behavior, but also control growth and development processes of the retina. It is unclear how a single photoreceptor could govern such a diverse range of physiological functions; a role in genetic hardwiring could be one explanation, but molecular and mechanistic evidence is lacking. In addition to its role in canonical Gq pathway activation, here we demonstrate that Opn4 efficiently activates Gi heterotrimers and signals through the G protein βγ. Compared with the low levels of Gi pathway activation observed for several Gq-coupled receptors, the robust Gαi and Gβγ signaling of Opn4 led to both generation of PIP3 and directional migration of RAW264.7 macrophages. We propose that the ability of Opn4 to signal through Gαi and Gβγ subunits is a major contributor to its functional diversity.
Collapse
Affiliation(s)
- Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Saroopa Samaradivakara
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
17
|
Senarath K, Payton JL, Kankanamge D, Siripurapu P, Tennakoon M, Karunarathne A. Gγ identity dictates efficacy of Gβγ signaling and macrophage migration. J Biol Chem 2018; 293:2974-2989. [PMID: 29317505 DOI: 10.1074/jbc.ra117.000872] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/04/2018] [Indexed: 11/06/2022] Open
Abstract
G protein βγ subunit (Gβγ) is a major signal transducer and controls processes ranging from cell migration to gene transcription. Despite having significant subtype heterogeneity and exhibiting diverse cell- and tissue-specific expression levels, Gβγ is often considered a unified signaling entity with a defined functionality. However, the molecular and mechanistic basis of Gβγ's signaling specificity is unknown. Here, we demonstrate that Gγ subunits, bearing the sole plasma membrane (PM)-anchoring motif, control the PM affinity of Gβγ and thereby differentially modulate Gβγ effector signaling in a Gγ-specific manner. Both Gβγ signaling activity and the migration rate of macrophages are strongly dependent on the PM affinity of Gγ. We also found that the type of C-terminal prenylation and five to six pre-CaaX motif residues at the PM-interacting region of Gγ control the PM affinity of Gβγ. We further show that the overall PM affinity of the Gβγ pool of a cell type is a strong predictor of its Gβγ signaling-activation efficacy. A kinetic model encompassing multiple Gγ types and parameterized for empirical Gβγ behaviors not only recapitulated experimentally observed signaling of Gβγ, but also suggested a Gγ-dependent, active-inactive conformational switch for the PM-bound Gβγ, regulating effector signaling. Overall, our results unveil crucial aspects of signaling and cell migration regulation by Gγ type-specific PM affinities of Gβγ.
Collapse
Affiliation(s)
- Kanishka Senarath
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606
| | - John L Payton
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606
| | - Praneeth Siripurapu
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606
| | - Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606.
| |
Collapse
|