1
|
Dho SE, Othman K, Zhang Y, McGlade CJ. NUMB alternative splicing and isoform specific functions in development and disease. J Biol Chem 2025:108215. [PMID: 39863103 DOI: 10.1016/j.jbc.2025.108215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The NUMB gene encodes a conserved adaptor protein with roles in asymmetric cell division and cell fate determination. First described as an inhibitor of Notch signaling, multi-functional NUMB proteins regulate multiple cellular pathways through protein complexes with ubiquitin ligases, polarity proteins and the endocytic machinery. The vertebrate NUMB protein isoforms were identified over two decades ago, yet the majority of functional studies exploring NUMB function in endocytosis, cell migration and adhesion, development and disease have largely neglected the potential for distinct isoform activity in design and interpretation. In this review we consolidate the literature that has directly addressed individual NUMB isoform functions, as well as interpret other functional studies through the lens of the specific isoforms that were utilized. We also summarize the emerging literature on the mechanisms that regulate alternative splicing of NUMB, and how this is subverted in disease. Finally, the importance of relative NUMB isoform expression as a determinant of activity and considerations for future studies of NUMB isoforms as unique proteins with distinct functions are discussed.
Collapse
Affiliation(s)
- Sascha E Dho
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8
| | - Kamal Othman
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada, M5G 2M9
| | - Yangjing Zhang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada, M5G 2M9
| | - C Jane McGlade
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada, M5G 2M9.
| |
Collapse
|
2
|
Sultania A, Brahadeeswaran S, Kolasseri AE, Jayanthi S, Tamizhselvi R. Menopause mysteries: the exosome-inflammation connection. J Ovarian Res 2025; 18:12. [PMID: 39849635 PMCID: PMC11756133 DOI: 10.1186/s13048-025-01591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
Extracellular vesicles, or exosomes, are produced by every type of cell and contain metabolites, proteins, lipids, and nucleic acids. Their role in health and disease is to influence different aspects of cell biology and to act as intermediaries between cells. Follicular fluid exosomes or extracellular vesicles (FF-EVs) secreted by ovarian granulosa cells are critical mediators of ovary growth and maturation. The movement and proteins of these exosomes are crucial in the regulation of cellular communication and the aging of cells, a process termed inflammaging. Menopause, a natural progression in the aging of females, is often accompanied by numerous negative symptoms and health issues. It can also act as a precursor to more severe health problems, including neurological, cardiovascular, and metabolic diseases, as well as gynecological cancers. Researchers have discovered pathways that reveal the diverse effects of exosome-driven cellular communication and oocyte development in the follicular fluid. It also explores the complex functions of FF exosomal proteins in the pathologies associated with menopause.
Collapse
Affiliation(s)
- Aarushi Sultania
- School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - Subhashini Brahadeeswaran
- School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - Aparna Eledath Kolasseri
- School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - Sivaraman Jayanthi
- School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - Ramasamy Tamizhselvi
- School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India.
| |
Collapse
|
3
|
Cheng B, Li M, Zheng J, Liang J, Li Y, Liang R, Tian H, Zhou Z, Ding L, Ren J, Shi W, Zhou W, Hu H, Meng L, Liu K, Cai L, Shao X, Fang L, Li H. Chemically engineered antibodies for autophagy-based receptor degradation. Nat Chem Biol 2025:10.1038/s41589-024-01803-1. [PMID: 39789191 DOI: 10.1038/s41589-024-01803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/19/2024] [Indexed: 01/12/2025]
Abstract
Cell surface receptor-targeted protein degraders hold promise for drug discovery. However, their application is restricted because of the complexity of creating bifunctional degraders and the reliance on specific lysosome-shuttling receptors or E3 ubiquitin ligases. To address these limitations, we developed an autophagy-based plasma membrane protein degradation platform, which we term AUTABs (autophagy-inducing antibodies). Through covalent conjugation with polyethylenimine (PEI), the engineered antibodies acquire the capacity to degrade target receptors through autophagy. The degradation activities of AUTABs are self-sufficient, without necessitating the participation of lysosome-shuttling receptors or E3 ubiquitin ligases. The broad applicability of this platform was then illustrated by targeting various clinically important receptors. Notably, combining specific primary antibodies with a PEI-tagged secondary nanobody also demonstrated effective degradation of target receptors. Thus, our study outlines a strategy for directing plasma membrane proteins for autophagic degradation, which possesses desirable attributes such as ease of generation, independence from cell type and broad applicability.
Collapse
Affiliation(s)
- Binghua Cheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Meiqing Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China
| | - Jiwei Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Jiaming Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Yanyan Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Ruijing Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China
| | - Hui Tian
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zeyu Zhou
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Li Ding
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Ren
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Shi
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenjie Zhou
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Long Meng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Ke Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| | - Ximing Shao
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| | - Hongchang Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| |
Collapse
|
4
|
Cheng B, Li Y, Ji YB, Shi W, Li M, Zheng J, Ding L, Liu K, Fang L, Xu Y, Li H, Shao X. Polyethylenimine Triggers Dll4 Degradation to Regulate Angiogenesis In Vitro. ACS OMEGA 2024; 9:7502-7510. [PMID: 38405519 PMCID: PMC10882680 DOI: 10.1021/acsomega.3c06050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024]
Abstract
The Dll4-Notch signaling pathway plays a crucial role in the regulation of angiogenesis and is a promising therapeutic target for diseases associated with abnormal angiogenesis, such as cancer and ophthalmic diseases. Here, we find that polyethylenimine (PEI), a cationic polymer widely used as nucleic acid transfection reagents, can target the Notch ligand Dll4. By immunostaining and immunoblotting, we demonstrate that PEI significantly induces the clearance of cell-surface Dll4 and facilitates its degradation through the lysosomal pathway. As a result, the activation of Notch signaling in endothelial cells is effectively inhibited by PEI, as evidenced by the observed decrease in the generation of the activated form of Notch and expression of Notch target genes Hes1 and Hey1. Furthermore, through blocking Dll4-mediated Notch signaling, PEI treatment enhances angiogenesis in vitro. Together, our study reveals a novel biological effect of PEI and establishes a foundation for the development of a Dll4-targeted biomaterial for the treatment of angiogenesis-related disease.
Collapse
Affiliation(s)
- Binghua Cheng
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Li
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Bin Ji
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenli Shi
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Meiqing Li
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Sino-Euro
Center of Biomedicine and Health, Shenzhen 518024, China
| | - Jiwei Zheng
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Ding
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ke Liu
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Sino-Euro
Center of Biomedicine and Health, Shenzhen 518024, China
| | - Lijing Fang
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Sino-Euro
Center of Biomedicine and Health, Shenzhen 518024, China
| | - Ye Xu
- General
Hospital of Southern Theatre Command, Guangzhou 510010, China
| | - Hongchang Li
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Sino-Euro
Center of Biomedicine and Health, Shenzhen 518024, China
| | - Ximing Shao
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Sino-Euro
Center of Biomedicine and Health, Shenzhen 518024, China
| |
Collapse
|
5
|
Choi HY, Zhu Y, Zhao X, Mehta S, Hernandez JC, Lee JJ, Kou Y, Machida R, Giacca M, Del Sal G, Ray R, Eoh H, Tahara SM, Chen L, Tsukamoto H, Machida K. NOTCH localizes to mitochondria through the TBC1D15-FIS1 interaction and is stabilized via blockade of E3 ligase and CDK8 recruitment to reprogram tumor-initiating cells. Exp Mol Med 2024; 56:461-477. [PMID: 38409448 PMCID: PMC10907578 DOI: 10.1038/s12276-024-01174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/28/2023] [Accepted: 12/06/2023] [Indexed: 02/28/2024] Open
Abstract
The P53-destabilizing TBC1D15-NOTCH protein interaction promotes self-renewal of tumor-initiating stem-like cells (TICs); however, the mechanisms governing the regulation of this pathway have not been fully elucidated. Here, we show that TBC1D15 stabilizes NOTCH and c-JUN through blockade of E3 ligase and CDK8 recruitment to phosphodegron sequences. Chromatin immunoprecipitation (ChIP-seq) analysis was performed to determine whether TBC1D15-dependent NOTCH1 binding occurs in TICs or non-TICs. The TIC population was isolated to evaluate TBC1D15-dependent NOTCH1 stabilization mechanisms. The tumor incidence in hepatocyte-specific triple knockout (Alb::CreERT2;Tbc1d15Flox/Flox;Notch1Flox/Flox;Notch2Flox/Flox;HCV-NS5A) Transgenic (Tg) mice and wild-type mice was compared after being fed an alcohol-containing Western diet (WD) for 12 months. The NOTCH1-TBC1D15-FIS1 interaction resulted in recruitment of mitochondria to the perinuclear region. TBC1D15 bound to full-length NUMB and to NUMB isoform 5, which lacks three Ser phosphorylation sites, and relocalized NUMB5 to mitochondria. TBC1D15 binding to NOTCH1 blocked CDK8- and CDK19-mediated phosphorylation of the NOTCH1 PEST phosphodegron to block FBW7 recruitment to Thr-2512 of NOTCH1. ChIP-seq analysis revealed that TBC1D15 and NOTCH1 regulated the expression of genes involved in mitochondrial metabolism-related pathways required for the maintenance of TICs. TBC1D15 inhibited CDK8-mediated phosphorylation to stabilize NOTCH1 and protect it from degradation The NUMB-binding oncoprotein TBC1D15 rescued NOTCH1 from NUMB-mediated ubiquitin-dependent degradation and recruited NOTCH1 to the mitochondrial outer membrane for the generation and expansion of liver TICs. A NOTCH-TBC1D15 inhibitor was found to inhibit NOTCH-dependent pathways and exhibited potent therapeutic effects in PDX mouse models. This unique targeting of the NOTCH-TBC1D15 interaction not only normalized the perinuclear localization of mitochondria but also promoted potent cytotoxic effects against TICs to eradicate patient-derived xenografts through NOTCH-dependent pathways.
Collapse
Affiliation(s)
- Hye Yeon Choi
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Yicheng Zhu
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Xuyao Zhao
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Simran Mehta
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Juan Carlos Hernandez
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Jae-Jin Lee
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Yi Kou
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Risa Machida
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ratna Ray
- Saint Louis University, School of Medicine, St Louis, MO, USA
| | - Hyungjin Eoh
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Stanley M Tahara
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Lin Chen
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hidekazu Tsukamoto
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA
| | - Keigo Machida
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA.
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Ortega-Campos SM, García-Heredia JM. The Multitasker Protein: A Look at the Multiple Capabilities of NUMB. Cells 2023; 12:333. [PMID: 36672267 PMCID: PMC9856935 DOI: 10.3390/cells12020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
NUMB, a plasma membrane-associated protein originally described in Drosophila, is involved in determining cell function and fate during early stages of development. It is secreted asymmetrically in dividing cells, with one daughter cell inheriting NUMB and the other inheriting its antagonist, NOTCH. NUMB has been proposed as a polarizing agent and has multiple functions, including endocytosis and serving as an adaptor in various cellular pathways such as NOTCH, Hedgehog, and the P53-MDM2 axis. Due to its role in maintaining cellular homeostasis, it has been suggested that NUMB may be involved in various human pathologies such as cancer and Alzheimer's disease. Further research on NUMB could aid in understanding disease mechanisms and advancing the field of personalized medicine and the development of new therapies.
Collapse
Affiliation(s)
- Sara M. Ortega-Campos
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel García-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
7
|
Zhu D, Xia J, Liu C, Fang C. Numb/Notch/PLK1 signaling pathway mediated hyperglycemic memory in pancreatic cancer cell radioresistance and the therapeutic effects of metformin. Cell Signal 2022; 93:110268. [PMID: 35143930 DOI: 10.1016/j.cellsig.2022.110268] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diabetes mellitus has presented a positive role in the progression of pancreatic cancer and "Hyperglycemic memory" could be an important cause for diabetic damage. While limited information is available regarding the role of "hyperglycemic memory" in the pancreatic cancer and its radio-resistance. We therefore investigated correlation among hyperglycemic memory, Numb and metformin in pancreatic cancer radio-resistance. METHODS High glucose and hyperglycemic memory models were established in vitro and in vivo. Western blot, real-time PCR were accordingly used to detect Numb /Notch/ Polo-like kinase1 (PLK1) signaling at the level of molecular, cellular and experimental animal model, respectively. The apoptosis rate was evaluated by TUNEL assay and Capase-3 activity. The therapeutic effect of metformin was revealed by detecting the level of Numb / Notch /PLK1 through Western blot and real-time PCR. RESULTS Inactivation of Numb promotes the pancreatic cancer radio-resistance through hyperglycemic memory and metformin could suppress the radio-resistance by activating Numb in vitro and in vivo. In addition, PLK1 and Notch signaling pathway (Notch1, HEY1) elevated in pancreatic cancer radio-resistance condition, which was induced by hyperglycemic memory. Moreover, Numb overexpression or metformin could suppress Notch pathway to alleviate pancreatic cancer radio-resistance. CONCLUSIONS Our data demonstrated that Numb might be a promising target for the improvement of hyperglycemic memory damage and the effect of metformin deserved urgent attention on pancreatic cancer radio-resistance therapy.
Collapse
Affiliation(s)
- Dandan Zhu
- Department of Ophthalmology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing 210000, China
| | - Jie Xia
- Department of Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chao Liu
- Department of Orthopedics, Shanghai Songjiang District Central Hospital, Shanghai, China.
| | - Chi Fang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
8
|
Francis CR, Kushner EJ. Trafficking in blood vessel development. Angiogenesis 2022; 25:291-305. [PMID: 35449244 PMCID: PMC9249721 DOI: 10.1007/s10456-022-09838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/03/2022] [Indexed: 02/17/2023]
Abstract
Blood vessels demonstrate a multitude of complex signaling programs that work in concert to produce functional vasculature networks during development. A known, but less widely studied, area of endothelial cell regulation is vesicular trafficking, also termed sorting. After moving through the Golgi apparatus, proteins are shuttled to organelles, plugged into membranes, recycled, or degraded depending on the internal and extrinsic cues. A snapshot of these protein-sorting systems can be viewed as a trafficking signature that is not only unique to endothelial tissue, but critically important for blood vessel form and function. In this review, we will cover how vesicular trafficking impacts various aspects of angiogenesis, such as sprouting, lumen formation, vessel stabilization, and secretion, emphasizing the role of Rab GTPase family members and their various effectors.
Collapse
Affiliation(s)
- Caitlin R Francis
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
9
|
The Spatiotemporal Expression of Notch1 and Numb and Their Functional Interaction during Cardiac Morphogenesis. Cells 2021; 10:cells10092192. [PMID: 34571841 PMCID: PMC8471136 DOI: 10.3390/cells10092192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/13/2022] Open
Abstract
Numb family proteins (NFPs), including Numb and Numblike (Numbl), are commonly known for their role as cell fate determinants for multiple types of progenitor cells, mainly due to their function as Notch inhibitors. Previous studies have shown that myocardial NFP double knockout (MDKO) hearts display an up-regulated Notch activation and various defects in cardiac progenitor cell differentiation and cardiac morphogenesis. Whether enhanced Notch activation causes these defects in MDKO is not fully clear. To answer the question, we examined the spatiotemporal patterns of Notch1 expression, Notch activation, and Numb expression in the murine embryonic hearts using multiple approaches including RNAScope, and Numb and Notch reporter mouse lines. To further interrogate the interaction between NFPs and Notch signaling activation, we deleted both Notch1 or RBPJk alleles in the MDKO. We examined and compared the phenotypes of Notch1 knockout, NFPs double knockout, Notch1; Numb; Numbl and RBPJk; Numb; Numbl triple knockouts. Our study showed that Notch1 is expressed and activated in the myocardium at several stages, and Numb is enriched in the epicardium and did not show the asymmetric distribution in the myocardium. Cardiac-specific Notch1 deletion causes multiple structural defects and embryonic lethality. Notch1 or RBPJk deletion in MDKO did not rescue the structural defects in the MDKO but partially rescued the defects of cardiac progenitor cell differentiation, cardiomyocyte proliferation, and trabecular morphogenesis. Our study concludes that NFPs regulate progenitor cell differentiation, cardiomyocyte proliferation, and trabecular morphogenesis partially through Notch1 and play more roles than inhibiting Notch1 signaling during cardiac morphogenesis.
Collapse
|
10
|
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer that can self-renew and differentiate into large tumor masses. Evidence accumulated to date shows that CSCs affect tumor proliferation, recurrence, and resistance to chemotherapy. Recent studies have shown that, like stem cells, CSCs maintain cells with self-renewal capacity by means of asymmetric division and promote cell proliferation by means of symmetric division. This cell division is regulated by fate determinants, such as the NUMB protein, which recently has also been confirmed as a tumor suppressor. Loss of NUMB expression leads to uncontrolled proliferation and amplification of the CSC pool, which promotes the Notch signaling pathway and reduces the expression of the p53 protein. NUMB genes are alternatively spliced to produce six functionally distinct isoforms. An interesting recent discovery is that the protein NUMB isoform produced by alternative splicing of NUMB plays an important role in promoting carcinogenesis. In this review, we summarize the known functions of NUMB and NUMB isoforms related to the proliferation and generation of CSCs.
Collapse
Affiliation(s)
- Hye Yeon Choi
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jaekwon Seok
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Geun-Ho Kang
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| |
Collapse
|
11
|
Choi HY, Seok J, Kang GH, Lim KM, Cho SG. The role of NUMB/NUMB isoforms in cancer stem cells. BMB Rep 2021; 54:335-343. [PMID: 34078527 PMCID: PMC8328821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer that can self-renew and differentiate into large tumor masses. Evidence accumulated to date shows that CSCs affect tumor proliferation, recurrence, and resistance to chemotherapy. Recent studies have shown that, like stem cells, CSCs maintain cells with self-renewal capacity by means of asymmetric division and promote cell proliferation by means of symmetric division. This cell division is regulated by fate determinants, such as the NUMB protein, which recently has also been confirmed as a tumor suppressor. Loss of NUMB expression leads to uncontrolled proliferation and amplification of the CSC pool, which promotes the Notch signaling pathway and reduces the expression of the p53 protein. NUMB genes are alternatively spliced to produce six functionally distinct isoforms. An interesting recent discovery is that the protein NUMB isoform produced by alternative splicing of NUMB plays an important role in promoting carcinogenesis. In this review, we summarize the known functions of NUMB and NUMB isoforms related to the proliferation and generation of CSCs. [BMB Reports 2021; 54(7): 335-343].
Collapse
Affiliation(s)
- Hye Yeon Choi
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA, Seoul 05029, Korea
| | - Jaekwon Seok
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Geun-Ho Kang
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| |
Collapse
|
12
|
Cao Y, Liu L, Lin J, Sun P, Guo K, Li S, Li X, Lan ZJ, Wang H, Lei Z. Dysregulation of Notch-FGF signaling axis in germ cells results in cystic dilation of the rete testis in mice. J Cell Commun Signal 2021; 16:75-92. [PMID: 34101112 PMCID: PMC8688682 DOI: 10.1007/s12079-021-00628-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/26/2021] [Indexed: 11/27/2022] Open
Abstract
Numb (Nb) and Numb-like (Nbl) are functionally redundant adaptor proteins that critically regulate cell fate and morphogenesis in a variety of organs. We selectively deleted Nb and Nbl in testicular germ cells by breeding Nb/Nbl floxed mice with a transgenic mouse line Tex101-Cre. The mutant mice developed unilateral or bilateral cystic dilation in the rete testis (RT). Dye trace indicated partial blockages in the testicular hilum. Morphological and immunohistochemical evaluations revealed that the lining epithelium of the cysts possessed similar characteristics of RT epithelium, suggesting that the cyst originated from dilation of the RT lumen. Spermatogenesis and the efferent ducts were unaffected. In comparisons of isolated germ cells from mutants to control mice, the Notch activity considerably increased and the expression of Notch target gene Hey1 significantly elevated. Further studies identified that germ cell Fgf4 expression negatively correlated the Notch activity and demonstrated that blockade of FGF receptors mediated FGF4 signaling induced enlargement of the RT lumen in vitro. The crucial role of the FGF4 signaling in modulation of RT development was verified by the selective germ cell Fgf4 ablation, which displayed a phenotype similar to that of germ cell Nb/Nbl null mutant males. These findings indicate that aberrant over-activation of the Notch signaling in germ cells due to Nb/Nbl abrogation impairs the RT development, which is through the suppressing germ cell Fgf4 expression. The present study uncovers the presence of a lumicrine signal pathway in which secreted/diffusible protein FGF4 produced by germ cells is essential for normal RT development.
Collapse
Affiliation(s)
- Yin Cao
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Lingyun Liu
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Jing Lin
- Department of OB/GYN and Women's Health, MDR Building, University of Louisville School of Medicine, 511 South Floyd Street, Louisville, KY, 40292, USA
| | - Penghao Sun
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Kaimin Guo
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Shengqiang Li
- Department of OB/GYN and Women's Health, MDR Building, University of Louisville School of Medicine, 511 South Floyd Street, Louisville, KY, 40292, USA
- Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Xian Li
- Department of OB/GYN and Women's Health, MDR Building, University of Louisville School of Medicine, 511 South Floyd Street, Louisville, KY, 40292, USA
| | - Zi-Jian Lan
- Division of Life Sciences, Alltech, Nicholasville, KY, 40356, USA
| | - Hongliang Wang
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Zhenmin Lei
- Department of OB/GYN and Women's Health, MDR Building, University of Louisville School of Medicine, 511 South Floyd Street, Louisville, KY, 40292, USA.
| |
Collapse
|
13
|
Zhu F, Li H, Long T, Zhou M, Wan J, Tian J, Zhou Z, Hu Z, Nie J. Tubular Numb promotes renal interstitial fibrosis via modulating HIF-1α protein stability. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166081. [PMID: 33486098 DOI: 10.1016/j.bbadis.2021.166081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/28/2022]
Abstract
Tubulointerstitial fibrosis is the ultimate common pathway of all manners of chronic kidney disease. We previously demonstrated that specific deletion of Numb in proximal tubular cells (PTCs) prevented G2/M arrest and attenuated renal fibrosis. However, how Numb modulates cell cycle arrest remains unclear. Here, we showed that Numb overexpression significantly increased the protein level of hypoxia-inducible factor-1α (HIF-1α). Numb overexpression-induced G2/M arrest was blocked by silencing endogenous HIF-1α, subsequently downregulated the expression of cyclin G1 which is an atypical cyclin to promote G2/M arrest of PTCs. Further analysis revealed that Numb-augmented HIF-1α protein was blocked by simultaneously overexpressing MDM2. Moreover, silencing Numb decreased TGF-β1-induceded HIF-1α protein expression. While endogenous MDM2 was knocked down this reduction was reversed, indicating that Numb stabilized HIF-1α protein via interfering MDM2-mediated HIF-1α protein degradation. Interestingly, HIF-1α overexpression significantly upregulated the expression of Numb and silencing endogenous HIF-1α blocked CoCl2 or TGF-β1-induced Numb expression. Chromatin immunoprecipitation (ChIP) assays demonstrated that HIF-1α binded to the promoter region of Numb. This binding was significantly increased by TGF-β1. Collectively, these data indicate that Numb and HIF-1α cooperates to promote G2/M arrest of PTCs, and thus aggravates tubulointerstitial fibrosis. Numb might be a potential target for the therapy of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Fengxin Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Hao Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tantan Long
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Miaomiao Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiao Wan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianwei Tian
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhanmei Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
14
|
Stassen OMJA, Ristori T, Sahlgren CM. Notch in mechanotransduction - from molecular mechanosensitivity to tissue mechanostasis. J Cell Sci 2020; 133:133/24/jcs250738. [PMID: 33443070 DOI: 10.1242/jcs.250738] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue development and homeostasis are controlled by mechanical cues. Perturbation of the mechanical equilibrium triggers restoration of mechanostasis through changes in cell behavior, while defects in these restorative mechanisms lead to mechanopathologies, for example, osteoporosis, myopathies, fibrosis or cardiovascular disease. Therefore, sensing mechanical cues and integrating them with the biomolecular cell fate machinery is essential for the maintenance of health. The Notch signaling pathway regulates cell and tissue fate in nearly all tissues. Notch activation is directly and indirectly mechanosensitive, and regulation of Notch signaling, and consequently cell fate, is integral to the cellular response to mechanical cues. Fully understanding the dynamic relationship between molecular signaling, tissue mechanics and tissue remodeling is challenging. To address this challenge, engineered microtissues and computational models play an increasingly large role. In this Review, we propose that Notch takes on the role of a 'mechanostat', maintaining the mechanical equilibrium of tissues. We discuss the reciprocal role of Notch in the regulation of tissue mechanics, with an emphasis on cardiovascular tissues, and the potential of computational and engineering approaches to unravel the complex dynamic relationship between mechanics and signaling in the maintenance of cell and tissue mechanostasis.
Collapse
Affiliation(s)
- Oscar M J A Stassen
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland.,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Cecilia M Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland .,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
15
|
Gao Y, Yu XF, Chen T. Human endogenous retroviruses in cancer: Expression, regulation and function. Oncol Lett 2020; 21:121. [PMID: 33552242 PMCID: PMC7798031 DOI: 10.3892/ol.2020.12382] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are the remnants of ancient retroviruses that infected human germline cells and became integrated into the human genome millions of years ago. Although most of these sequences are incomplete and silent, several potential pathological roles of HERVs have been observed in numerous diseases, such as multiple sclerosis and rheumatoid arthritis, and especially cancer, including breast cancer and pancreatic carcinoma. The present review investigates the expression signatures and complex regulatory mechanisms of HERVs in cancer. The long terminal repeats-driven transcriptional initiation of HERVs are regulated by transcription factors (such as Sp3) and epigenetic modifications (such as DNA methylation), and are influenced by environmental factors (such as ultraviolet radiation). In addition, this review focuses on the dual opposing effects of HERVs in cancer. HERVs can suppress cancer via immune activation; however, they can also promote cancer. HERV env gene serves a prime role in promoting carcinogenesis in certain malignant tumors, including breast cancer, pancreatic cancer, germ cell tumors, leukemia and Kaposi's sarcoma. Also, HERV ENV proteins can promote cancer via immune suppression. Targeting ENV proteins is a potential future antitumor treatment modality.
Collapse
Affiliation(s)
- Yuan Gao
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zheijang 310009, P.R. China
| | - Xiao-Fang Yu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zheijang 310009, P.R. China
| | - Ting Chen
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zheijang 310009, P.R. China
| |
Collapse
|
16
|
Luo Z, Mu L, Zheng Y, Shen W, Li J, Xu L, Zhong B, Liu Y, Zhou Y. NUMB enhances Notch signaling by repressing ubiquitination of NOTCH1 intracellular domain. J Mol Cell Biol 2020; 12:345-358. [PMID: 31504682 PMCID: PMC7288735 DOI: 10.1093/jmcb/mjz088] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/05/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023] Open
Abstract
The release and nuclear translocation of the intracellular domain of Notch receptor (NICD) is the prerequisite for Notch signaling-mediated transcriptional activation. NICD is subjected to various posttranslational modifications including ubiquitination. Here, we surprisingly found that NUMB proteins stabilize the intracellular domain of NOTCH1 receptor (N1ICD) by regulating the ubiquitin-proteasome machinery, which is independent of NUMB's role in modulating endocytosis. BAP1, a deubiquitinating enzyme (DUB), was further identified as a positive N1ICD regulator, and NUMB facilitates the association between N1ICD and BAP1 to stabilize N1ICD. Intriguingly, BAP1 stabilizes N1ICD independent of its DUB activity but relying on the BRCA1-inhibiting function. BAP1 strengthens Notch signaling and maintains stem-like properties of cortical neural progenitor cells. Thus, NUMB enhances Notch signaling by regulating the ubiquitinating activity of the BAP1-BRCA1 complex.
Collapse
Affiliation(s)
- Zhiyuan Luo
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Lili Mu
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Yue Zheng
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Wenchen Shen
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Jiali Li
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Lichao Xu
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Bo Zhong
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Ying Liu
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Yan Zhou
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| |
Collapse
|
17
|
Xiu MX, Liu YM, Kuang BH. The Role of DLLs in Cancer: A Novel Therapeutic Target. Onco Targets Ther 2020; 13:3881-3901. [PMID: 32440154 PMCID: PMC7213894 DOI: 10.2147/ott.s244860] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
Delta-like ligands (DLLs) control Notch signaling. DLL1, DLL3 and DLL4 are frequently deregulated in cancer and influence tumor growth, the tumor vasculature and tumor immunity, which play different roles in cancer progression. DLLs have attracted intense research interest as anti-cancer therapeutics. In this review, we discuss the role of DLLs in cancer and summarize the emerging DLL-relevant targeting methods to aid future studies.
Collapse
Affiliation(s)
- Meng-Xi Xiu
- Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Yuan-Meng Liu
- Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Bo-Hai Kuang
- Medical School of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
18
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|
19
|
Asymmetric lysosome inheritance predicts activation of haematopoietic stem cells. Nature 2019; 573:426-429. [PMID: 31485073 DOI: 10.1038/s41586-019-1531-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
Haematopoietic stem cells self-renew and differentiate into all blood lineages throughout life, and can repair damaged blood systems upon transplantation. Asymmetric cell division has previously been suspected to be a regulator of haematopoietic-stem-cell fate, but its existence has not directly been shown1. In asymmetric cell division, asymmetric fates of future daughter cells are prospectively determined by a mechanism that is linked to mitosis. This can be mediated by asymmetric inheritance of cell-extrinsic niche signals by, for example, orienting the divisional plane, or by the asymmetric inheritance of cell-intrinsic fate determinants. Observations of asymmetric inheritance or of asymmetric daughter-cell fates alone are not sufficient to demonstrate asymmetric cell division2. In both cases, sister-cell fates could be controlled by mechanisms that are independent of division. Here we demonstrate that the cellular degradative machinery-including lysosomes, autophagosomes, mitophagosomes and the protein NUMB-can be asymmetrically inherited into haematopoietic-stem-cell daughter cells. This asymmetric inheritance predicts the asymmetric future metabolic and translational activation and fates of haematopoietic-stem-cell daughter cells and their offspring. Therefore, our studies provide evidence for the existence of asymmetric cell division in haematopoietic stem cells.
Collapse
|
20
|
Peng H, Wang L, Su Q, Yi K, Du J, Wang Z. MiR-31-5p promotes the cell growth, migration and invasion of colorectal cancer cells by targeting NUMB. Biomed Pharmacother 2019; 109:208-216. [PMID: 30396078 DOI: 10.1016/j.biopha.2018.10.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to investigate the role and specific molecular mechanism of miR-31-5 in colorectal cancer. The relative expression of miR-31-5p and NUMB in colorectal cancer tissues was analyzed by qRT-PCR. To knock down the expression of miR-31-5p, the transfection of miR-31-5p inhibitor was performed. The transfection with miR-31-5p mimic was used for miR-31-5p overexpression and pcDNA3.0-NUMB plasmid was used for NUMB overexpression. CCK-8 assay was used to analyze the cell proliferation. Flow cytometry was used to evaluate the cell apoptosis and cell cycle. Matrigel invasion assay was performed to assess the invasion potency and migration assay was performed to assess the migration potency. Hoechst 33258 staining assay was performed to analyze the cell apoptosis of HT29 cells after the indicated transfection. Luciferase activity assays were performed to confirmed the potential binding site for miR-31-5p in 3'-UTR region of NUMB. MiR-31-5p is highly expressed in colorectal cancer and is critical for the cell proliferation, cell cycle, migration, invasion and apoptosis. NUMB is target of miR-31-5p and NUMB overexpression inhibited the cell proliferation, migration, invasion and induced cell cycle arrest and apoptosis in HT29 colorectal cancer cells. In conclusion, miR-31-5p promoted the cell growth, migration and invasion by targeting NUMB in colorectal cancer cells.
Collapse
Affiliation(s)
- Hong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Anorectal Surgery, Nanchong Central Hospital, Nanchong, Sichuan 637000, PR China
| | - Longfei Wang
- Department of Pharmacy, Nanchong Central Hospital, Nanchong, Sichuan 637000, PR China
| | - Qiang Su
- Department of Clinical Pharmacy, Nanchong Central Hospital, Nanchong, Sichuan 637000, PR China
| | - Kun Yi
- Department of Image Diagnoses, Nanchong Central Hospital, Nanchong, Sichuan 637000, PR China
| | - Jingwei Du
- Department of Otolaryngology, Nanchong Central Hospital, Nanchong, Sichuan 637000, PR China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
21
|
Vicente A, Byström B, Pedrosa Domellöf F. Altered Signaling Pathways in Aniridia-Related Keratopathy. ACTA ACUST UNITED AC 2018; 59:5531-5541. [DOI: 10.1167/iovs.18-25175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- André Vicente
- Department of Clinical Science, Ophthalmology, Umeå University, Umeå, Sweden
| | - Berit Byström
- Department of Clinical Science, Ophthalmology, Umeå University, Umeå, Sweden
| | - Fátima Pedrosa Domellöf
- Department of Clinical Science, Ophthalmology, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| |
Collapse
|