1
|
Ho TN, Tran TH, Le HS, Lewis RJ. Advances in the synthesis and engineering of conotoxins. Eur J Med Chem 2025; 282:117038. [PMID: 39561493 DOI: 10.1016/j.ejmech.2024.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Conotoxins, isolated from the venom of carnivorous marine snails of the Conus genus, are disulfide-rich peptides and proteins with well-defined three-dimensional structures. Conotoxins' ability to target a wide range of ion channels and receptors, including voltage- and ligand-gated ion channels, G protein-coupled receptors, monoamine transporters, and enzyme, at exquisite potency and selectivity make them valuable research and therapeutic tools. Despite their potentials, Conus venom peptides are present in limited quantities in nature and possess structural complexity that raises significant synthetic challenges for both chemical synthesis and recombinant expression. Here, we document recent advances in the expression and synthesis of conotoxins, particularly focusing on directed formation of disulfide bonds, chemical ligation techniques, and the integration of non-native functional groups. These advances can provide access to even the most complex conotoxins, accelerating conotoxin-based drug discovery and functional analysis, as well as opening new avenues for the development of drug candidates.
Collapse
Affiliation(s)
- Thao Nt Ho
- The University of Danang- VN-UK Institute for Research and Executive Education, Danang, 550000, Viet Nam.
| | - Thanh Hoa Tran
- The University of Danang- VN-UK Institute for Research and Executive Education, Danang, 550000, Viet Nam
| | - Hoang Sinh Le
- The University of Danang- VN-UK Institute for Research and Executive Education, Danang, 550000, Viet Nam
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4067, Australia
| |
Collapse
|
2
|
Mishra S, Mishra Y, Kumar A. Marine-derived bioactive compounds for neuropathic pain: pharmacology and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03667-7. [PMID: 39797987 DOI: 10.1007/s00210-024-03667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management. Marine organisms, including fungi, algae, cone snails, sponges, soft corals, tunicates, and fish, produce a diverse range of secondary metabolites with significant pharmacological properties. These include peptides (e.g., conopeptides, piscidin 1), non-peptides (e.g., guanidinium toxins, astaxanthin, docosahexaenoic acid, fucoidan, apigenin, fumagillin, aaptamine, flexibilide, excavatolide B, capnellenes, austrasulfones, lemnalol), and crude extracts (e.g., Spirulina platensis, Dunaliella salina, Cliothosa aurivilli). These compounds exhibit diverse mechanisms of action, such as modulating ion channels (e.g., transient receptor potential channels, voltage-gated sodium, calcium, and potassium channels, and G protein-coupled inwardly rectifying potassium channels), interacting with cell-surface receptors (e.g., nicotinic acetylcholine, NMDA, kainate, GABAB, and neurotensin receptors), inhibiting norepinephrine transporters, reducing oxidative stress, and attenuating neuroinflammation. These effects collectively contribute to alleviating nerve degeneration and symptoms of neuropathic pain, including hyperalgesia, allodynia, and associated psychomotor disturbances. Marine-derived bioactive compounds represent promising alternatives to conventional neuropathic pain treatments, to advance their development and assess their integration into neuropathic pain management strategies.
Collapse
Affiliation(s)
- Swapnil Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
| |
Collapse
|
3
|
Li X, Tae HS, Chen S, Yousuf A, Huang L, Zhang J, Jiang T, Adams DJ, Yu R. Dual Antagonism of α9α10 nAChR and GABA B Receptor-Coupled Ca V2.2 Channels by an Analgesic αO-Conotoxin Analogue. J Med Chem 2024; 67:971-987. [PMID: 38217860 DOI: 10.1021/acs.jmedchem.3c00979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Pain severely affects the physical and mental health of patients. The need to develop nonopioid analgesic drugs to meet medical demands is urgent. In this study, we designed a truncated analogue of αO-conotoxin, named GeX-2, based on disulfide-bond deletion and sequence truncation. GeX-2 retained the potency of its parent peptide at the human α9α10 nAChR and exhibited potent inhibitory activity at CaV2.2 channels via activation of the GABAB receptor (GABABR). Importantly, GeX-2 significantly alleviated pain in the rat model of chronic constriction injury. The dual inhibition of GeX-2 at both α9α10 nAChRs and CaV2.2 channels is speculated to synergistically mediate the potent analgesic effects. Results from site-directed mutagenesis assay and computational modeling suggest that GeX-2 preferentially interacts with the α10(+)α10(-) binding site of α9α10 nAChR and favorably binds to the top region of the GABABR2 subunit. The study offers vital insights into the molecular action mechanism of GeX-2, demonstrating its potential as a novel nonopioid analgesic.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Shen Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Arsalan Yousuf
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Linhong Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Jinghui Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
4
|
Zhou Y, Harvey PJ, Koehbach J, Chan LY, Jones A, Andersson Å, Vetter I, Durek T, Craik DJ. A Chemoenzymatic Approach To Produce a Cyclic Analogue of the Analgesic Drug MVIIA (Ziconotide). Angew Chem Int Ed Engl 2023; 62:e202302812. [PMID: 37148162 PMCID: PMC10952433 DOI: 10.1002/anie.202302812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/07/2023]
Abstract
Ziconotide (ω-conotoxin MVIIA) is an approved analgesic for the treatment of chronic pain. However, the need for intrathecal administration and adverse effects have limited its widespread application. Backbone cyclization is one way to improve the pharmaceutical properties of conopeptides, but so far chemical synthesis alone has been unable to produce correctly folded and backbone cyclic analogues of MVIIA. In this study, an asparaginyl endopeptidase (AEP)-mediated cyclization was used to generate backbone cyclic analogues of MVIIA for the first time. Cyclization using six- to nine-residue linkers did not perturb the overall structure of MVIIA, and the cyclic analogues of MVIIA showed inhibition of voltage-gated calcium channels (CaV 2.2) and substantially improved stability in human serum and stimulated intestinal fluid. Our study reveals that AEP transpeptidases are capable of cyclizing structurally complex peptides that chemical synthesis cannot achieve and paves the way for further improving the therapeutic value of conotoxins.
Collapse
Affiliation(s)
- Yan Zhou
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Peta J. Harvey
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Johannes Koehbach
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Lai Yue Chan
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Alun Jones
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Åsa Andersson
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Irina Vetter
- School of PharmacyInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Thomas Durek
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - David J. Craik
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| |
Collapse
|
5
|
Tae HS, Adams DJ. Nicotinic acetylcholine receptor subtype expression, function, and pharmacology: Therapeutic potential of α-conotoxins. Pharmacol Res 2023; 191:106747. [PMID: 37001708 DOI: 10.1016/j.phrs.2023.106747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The pentameric nicotinic acetylcholine receptors (nAChRs) are typically classed as muscle- or neuronal-type, however, the latter has also been reported in non-neuronal cells. Given their broad distribution, nAChRs mediate numerous physiological and pathological processes including synaptic transmission, presynaptic modulation of transmitter release, neuropathic pain, inflammation, and cancer. There are 17 different nAChR subunits and combinations of these subunits produce subtypes with diverse pharmacological properties. The expression and role of some nAChR subtypes have been extensively deciphered with the aid of knock-out models. Many nAChR subtypes expressed in heterologous systems are selectively targeted by the disulfide-rich α-conotoxins. α-Conotoxins are small peptides isolated from the venom of cone snails, and a number of them have potential pharmaceutical value.
Collapse
|
6
|
Yousuf A, Wu X, Bony AR, Sadeghi M, Huang YH, Craik DJ, Adams DJ. ɑO-Conotoxin GeXIVA isomers modulate N-type calcium (Ca V 2.2) channels and inwardly-rectifying potassium (GIRK) channels via GABA B receptor activation. J Neurochem 2021; 160:154-171. [PMID: 34738241 DOI: 10.1111/jnc.15535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022]
Abstract
αO-Conotoxin GeXIVA is a 28 amino acid peptide derived from the venom of the marine snail Conus generalis. The presence of four cysteine residues in the structure of GeXIVA allows it to have three different disulfide isomers, that is, the globular, ribbon or bead isomer. All three isomers are active at α9α10 nicotinic acetylcholine receptors, with the bead isomer, GeXIVA[1,2], being the most potent and exhibiting analgesic activity in animal models of neuropathic pain. The original report of GeXIVA activity failed to observe any effect of the isomers on high voltage-activated (HVA) calcium channel currents in rat dorsal root ganglion (DRG) neurons. In this study, we report, for the first time, the activity of globular GeXIVA[1,3] at G protein-coupled GABAB receptors (GABAB R) inhibiting HVA N-type calcium (Cav2.2) channels and reducing membrane excitability in mouse DRG neurons. The inhibition of HVA Ba2+ currents and neuroexcitability by GeXIVA[1,3] was partially reversed by the selective GABAB R antagonist CGP 55845. In transfected HEK293T cells co-expressing human GABAB R1 and R2 subunits and Cav2.2 channels, both GeXIVA[1,3] and GeXIVA[1,4] inhibited depolarization-activated Ba2+ currents mediated by Cav2.2 channels, whereas GeXIVA[1,2] had no effect. The effects of three cyclized GeXIVA[1,4] ribbon isomers were also tested, with cGeXIVA GAG being the most potent at human GABAB R-coupled Cav2.2 channels. Interestingly, globular GeXIVA[1,3] also reversibly potentiated inwardly-rectifying K+ currents mediated by human GIRK1/2 channels co-expressed with GABAB R in HEK293T cells. This study highlights GABAB R as a potentially important receptor target for the activity of αO-conotoxin GeXIVA to mediate analgesia.
Collapse
Affiliation(s)
- Arsalan Yousuf
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Xiaosa Wu
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Anuja R Bony
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Mahsa Sadeghi
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
7
|
Gajula SNR, Nadimpalli N, Sonti R. Drug metabolic stability in early drug discovery to develop potential lead compounds. Drug Metab Rev 2021; 53:459-477. [PMID: 34406889 DOI: 10.1080/03602532.2021.1970178] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Knowledge of the metabolic stability of a new drug substance eliminated by biotransformation is essential for envisaging the pharmacokinetic parameters required for deciding drug dosing and frequency. Strategies aimed at modifying lead compounds may improve metabolic stability, thereby reducing the drug dosing frequency. Replacement of selective hydrogens with deuterium can effectively enhance the drug's metabolic stability by increasing the biological half-life. Further, cyclization, change in ring size, and chirality can substantially improve the metabolic stability of drugs. The microsomal t1/2 approach for measuring drug in vitro intrinsic clearance by automated LC-MS/MS offers sensitive high-throughput screens with reliable data. The obtained in vitro intrinsic clearance from metabolic stability data helps predict the drug's in vivo total clearance using different scaling factors and hepatic clearance models. This review summarizes all the recent approaches and technological advancements in metabolic stability studies for narrowing down the potential lead compounds in drug discovery. Further, we summarized the potential pitfalls and assumptions made during the in vivo intrinsic clearance estimation from in vitro intrinsic clearance.
Collapse
Affiliation(s)
- Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nimisha Nadimpalli
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
8
|
Tae HS, Gao B, Jin AH, Alewood PF, Adams DJ. Globular and ribbon isomers of Conus geographus α-conotoxins antagonize human nicotinic acetylcholine receptors. Biochem Pharmacol 2021; 190:114638. [PMID: 34062129 DOI: 10.1016/j.bcp.2021.114638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022]
Abstract
The short disulfide-rich α-conotoxins derived from the venom of Conus snails comprise a conserved CICII(m)CIII(n)CIV cysteine framework (m and n, number of amino acids) and the majority antagonize nicotinic acetylcholine receptors (nAChRs). Depending on disulfide connectivity, α-conotoxins can exist as either globular (CI-CIII, CII-CIV), ribbon (CI-CIV, CII-CIII) or bead (CI-CII, CIII-CIV) isomers. In the present study, C. geographus α-conotoxins GI, GIB, G1.5 and G1.9 were chemically synthesized as globular and ribbon isomers and their activity investigated at human nAChRs expressed in Xenopus oocytes using the two-electrode voltage clamp recording technique. Both the globular and ribbon isomers of the 3/5 (m/n) α-conotoxins GI and GIB selectively inhibit heterologous human muscle-type α1β1δε nAChRs, whereas G1.5, a 4/7 α-conotoxin, selectively antagonizes neuronal (non-muscle) nAChR subtypes particularly human α3β2, α7 and α9α10 nAChRs. In contrast, globular and ribbon isomers of G1.9, a novel C-terminal elongated 4/8 α-conotoxin exhibited no activity at the human nAChR subtypes studied. This study reinforces earlier observations that 3/5 α-conotoxins selectively target the muscle nAChR subtypes, although interestingly, GIB is also active at α7 and α9 α10 nAChRs. The 4/7 α-conotoxins target human neuronal nAChR subtypes whereas the pharmacology of the 4/8 α-conotoxin remains unknown.
Collapse
Affiliation(s)
- Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Bingmiao Gao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Hainan Medical University, Haikou 571199, China
| | - Ai-Hua Jin
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
9
|
Synthesis and evaluation of disulfide-rich cyclic α-conotoxin [S9A]TxID analogues as novel α3β4 nAChR antagonists. Bioorg Chem 2021; 112:104875. [PMID: 33823404 DOI: 10.1016/j.bioorg.2021.104875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/30/2022]
Abstract
Head-to-tail cyclization is an effective strategy to improve the biological stability of peptides. The α-conotoxin [S9A]TxID is a peptide that inhibits α3β4 nAChR with high activity and selectivity. Herein, we established a method for cyclizing and oxidative folding of [S9A]TxID, and six cyclic analogues of [S9A]TxID were chemically synthesized with various linker lengths. We used the electrophysiology assay to measure activity values of these cyclic analogues, and obtained the most potent analogue c[S9A]TxID-6, which was more stable than native [S9A]TxID against proteinase K.
Collapse
|
10
|
Tombling BJ, Lammi C, Lawrence N, Gilding EK, Grazioso G, Craik DJ, Wang CK. Bioactive Cyclization Optimizes the Affinity of a Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Peptide Inhibitor. J Med Chem 2020; 64:2523-2533. [PMID: 33356222 DOI: 10.1021/acs.jmedchem.0c01766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peptides are regarded as promising next-generation therapeutics. However, an analysis of over 1000 bioactive peptide candidates suggests that many have underdeveloped affinities and could benefit from cyclization using a bridging linker sequence. Until now, the primary focus has been on the use of inert peptide linkers. Here, we show that affinity can be significantly improved by enriching the linker with functional amino acids. We engineered a peptide inhibitor of PCSK9, a target for clinical management of hypercholesterolemia, to demonstrate this concept. Cyclization linker optimization from library screening produced a cyclic peptide with ∼100-fold improved activity over the parent peptide and efficiently restored low-density lipoprotein (LDL) receptor levels and cleared extracellular LDL. The linker forms favorable interactions with PCSK9 as evidenced by thermodynamics, structure-activity relationship (SAR), NMR, and molecular dynamics (MD) studies. This PCSK9 inhibitor is one of many peptides that could benefit from bioactive cyclization, a strategy that is amenable to broad application in pharmaceutical design.
Collapse
Affiliation(s)
- Benjamin J Tombling
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Carmen Lammi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Nicole Lawrence
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
11
|
Li X, Tae HS, Chu Y, Jiang T, Adams DJ, Yu R. Medicinal chemistry, pharmacology, and therapeutic potential of α-conotoxins antagonizing the α9α10 nicotinic acetylcholine receptor. Pharmacol Ther 2020; 222:107792. [PMID: 33309557 DOI: 10.1016/j.pharmthera.2020.107792] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
α-Conotoxins are disulfide-rich and well-structured peptides, most of which can block nicotinic acetylcholine receptors (nAChRs) with exquisite selectivity and potency. There are various nAChR subtypes, of which the α9α10 nAChR functions as a heteromeric ionotropic receptor in the mammalian cochlea and mediates postsynaptic transmission from the medial olivocochlear. The α9α10 nAChR subtype has also been proposed as a target for the treatment of neuropathic pain and the suppression of breast cancer cell proliferation. Therefore, α-conotoxins targeting the α9α10 nAChR are potentially useful in the development of specific therapeutic drugs and pharmacological tools. Despite dissimilarities in their amino acid sequence and structures, these conopeptides are potent antagonists of the α9α10 nAChR subtype. Consequently, the activity and stability of these peptides have been subjected to chemical modifications. The resulting synthetic analogues have not only functioned as molecular probes to explore ligand binding sites of the α9α10 nAChR, but also have the potential to become candidates for drug development. From the perspectives of medicinal chemistry and pharmacology, we highlight the structure and function of the α9α10 nAChR and review studies of α-conotoxins targeting it, including their three-dimensional structures, structure optimization strategies, and binding modes at the α9α10 nAChR, as well as their therapeutic potential.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Yanyan Chu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia.
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China.
| |
Collapse
|
12
|
Li X, Wang S, Zhu X, Zhangsun D, Wu Y, Luo S. Effects of Cyclization on Activity and Stability of α-Conotoxin TxIB. Mar Drugs 2020; 18:E180. [PMID: 32235388 PMCID: PMC7230940 DOI: 10.3390/md18040180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022] Open
Abstract
α-Conotoxin TxIB specifically blocked α6/α3β2β3 acetylcholine receptors (nAChRs), and it could be a potential probe for studying addiction and other diseases related to α6/α3β2β3 nAChRs. However, as a peptide, TxIB may suffer from low stability, short half-life, and poor bioavailability. In this study, cyclization of TxIB was used to improve its stability. Four cyclic mutants of TxIB (cTxIB) were synthesized, and the inhibition of these analogues on α6/α3β2β3 nAChRs as well as their stability in human serum were measured. All cyclized analogues had similar activity compared to wild-type TxIB, which indicated that backbone cyclization of TxIB had no significant effect on its activity. Cyclization of TxIB with a seven-residue linker improved its stability significantly in human serum. Besides this, the results showed that cyclization maintained the activity of α-conotoxin TxIB, which is conducive to its future application.
Collapse
Affiliation(s)
- Xincan Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
| | - Shuai Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
- Medical School, Guangxi University, Nanning 530004, China
| | - Yong Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
- Medical School, Guangxi University, Nanning 530004, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
- Medical School, Guangxi University, Nanning 530004, China
| |
Collapse
|
13
|
Structure and Activity Studies of Disulfide-Deficient Analogues of αO-Conotoxin GeXIVA. J Med Chem 2020; 63:1564-1575. [DOI: 10.1021/acs.jmedchem.9b01409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Jin AH, Muttenthaler M, Dutertre S, Himaya SWA, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Conotoxins: Chemistry and Biology. Chem Rev 2019; 119:11510-11549. [PMID: 31633928 DOI: 10.1021/acs.chemrev.9b00207] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The venom of the marine predatory cone snails (genus Conus) has evolved for prey capture and defense, providing the basis for survival and rapid diversification of the now estimated 750+ species. A typical Conus venom contains hundreds to thousands of bioactive peptides known as conotoxins. These mostly disulfide-rich and well-structured peptides act on a wide range of targets such as ion channels, G protein-coupled receptors, transporters, and enzymes. Conotoxins are of interest to neuroscientists as well as drug developers due to their exquisite potency and selectivity, not just against prey but also mammalian targets, thereby providing a rich source of molecular probes and therapeutic leads. The rise of integrated venomics has accelerated conotoxin discovery with now well over 10,000 conotoxin sequences published. However, their structural and pharmacological characterization lags considerably behind. In this review, we highlight the diversity of new conotoxins uncovered since 2014, their three-dimensional structures and folds, novel chemical approaches to their syntheses, and their value as pharmacological tools to unravel complex biology. Additionally, we discuss challenges and future directions for the field.
Collapse
Affiliation(s)
- Ai-Hua Jin
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia.,Institute of Biological Chemistry, Faculty of Chemistry , University of Vienna , 1090 Vienna , Austria
| | - Sebastien Dutertre
- Département des Acides Amines, Peptides et Protéines, Unité Mixte de Recherche 5247, Université Montpellier 2-Centre Nationale de la Recherche Scientifique , Institut des Biomolécules Max Mousseron , Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - S W A Himaya
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| |
Collapse
|
15
|
Evaluation of Chemical Strategies for Improving the Stability and Oral Toxicity of Insecticidal Peptides. Biomedicines 2018; 6:biomedicines6030090. [PMID: 30154370 PMCID: PMC6164231 DOI: 10.3390/biomedicines6030090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/18/2022] Open
Abstract
Spider venoms are a rich source of insecticidal peptide toxins. Their development as bioinsecticides has, however, been hampered due to concerns about potential lack of stability and oral bioactivity. We therefore systematically evaluated several synthetic strategies to increase the stability and oral potency of the potent insecticidal spider-venom peptide ω-HXTX-Hv1a (Hv1a). Selective chemical replacement of disulfide bridges with diselenide bonds and N- to C-terminal cyclization were anticipated to improve Hv1a resistance to proteolytic digestion, and thereby its activity when delivered orally. We found that native Hv1a is orally active in blowflies, but 91-fold less potent than when administered by injection. Introduction of a single diselenide bond had no effect on the susceptibility to scrambling or the oral activity of Hv1a. N- to C-terminal cyclization of the peptide backbone did not significantly improve the potency of Hv1a when injected into blowflies and it led to a significant decrease in oral activity. We show that this is likely due to a dramatically reduced rate of translocation of cyclic Hv1a across the insect midgut, highlighting the importance of testing bioavailability in addition to toxin stability.
Collapse
|