1
|
Luo Y, Vivaldi Marrero E, Choudhary V, Bollag WB. Phosphatidylglycerol to Treat Chronic Skin Wounds in Diabetes. Pharmaceutics 2023; 15:1497. [PMID: 37242739 PMCID: PMC10222993 DOI: 10.3390/pharmaceutics15051497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This review proposes the use of dioleoylphosphatidylglycerol (DOPG) to enhance diabetic wound healing. Initially, the characteristics of diabetic wounds are examined, focusing on the epidermis. Hyperglycemia accompanying diabetes results in enhanced inflammation and oxidative stress in part through the generation of advanced glycation end-products (AGEs), in which glucose is conjugated to macromolecules. These AGEs activate inflammatory pathways; oxidative stress results from increased reactive oxygen species generation by mitochondria rendered dysfunctional by hyperglycemia. These factors work together to reduce the ability of keratinocytes to restore epidermal integrity, contributing to chronic diabetic wounds. DOPG has a pro-proliferative action on keratinocytes (through an unclear mechanism) and exerts an anti-inflammatory effect on keratinocytes and the innate immune system by inhibiting the activation of Toll-like receptors. DOPG has also been found to enhance macrophage mitochondrial function. Since these DOPG effects would be expected to counteract the increased oxidative stress (attributable in part to mitochondrial dysfunction), decreased keratinocyte proliferation, and enhanced inflammation that characterize chronic diabetic wounds, DOPG may be useful in stimulating wound healing. To date, efficacious therapies to promote the healing of chronic diabetic wounds are largely lacking; thus, DOPG may be added to the armamentarium of drugs to enhance diabetic wound healing.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
| | - Edymarie Vivaldi Marrero
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
| | - Vivek Choudhary
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Prola A, Vandestienne A, Baroudi N, Joubert F, Tiret L, Pilot-Storck F. Isolation and Phospholipid Enrichment of Muscle Mitochondria and Mitoplasts. Bio Protoc 2021; 11:e4201. [PMID: 34761073 PMCID: PMC8554811 DOI: 10.21769/bioprotoc.4201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 11/02/2022] Open
Abstract
The efficient ATP production in mitochondria relies on the highly specific organization of its double membrane. Notably, the inner mitochondrial membrane (IMM) displays a massive surface extension through its folding into cristae, along which concentrate respiratory complexes and oligomers of the ATP synthase. Evidence has accumulated to highlight the importance of a specific phospholipid composition of the IMM to support mitochondrial oxidative phosphorylation. Contribution of specific phospholipids to mitochondrial ATP production is classically studied by modulating the activity of enzymes involved in their synthesis, but the interconnection of phospholipid synthesis pathways often impedes the determination of the precise role of each phospholipid. Here, we describe a protocol to specifically enrich mitochondrial membranes with cardiolipin or phosphatidylcholine, as well as a fluorescence-based method to quantify phospholipid enrichment. This method, based on the fusion of lipid vesicles with isolated mitochondria, may further allow a precise evaluation of phospholipid contribution to mitochondrial functions.
Collapse
Affiliation(s)
- Alexandre Prola
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- École nationale vétérinaire d’Alfort, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Aymeline Vandestienne
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- École nationale vétérinaire d’Alfort, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Nabil Baroudi
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- École nationale vétérinaire d’Alfort, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, F-75005 Paris, France
| | - Frederic Joubert
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, F-75005 Paris, France
| | - Laurent Tiret
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- École nationale vétérinaire d’Alfort, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Fanny Pilot-Storck
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- École nationale vétérinaire d’Alfort, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| |
Collapse
|
3
|
Bollag WB, Olala LO, Xie D, Lu X, Qin H, Choudhary V, Patel R, Bogorad D, Estes A, Watsky M. Dioleoylphosphatidylglycerol Accelerates Corneal Epithelial Wound Healing. Invest Ophthalmol Vis Sci 2020; 61:29. [PMID: 32186673 PMCID: PMC7401755 DOI: 10.1167/iovs.61.3.29] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose In contact with the external environment, the cornea can easily be injured. Although corneal wounds generally heal rapidly, the pain and increased risk of infection associated with a damaged cornea, as well as the impaired healing observed in some individuals, emphasize the need for novel treatments to accelerate corneal healing. We previously demonstrated in epidermal keratinocytes that the glycerol channel aquaporin-3 (AQP3) interacts with phospholipase D2 (PLD2) to produce the signaling phospholipid phosphatidylglycerol (PG), which has been shown to accelerate skin wound healing in vivo. We hypothesized that the same signaling pathway might be operational in corneal epithelial cells. Methods We used co-immunoprecipitation, immunohistochemistry, scratch wound healing assays in vitro, and corneal epithelial wound healing assays in vivo to determine the role of the AQP3/PLD2/PG signaling pathway in corneal epithelium. Results AQP3 was present in human corneas in situ, and AQP3 and PLD2 were co-immunoprecipitated from corneal epithelial cell lysates. The two proteins could also be co-immunoprecipitated from insect cells simultaneously infected with AQP3- and PLD2-expressing baculoviruses, suggesting a likely direct interaction. A particular PG, dioleoylphosphatidylglycerol (DOPG), enhanced scratch wound healing of a corneal epithelial monolayer in vitro. DOPG also accelerated corneal epithelial wound healing in vivo, both in wild-type mice and in a mouse model exhibiting impaired corneal wound healing (AQP3 knockout mice). Conclusions These results indicate the importance of the AQP3/PLD2/PG signaling pathway in corneal epithelial cells and suggest the possibility of developing DOPG as a pharmacologic therapy to enhance corneal wound healing in patients.
Collapse
|
4
|
Cardiolipin content is involved in liver mitochondrial energy wasting associated with cancer-induced cachexia without the involvement of adenine nucleotide translocase. Biochim Biophys Acta Mol Basis Dis 2014; 1842:726-33. [PMID: 24534708 DOI: 10.1016/j.bbadis.2014.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/05/2014] [Accepted: 02/09/2014] [Indexed: 11/21/2022]
Abstract
Cancer-induced cachexia describes the progressive skeletal muscle wasting associated with many cancers leading to shortened survival time in cancer patients. We previously reported that cardiolipin content and energy-wasting processes were both increased in liver mitochondria in a rat model of peritoneal carcinosis (PC)-induced cachexia. To increase the understanding of the cellular biology of cancer cachexia, we investigated the involvement of adenine nucleotide translocator (ANT) in mitochondrial energy-wasting processes in liver mitochondria of PC and pair-fed control rats and its interactions with cardiolipin in isolated liver mitochondria from healthy rats exposed to cardiolipin-enriched liposomes. We showed in this study that functional ANT content was decreased in liver mitochondria from PC rats but without any effects on the efficiency of ATP synthesis. Moreover, non-phosphorylating energy wasting was not affected by saturating concentrations of carboxyatractylate (CAT), a potent inhibitor of ANT, in liver mitochondria from PC rats. Decreased efficiency of ATP synthesis was found in normal liver mitochondria exposed to cardiolipin-enriched liposomes, with increased non-phosphorylating energy wasting, thus mimicking mitochondria from PC rats. However, the functional ANT content in these cardiolipin-enriched mitochondria was unchanged, although non-phosphorylating energy wasting was reduced by CAT-induced inhibition of ANT. Finally, non-phosphorylating energy wasting was increased in cardiolipin-enriched mitochondria with substrates for complexes 1 and 2, but not for complex 4. In conclusion, increased energy wasting measured in liver mitochondria from rats with cancer cachexia is dependent on cardiolipin but independent of ANT. Interactions between ANT and cardiolipin are modified when cancer cachexia occurs.
Collapse
|
5
|
Macchioni L, Fettucciari K, Davidescu M, Vitale R, Ponsini P, Rosati E, Corcelli A, Marconi P, Corazzi L. Impairment of brain mitochondrial functions by β-hemolytic Group B Streptococcus. Effect of cardiolipin and phosphatidylcholine. J Bioenerg Biomembr 2013; 45:519-29. [PMID: 23979483 DOI: 10.1007/s10863-013-9525-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/15/2013] [Indexed: 01/02/2023]
Abstract
Group B Streptococcus (GBS) causes severe infection in the central nervous system. In this study, brain mitochondrial function was investigated by simulating infection of isolated mitochondria with GBS, which resulted in loss of mitochondrial activity. The β-hemolysin expressing strains GBS-III-NEM316 and GBS-III-COH31, but not the gGBS-III-COH31 that does not express β-hemolysin, caused dissipation of preformed mitochondrial membrane potential (Δψm). This indicates that β-hemolysin is responsible for decreasing of the reducing power of mitochondria. GBS-III-COH31 interacted with mitochondria causing increase of oxygen consumption, due to uncoupling of respiration, blocking of ATP synthesis, and cytochrome c release outside mitochondria. Moreover, the mitochondrial systems contributing to the control of cellular Ca(2+) uptake were lost. In spite of these alterations, mitochondrial phospholipid content and composition did not change significantly, as evaluated by MALDI-TOF mass spectrometry. However, exogenous cardiolipin (CL) and dipalmitoylphosphatidylcholine (DPPC) attenuated the uncoupling effect of GBS-III-COH31, although with different mechanisms. CL was effective only when fused to the inner mitochondrial membrane, probably reducing the extent of GBS-induced proton leakage. DPPC, which is not able to fuse with mitochondrial membranes, exerted its effect outside mitochondria, likely by shielding mitochondria against GBS β-hemolysin attack.
Collapse
Affiliation(s)
- Lara Macchioni
- Department of Internal Medicine, Section of Biochemistry, University of Perugia, Via Gambuli, 1, 06156, Perugia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Knockdown a water channel protein, aquaporin-4, induced glioblastoma cell apoptosis. PLoS One 2013; 8:e66751. [PMID: 23950863 PMCID: PMC3741385 DOI: 10.1371/journal.pone.0066751] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 05/10/2013] [Indexed: 01/03/2023] Open
Abstract
Glioblastomas are the most aggressive forms of primary brain tumors due to their tendency to invade surrounding healthy brain tissues, rendering them largely incurable. The water channel protein, Aquaporin-4 (AQP4) is a key molecule for maintaining water and ion homeostasis in the central nervous system and has recently been reported with cell survival except for its well-known function in brain edema. An increased AQP4 expression has been demonstrated in glioblastoma multiforme (GBM), suggesting it is also involved in malignant brain tumors. In this study, we show that siRNA-mediated down regulation of AQP4 induced glioblastoma cell apoptosis in vitro and in vivo. We further show that several apoptotic key proteins, Cytochrome C, Bcl-2 and Bad are involved in AQP4 signaling pathways. Our results indicate that AQP4 may serve as an anti-apoptosis target for therapy of glioblastoma.
Collapse
|
7
|
Isolated mitochondria infusion mitigates ischemia-reperfusion injury of the liver in rats. Shock 2013; 39:304-10. [PMID: 23364428 DOI: 10.1097/shk.0b013e318283035f] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A recent study showed that the injection of mitochondria isolated from a nonischemic region mitigated myocardial injury. We tested the protective effects of infusing isolated mitochondria on the reperfusion injury in the liver of rats. A partial liver ischemia-reperfusion (I/R) model in male Wistar rats was used. At the 45th minute of liver ischemia, the recipient's spleen was infused with vehicle (I/R-vehicle group) or vehicle containing isolated mitochondria (7.7 × 10 ± 1.5 × 10/mL, I/R-mito group). After a 240-min reperfusion, the serum and livers were collected to assess tissue injury. Our results show that the elevation of serum alanine aminotransferase (414.3 ± 67.1 vs. 208.8 ± 30.2 U/L), the necrosis of hepatocytes on hematoxylin-eosin staining, increase in positive counts in TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining (59.5% ± 4.4% vs. 24.6% ± 9.1%), the expression of cytosolic cytochrome c, cleaved caspase 9, and 4-hydroxynonenal were all reduced in the I/R-mito group, compared with the I/R-vehicle group. The membrane potential of the isolated mitochondria measured by JC-1 fluorescence remained high, and the infused mitochondria were distributed in the liver parenchyma at 240 min after reperfusion. These results demonstrate that an intrasplenic infusion of viable mitochondria isolated from the donor before reperfusion significantly reduced I/R injury in the liver.
Collapse
|
8
|
Vance JE, Tasseva G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:543-54. [PMID: 22960354 DOI: 10.1016/j.bbalip.2012.08.016] [Citation(s) in RCA: 385] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 12/16/2022]
Abstract
Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are metabolically related membrane aminophospholipids. In mammalian cells, PS is required for targeting and function of several intracellular signaling proteins. Moreover, PS is asymmetrically distributed in the plasma membrane. Although PS is highly enriched in the cytoplasmic leaflet of plasma membranes, PS exposure on the cell surface initiates blood clotting and removal of apoptotic cells. PS is synthesized in mammalian cells by two distinct PS synthases that exchange serine for choline or ethanolamine in phosphatidylcholine (PC) or PE, respectively. Targeted disruption of each PS synthase individually in mice demonstrated that neither enzyme is required for viability whereas elimination of both synthases was embryonic lethal. Thus, mammalian cells require a threshold amount of PS. PE is synthesized in mammalian cells by four different pathways, the quantitatively most important of which are the CDP-ethanolamine pathway that produces PE in the ER, and PS decarboxylation that occurs in mitochondria. PS is made in ER membranes and is imported into mitochondria for decarboxylation to PE via a domain of the ER [mitochondria-associated membranes (MAM)] that transiently associates with mitochondria. Elimination of PS decarboxylase in mice caused mitochondrial defects and embryonic lethality. Global elimination of the CDP-ethanolamine pathway was also incompatible with mouse survival. Thus, PE made by each of these pathways has independent and necessary functions. In mammals PE is a substrate for methylation to PC in the liver, a substrate for anandamide synthesis, and supplies ethanolamine for glycosylphosphatidylinositol anchors of cell-surface signaling proteins. Thus, PS and PE participate in many previously unanticipated facets of mammalian cell biology. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Jean E Vance
- Group on the Molecular and Cell Biology of Lipids and the Department of Medicine, University of Alberta, Edmonton, Canada AB T6G 2S2.
| | | |
Collapse
|
9
|
Ischemic Postconditioning Protects Liver From Ischemia-Reperfusion Injury by Modulating Mitochondrial Permeability Transition. Transplantation 2012; 93:265-71. [DOI: 10.1097/tp.0b013e31823ef335] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Macchioni L, Davidescu M, Sciaccaluga M, Marchetti C, Migliorati G, Coaccioli S, Roberti R, Corazzi L, Castigli E. Mitochondrial dysfunction and effect of antiglycolytic bromopyruvic acid in GL15 glioblastoma cells. J Bioenerg Biomembr 2011; 43:507-18. [PMID: 21833601 DOI: 10.1007/s10863-011-9375-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 06/21/2011] [Indexed: 02/06/2023]
Abstract
Most cancer cells, including GL15 glioblastoma cells, rely on glycolysis for energy supply. The effect of antiglycolytic bromopyruvate on respiratory parameters and viability of GL15 cells was investigated. Bromopyruvate caused Δψ(m) and MTT collapse, ATP decrease, and cell viability loss without involving apoptotic or necrotic pathways. The autophagy marker LC3-II was increased. Δψ(m) decrease was accompanied by reactive oxygen species (ROS) increase and cytochrome c (cyt c) disappearance, suggesting a link between free radical generation and intramitochondrial cyt c degradation. Indeed, the free radical inducer menadione caused a decrease in cyt c that was reversed by N-acetylcysteine. Cyt c is tightly bound to the inner mitochondrial membrane in GL15 cells, which may confer protein peroxidase activity, resulting in auto-oxidation and protein targeting to degradation in the presence of ROS. This process is directed towards impairment of the apoptotic cyt c cascade, although cells are committed to die.
Collapse
Affiliation(s)
- Lara Macchioni
- Department of Internal Medicine, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Qin H, Zheng X, Zhong X, Shetty AK, Elias PM, Bollag WB. Aquaporin-3 in keratinocytes and skin: its role and interaction with phospholipase D2. Arch Biochem Biophys 2011; 508:138-43. [PMID: 21276418 DOI: 10.1016/j.abb.2011.01.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 12/30/2022]
Abstract
Aquaporin 3 (AQP3) is an aquaglyceroporin that transports water and glycerol and is expressed in the epidermis, among other epithelial tissues. We have recently shown that there is an association between this glycerol channel and phospholipase D2 (PLD2) in caveolin-rich membrane microdomains. While PLD2 is able to hydrolyze membrane phospholipids to generate phosphatidic acid, this enzyme also catalyzes, in the presence of primary alcohols, a transphosphatidylation reaction to produce a phosphatidylalcohol. We have proposed that AQP3 associated with PLD2 provides the physiological primary alcohol glycerol to PLD2 for use in the transphosphatidylation reaction to generate phosphatidylglycerol (PG). Further, we have proposed that PG functions as a signaling molecule to mediate early epidermal keratinocyte differentiation, and manipulation of this signaling module inhibits keratinocyte proliferation and enhances differentiation. In contrast, other investigators have suggested a proliferative role for AQP3 in keratinocytes. In addition, AQP3 knockout mice exhibit an epidermal phenotype, characterized by dry skin, decreased elasticity and delayed barrier repair and wound healing, which can be corrected by glycerol but not other humectants. AQP3 levels have also been found to be altered in human skin diseases. In this article the evidence supporting a role for AQP3 in the epidermis will be discussed.
Collapse
Affiliation(s)
- Haixia Qin
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University (formerly Medical College of Georgia), Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
12
|
Ma Y, Wang B, Li W, Ying G, Fu L, Niu R, Gu F. Reduction of intersectin1-s induced apoptosis of human glioblastoma cells. Brain Res 2010; 1351:222-228. [PMID: 20493827 DOI: 10.1016/j.brainres.2010.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 05/08/2010] [Accepted: 05/11/2010] [Indexed: 11/15/2022]
Abstract
Malignant gliomas have a high proliferation ability and high tendency to invade diffusely into surrounding healthy brain tissues, thereby precluding their successful surgical removal. Intersectin1 (also called ITSN1) as a molecular linker in the central nervous system is well known as an important regulator of endocytosis and exocytosis. ITSN1 has two isoforms: ITSN1-l and ITSN1-s. In this study, we show that siRNA-mediated down regulation of ITSN1-s induced glioma cells apoptosis. In addition, we demonstrate the possible mechanisms by which ITSN1-s functions in glioma cells apoptosis. Our data demonstrate that several key proteins, including FAK, Akt, Bcl-2, BAD which are critical for cells apoptosis were probably involved in ITSN1-s signaling pathways. Our results indicate that ITSN1-s is an effecter in regulation of gliomas cells apoptosis, and identify that ITSN1-s may be a new potentially anti-apoptosis target for therapeutic of gliomas.
Collapse
Affiliation(s)
- Yongjie Ma
- Central Laboratory of Oncology Department, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education; Key Laboratory of Cancer Prevention and Therapy of Tianjin, China
| | - Bingbing Wang
- Central Laboratory of Oncology Department, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education; Key Laboratory of Cancer Prevention and Therapy of Tianjin, China
| | - Wenliang Li
- Department of Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education; Key Laboratory of Cancer Prevention and Therapy of Tianjin, China
| | - Guoguang Ying
- Central Laboratory of Oncology Department, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education; Key Laboratory of Cancer Prevention and Therapy of Tianjin, China
| | - Li Fu
- Department of Breast Pathology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education; Key Laboratory of Cancer Prevention and Therapy of Tianjin, China
| | - Ruifang Niu
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education; Key Laboratory of Cancer Prevention and Therapy of Tianjin, China
| | - Feng Gu
- Department of Breast Pathology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education; Key Laboratory of Cancer Prevention and Therapy of Tianjin, China.
| |
Collapse
|
13
|
Translocation of p53 to mitochondria is regulated by its lipid binding property to anionic phospholipids and it participates in cell death control. Neoplasia 2010; 12:150-60. [PMID: 20126473 DOI: 10.1593/neo.91500] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 11/19/2009] [Accepted: 11/23/2009] [Indexed: 11/18/2022] Open
Abstract
p53, can regulate cell apoptosis in both transcription-dependent and -independent manners. The transcription-independent pathway was demonstrated by the translocation of p53 to mitochondria. Our study showed that p53 mitochondrial translocation was found in mitomycin C (MMC)-treated HepG2. The p53 C-terminal domain is clustered with potential nuclear leading sequences and showed strong electrostatic ion-ion interactions with cardiolipin, phosphatidylglycerol and phosphatidic acid in vitro. Disruption of cardiolipin biosynthesis by phosphatidylglycero-phosphate synthase (PGS) or CDP-diacylglycerol synthase 2 (CDS-2) short hairpin RNA (shRNA) transfection eliminated the MMC-induced translocation of mitochondrial p53. The elimination of mitochondrial p53 translocation also reduced Bcl-xL and Bcl-2 mitochondrial distribution. In HEK 293T models with saturated p53 expression, the mitochondrial partition of p53, Bcl-xL, and Bcl-2 obviously decreased in their PGS shRNA- or CDS-2 shRNA-expressing stable clones. In p53-null H1299 models, both the mitochondrial partitions of Bcl-xL and Bcl-2 were strongly reduced in relation to the HEK 293T models. The Bcl-xL mitochondrial partition was elevated in H1299 models expressing pCEP4-p53wt suggesting the direct carrier role of p53 in transporting Bcl-xL to the mitochondria. We also found that the cytosolic pool of Bcl-xL and Bcl-2 remained unaffected in the low-dose MMC treatment but decreased in the high-dose MMC treatment. The cytosolic pool of Bcl-2 and Bcl-xL directly regulated their amounts in p53-dependent mitochondrial distribution. In the low-dose MMC treatment, the increased mitochondrial p53, Bcl-xL, and Bcl-2 could attenuate apoptosis. However, in the high-dose MMC treatment, only the p53 translocated to the mitochondria and resulted in apoptosis progression. On the basis of this study, we thought mitochondrial p53 might regulate apoptosis in a biphasic manner.
Collapse
|
14
|
Macchioni L, Corazzi T, Davidescu M, Francescangeli E, Roberti R, Corazzi L. Cytochrome c redox state influences the binding and release of cytochrome c in model membranes and in brain mitochondria. Mol Cell Biochem 2010; 341:149-57. [PMID: 20352475 DOI: 10.1007/s11010-010-0446-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 03/16/2010] [Indexed: 11/28/2022]
Abstract
Cytochrome c (cyt c), a component of the respiratory chain, promotes apoptosis when released into the cytosol. Cyt c anchorage within mitochondria depends on cardiolipin (CL). Detachment and release have been related to CL loss and peroxidation. We report that NaN(3)-dependent complex IV inhibition, accompanied by impairment of respiration, resulted in cyt c release. Contrarily, inhibition of respiration upstream cyt c with complex I and III inhibitors was not accompanied by the release of the protein, despite CL decrease and monolyso-CL increase. No CL changes and H(2)O(2) formation were observed by inhibiting complex IV. In cyt c-CL liposomes, breaching cyt c-CL hydrophilic interactions produced a higher release of the reduced, compared to the oxidized form, suggesting that the hydrophobic component of cyt c-CL binding is prevalent in the oxidized form. Free or liposome-reconstituted cyt c was able to form fatty acid-protein complexes (palmitate < linoleate < oleate) only in its reduced form. We hypothesize that reduced cyt c-fatty acid binding favors the dislocation of the protein from anchoring CL. A mechanism for cyt c release independent of CL peroxidation by H(2)O(2) is feasible. It could weaken the hydrophobic component of cyt c-CL interactions and might function following complex IV inhibition or in oxygen lack, both conditions producing accumulation of reduced cyt c and free fatty acids.
Collapse
Affiliation(s)
- Lara Macchioni
- Department of Internal Medicine, Laboratory of Biochemistry, University of Perugia, via del Giochetto, 06122 Perugia, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Brabant M, Baux L, Casimir R, Briand JP, Chaloin O, Porceddu M, Buron N, Chauvier D, Lassalle M, Lecoeur H, Langonné A, Dupont S, Déas O, Brenner C, Rebouillat D, Muller S, Borgne-Sanchez A, Jacotot E. A flavivirus protein M-derived peptide directly permeabilizes mitochondrial membranes, triggers cell death and reduces human tumor growth in nude mice. Apoptosis 2009; 14:1190-203. [DOI: 10.1007/s10495-009-0394-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Alterations in Membrane Potential in Mitochondria Isolated from Brain Subregions During Focal Cerebral Ischemia and Early Reperfusion: Evaluation Using Flow Cytometry. Neurochem Res 2009; 34:1857-66. [DOI: 10.1007/s11064-009-0001-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 05/14/2009] [Indexed: 10/20/2022]
|
17
|
Furt F, Moreau P. Importance of lipid metabolism for intracellular and mitochondrial membrane fusion/fission processes. Int J Biochem Cell Biol 2009; 41:1828-36. [PMID: 19703652 DOI: 10.1016/j.biocel.2009.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/06/2009] [Accepted: 02/10/2009] [Indexed: 10/21/2022]
Abstract
Mitochondria move along cytoskeletal tracks, fuse and divide. These dynamic features have been shown to be critical for several mitochondrial functions in cell viability and cell death. After a rapid recall of the proteic machineries that are known to be involved, the review will focus on lipids, other key molecular actors of membrane dynamics. A summary of the current knowledge on lipids and their implication in various cellular membrane fusion/fission processes will be first presented. The review will then report what has been discovered or can be expected on the role of the different families of lipids in mitochondrial membrane fusion and fission processes.
Collapse
Affiliation(s)
- Fabienne Furt
- Membrane Biogenesis Laboratory, UMR 5200, University of Bordeaux II-CNRS, France
| | | |
Collapse
|
18
|
Buratta M, Castigli E, Sciaccaluga M, Pellegrino RM, Spinozzi F, Roberti R, Corazzi L. Loss of cardiolipin in palmitate-treated GL15 glioblastoma cells favors cytochrome c release from mitochondria leading to apoptosis. J Neurochem 2008; 105:1019-31. [DOI: 10.1111/j.1471-4159.2007.05209.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Vance JE. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J Lipid Res 2008; 49:1377-87. [PMID: 18204094 DOI: 10.1194/jlr.r700020-jlr200] [Citation(s) in RCA: 335] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are two aminophospholipids whose metabolism is interrelated. Both phospholipids are components of mammalian cell membranes and play important roles in biological processes such as apoptosis and cell signaling. PS is synthesized in mammalian cells by base-exchange reactions in which polar head groups of preexisting phospholipids are replaced by serine. PS synthase activity resides primarily on mitochondria-associated membranes and is encoded by two distinct genes. Studies in mice in which each gene has been individually disrupted are beginning to elucidate the importance of these two synthases for biological functions in intact animals. PE is made in mammalian cells by two completely independent major pathways. In one pathway, PS is converted into PE by the mitochondrial enzyme PS decarboxylase. In addition, PE is made via the CDP-ethanolamine pathway, in which the final reaction occurs on the endoplasmic reticulum and nuclear envelope. The relative importance of these two pathways of PE synthesis has been investigated in knockout mice. Elimination of either pathway is embryonically lethal, despite the normal activity of the other pathway. PE can also be generated from a base-exchange reaction and by the acylation of lyso-PE. Cellular levels of PS and PE are tightly regulated by the implementation of multiple compensatory mechanisms.
Collapse
Affiliation(s)
- Jean E Vance
- Group on the Molecular and Cell Biology of Lipids and Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| |
Collapse
|
20
|
Bollag WB, Xie D, Zheng X, Zhong X. A potential role for the phospholipase D2-aquaporin-3 signaling module in early keratinocyte differentiation: production of a phosphatidylglycerol signaling lipid. J Invest Dermatol 2007; 127:2823-31. [PMID: 17597824 DOI: 10.1038/sj.jid.5700921] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In keratinocytes aquaporin-3 (AQP3), an efficient glycerol transporter, is associated with phospholipase D2 (PLD2) in caveolin-rich membrane microdomains. PLD catalyzes both phospholipid hydrolysis to produce phosphatidate and a transphosphatidylation reaction using primary alcohols to generate phosphatidylalcohols. As PLD2 can utilize the physiological alcohol glycerol to form phosphatidylglycerol (PG), we hypothesized that AQP3 provides glycerol to PLD2 for PG synthesis, which then modulates keratinocyte function. Acidic medium inhibits AQP3 transport activity; both glycerol uptake and PG synthesis were inhibited by low versus physiological pH. Co-transfection experiments were performed in which AQP3 or empty vector was introduced into keratinocytes simultaneously with reporter constructs in which differentiation or proliferation promoters directed expression of a luciferase reporter gene. AQP3 coexpression decreased the promoter activity of keratin 5, increased that of keratin 10 and enhanced the effect of a differentiating agent on the promoter activity of involucrin, consistent with promotion of early differentiation. Glycerol inhibited DNA synthesis, whereas equivalent concentrations of xylitol or sorbitol, as osmotic controls, had no effect. Direct provision of PG, but not phosphatidylpropanol, inhibited DNA synthesis in proliferative cells. Thus, our results support the idea that AQP3 supplies PLD2 with glycerol for synthesizing PG, a lipid signal that promotes early keratinocyte differentiation.
Collapse
Affiliation(s)
- Wendy B Bollag
- Department of Medicine (Dermatology), Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | | | |
Collapse
|
21
|
Buratta M, Piccotti L, Giannini S, Gresele P, Roberti R, Corazzi L. Selective Cytochrome c Displacement by Phosphate and Ca2+ in Brain Mitochondria. J Membr Biol 2007; 212:199-210. [PMID: 17334837 DOI: 10.1007/s00232-006-0015-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 06/11/2006] [Indexed: 10/23/2022]
Abstract
In brain mitochondria, phosphate- and Ca(2+)-dependent cytocrome c (cyt c) release reveals pools that interact differently with the inner membrane. Detachment of the phosphate-dependent pool did not influence the pool released by Ca(2+). Cyt c pools were also detected in a system of cyt c reconstituted in cardiolipin (CL) liposomes. Gradual binding of cyt c (1 nmol) to CL/2-[12-(7-nitrobenz- 2-oxa-1,3-diazol-4-yl)amino]dodecanoyl-1-hexadecan oyl-sn-glycero-3-phosphocholine (NBDC(12)-HPC) liposomes (10 nmol) produced NBD fluorescence quenching up to 0.4 nmol of added protein. Additional bound cyt c did not produce quenching, suggesting that cyt c-CL interactions originate distinct cyt c pools. Cyt c was removed from CL/NBDC(12)-HPC liposomes by either phosphate or Ca(2+), but only Ca(2+) produced fluorescence dequenching and leakage of encapsulated 8-aminonaphthalene-1,3,6-trisulfonic acid/p-xylene-bis-pyridinium bromide. In mitochondria, complex IV activity and mitochondrial membrane potential (Deltapsi(m)) were not affected by the release of the phosphate-dependent cyt c pool. Conversely, removal of cyt c by Ca(2+) caused inhibition of complex IV activity and impairment of Deltapsi(m). In a reconstituted system of mitochondria, nuclei and supernatant, cyt c detached from the inner membrane was released outside mitochondria and triggered events leading to DNA fragmentation. These events were prevented by enriching mitochondria with exogenous CL or by sequestering released cyt c with anti-cyt c antibody.
Collapse
Affiliation(s)
- Morena Buratta
- Laboratory of Biochemistry, Department of Internal Medicine, University of Perugia, Via del Giochetto, 06122, Perugia, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Macchioni L, Corazzi L, Nardicchi V, Mannucci R, Arcuri C, Porcellati S, Sposini T, Donato R, Goracci G. Rat Brain Cortex Mitochondria Release Group II Secretory Phospholipase A2 under Reduced Membrane Potential. J Biol Chem 2004; 279:37860-9. [PMID: 15231825 DOI: 10.1074/jbc.m303855200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of brain mitochondrial phospholipase(s) A(2) (PLA(2)) might contribute to cell damage and be involved in neurodegeneration. Despite the potential importance of the phenomenon, the number, identities, and properties of these enzymes are still unknown. Here, we demonstrate that isolated mitochondria from rat brain cortex, incubated in the absence of respiratory substrates, release a Ca(2+)-dependent PLA(2) having biochemical properties characteristic to secreted PLA(2) (sPLA(2)) and immunoreacting with the antibody raised against recombinant type IIA sPLA(2) (sPLA(2)-IIA). Under identical conditions, no release of fumarase in the extramitochondrial medium was observed. The release of sPLA(2) from mitochondria decreases when mitochondria are incubated in the presence of respiratory substrates such as ADP, malate, and pyruvate, which causes an increase of transmembrane potential determined by cytofluorimetric analysis using DiOC(6)(3) as a probe. The treatment of mitochondria with the uncoupler carbonyl cyanide 3-chlorophenylhydrazone slightly enhances sPLA(2) release. The increase of sPLA(2) specific activity after removal of mitochondrial outer membrane indicates that the enzyme is associated with mitoplasts. The mitochondrial localization of the enzyme has been confirmed by electron microscopy in U-251 astrocytoma cells and by confocal laser microscopy in the same cells and in PC-12 cells, where the structurally similar isoform type V-sPLA(2) has mainly nuclear localization. In addition to sPLA(2), mitochondria contain another phospholipase A(2) that is Ca(2+)-independent and sensitive to bromoenol lactone, associated with the outer mitochondrial membrane. We hypothesize that, under reduced respiratory rate, brain mitochondria release sPLA(2)-IIA that might contribute to cell damage.
Collapse
Affiliation(s)
- Lara Macchioni
- Department of Internal Medicine, Division of Biochemistry, University of Perugia, I-06125 Perugia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Piccotti L, Buratta M, Giannini S, Gresele P, Roberti R, Corazzi L. Binding and Release of Cytochrome c in Brain Mitochondria Is Influenced by Membrane Potential and Hydrophobic Interactions with Cardiolipin. J Membr Biol 2004; 198:43-53. [PMID: 15209096 DOI: 10.1007/s00232-004-0654-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Factors influencing the release and anchorage of cytochrome c to the inner membrane of brain mitochondria have been investigated. Metabolic activity of mitochondria caused a decrease in the membrane potential delta psi(m), accompanied by detachment of the protein from the inner membrane. In a model system of cytochrome c reconstituted in cardiolipin (CL) liposomes, phosphate was used to breach the hydrophilic lipid-protein interactions. About 44% cytochrome c was removable when heart CL (80% 18:2n-6) was employed, whereas the remaining protein accounted for the tightly bound conformation characterized by hydrophobic lipid-protein interactions. Cytochrome c release from brain CL liposomes was higher compared to heart CL, consistent with lower polyunsaturated fatty acid content. The release was even higher with CL extracted from metabolically stressed mitochondria, exhibiting more saturated fatty acid profile compared to control (30% vs. 17%). Therefore, weakening of the hydrophobic interactions due to saturation of CL may account for the observed cytochrome c release from mitochondria following metabolic stress. Moreover, mitochondria enriched with polyunsaturated CL exhibited higher delta psi(m), compared to less unsaturated species, suggesting that CL fatty acid composition influences delta psi(m). Mitochondria incorporated exogenous cytochrome c without protease-sensitive factors or delta psi(m). The internalized protein anchored to the inner membrane without producing swelling, as monitored by forward and side light scattering, but produced delta psi(m) consumption, suggesting recovery of respiratory activity. The delta psi(m) decrease is ascribed to a selected mitochondrial population containing the incorporated cytochrome c.
Collapse
Affiliation(s)
- L Piccotti
- Laboratory of Biochemistry, Department of Internal Medicine, University of Perugia, 06122, Perugia, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Iverson SL, Orrenius S. The cardiolipin–cytochrome c interaction and the mitochondrial regulation of apoptosis. Arch Biochem Biophys 2004; 423:37-46. [PMID: 14989263 DOI: 10.1016/j.abb.2003.12.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While many studies have focused on cytochrome c release from mitochondria, little attention has been given to the specific interaction between cardiolipin (CL) and cytochrome c, the breaching of which likely represents a critical event in the initiation of mitochondrially mediated apoptosis. Mounting evidence suggests that a decrease in the level of CL affects cytochrome c binding to the inner membrane, thus leading to higher levels of soluble cytochrome c in the mitochondrial intermembrane space. Among the factors known to affect CL levels are thyroid status, plasma concentrations of free fatty acids, Ca2+ dysregulation, and reactive oxygen species (ROS). These factors, especially Ca2+ and ROS, have long been recognized as triggers of cell death and, more recently, as modulators of mitochondrially mediated apoptosis. In this review, we discuss the significance of the disruption of the CL-cytochrome c interaction for cytochrome c release and apoptosis.
Collapse
Affiliation(s)
- Suzanne L Iverson
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
25
|
Lecoeur H, Langonné A, Baux L, Rebouillat D, Rustin P, Prévost MC, Brenner C, Edelman L, Jacotot E. Real-time flow cytometry analysis of permeability transition in isolated mitochondria. Exp Cell Res 2004; 294:106-17. [PMID: 14980506 DOI: 10.1016/j.yexcr.2003.10.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Revised: 09/29/2003] [Indexed: 12/16/2022]
Abstract
Mitochondrial membrane permeabilization (MMP) is a key event in necrotic and (intrinsic) apoptotic processes. MMP is controlled by a few major rate-limiting events, one of which is opening of the permeability transition pore (PTP). Here we develop a flow cytometry (FC)-based approach to screen and study inducers and blockers of MMP in isolated mitochondria. Fixed-time and real-time FC permits to co-evaluate and order modifications of mitochondrial size, structure and inner membrane (IM) electrochemical potential (DeltaPsi(m)) during MMP. Calcium, a major PTP opener, and alamethicin, a PTP-independent MMP inducer, trigger significant mitochondrial forward scatter (FSC) increase and side scatter (SSC) decrease, correlating with spectrophotometrically detected swelling. FC-based fluorescence detection of the DeltaPsi(m)-sensitive cationic lipophilic dye JC-1 permits to detect DeltaPsi(m) variations induced by PTP openers or specific inducers of inner MMP such as carbonylcyanide m-chlorophenylhydrazone (mClCCP). These simple, highly sensitive and quantitative FC-based methods will be pertinent to evaluate compounds for their ability to control MMP.
Collapse
Affiliation(s)
- Hervé Lecoeur
- Theraptosis Research Laboratory, Theraptosis S.A., Institut Pasteur, 75015 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Modica-Napolitano JS, Renshaw PF. Ethanolamine and phosphoethanolamine inhibit mitochondrial function in vitro: implications for mitochondrial dysfunction hypothesis in depression and bipolar disorder. Biol Psychiatry 2004; 55:273-7. [PMID: 14744468 DOI: 10.1016/s0006-3223(03)00784-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND A growing body of experimental evidence suggests that mitochondrial dysfunction, including alterations in phospholipid metabolism, might be involved in the pathophysiology of affective illnesses, such as depression and bipolar disorder. The purpose of this study was to determine whether the phosphomonoester phosphoethanolamine (PE) and the lipid metabolite choline (Cho), which are known to be altered in depression and bipolar disorder, and/or their precursors/metabolites, might directly affect mitochondrial bioenergetic function in vitro. METHODS To this end, rates of oxygen consumption in freshly isolated, intact mitochondria were determined polarographically in the presence and absence of PE, Cho, ethanolamine (Etn), glycerophosphoethanolamine (GPE), and glycerophosphocholine (GPC). RESULTS The data demonstrate that PE and Etn inhibit mitochondrial respiratory activity in a dose-dependent manner, whereas Cho, GPC, and GPE have no measurable effect on bioenergetic function. CONCLUSIONS This reflects a specific inhibition by Etn and PE on mitochondrial function rather than a more generalized phenomenon induced by similarities in structure between the lipid metabolites. These results also suggest a possible relationship between mitochondrial dysfunction and altered phospholipid metabolism in the brains of patients with depression and bipolar disorder.
Collapse
|
27
|
Zheng X, Ray S, Bollag WB. Modulation of phospholipase D-mediated phosphatidylglycerol formation by differentiating agents in primary mouse epidermal keratinocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2003; 1643:25-36. [PMID: 14654225 DOI: 10.1016/j.bbamcr.2003.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The major component of the epidermis, keratinocytes, must continuously proliferate and differentiate to form the mechanical and water permeability barrier of the skin. Our previous data have suggested a potential role in these processes for phospholipase D (PLD), an enzyme that hydrolyzes phospholipids to generate phosphatidic acid. In the presence of primary alcohols, PLD also catalyzes a transphosphatidylation reaction to produce phosphatidylalcohols, and this characteristic has been exploited to monitor the activity of PLD in intact cells. In this report, PLD was demonstrated to utilize the physiological alcohol glycerol to form phosphatidylglycerol (PG) in vitro. In intact primary murine epidermal keratinocytes treated for 24 h with elevated extracellular Ca(2+) levels, but not 1,25-dihydroxyvitamin D(3), incubation with radioactive glycerol resulted in an increase in PLD-mediated radiolabeled PG production. This effect was dose-dependent and biphasic, with maximal PG formation detected after exposure to an intermediate (125 microM) Ca(2+) concentration. Furthermore, the biphasic nature of the response was due, in part, to a corresponding biphasic change in glycerol uptake. Finally, short-term treatment of keratinocytes with phorbol 12-myristate 13-acetate (PMA) failed to increase PG synthesis and inhibited glycerol uptake. Since (1) PMA is reported to activate PLD-1 to a greater extent than PLD-2, (2) 1,25-dihydroxyvitamin D(3) increases the expression/activity of PLD-1 in keratinocytes, and (3) PLD-2 is co-localized with a glycerol channel in keratinocyte membrane microdomains, we speculate that radiolabeled PG production from radioactive glycerol is a measure of PLD-2 activation in these cells. Our results also suggest that PLD-mediated PG synthesis may be regulated at the level of both PLD activity and alcohol substrate availability via changes in glycerol uptake.
Collapse
Affiliation(s)
- Xiangjian Zheng
- Program in Cell Signaling, Institute of Molecular Medicine and Genetics, Department of Medicine (Dermatology), Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-2630, USA
| | | | | |
Collapse
|
28
|
Iverson SL, Enoksson M, Gogvadze V, Ott M, Orrenius S. Cardiolipin is not required for Bax-mediated cytochrome c release from yeast mitochondria. J Biol Chem 2003; 279:1100-7. [PMID: 14551208 DOI: 10.1074/jbc.m305020200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiolipin (CL) is an inner mitochondrial membrane phospholipid that contributes to optimal mitochondrial function and is gaining widespread attention in studies of mitochondria-mediated apoptosis. Divergent hypotheses describing the role of CL in cytochrome c release and apoptosis have evolved. We addressed this controversy directly by comparing the spontaneous- and Bax-mediated cytochrome c release from mitochondria isolated from two strains of Saccharomyces cerevisiae: one lacking CL-synthase and therefore CL (DeltaCRD1) and the other, its corresponding wild type (WT). We demonstrated by liquid chromatography-mass spectrometry that the main yeast CL species [(16:1)2(18:1)2] differs in fatty acid composition from mammalian CL [(18:2)4], and we verified the absence of the yeast CL species in the DeltaCRD1 strain. We also demonstrated that the mitochondrial association of Bax and the resulting cytochrome c release is not dependent on the CL content of the yeast mitochondrial membranes. Bax inserted equally into both WT and DeltaCRD1 mitochondrial membranes under conditions that lead to the release of cytochrome c from both strains of yeast mitochondria. Furthermore, using models of synthetic liposomes and isolated yeast mitochondria, we found that cytochrome c was bound more "loosely" to the CL-deficient systems compared with when CL is present. These data challenge recent studies implicating that CL is required for Bax-mediated pore formation leading to the release of proteins from the mitochondrial intermembrane space. In contrast, they support our recently proposed two-step mechanism of cytochrome c release, which suggests that CL is required for binding cytochrome c to the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Suzanne L Iverson
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
29
|
Mattiasson G, Friberg H, Hansson M, Elmér E, Wieloch T. Flow cytometric analysis of mitochondria from CA1 and CA3 regions of rat hippocampus reveals differences in permeability transition pore activation. J Neurochem 2003; 87:532-44. [PMID: 14511130 DOI: 10.1046/j.1471-4159.2003.02026.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitochondria are important in the pathophysiology of several neurodegenerative diseases, and mitochondrial production of reactive oxygen species (ROS), membrane depolarization, permeability changes and release of apoptogenic proteins are involved in these processes. Following brain insults, cell death often occurs in discrete regions of the brain, such as the subregions of the hippocampus. To analyse mitochondrial structure and function in such subregions, only small amounts of mitochondria are available. We developed a protocol for flow cytometric analysis of very small samples of isolated brain mitochondria, and analysed mitochondrial swelling and formation of ROS in mitochondria from the CA1 and CA3 regions of the hippocampus. Calcium-induced mitochondrial swelling was measured, and fluorescent probes were used to selectively stain mitochondria (nonyl acridine orange), to measure membrane potential (tetramethylrhodamine-methyl-ester, 1,1',3,3,3',3'-hexamethylindodicarbocyanine-iodide) and to measure production of ROS (2',7'-dichlorodihydrofluorescein-diacetate). We found that formation of ROS and mitochondrial permeability transition pore activation were higher in mitochondria from the CA1 than from the CA3 region, and propose that differences in mitochondrial properties partly underlie the selective vulnerability of the CA1 region to brain insults. We also conclude that flow cytometry is a useful tool to analyse the role of mitochondria in cell death processes.
Collapse
Affiliation(s)
- Gustav Mattiasson
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
30
|
Sarkar S, Kalia V, Montelaro RC. Caspase-mediated apoptosis and cell death of rhesus macaque CD4+ T-cells due to cryopreservation of peripheral blood mononuclear cells can be rescued by cytokine treatment after thawing. Cryobiology 2003; 47:44-58. [PMID: 12963412 DOI: 10.1016/s0011-2240(03)00068-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cryopreservation of peripheral blood mononuclear cells (PBMC) from animal model studies and clinical trials is utilized as a primary method for long-term storage of PBMC for future in vitro and in vivo applications. The objective of this study was to define the mechanistic pathways involved in cryopreservation-induced apoptosis of CD4+ T-cells in PBMC, and to evaluate a cytokine treatment of the cryopreserved samples to rescue apoptosis for the potential future use of the cryopreserved PBMC. Using cryopreserved PBMC samples isolated from naïve and Simian immunodeficiency virus (SIV)-infected rhesus macaques as a model, frozen PBMC showed significantly increased levels of apoptosis-induced CD4+ T-cell death compared to fresh PBMC over a 5-day culture period as detected by Annexin V/PI and trypan blue staining. Mechanistic studies using a broad-spectrum caspase inhibitor z-VAD demonstrated a crucial involvement of caspases in cryopreservation-induced apoptosis of CD4+ T-cells. Furthermore, the ability of z-VAD to inhibit both mitochondrial membrane perturbation and apoptotic cell death implicated the involvement of caspase-mediated mitochondrial membrane damage in cryopreservation-induced apoptosis of CD4+ T-cells. Due to their known properties to promote T-cell survival and inhibit apoptosis, we evaluated the ability of IL-2, IL-4, and IL-7 combination cytokine treatment of the cryopreserved cells to rescue apoptosis of the CD4+ T-cells. The cytokine treatment resulted in a significant inhibition (p<0.01) of apoptosis-induced cell death and rescued CD4+ T-cell survival (p<0.01) in the cryopreserved cells. Efficient rescue of cryopreserved CD4+ T-cells has clinical significance in immune function analysis of longitudinal samples and in various long-term protocols requiring cryopreservation, including bone marrow and stem cell transplantation.
Collapse
Affiliation(s)
- Surojit Sarkar
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|