1
|
Ren Y, Chen H, Zhao SY, Ma L, He QX, Gong WB, Wu JW, Yao HW, Wang ZX. Biochemical analyses reveal new insights into RCAN1/Rcn1 inhibition of calcineurin. FEBS J 2024. [PMID: 39241105 DOI: 10.1111/febs.17266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/18/2024] [Accepted: 08/23/2024] [Indexed: 09/08/2024]
Abstract
Calcineurin is a serine/threonine protein phosphatase that is highly conserved from yeast to human and plays a critical role in many physiological processes. Regulators of calcineurin (RCANs) are a family of endogenous calcineurin regulators, which are capable of inhibiting the catalytic activity of calcineurin in vivo and in vitro. In this study, we first characterized the biochemical properties of yeast calcineurin and its endogenous regulator Rcn1, a yeast homolog of RCAN1. Our data show that Rcn1 inhibits yeast calcineurin toward pNPP substrate with a noncompetitive mode; and Rcn1 binds cooperatively to yeast calcineurin through multiple low-affinity interactions at several docking regions. Next, we reinvestigated the mechanism underlying the inhibition of mammalian calcineurin by RCAN1 using a combination of biochemical, biophysical, and computational methods. In contrast to previous observations, RCAN1 noncompetitively inhibits calcineurin phosphatase activity toward both pNPP and phospho-RII peptide substrates by targeting the enzyme active site in part. Re-analysis of previously reported kinetic data reveals that the RCAN1 concentrations used were too low to distinguish between the inhibition mechanisms [Chan B et al. (2005) Proc Natl Acad Sci USA 102, 13075]. The results presented in this study provide new insights into the interaction between calcineurin and RCAN1/Rcn1.
Collapse
Affiliation(s)
- Yan Ren
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Department of Biochemistry and Molecular Biology, Beijing Normal University, China
| | - Hui Chen
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Shan-Yue Zhao
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Lei Ma
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qing-Xia He
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Wei-Bin Gong
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jia-Wei Wu
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Hong-Wei Yao
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Zhi-Xin Wang
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Lasocka-Koriat Z, Lewicka-Potocka Z, Kaleta-Duss A, Siekierzycka A, Kalinowski L, Lewicka E, Dąbrowska-Kugacka A. Differences in cardiac adaptation to exercise in male and female athletes assessed by noninvasive techniques: a state-of-the-art review. Am J Physiol Heart Circ Physiol 2024; 326:H1065-H1079. [PMID: 38391314 PMCID: PMC11380999 DOI: 10.1152/ajpheart.00756.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
Athlete's heart is generally regarded as a physiological adaptation to regular training, with specific morphological and functional alterations in the cardiovascular system. Development of the noninvasive imaging techniques over the past several years enabled better assessment of cardiac remodeling in athletes, which may eventually mimic certain pathological conditions with the potential for sudden cardiac death, or disease progression. The current literature provides a compelling overview of the available methods that target the interrelation of prolonged exercise with cardiac structure and function. However, this data stems from scientific studies that included mostly male athletes. Despite the growing participation of females in competitive sport meetings, little is known about the long-term cardiac effects of repetitive training in this population. There are several factors-biochemical, physiological and psychological, that determine sex-dependent cardiac response. Herein, the aim of this review was to compare cardiac adaptation to endurance exercise in male and female athletes with the use of electrocardiographic, echocardiographic, and biochemical examination, to determine the sex-specific phenotypes, and to improve the healthcare providers' awareness of cardiac remodeling in athletes. Finally, we discuss the possible exercise-induced alternations that should arouse suspicion of pathology and be further evaluated.
Collapse
Affiliation(s)
- Zofia Lasocka-Koriat
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Gdańsk, Poland
- First Department of Cardiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Zuzanna Lewicka-Potocka
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Gdańsk, Poland
- First Department of Cardiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Kaleta-Duss
- Institute for Radiology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
- BioTechMed Centre/Department of Mechanics of Materials and Structures, Gdańsk University of Technology, Gdańsk, Poland
| | - Ewa Lewicka
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
3
|
Lao M, Zhang X, Yang H, Bai X, Liang T. RCAN1-mediated calcineurin inhibition as a target for cancer therapy. Mol Med 2022; 28:69. [PMID: 35717152 PMCID: PMC9206313 DOI: 10.1186/s10020-022-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Regulator of calcineurin 1 (RCAN1), as a patent endogenous inhibitor of calcineurin, plays crucial roles in the pathogenesis of cancers. Except for hypopharyngeal and laryngopharynx cancer, high expression of RCAN1 inhibits tumor progression. Molecular antitumor functions of RCAN1 are largely dependent on calcineurin. In this review, we highlight current research on RCAN1 characteristics, and the interaction between RCAN1 and calcineurin. Moreover, the dysregulation of RCAN1 in various cancers is reviewed, and the potential of targeting RCAN1 as a new therapeutic approach is discussed.
Collapse
Affiliation(s)
- Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
4
|
Liu C, Liu T, Lv Z, Qin M, Qu Z, Zhang Z, Li F, Chen D, Zhang X, Chen XL, Shen M. A Calcineurin Regulator MoRCN1 Is Important for Asexual Development, Stress Response, and Plant Infection of Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2022; 13:925645. [PMID: 35783935 PMCID: PMC9244802 DOI: 10.3389/fpls.2022.925645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 06/12/2023]
Abstract
The calcium/calcineurin signaling pathway plays a key role in the development and virulence of plant pathogenic fungi, but the regulation of this signaling pathway is still not clear. In this study, we identified a calcineurin regulator MoRCN1 in the plant pathogenic fungus Magnaporthe oryzae and found it is important for virulence by regulating the calcineurin pathway. MoRCN1 deletion mutants were severely decreased in colony growth and conidia formation. More importantly, the deletion of MoRCN1 led to a significant reduction in virulence due to defects in appressorium formation and invasive growth. The ΔMorcn1 mutants were more sensitive to different stresses and induced host ROS accumulation, suggesting a role of MoRCN1 in stress adaptation. We found that MoRCN1 directly interacted with the calcineurin catalytic subunit MoCNA and affected its protein stability, which was therefore important for regulating the calcineurin pathway. Transcriptome analysis showed that MoRCN1 significantly activated 491 genes and suppressed 337 genes in response to calcium ion, partially overlapped with the MoCRZ1-bound genes. Gene Ontology and KEGG pathway analyses indicated that MoRCN1-regulated genes were enriched in stress adaptation, lipid metabolism, and secondary metabolite biosynthesis, reflecting a function of MoRCN1 in host cell adaptation. Altogether, these results suggest MoRCN1 functions as a regulator of the calcium/calcineurin signaling pathway for fungal development and infection of host cells.
Collapse
Affiliation(s)
- Caiyun Liu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tiangu Liu
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziwei Lv
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mengyuan Qin
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiguang Qu
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziwei Zhang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fuyan Li
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Deng Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinrong Zhang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mi Shen
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China
| |
Collapse
|
5
|
Chaklader M, Rothermel BA. Calcineurin in the heart: New horizons for an old friend. Cell Signal 2021; 87:110134. [PMID: 34454008 PMCID: PMC8908812 DOI: 10.1016/j.cellsig.2021.110134] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023]
Abstract
Calcineurin, also known as PP2B or PPP3, is a member of the PPP family of protein phosphatases that also includes PP1 and PP2A. Together these three phosphatases carryout the majority of dephosphorylation events in the heart. Calcineurin is distinct in that it is activated by the binding of calcium/calmodulin (Ca2+/CaM) and therefore acts as a node for integrating Ca2+ signals with changes in phosphorylation, two fundamental intracellular signaling cascades. In the heart, calcineurin is primarily thought of in the context of pathological cardiac remodeling, acting through the Nuclear Factor of Activated T-cell (NFAT) family of transcription factors. However, calcineurin activity is also essential for normal heart development and homeostasis in the adult heart. Furthermore, it is clear that NFAT-driven changes in transcription are not the only relevant processes initiated by calcineurin in the setting of pathological remodeling. There is a growing appreciation for the diversity of calcineurin substrates that can impact cardiac function as well as the diversity of mechanisms for targeting calcineurin to specific sub-cellular domains in cardiomyocytes and other cardiac cell types. Here, we will review the basics of calcineurin structure, regulation, and function in the context of cardiac biology. Particular attention will be given to: the development of improved tools to identify and validate new calcineurin substrates; recent studies identifying new calcineurin isoforms with unique properties and targeting mechanisms; and the role of calcineurin in cardiac development and regeneration.
Collapse
Affiliation(s)
- Malay Chaklader
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Beverly A Rothermel
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
6
|
Kim SS, Lee EH, Shin JH, Seo SR. MAP kinase/ERK kinase 1 (MEK1) phosphorylates regulator of calcineurin 1 (RCAN1) to regulate neuronal differentiation. J Cell Physiol 2021; 237:1406-1417. [PMID: 34647615 DOI: 10.1002/jcp.30609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022]
Abstract
Regulator of calcineurin 1 (RCAN1) is located close to the Down syndrome critical region (DSCR) on human chromosome 21 and is related to the Down syndrome (DS) phenotype. To identify a novel binding partner of RCAN1, we performed yeast two-hybrid screening and identified mitogen-activated protein (MAP) kinase/extracellular signal-regulated kinase (ERK) kinase 1 (MEK1) as a partner. MEK1 was able to bind and phosphorylate RCAN1 in vitro and in vivo. MEK1-dependent RCAN1 phosphorylation caused an increase in RCAN1 expression by increasing the protein half-life. Nerve growth factor (NGF)-dependent activation of the MEK1 pathway consistently induced RCAN1 expression. Moreover, we found that RCAN1 overexpression inhibited NGF-induced neurite outgrowth and expression of neuronal marker genes, such as growth cone-associated protein 43 (GAP43) and synapsin I, via inhibition of MEK1-ERK1/2 pathways. Our findings provide evidence that MEK1-dependent RCAN1 phosphorylation acts as an important molecular mechanism in the control of neuronal differentiation.
Collapse
Affiliation(s)
- Seon Sook Kim
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun Hye Lee
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin Hak Shin
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Su Ryeon Seo
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
7
|
Lane BM, Murray S, Benson K, Bierzynska A, Chryst-Stangl M, Wang L, Wu G, Cavalleri G, Doyle B, Fennelly N, Dorman A, Conlon S, Vega-Warner V, Fermin D, Vijayan P, Qureshi MA, Shril S, Barua M, Hildebrandt F, Pollak M, Howell D, Sampson MG, Saleem M, Conlon PJ, Spurney R, Gbadegesin R. A Rare Autosomal Dominant Variant in Regulator of Calcineurin Type 1 ( RCAN1) Gene Confers Enhanced Calcineurin Activity and May Cause FSGS. J Am Soc Nephrol 2021; 32:1682-1695. [PMID: 33863784 PMCID: PMC8425665 DOI: 10.1681/asn.2020081234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/25/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocyte dysfunction is the main pathologic mechanism driving the development of FSGS and other morphologic types of steroid-resistant nephrotic syndrome (SRNS). Despite significant progress, the genetic causes of most cases of SRNS have yet to be identified. METHODS Whole-genome sequencing was performed on 320 individuals from 201 families with familial and sporadic NS/FSGS with no pathogenic mutations in any known NS/FSGS genes. RESULTS Two variants in the gene encoding regulator of calcineurin type 1 (RCAN1) segregate with disease in two families with autosomal dominant FSGS/SRNS. In vitro, loss of RCAN1 reduced human podocyte viability due to increased calcineurin activity. Cells expressing mutant RCAN1 displayed increased calcineurin activity and NFAT activation that resulted in increased susceptibility to apoptosis compared with wild-type RCAN1. Treatment with GSK-3 inhibitors ameliorated this elevated calcineurin activity, suggesting the mutation alters the balance of RCAN1 regulation by GSK-3β, resulting in dysregulated calcineurin activity and apoptosis. CONCLUSIONS These data suggest mutations in RCAN1 can cause autosomal dominant FSGS. Despite the widespread use of calcineurin inhibitors in the treatment of NS, genetic mutations in a direct regulator of calcineurin have not been implicated in the etiology of NS/FSGS before this report. The findings highlight the therapeutic potential of targeting RCAN1 regulatory molecules, such as GSK-3β, in the treatment of FSGS.
Collapse
Affiliation(s)
- Brandon M. Lane
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Susan Murray
- Irish Kidney Gene Project, Department of Genetics, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | - Katherine Benson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | - Agnieszka Bierzynska
- Department of Pediatrics, Bristol Royal Hospital for Children and University of Bristol, Bristol, United Kingdom
| | - Megan Chryst-Stangl
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Liming Wang
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Guanghong Wu
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Gianpiero Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | - Brendan Doyle
- Department of Pathology, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Neil Fennelly
- Department of Pathology, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Anthony Dorman
- Department of Pathology, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Shane Conlon
- Irish Kidney Gene Project, Department of Genetics, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | | | - Damian Fermin
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Poornima Vijayan
- Division of Nephrology, Department of Medicine, University of Toronto and Toronto General Hospital, Toronto, Ontario, Canada
| | - Mohammad Azfar Qureshi
- Division of Nephrology, Department of Medicine, University of Toronto and Toronto General Hospital, Toronto, Ontario, Canada
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital and Harvard University Medical School, Boston, Massachusetts
| | - Moumita Barua
- Division of Nephrology, Department of Medicine, University of Toronto and Toronto General Hospital, Toronto, Ontario, Canada
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital and Harvard University Medical School, Boston, Massachusetts
| | - Martin Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Hospital and Harvard University Medical School, Boston, Massachusetts
| | - David Howell
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Matthew G. Sampson
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital and Harvard University Medical School, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Moin Saleem
- Department of Pediatrics, Bristol Royal Hospital for Children and University of Bristol, Bristol, United Kingdom
| | - Peter J. Conlon
- Irish Kidney Gene Project, Department of Genetics, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
- Division of Nephrology, Department of Medicine, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Robert Spurney
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
8
|
Li Y, Sheftic SR, Grigoriu S, Schwieters CD, Page R, Peti W. The structure of the RCAN1:CN complex explains the inhibition of and substrate recruitment by calcineurin. SCIENCE ADVANCES 2020; 6:6/27/eaba3681. [PMID: 32936779 PMCID: PMC7458460 DOI: 10.1126/sciadv.aba3681] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/19/2020] [Indexed: 05/04/2023]
Abstract
Regulator of calcineurin 1 (RCAN1) is an endogenous inhibitor of the Ser/Thr phosphatase calcineurin (CN). It has been shown that excessive inhibition of CN is a critical factor for Down syndrome and Alzheimer's disease. Here, we determined RCAN1's mode of action. Using a combination of structural, biophysical, and biochemical studies, we show that RCAN1 inhibits CN via multiple routes: first, by blocking essential substrate recruitment sites and, second, by blocking the CN active site using two distinct mechanisms. We also show that phosphorylation either inhibits RCAN1-CN assembly or converts RCAN1 into a weak inhibitor, which can be reversed by CN via dephosphorylation. This highlights the interplay between posttranslational modifications in regulating CN activity. Last, this work advances our understanding of how active site inhibition of CN can be achieved in a highly specific manner. Together, these data provide the necessary road map for targeting multiple neurological disorders.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry and Biochemistry, University of Arizona, 1041 E. Lowell St., Tucson, AZ 85721, USA
| | - Sarah R Sheftic
- Department of Chemistry and Biochemistry, University of Arizona, 1041 E. Lowell St., Tucson, AZ 85721, USA
| | - Simina Grigoriu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Charles D Schwieters
- Imaging Sciences Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca Page
- Department of Chemistry and Biochemistry, University of Arizona, 1041 E. Lowell St., Tucson, AZ 85721, USA
| | - Wolfgang Peti
- Department of Chemistry and Biochemistry, University of Arizona, 1041 E. Lowell St., Tucson, AZ 85721, USA.
| |
Collapse
|
9
|
Growth hormone increases regulator of calcineurin 1-4 (Rcan1-4) mRNA through c-JUN in rat liver. PLoS One 2020; 15:e0235270. [PMID: 32589657 PMCID: PMC7319343 DOI: 10.1371/journal.pone.0235270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/11/2020] [Indexed: 11/23/2022] Open
Abstract
Growth hormone (GH) activates multiple signal transduction pathways. To investigate these pathways, we identified novel genes whose transcription was induced by GH in the liver of hypophysectomized (HPX) rats using the suppression subtractive hybridization technique. We found that regulator of calcineurin 1 (Rcan1) mRNA was upregulated by GH administration. RCAN1 regulates the activity of calcineurin, a Ca/calmodulin-dependent phosphatase. Rcan1 encodes two major transcripts, Rcan1-1 and Rcan1-4, resulting from differential promoter use and first exon choice. We found that a single injection of GH increased the levels of Rcan1-4 mRNA and RCAN1-4 protein transiently, but did not increase Rcan1-1 mRNA in HPX rat liver. Then the molecular mechanism of GH to induce Rcan1-4 transcription was examined in rat hepatoma H4IIE cells. Experiments using inhibitors suggested that c-JUN N-terminal kinase was required for the induction of Rcan1-4 mRNA by GH. GH increased the levels of phosphorylated c-JUN protein and c-Jun mRNA in HPX rat liver. The luciferase and electrophoretic mobility shift assays showed that c-JUN upregulated Rcan1-4 mRNA by binding to the cAMP-responsive element in the upstream of Rcan1 exon 4. These results indicate that GH activates c-JUN to affect the activity of calcineurin by the induction of Rcan1-4 in rat liver.
Collapse
|
10
|
Dudilot A, Trillaud-Doppia E, Boehm J. RCAN1 Regulates Bidirectional Synaptic Plasticity. Curr Biol 2020; 30:1167-1176.e2. [DOI: 10.1016/j.cub.2020.01.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/14/2019] [Accepted: 01/13/2020] [Indexed: 01/26/2023]
|
11
|
Shin SY, Kim MW, Cho KH, Nguyen LK. Coupled feedback regulation of nuclear factor of activated T-cells (NFAT) modulates activation-induced cell death of T cells. Sci Rep 2019; 9:10637. [PMID: 31337782 PMCID: PMC6650396 DOI: 10.1038/s41598-019-46592-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
A properly functioning immune system is vital for an organism’s wellbeing. Immune tolerance is a critical feature of the immune system that allows immune cells to mount effective responses against exogenous pathogens such as viruses and bacteria, while preventing attack to self-tissues. Activation-induced cell death (AICD) in T lymphocytes, in which repeated stimulations of the T-cell receptor (TCR) lead to activation and then apoptosis of T cells, is a major mechanism for T cell homeostasis and helps maintain peripheral immune tolerance. Defects in AICD can lead to development of autoimmune diseases. Despite its importance, the regulatory mechanisms that underlie AICD remain poorly understood, particularly at an integrative network level. Here, we develop a dynamic multi-pathway model of the integrated TCR signalling network and perform model-based analysis to characterize the network-level properties of AICD. Model simulation and analysis show that amplified activation of the transcriptional factor NFAT in response to repeated TCR stimulations, a phenomenon central to AICD, is tightly modulated by a coupled positive-negative feedback mechanism. NFAT amplification is predominantly enabled by a positive feedback self-regulated by NFAT, while opposed by a NFAT-induced negative feedback via Carabin. Furthermore, model analysis predicts an optimal therapeutic window for drugs that help minimize proliferation while maximize AICD of T cells. Overall, our study provides a comprehensive mathematical model of TCR signalling and model-based analysis offers new network-level insights into the regulation of activation-induced cell death in T cells.
Collapse
Affiliation(s)
- Sung-Young Shin
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia.,Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Min-Wook Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia. .,Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
12
|
Chang RL, Nithiyanantham S, Huang CY, Pai PY, Chang TT, Hu LC, Chen RJ, VijayaPadma V, Kuo WW, Huang CY. Synergistic cardiac pathological hypertrophy induced by high-salt diet in IGF-IIRα cardiac-specific transgenic rats. PLoS One 2019; 14:e0216285. [PMID: 31211784 PMCID: PMC6581245 DOI: 10.1371/journal.pone.0216285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/17/2019] [Indexed: 11/18/2022] Open
Abstract
Stress-induced cardiac hypertrophy leads to heart failure. Our previous studies demonstrate that insulin-like growth factor-II receptor (IGF-IIR) signaling is pivotal to hypertrophy regulation. In this study, we show a novel IGF-IIR alternative spliced transcript, IGF-IIRα (150 kDa) play a key role in high-salt induced hypertrophy mechanisms. Cardiac overexpression of IGF-IIRα and high-salt diet influenced cardiac dysfunction by increasing pathophysiological changes with up-regulation of hypertrophy markers, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). We found that, cardiac hypertrophy under high-salt conditions were amplified in the presence of IGF-IIRα overexpression. Importantly, high-salt induced angiotensin II type I receptor (AT1R) up regulation mediated IGF-IIR expressions via upstream mitogen activated protein kinase (MAPK)/silent mating type information regulation 2 homolog 1 (SIRT1)/heat shock factor 1 (HSF1) pathway. Further, G-coupled receptors (Gαq) activated calcineurin/nuclear factor of activated T-cells, cytoplasmic 3 (NFATc3)/protein kinase C (PKC) signaling was significantly up regulated under high-salt conditions. All these effects were observed to be dramatically over-regulated in IGF-IIRα transgenic rats fed with a high-salt diet. Altogether, from the findings, we demonstrate that IGF-IIRα plays a crucial role during high-salt conditions leading to synergistic cardiac hypertrophy.
Collapse
Affiliation(s)
- Ruey-Lin Chang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | - Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Tung-Ti Chang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Lai-Chin Hu
- Department of Internal Medicine, Division of Cardiology, Armed Forces Taichung General Hospital, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - V. VijayaPadma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Ye J, Zheng Q, Jia S, Qiao X, Cao Y, Xu C, Weng L, Zhao L, Chen Y, Liu J, Wang T, Cheng H, Zheng M. Programmed Cell Death 5 Provides Negative Feedback on Cardiac Hypertrophy Through the Stabilization of Sarco/Endoplasmic Reticulum Ca 2+-ATPase 2a Protein. Hypertension 2019; 72:889-901. [PMID: 30354711 DOI: 10.1161/hypertensionaha.118.11357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PDCD5 (programmed cell death 5) is ubiquitously expressed in tissues, including the heart; however, the mechanism underlying the cardiac function of PDCD5 has not been understood. We investigated the mechanisms of PDCD5 in the pathogenesis of cardiac hypertrophy. Cardiac-specific PDCD5 knockout mice developed severe cardiac hypertrophy and impaired cardiac function, whereas PDCD5 protein was significantly increased in transverse aortic constriction mouse hearts and phenylephrine-stimulated cardiomyocytes. Overexpression of PDCD5 inhibited phenylephrine-induced cardiomyocyte hypertrophy, and knockdown of PDCD5 induced cardiomyocyte hypertrophy and aggravated phenylephrine-induced hypertrophy. The expression of PDCD5 protein was regulated by NFATc2 (nuclear factor of activated T cells c2) during hypertrophy. SERCA2a (sarco/endoplasmic reticulum Ca2+-ATPase 2a) expression was decreased in PDCD5-deficient mouse hearts because of increased ubiquitination. PDCD5-deficient cardiomyocytes displayed decreased calcium uptake rate, slowed decay of Ca2+ transients, decreased calcium stores, and diastolic dysfunction. Moreover, reintroduction of PDCD5 in PDCD5-deficient mouse hearts reserved SERCA2a protein, suppressed NFATc2 protein, and rescued the hypertrophy and cardiac dysfunction. Our results revealed that PDCD5 is a novel target of NFATc2 in the hypertrophic heart and provides negative feedback to protect the heart against excessive hypertrophy via the stabilization of SERCA2a protein.
Collapse
Affiliation(s)
- Jingjing Ye
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences (J.Y., S.J., X.Q., Y.C., C.X., L.W., L.Z., M.Z.), Peking University Health Science Center, Beijing, China
| | - Qiaoxia Zheng
- Institute of Molecular Medicine, Peking University, Beijing, P.R. China (Q.Z., H.C.)
| | - Shi Jia
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences (J.Y., S.J., X.Q., Y.C., C.X., L.W., L.Z., M.Z.), Peking University Health Science Center, Beijing, China
| | - Xue Qiao
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences (J.Y., S.J., X.Q., Y.C., C.X., L.W., L.Z., M.Z.), Peking University Health Science Center, Beijing, China
| | - Yangpo Cao
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences (J.Y., S.J., X.Q., Y.C., C.X., L.W., L.Z., M.Z.), Peking University Health Science Center, Beijing, China
| | - Chunling Xu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences (J.Y., S.J., X.Q., Y.C., C.X., L.W., L.Z., M.Z.), Peking University Health Science Center, Beijing, China
| | - Lin Weng
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences (J.Y., S.J., X.Q., Y.C., C.X., L.W., L.Z., M.Z.), Peking University Health Science Center, Beijing, China
| | - Lifang Zhao
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences (J.Y., S.J., X.Q., Y.C., C.X., L.W., L.Z., M.Z.), Peking University Health Science Center, Beijing, China
| | - Yingyu Chen
- Key Laboratory of Medical Immunology, Ministry of Health (Y.C.), Peking University Health Science Center, Beijing, China
| | - Jian Liu
- Departments of Cardiology (J.L.), Peking University People's Hospital, Beijing, China
| | - Tianbing Wang
- Trauma and Orthopedics (T.W.), Peking University People's Hospital, Beijing, China
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing, P.R. China (Q.Z., H.C.)
| | - Ming Zheng
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences (J.Y., S.J., X.Q., Y.C., C.X., L.W., L.Z., M.Z.), Peking University Health Science Center, Beijing, China
| |
Collapse
|
14
|
Conditional deletion of Rcan1 predisposes to hypertension-mediated intramural hematoma and subsequent aneurysm and aortic rupture. Nat Commun 2018; 9:4795. [PMID: 30442942 PMCID: PMC6237779 DOI: 10.1038/s41467-018-07071-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
Aortic intramural hematoma (IMH) can evolve toward reabsorption, dissection or aneurysm. Hypertension is the most common predisposing factor in IMH and aneurysm patients, and the hypertensive mediator angiotensin-II induces both in mice. We have previously shown that constitutive deletion of Rcan1 isoforms prevents Angiotensin II-induced aneurysm in mice. Here we generate mice conditionally lacking each isoform or all isoforms in vascular smooth muscle cells, endothelial cells, or ubiquitously, to determine the contribution to aneurysm development of Rcan1 isoforms in vascular cells. Surprisingly, conditional Rcan1 deletion in either vascular cell-type induces a hypercontractile phenotype and aortic medial layer disorganization, predisposing to hypertension-mediated aortic rupture, IMH, and aneurysm. These processes are blocked by ROCK inhibition. We find that Rcan1 associates with GSK-3β, whose inhibition decreases myosin activation. Our results identify potential therapeutic targets for intervention in IMH and aneurysm and call for caution when interpreting phenotypes of constitutively and inducibly deficient mice.
Collapse
|
15
|
Fu Q, Wu Y. RCAN1 in the inverse association between Alzheimer's disease and cancer. Oncotarget 2017; 9:54-66. [PMID: 29416595 PMCID: PMC5787488 DOI: 10.18632/oncotarget.23094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/17/2017] [Indexed: 01/05/2023] Open
Abstract
The inverse association between Alzheimer’s disease (AD) and cancer has been reported in several population-based studies although both of them are age-related disorders. However, molecular mechanisms of the inverse association remain elusive. Increased expression of regulator of calcineurin 1 (RCAN1) promotes the pathogenesis of AD, while it suppresses cancer growth and progression in many types of cancer. Moreover, aberrant RCAN1 expression is detected in both AD and various types of cancer. It suggests that RCAN1 may play a key role in the inverse association between AD and cancer. In this article, we aim to review the role of RCAN1 in the inverse association and discuss underlying mechanisms, providing an insight into developing a novel approach to treat AD and cancer.
Collapse
Affiliation(s)
- Qiang Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yili Wu
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, Jining, Shandong, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining, Shandong, China
| |
Collapse
|
16
|
Jin H, Wang C, Jin G, Ruan H, Gu D, Wei L, Wang H, Wang N, Arunachalam E, Zhang Y, Deng X, Yang C, Xiong Y, Feng H, Yao M, Fang J, Gu J, Cong W, Qin W. Regulator of Calcineurin 1 Gene Isoform 4, Down-regulated in Hepatocellular Carcinoma, Prevents Proliferation, Migration, and Invasive Activity of Cancer Cells and Metastasis of Orthotopic Tumors by Inhibiting Nuclear Translocation of NFAT1. Gastroenterology 2017; 153:799-811.e33. [PMID: 28583823 DOI: 10.1053/j.gastro.2017.05.045] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 05/27/2017] [Accepted: 05/27/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Individuals with Down syndrome have a low risk for many solid tumors, prompting the search for tumor suppressor genes on human chromosome 21 (HSA21). We aimed to identify and explore potential mechanisms of tumor suppressors on HSA21 in hepatocellular carcinoma (HCC). METHODS We compared expression of HSA21 genes in 14 pairs of primary HCC and adjacent noncancer liver tissues using the Affymetrix HG-U133 Plus 2.0 array (Affymetrix, Santa Clara, CA). HCC tissues and adjacent normal liver tissues were collected from 108 patients at a hospital in China for real-time polymerase chain reaction and immunohistochemical analyses; expression levels of regulator of calcineurin 1 (RCAN1) isoform 4 (RCAN1.4) were associated with clinical features. We overexpressed RCAN1.4 from lentiviral vectors in MHCC97H and HCCLM3 cells and knocked expression down using small interfering RNAs in SMMC7721 and Huh7 cells. Cells were analyzed in proliferation, migration, and invasion assays. HCC cells that overexpressed RCAN1.4 or with RCAN1.4 knockdown were injected into livers or tail veins of nude mice; tumor growth and numbers of lung metastases were quantified. We performed bisulfite pyrosequencing and methylation-specific polymerase chain reaction analyses to analyze CpG island methylation. We measured phosphatase activity of calcineurin in HCC cells. RESULTS RCAN1.4 mRNA and protein levels were significantly decreased in primary HCC compared with adjacent noncancer liver tissues. Reduced levels of RCAN1.4 mRNA were significantly associated with advanced tumor stages, poor differentiation, larger tumor size, and vascular invasion. Kaplan-Meier survival analysis showed that patients with HCCs with lower levels of RCAN1.4 mRNA had shorter time of overall survival and time to recurrence than patients whose tumors had high levels of RCAN1.4 mRNA. In HCC cell lines, expression of RCAN1.4 significantly reduced proliferation, migration, and invasive activity. HCC cells that overexpressed RCAN1.4 formed smaller xenograft tumors, with fewer metastases and blood vessels, than control HCC cells. In HCC cells, RCAN1.4 inhibited expression of insulin-like growth factor 1 and vascular endothelial growth factor A by reducing calcineurin activity and blocking nuclear translocation of nuclear factor of activated T cells (NFAT1). HCC cells incubated with the calcineurin inhibitor cyclosporin A had decreased nuclear level of NFAT1. HCC cells had hypermethylation of a CpG island in the 5' regulatory region of RCAN1.4, which reduced its expression. CONCLUSIONS RCAN1.4 is down-regulated in HCC tissues, compared with non-tumor liver tissues. RCAN1.4 prevents cell proliferation, migration, and invasion in vitro; overexpressed RCAN1.4 in HCC cells prevents growth, angiogenesis, and metastases of xenograft tumors by inhibiting calcineurin activity and nuclear translocation of NFAT1.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangzhi Jin
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Haoyu Ruan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dishui Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathophysiology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong, China
| | - Lin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Einthavy Arunachalam
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; The School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surry, UK
| | - Yurong Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Deng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hugang Feng
- Department of Life Science, Imperial College, London, UK
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyuan Fang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Han KA, Yoo L, Sung JY, Chung SA, Um JW, Kim H, Seol W, Chung KC. Leucine-Rich Repeat Kinase 2 (LRRK2) Stimulates IL-1β-Mediated Inflammatory Signaling through Phosphorylation of RCAN1. Front Cell Neurosci 2017; 11:125. [PMID: 28553204 PMCID: PMC5425608 DOI: 10.3389/fncel.2017.00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a Ser/Thr kinase having mixed lineage kinase-like and GTPase domains, controlling neurite outgrowth and neuronal cell death. Evidence suggests that LRRK2 is involved in innate immune response signaling, but the underlying mechanism is yet unknown. A novel protein inhibitor of phosphatase 3B, RCAN1, is known to positively regulate inflammatory signaling through modulation of several intracellular targets of interleukins in immune cells. In the present study, we report that LRRK2 phosphorylates RCAN1 (RCAN1-1S) and is markedly up-regulated during interleukin-1β (IL-1β) treatment. During IL-1β treatment, LRRK2-mediated phosphorylation of RCAN1 promoted the formation of protein complexes, including that between Tollip and RCAN1. LRRK2 decreased binding between Tollip and IRAK1, which was accompanied by increased formation of the IRAK1-TRAF6 complex. TAK1 activity was significantly enhanced by LRRK2. Furthermore, LRRK2 enhanced transcriptional activity of NF-κB and cytokine IL-8 production. These findings suggest that LRRK2 might be important in positively modulating IL-1β-mediated signaling through selective phosphorylation of RCAN1.
Collapse
Affiliation(s)
- Kyung A Han
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei UniversitySeoul, South Korea
| | - Lang Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei UniversitySeoul, South Korea
| | - Jee Y Sung
- Center for Pediatric Oncology, National Cancer CenterGoyang-si, South Korea
| | - Sun A Chung
- Department of Food and Nutrition, College of Human Ecology, Yonsei UniversitySeoul, South Korea
| | - Ji W Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu, South Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei UniversitySeoul, South Korea
| | - Wongi Seol
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang UniversityGunpo-si, South Korea
| | - Kwang C Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei UniversitySeoul, South Korea
| |
Collapse
|
18
|
RCANs regulate the convergent roles of NFATc1 in bone homeostasis. Sci Rep 2016; 6:38526. [PMID: 27917924 PMCID: PMC5137032 DOI: 10.1038/srep38526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/11/2016] [Indexed: 01/04/2023] Open
Abstract
Activation of calcineurin-dependent nuclear factor of activated T cells c1 (NFATc1) is convergent for normal bone homeostasis. NFATc1 regulates both osteoclastogenesis and osteoblastogenesis. Here we investigated the roles of regulator of calcineurin (RCAN) genes in bone homeostasis. RCANs function as potent physiological inhibitors of calcineurin. Overexpression of RCANs in osteoclast precursor cells attenuated osteoclast differentiation, while their overexpression in osteoblasts enhanced osteoblast differentiation and function. Intriguingly, opposing effects of RCANs in both cell types were shown by blocking activation of the calcineurin-NFATc1 pathway. Moreover, the disruption of RCAN1 or RCAN2 in mice resulted in reduced bone mass, which is associated with strongly increased osteoclast function and mildly reduced osteoblast function. Taken together, RCANs play critical roles in bone homeostasis by regulating both osteoclastogenesis and osteoblastogenesis, and they serve as inhibitors for calcineurin-NFATc1 signaling both in vivo and in vitro.
Collapse
|
19
|
The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases. J Aging Res 2016; 2016:5081021. [PMID: 27597899 PMCID: PMC5002468 DOI: 10.1155/2016/5081021] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.
Collapse
|
20
|
Zhao Y, Zhang J, Shi X, Li J, Wang R, Song R, Wei Q, Cai H, Luo J. Quercetin targets the interaction of calcineurin with LxVP-type motifs in immunosuppression. Biochimie 2016; 127:50-8. [PMID: 27109380 DOI: 10.1016/j.biochi.2016.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/18/2016] [Indexed: 12/26/2022]
Abstract
Calcineurin (CN) is a unique calcium/calmodulin (CaM)-activated serine/threonine phosphatase. To perform its diverse biological functions, CN communicates with many substrates and other proteins. In the physiological activation of T cells, CN acts through transcriptional factors belonging to the NFAT family and other transcriptional effectors. The classic immunosuppressive drug cyclosporin A (CsA) can bind to cyclophilin (CyP) and compete with CN for the NFAT LxVP motif. CsA has debilitating side effects, including nephrotoxicity, hypertension and tremor. It is desirable to develop alternative immunosuppressive agents. To this end, we first tested the interactions between CN and the LxVP-type substrates, including endogenous regulators of calcineurin (RCAN1) and NFAT. Interestingly, we found that quercetin, the primary dietary flavonol, can inhibit the activity of CN and significantly disrupt the associations between CN and its LxVP-type substrates. We then validated the inhibitory effects of quercetin on the CN-NFAT interactions in cell-based assays. Further, quercetin also shows dose-dependent suppression of cytokine gene expression in mouse spleen cells. These data raise the possibility that the interactions of CN with its LxVP-type substrates are potential targets for immunosuppressive agents.
Collapse
Affiliation(s)
- Yane Zhao
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Jin Zhang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Xiaoyu Shi
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Jing Li
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Ruiwen Song
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Qun Wei
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jing Luo
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China.
| |
Collapse
|
21
|
Zhu X, Fang J, Gong J, Guo JH, Zhao GN, Ji YX, Liu HY, Wei X, Li H. Cardiac-Specific EPI64C Blunts Pressure Overload-Induced Cardiac Hypertrophy. Hypertension 2016; 67:866-77. [PMID: 27021007 DOI: 10.1161/hypertensionaha.115.07042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/08/2016] [Indexed: 12/31/2022]
Abstract
The calcium-responsive molecule, calcineurin, has been well characterized to play a causal role in pathological cardiac hypertrophy over the past decade. However, the intrinsic negative regulation of calcineurin signaling during the progression of cardiomyocyte hypertrophy remains enigmatic. Herein, we explored the role of EPI64C, a dual inhibitor of both Ras and calcineurin signaling during T-cell activation, in pressure overload-induced cardiac hypertrophy. We generated a cardiac-specific Epi64c conditional knockout mouse strain and showed that loss of Epi64c remarkably exacerbates pressure overload-induced cardiac hypertrophy. In contrast, EPI64C gain-of-function in cardiomyocyte-specific Epi64c transgenic mice exerts potent protective effects against cardiac hypertrophy. Mechanistically, the cardioprotective effects of EPI64C are largely attributed to the disrupted calcineurin signaling but are independent of its Ras suppressive capability. Molecular studies have indicated that the 406 to 446 C-terminal amino acids in EPI64C directly bind to the 287 to 337 amino acids in the catalytic domain of calcineurin, which is responsible for the EPI64C-mediated suppressive effects. We further extrapolated our studies to cynomolgus monkeys and showed that gene therapy based on lentivirus-mediated EPI64C overexpression in the monkey hearts blunted pressure overload-induced cardiac hypertrophy. Our study thus identified EPI64C as a novel negative regulator in cardiac hypertrophy by targeting calcineurin signaling and demonstrated the potential of gene therapy and drug development for treating cardiac hypertrophy.
Collapse
Affiliation(s)
- Xuehai Zhu
- From the Division of Cardiothoracic and Vascular Surgery (X.Z, J.F., X.W.), Heart-Lung Transplantation Center (X.Z., J.F., X.W.), Sino-Swiss Heart-Lung Transplantation Institute (X.Z., J.F., X.W.), Department of Medical Ultrasound (H.-Y.L.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.); and Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.)
| | - Jing Fang
- From the Division of Cardiothoracic and Vascular Surgery (X.Z, J.F., X.W.), Heart-Lung Transplantation Center (X.Z., J.F., X.W.), Sino-Swiss Heart-Lung Transplantation Institute (X.Z., J.F., X.W.), Department of Medical Ultrasound (H.-Y.L.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.); and Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.)
| | - Jun Gong
- From the Division of Cardiothoracic and Vascular Surgery (X.Z, J.F., X.W.), Heart-Lung Transplantation Center (X.Z., J.F., X.W.), Sino-Swiss Heart-Lung Transplantation Institute (X.Z., J.F., X.W.), Department of Medical Ultrasound (H.-Y.L.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.); and Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.)
| | - Jun-Hong Guo
- From the Division of Cardiothoracic and Vascular Surgery (X.Z, J.F., X.W.), Heart-Lung Transplantation Center (X.Z., J.F., X.W.), Sino-Swiss Heart-Lung Transplantation Institute (X.Z., J.F., X.W.), Department of Medical Ultrasound (H.-Y.L.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.); and Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.)
| | - Guang-Nian Zhao
- From the Division of Cardiothoracic and Vascular Surgery (X.Z, J.F., X.W.), Heart-Lung Transplantation Center (X.Z., J.F., X.W.), Sino-Swiss Heart-Lung Transplantation Institute (X.Z., J.F., X.W.), Department of Medical Ultrasound (H.-Y.L.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.); and Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.)
| | - Yan-Xiao Ji
- From the Division of Cardiothoracic and Vascular Surgery (X.Z, J.F., X.W.), Heart-Lung Transplantation Center (X.Z., J.F., X.W.), Sino-Swiss Heart-Lung Transplantation Institute (X.Z., J.F., X.W.), Department of Medical Ultrasound (H.-Y.L.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.); and Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.)
| | - Hong-Yun Liu
- From the Division of Cardiothoracic and Vascular Surgery (X.Z, J.F., X.W.), Heart-Lung Transplantation Center (X.Z., J.F., X.W.), Sino-Swiss Heart-Lung Transplantation Institute (X.Z., J.F., X.W.), Department of Medical Ultrasound (H.-Y.L.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.); and Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.)
| | - Xiang Wei
- From the Division of Cardiothoracic and Vascular Surgery (X.Z, J.F., X.W.), Heart-Lung Transplantation Center (X.Z., J.F., X.W.), Sino-Swiss Heart-Lung Transplantation Institute (X.Z., J.F., X.W.), Department of Medical Ultrasound (H.-Y.L.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.); and Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.).
| | - Hongliang Li
- From the Division of Cardiothoracic and Vascular Surgery (X.Z, J.F., X.W.), Heart-Lung Transplantation Center (X.Z., J.F., X.W.), Sino-Swiss Heart-Lung Transplantation Institute (X.Z., J.F., X.W.), Department of Medical Ultrasound (H.-Y.L.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.); and Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China (J.G., J.-H.G.,G.-N.Z., Y.-X.J., H.L.).
| |
Collapse
|
22
|
Weng YS, Wang HF, Pai PY, Jong GP, Lai CH, Chung LC, Hsieh DJY, HsuanDay C, Kuo WW, Huang CY. Tanshinone IIA Prevents Leu27IGF-II-Induced Cardiomyocyte Hypertrophy Mediated by Estrogen Receptor and Subsequent Akt Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 43:1567-91. [PMID: 26621443 DOI: 10.1142/s0192415x15500895] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
IGF-IIR plays important roles as a key regulator in myocardial pathological hypertrophy and apoptosis, which subsequently lead to heart failure. Salvia miltiorrhiza Bunge (Danshen) is a traditional Chinese medicinal herb used to treat cardiovascular diseases. Tanshinone IIA is an active compound in Danshen and is structurally similar to 17[Formula: see text]-estradiol (E[Formula: see text]. However, whether tanshinone IIA improves cardiomyocyte survival in pathological hypertrophy through estrogen receptor (ER) regulation remains unclear. This study investigates the role of ER signaling in mediating the protective effects of tanshinone IIA on IGF-IIR-induced myocardial hypertrophy. Leu27IGF-II (IGF-II analog) was shown in this study to specifically activate IGF-IIR expression and ICI 182,780 (ICI), an ER antagonist used to investigate tanshinone IIA estrogenic activity. We demonstrated that tanshinone IIA significantly enhanced Akt phosphorylation through ER activation to inhibit Leu27IGF-II-induced calcineurin expression and subsequent NFATc3 nuclear translocation to suppress myocardial hypertrophy. Tanshinone IIA reduced the cell size and suppressed ANP and BNP, inhibiting antihypertrophic effects induced by Leu27IGF-II. The cardioprotective properties of tanshinone IIA that inhibit Leu27IGF-II-induced cell hypertrophy and promote cell survival were reversed by ICI. Furthermore, ICI significantly reduced phospho-Akt, Ly294002 (PI3K inhibitor), and PI3K siRNA significantly reduced the tanshinone IIA-induced protective effect. The above results suggest that tanshinone IIA inhibited cardiomyocyte hypertrophy, which was mediated through ER, by activating the PI3K/Akt pathway and inhibiting Leu27IGF-II-induced calcineurin and NFATC3. Tanshinone IIA exerted strong estrogenic activity and therefore represented a novel selective ER modulator that inhibits IGF-IIR signaling to block cardiac hypertrophy.
Collapse
Affiliation(s)
- Yueh-Shan Weng
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hsueh-Fang Wang
- Institute of Biomedical Nutrition, Hungkuang University, Taichung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Gwo-Ping Jong
- Division of Cardiology, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Chao-Hung Lai
- Graduate Institute of Aging Medicine, China Medical University, Taichung, Taiwan
- Division of Cardiology, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan County, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Cecilia HsuanDay
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
23
|
Li W, Bell HW, Ahnn J, Lee SK. Regulator of Calcineurin (RCAN-1) Regulates Thermotaxis Behavior in Caenorhabditis elegans. J Mol Biol 2015; 427:3457-3468. [PMID: 26232604 DOI: 10.1016/j.jmb.2015.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/03/2015] [Accepted: 07/09/2015] [Indexed: 11/15/2022]
Abstract
Regulator of calcineurin (RCAN) is a calcineurin-interacting protein that inhibits calcineurin phosphatase when overexpressed, often upregulated under neuropathological conditions with impaired learning and memory processes, such as Down syndrome or Alzheimer's disease. Thermotactic behavior in the nematode Caenorhabditis elegans is a form of memory in which calcineurin signaling plays a pivotal role in the thermosensation of AFD neurons. In this study, we found that rcan-1 deletion mutants exhibited cryophilic behavior dependent on tax-6, which was rescued by expressing rcan-1 in AFD neurons. Interaction between RCAN-1 and TAX-6 requires the conserved PxIxIT motif of RCAN-1, without which thermotactic behavior could not be fully rescued. In addition, the loss of crh-1/CREB suppressed the thermotaxis phenotypes of rcan-1 and tax-6 mutants, indicating that crh-1 is crucial in thermotaxis memory in these mutants. Taken together, our results suggest that rcan-1 is an inhibitory regulator of tax-6 and that it acts in the formation of thermosensory behavioral memory in C. elegans.
Collapse
Affiliation(s)
- Weixun Li
- Department of Life Sciences, School of Natural Science, Hanyang University, Seoul 133-791, Republic of Korea; BK21 PLUS Life Science for Bio-Defense Research Team, Hanyang University, Seoul 133-791, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - Harold W Bell
- National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA; Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Joohong Ahnn
- Department of Life Sciences, School of Natural Science, Hanyang University, Seoul 133-791, Republic of Korea; BK21 PLUS Life Science for Bio-Defense Research Team, Hanyang University, Seoul 133-791, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 133-791, Republic of Korea.
| | - Sun-Kyung Lee
- Department of Life Sciences, School of Natural Science, Hanyang University, Seoul 133-791, Republic of Korea; BK21 PLUS Life Science for Bio-Defense Research Team, Hanyang University, Seoul 133-791, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 133-791, Republic of Korea.
| |
Collapse
|
24
|
Kang JH, Lee HS, Kang YW, Cho KH. Systems biological approaches to the cardiac signaling network. Brief Bioinform 2015; 17:419-28. [DOI: 10.1093/bib/bbv039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 01/08/2023] Open
|
25
|
Duan H, Li Y, Yan L, Yang H, Wu J, Qian P, Li B, Wang S. Rcan1-1L overexpression induces mitochondrial autophagy and improves cell survival in angiotensin II-exposed cardiomyocytes. Exp Cell Res 2015; 335:99-106. [PMID: 25978972 DOI: 10.1016/j.yexcr.2015.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/15/2015] [Accepted: 05/04/2015] [Indexed: 01/09/2023]
Abstract
Mitochondrial autophagy is an important adaptive stress response and can be modulated by various key molecules. A previous study found that the regulator of calcineurin 1-1L (Rcan1-1L) may regulate mitochondrial autophagy and cause mitochondria degradation in neurocytes. However, the effect of Rcan1-1L on cardiomyocytes has not been determined. In the present study, we aimed to investigate the role of Rcan1-1L in angiotensin II (Ang II)-exposed human cardiomyocytes. Above all, Human adult cardiac myocytes (HACMs) were exposed to 200nmol/L Ang II for 4 days. Enhanced H2O2 production, cytochrome C release and mitochondrial permeability were observed in these cells, which were blocked by valsartan. Consistently, Ang II exposure significantly reduced cardiomyocyte viability. However, transfection of Rcan1-1L vector promoted cell viability and ameliorated the apoptosis caused by Ang II. Rcan1-1L clearly promoted mitochondrial autophagy in HACMs, with elevated autophagy protein (ATG) 5 and light chain 3 (LC3) expression. Transient mitochondrial biogenesis and reduced cytochrome C release was also induced by Rcan1-1L. Additionally, Rcan1-1L significantly inhibited calcineurin/nuclear factor of activated T cells (NFAT) signaling. We thus conclude that Rcan1-1L may play a protective role in Ang II-treated cardiomyocytes through the induction of mitochondrial autophagy, and may be an alternative method of cardiac protection.
Collapse
Affiliation(s)
- Hongyan Duan
- Department of cardiology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China
| | - Yongqiang Li
- Department of cardiology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China
| | - Lijie Yan
- Department of cardiology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China
| | - Haitao Yang
- Department of cardiology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China
| | - Jintao Wu
- Department of cardiology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China
| | - Peng Qian
- Department of cardiology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China
| | - Bing Li
- Department of cardiology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China
| | - Shanling Wang
- Department of cardiology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China.
| |
Collapse
|
26
|
Abstract
Periventricular heterotopia (PH) is a cortical malformation characterized by aggregation of neurons lining the lateral ventricles due to abnormal neuronal migration. The molecular mechanism underlying the pathogenesis of PH is unclear. Here we show that Regulators of calcineurin 1 (Rcan1), a Down syndrome-related gene, plays an important role in radial migration of rat cortical neurons. Downregulation of Rcan1 by expressing shRNA impaired neural progenitor proliferation and led to defects in radial migration and PH. Two isoforms of Rcan1 (Rcan1-1 and Rcan1-4) are expressed in the rat brain. Migration defects due to downregulation of Rcan1 could be prevented by shRNA-resistant expression of Rcan1-1 but not Rcan1-4. Furthermore, we found that Rcan1 knockdown significantly decreased the expression level of Flna, an F-actin cross-linking protein essential for cytoskeleton rearrangement and cell migration, mutation of which causes the most common form of bilateral PH in humans. Finally, overexpression of FLNA in Rcan1 knockdown neurons prevented migration abnormalities. Together, these findings demonstrate that Rcan1 acts upstream from Flna in regulating radial migration and suggest that impairment of Rcan1-Flna pathway may underlie PH pathogenesis.
Collapse
|
27
|
Juvvadi PR, Ma Y, Richards AD, Soderblom EJ, Moseley MA, Lamoth F, Steinbach WJ. Identification and mutational analyses of phosphorylation sites of the calcineurin-binding protein CbpA and the identification of domains required for calcineurin binding in Aspergillus fumigatus. Front Microbiol 2015; 6:175. [PMID: 25821446 PMCID: PMC4358225 DOI: 10.3389/fmicb.2015.00175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/16/2015] [Indexed: 11/26/2022] Open
Abstract
Calcineurin is a key protein phosphatase required for hyphal growth and virulence in Aspergillus fumigatus, making it an attractive antifungal target. However, currently available calcineurin inhibitors, FK506 and cyclosporine A, are immunosuppressive, limiting usage in the treatment of patients with invasive aspergillosis. Therefore, the identification of endogenous inhibitors of calcineurin belonging to the calcipressin family is an important parallel strategy. We previously identified the gene cbpA as the A. fumigatus calcipressin member and showed its involvement in hyphal growth and calcium homeostasis. However, the mechanism of its activation/inhibition through phosphorylation and its interaction with calcineurin remains unknown. Here we show that A. fumigatus CbpA is phosphorylated at three distinct domains, including the conserved SP repeat motif (phosphorylated domain-I; PD-I), a filamentous fungal-specific domain (PD-II), and the C-terminal CIC motif (Calcipressin Inhibitor of Calcineurin; PD-III). While mutation of three phosphorylated residues (Ser208, Ser217, Ser223) in the PD-II did not affect CbpA function in vivo, mutation of the two phosphorylated serines (Ser156, Ser160) in the SP repeat motif caused reduced hyphal growth and sensitivity to oxidative stress. Mutational analysis in the key domains in calcineurin A (CnaA) and proteomic interaction studies confirmed the requirement of PxIxIT motif-binding residues (352-NIR-354) and the calcineurin B (CnaB)-binding helix residue (V371) for the binding of CbpA to CnaA. Additionally, while the calmodulin-binding residues (442-RVF-444) did not affect CbpA binding to CnaA, three mutations (T359P, H361L, and L365S) clustered between the CnaA catalytic and the CnaB-binding helix were also required for CbpA binding. This is the first study to analyze the phosphorylation status of calcipressin in filamentous fungi and identify the domains required for binding to calcineurin.
Collapse
Affiliation(s)
- Praveen R Juvvadi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center Durham, NC, USA
| | - Yan Ma
- Department of Dermatology and Venereology, The Second Hospital of Shanxi Medical University Taiyuan, Shanxi, China
| | - Amber D Richards
- Department of Dermatology and Venereology, The Second Hospital of Shanxi Medical University Taiyuan, Shanxi, China
| | - Erik J Soderblom
- Department of Dermatology and Venereology, The Second Hospital of Shanxi Medical University Taiyuan, Shanxi, China
| | - M Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University Durham, NC, USA
| | - Frédéric Lamoth
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center Durham, NC, USA ; Infectious Diseases Service, Department of Medicine, Lausanne University Hospital Lausanne, Switzerland ; Institute of Microbiology, Lausanne University Hospital Lausanne, Switzerland
| | - William J Steinbach
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center Durham, NC, USA ; Department of Molecular Genetics and Microbiology, Duke University Medical Center Durham, NC, USA
| |
Collapse
|
28
|
Kim SS, Lee EH, Lee K, Jo SH, Seo SR. PKA regulates calcineurin function through the phosphorylation of RCAN1: identification of a novel phosphorylation site. Biochem Biophys Res Commun 2015; 459:604-9. [PMID: 25753203 DOI: 10.1016/j.bbrc.2015.02.155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/20/2015] [Indexed: 11/20/2022]
Abstract
Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Ala (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression.
Collapse
Affiliation(s)
- Seon Sook Kim
- Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Eun Hye Lee
- Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Kooyeon Lee
- Department of Bio-Health Technology, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Su-Hyun Jo
- Department of Physiology, BK21 Plus Graduate Program, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Su Ryeon Seo
- Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
29
|
Ma Y, Jiang G, Wang Q, Sun Y, Zhao Y, Tong L, Luo J. Enzymatic and thermodynamic analysis of calcineurin inhibition by RCAN1. Int J Biol Macromol 2014; 72:254-60. [PMID: 25193101 DOI: 10.1016/j.ijbiomac.2014.08.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 01/10/2023]
Abstract
Calcineurin (CN) is the target of the immunophilin-immunosuppressant complex, cyclophilin/cyclosporin A (CyP/CsA). RCAN1 has recently been shown to be an endogenous regulator of CN activity. We determined the enzymatic and thermodynamic aspects of CN inhibition by RCAN1. The IC50 values of isoforms RCAN1-1L and RCAN1-4 for CN were 2.7 μM and 2.6 μM, respectively. Two deletions in the CN catalytic subunit, one a deletion of Val314 in the Loop7 domain (ΔV314) and the other in the autoinhibitory domain (CNAabc), increased the sensitivity of CN to inhibition by RCAN1-1L. The IC50s of RCAN1-1L and RCAN1-4 for CN in homogenates of mouse brain were 141 nM and 100 nM, respectively. Using isothermal titration calorimetry (ITC), we found that the RCAN1-1L/CN or CyP/CsA/CN interactions were exothermic with a dissociation constant of 0.46 μM or 0.17 μM, respectively. Our ITC results show that the interactions between CN and its two inhibitors were both characterized by a favorable binding enthalpy change. We also confirmed that overexpression of RCAN1-1L could inhibit the transcriptional activation of an NFAT-dependent promoter in response to PMA and ionomycin by inhibiting CN activity in HEK293T cells. Our data should contribute to our understanding of the regulation of CN activity by endogenous inhibitors.
Collapse
Affiliation(s)
- Yipeng Ma
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing 100875, China
| | - Guohua Jiang
- Analytical and Testing Center, Beijing Normal University, 100875 Beijing, China
| | - Qianru Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing 100875, China
| | - Yue Sun
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing 100875, China
| | - Yane Zhao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing 100875, China
| | - Li Tong
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing 100875, China
| | - Jing Luo
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing 100875, China.
| |
Collapse
|
30
|
Wu Y, Ly PTT, Song W. Aberrant expression of RCAN1 in Alzheimer's pathogenesis: a new molecular mechanism and a novel drug target. Mol Neurobiol 2014; 50:1085-97. [PMID: 24752590 DOI: 10.1007/s12035-014-8704-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/31/2014] [Indexed: 01/08/2023]
Abstract
AD, a devastating neurodegenerative disorder, is the most common cause of dementia in the elderly. Patients with AD are characterized by three hallmarks of neuropathology including neuritic plaque deposition, neurofibrillary tangle formation, and neuronal loss. Growing evidences indicate that dysregulation of regulator of calcineurin 1 (RCAN1) plays an important role in the pathogenesis of AD. Aberrant RCAN1 expression facilitates neuronal apoptosis and Tau hyperphosphorylation, leading to neuronal loss and neurofibrillary tangle formation. This review aims to describe the recent advances of the regulation of RCAN1 expression and its physiological functions. Moreover, the AD risk factors-induced RCAN1 dysregulation and its role in promoting neuronal loss, synaptic impairments and neurofibrillary tangle formation are summarized. Furthermore, we provide an outlook into the effects of RCAN1 dysregulation on APP processing, Aβ generation and neuritic plaque formation, and the possible underlying mechanisms, as well as the potential of targeting RCAN1 as a new therapeutic approach.
Collapse
Affiliation(s)
- Yili Wu
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3
| | | | | |
Collapse
|
31
|
Sun X, Wu Y, Herculano B, Song W. RCAN1 overexpression exacerbates calcium overloading-induced neuronal apoptosis. PLoS One 2014; 9:e95471. [PMID: 24751678 PMCID: PMC3994074 DOI: 10.1371/journal.pone.0095471] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/26/2014] [Indexed: 01/23/2023] Open
Abstract
Down Syndrome (DS) patients develop characteristic Alzheimer's Disease (AD) neuropathology after their middle age. Prominent neuronal loss has been observed in the cortical regions of AD brains. However, the underlying mechanism leading to this neuronal loss in both DS and AD remains to be elucidated. Calcium overloading and oxidative stress have been implicated in AD pathogenesis. Two major isoforms of regulator of calcineurin 1 (RCAN1), RCAN1.1 and RCAN1.4, are detected in human brains. In this report we defined the transcriptional regulation of RCAN1.1 and RCAN1.4 by two alternative promoters. Calcium overloading upregulated RCAN1.4 expression by activating RCAN1.4 promoter through calcineurin-NFAT signaling pathway, thus forming a negative feedback loop in isoform 4 regulation. Furthermore, RCAN1.4 overexpression exacerbated calcium overloading-induced neuronal apoptosis, which was mediated by caspase-3 apoptotic pathway. Our results suggest that downregulating RCAN1.4 expression in neurons could be beneficial to AD patients.
Collapse
Affiliation(s)
- Xiulian Sun
- Qilu Hospital of Shandong University, Jinan, China
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
| | - Yili Wu
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
| | - Bruno Herculano
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
| | - Weihong Song
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
32
|
Minami T. Calcineurin-NFAT activation and DSCR-1 auto-inhibitory loop: how is homoeostasis regulated? J Biochem 2014; 155:217-26. [PMID: 24505143 DOI: 10.1093/jb/mvu006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calcineurin-nuclear factor of activated T cells (NFAT) signalling plays a critical role not only in the immune and nervous systems, but also in cardiovascular development and pathological endothelial cell activation during angiogenesis or inflammation. Studies in NFAT-null mice demonstrated that there is high redundancy between functions of the different NFAT family members. Deletion of only one NFAT causes mild phenotypes, but compound deletions of multiple NFAT family members leads to severe abnormalities in multiple organ systems. Genome-wide transcription analysis revealed that many NFAT target genes are related to cell growth and inflammation, whereas the gene most strongly induced by NFAT in endothelial cells is an auto-inhibitory molecule, Down syndrome critical region (DSCR)-1. The NFAT-DSCR-1 signalling axis may vary depending on the cell-type or signal dosage level under the microenvironment. In the endothelium, stable expression of the DSCR-1 short isoform attenuates septic inflammatory shock, tumour growth and tumour metastasis to lung. Moreover, dysfunction of DSCR-1 and the NFAT priming kinase, DYRK1A, prevents NFAT nuclear occupancy. This change in NFAT nuclear localization is responsible for many of the features of Down syndrome. Thus, fine-tuning of the NFAT-DSCR-1 negative feedback loop may enable therapeutic manipulation in vasculopathic diseases.
Collapse
Affiliation(s)
- Takashi Minami
- Div. of Vascular Biology, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| |
Collapse
|
33
|
Regulator of calcineurin 1 modulates expression of innate anxiety and anxiogenic responses to selective serotonin reuptake inhibitor treatment. J Neurosci 2013; 33:16930-44. [PMID: 24155299 DOI: 10.1523/jneurosci.3513-12.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulator of calcineurin 1 (RCAN1) controls the activity of calcium/calmodulin-dependent phosphatase calcineurin (CaN), which has been implicated in human anxiety disorders. Previously, we reported that RCAN1 functioned as an inhibitor of CaN activity in the brain. However, we now find enhanced phosphorylation of a CaN substrate, cAMP response element-binding protein (CREB), in the brains of Rcan1 knock-out (KO) mice. Consistent with enhanced CREB activation, we also observe enhanced expression of a CREB transcriptional target, brain-derived neurotrophic factor (BDNF) in Rcan1 KO mice. We also discovered that RCAN1 deletion or blockade of RCAN1-CaN interaction reduced CaN and protein phosphatase-1 localization to nuclear-enriched protein fractions and promoted CREB activation. Because of the potential links between CREB, BDNF, and anxiety, we examined the role of RCAN1 in the expression of innate anxiety. Rcan1 KO mice displayed reduced anxiety in several tests of unconditioned anxiety. Acute pharmacological inhibition of CaN rescued these deficits while transgenic overexpression of human RCAN1 increased anxiety. Finally, we found that Rcan1 KO mice lacked the early anxiogenic response to the selective serotonin reuptake inhibitor (SSRI) fluoxetine and had improved latency for its therapeutic anxiolytic effects. Together, our study suggests that RCAN1 plays an important role in the expression of anxiety-related and SSRI-related behaviors through CaN-dependent signaling pathways. These results identify RCAN1 as a mediator of innate emotional states and possible therapeutic target for anxiety.
Collapse
|
34
|
Wu Z, Li Y, MacNeil AJ, Junkins RD, Berman JN, Lin TJ. Calcineurin–Rcan1 Interaction Contributes to Stem Cell Factor–Mediated Mast Cell Activation. THE JOURNAL OF IMMUNOLOGY 2013; 191:5885-94. [DOI: 10.4049/jimmunol.1301271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Pedram A, Razandi M, Korach KS, Narayanan R, Dalton JT, Levin ER. ERβ selective agonist inhibits angiotensin-induced cardiovascular pathology in female mice. Endocrinology 2013; 154:4352-64. [PMID: 23970786 PMCID: PMC5398592 DOI: 10.1210/en.2013-1358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiac hypertrophy in humans can progress to cardiac failure if the underlying impetus is poorly controlled. An important direct stimulator of hypertrophy and its progression is the angiotensin II (AngII) peptide. AngII also causes hypertension that indirectly contributes to cardiac hypertrophy. Others and we have shown that estrogens acting through the estrogen receptor (ER)-β can inhibit AngII-induced or other forms of cardiac hypertrophy in mice. However, the proliferative effects of estrogen in breast and uterus that promote the development of malignancy preclude using the steroid to prevent cardiac disease progression. We therefore tested whether an ERβ selective agonist, β-LGND2, can prevent hypertension and cardiac pathology in female mice. AngII infusion over 3 weeks significantly stimulated systolic and diastolic hypertension, cardiac hypertrophy, and cardiac fibrosis, all significantly prevented by β-LGND2 in wild-type but not in ERβ genetically deleted mice. AngII stimulated the Akt kinase to phosphorylate and inhibit the glycogen synthase kinase-3β kinase, leading to GATA4 transcription factor activation and hypertrophic mRNA expression. As a novel mechanism, all these actions were opposed by estradiol and β-LGND2. Our findings provide additional understanding of the antihypertrophic effects of ERβ and serve as an impetus to test specific receptor agonists in humans to prevent the worsening of cardiovascular disease.
Collapse
Affiliation(s)
- Ali Pedram
- MD, Medical Service (111-I), Long Beach Veterans Affairs Medical Center, 5901 East Seventh Street, Long Beach, California 90822.
| | | | | | | | | | | |
Collapse
|
36
|
Martínez-Høyer S, Aranguren-Ibáñez Á, García-García J, Serrano-Candelas E, Vilardell J, Nunes V, Aguado F, Oliva B, Itarte E, Pérez-Riba M. Protein kinase CK2-dependent phosphorylation of the human Regulators of Calcineurin reveals a novel mechanism regulating the calcineurin–NFATc signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2311-21. [DOI: 10.1016/j.bbamcr.2013.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 11/28/2022]
|
37
|
Martin KR, Layton D, Seach N, Corlett A, Barallobre MJ, Arbonés ML, Boyd RL, Scott B, Pritchard MA. Upregulation of RCAN1 causes Down syndrome-like immune dysfunction. J Med Genet 2013; 50:444-54. [PMID: 23644448 DOI: 10.1136/jmedgenet-2013-101522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND People with Down syndrome (DS) are more susceptible to infections and autoimmune disease, but the molecular genetic basis for these immune defects remains undetermined. In this study, we tested whether increased expression of the chromosome 21 gene RCAN1 contributes to immune dysregulation. METHODS We investigated the immune phenotype of a mouse model that overexpresses RCAN1. RCAN1 transgenic (TG) mice exhibit T cell abnormalities that bear a striking similarity to the abnormalities described in individuals with DS. RESULTS RCAN1-TG mice display T cell developmental defects in the thymus and peripheral immune tissues. Thymic cellularity is reduced by substantial losses of mature CD4 and CD8 thymocytes and medullary epithelium. In peripheral immune organs T lymphocytes are reduced in number and exhibit reduced proliferative capacity and aberrant cytokine production. These T cell defects are stem cell intrinsic in that transfer of wild type bone marrow into RCAN1-TG recipients restored medullary thymic epithelium and T cell numbers in the thymus, spleen and lymph nodes. However, bone marrow transplantation failed to improve T cell function, suggesting an additional role for RCAN1 in the non-haemopoietic compartment. CONCLUSIONS RCAN1 therefore facilitates T cell development and function, and when overexpressed, may contribute to immune dysfunction in DS.
Collapse
Affiliation(s)
- Katherine R Martin
- Department Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Grigoriu S, Bond R, Cossio P, Chen JA, Ly N, Hummer G, Page R, Cyert MS, Peti W. The molecular mechanism of substrate engagement and immunosuppressant inhibition of calcineurin. PLoS Biol 2013; 11:e1001492. [PMID: 23468591 PMCID: PMC3582496 DOI: 10.1371/journal.pbio.1001492] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/10/2013] [Indexed: 11/18/2022] Open
Abstract
Ser/thr phosphatases dephosphorylate their targets with high specificity, yet the structural and sequence determinants of phosphosite recognition are poorly understood. Calcineurin (CN) is a conserved Ca(2+)/calmodulin-dependent ser/thr phosphatase and the target of immunosuppressants, FK506 and cyclosporin A (CSA). To investigate CN substrate recognition we used X-ray crystallography, biochemistry, modeling, and in vivo experiments to study A238L, a viral protein inhibitor of CN. We show that A238L competitively inhibits CN by occupying a critical substrate recognition site, while leaving the catalytic center fully accessible. Critically, the 1.7 Å structure of the A238L-CN complex reveals how CN recognizes residues in A238L that are analogous to a substrate motif, "LxVP." The structure enabled modeling of a peptide substrate bound to CN, which predicts substrate interactions beyond the catalytic center. Finally, this study establishes that "LxVP" sequences and immunosuppressants bind to the identical site on CN. Thus, FK506, CSA, and A238L all prevent "LxVP"-mediated substrate recognition by CN, highlighting the importance of this interaction for substrate dephosphorylation. Collectively, this work presents the first integrated structural model for substrate selection and dephosphorylation by CN and lays the groundwork for structure-based development of new CN inhibitors.
Collapse
Affiliation(s)
- Simina Grigoriu
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Rachel Bond
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Pilar Cossio
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jennifer A. Chen
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Nina Ly
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Gerhard Hummer
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rebecca Page
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Martha S. Cyert
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
- Department of Chemistry, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
39
|
p38α MAP kinase phosphorylates RCAN1 and regulates its interaction with calcineurin. SCIENCE CHINA-LIFE SCIENCES 2012; 55:559-66. [PMID: 22864830 DOI: 10.1007/s11427-012-4340-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/02/2012] [Indexed: 10/28/2022]
Abstract
RCAN1, also known as DSCR1, is an endogenous regulator of calcineurin, a serine/threonine protein phosphatase that plays a critical role in many physiological processes. In this report, we demonstrate that p38α MAP kinase can phosphorylate RCAN1 at multiple sites in vitro and show that phospho-RCAN1 is a good protein substrate for calcineurin. In addition, we found that unphosphorylated RCAN1 noncompetitively inhibits calcineurin protein phosphatase activity and that the phosphorylation of RCAN1 by p38α MAP kinase decreases the binding affinity of RCAN1 for calcineurin. These findings reveal the molecular mechanism by which p38α MAP kinase regulates the function of RCAN1/calcineurin through phosphorylation.
Collapse
|
40
|
Shaggy/glycogen synthase kinase 3β and phosphorylation of Sarah/regulator of calcineurin are essential for completion of Drosophila female meiosis. Proc Natl Acad Sci U S A 2012; 109:6382-9. [PMID: 22421435 DOI: 10.1073/pnas.1120367109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Ca(2+)/Calmodulin-dependent phosphatase calcineurin is essential for exit from meiotic arrest at metaphases I and II in Drosophila and Xenopus oocytes. We previously found that Sarah, the Drosophila homolog of regulator of calcineurin, acts as a positive regulator of calcineurin and is required to complete anaphase I of female meiosis. Here, we undertook biochemical approaches, including MS and posttranslational modification analyses, to better understand the mechanism by which Sarah regulates calcineurin. A search for phosphorylated residues revealed that Sarah is highly phosphorylated at Ser100, Thr102, and Ser219 in both ovaries and activated eggs and that Ser215 is phosphorylated only in activated eggs. Functional analyses using mutant forms of Sarah showed that phosphorylation at Ser215, a consensus phosphorylation site for glycogen synthase kinase 3β (GSK-3β) and its priming kinase site Ser219, are essential for Sarah function. Furthermore, germ-line clones homozygous for a null allele of shaggy (Drosophila GSK-3β) both fail to complete meiosis and lack phosphorylation of Sarah at Ser215, suggesting that the phosphorylation of Sarah by Shaggy/GSK-3β is required to complete meiosis. Our findings suggest a mechanism in which Shaggy/GSK-3β activates calcineurin through Sarah phosphorylation on egg activation in Drosophila.
Collapse
|
41
|
Kim SS, Oh Y, Chung KC, Seo SR. Protein kinase A phosphorylates Down syndrome critical region 1 (RCAN1). Biochem Biophys Res Commun 2012; 418:657-61. [PMID: 22293192 DOI: 10.1016/j.bbrc.2012.01.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/14/2012] [Indexed: 12/11/2022]
Abstract
The Down syndrome critical region 1 (DSCR1) gene encodes a regulator of the calcineurin 1 (RCAN1) protein, and the elevated levels of RCAN1 are associated with Alzheimer's disease (AD) and Down syndrome (DS). In this report, we found that protein kinase A (PKA) was able to phosphorylate RCAN1 in vitro and in vivo. In addition, we found that the phosphorylation of RCAN1 by PKA caused an increase of RCAN1 expression by increasing of the half-life of the protein. Consistently, the pharmacological inhibition of intracellular PKA using H-89 and the knockdown of the endogenous PKA catalytic subunit with siRNA decreased the expression of RCAN1. Furthermore, the phosphorylation of RCAN1 by PKA enhanced the inhibitory function of RCAN1 on calcineurin-mediated gene transcription. Our data provide the first evidence that PKA acts as an important regulatory component in the control of RCAN1 function through phosphorylation.
Collapse
Affiliation(s)
- Seon Sook Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | | | | | | |
Collapse
|
42
|
Jung MS, Park JH, Ryu YS, Choi SH, Yoon SH, Kwen MY, Oh JY, Song WJ, Chung SH. Regulation of RCAN1 protein activity by Dyrk1A protein-mediated phosphorylation. J Biol Chem 2011; 286:40401-12. [PMID: 21965663 PMCID: PMC3220559 DOI: 10.1074/jbc.m111.253971] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 09/21/2011] [Indexed: 01/22/2023] Open
Abstract
Two genes on chromosome 21, namely dual specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) and regulator of calcineurin 1 (RCAN1), have been implicated in some of the phenotypic characteristics of Down syndrome, including the early onset of Alzheimer disease. Although a link between Dyrk1A and RCAN1 and the nuclear factor of activated T cells (NFAT) pathway has been reported, it remains unclear whether Dyrk1A directly interacts with RCAN1. In the present study, Dyrk1A is shown to directly interact with and phosphorylate RCAN1 at Ser(112) and Thr(192) residues. Dyrk1A-mediated phosphorylation of RCAN1 at Ser(112) primes the protein for the GSK3β-mediated phosphorylation of Ser(108). Phosphorylation of RCAN1 at Thr(192) by Dyrk1A enhances the ability of RCAN1 to inhibit the phosphatase activity of calcineurin (Caln), leading to reduced NFAT transcriptional activity and enhanced Tau phosphorylation. These effects are mediated by the enhanced binding of RCAN1 to Caln and its extended half-life caused by Dyrk1A-mediated phosphorylation. Furthermore, an increased expression of phospho-Thr(192)-RCAN1 was observed in the brains of transgenic mice overexpressing the Dyrk1A protein. These results suggest a direct link between Dyrk1A and RCAN1 in the Caln-NFAT signaling and Tau hyperphosphorylation pathways, supporting the notion that the synergistic interaction between the chromosome 21 genes RCAN1 and Dyrk1A is associated with a variety of pathological features associated with DS.
Collapse
Affiliation(s)
- Min-Su Jung
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Jung-Hwa Park
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Young Shin Ryu
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Sun-Hee Choi
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Song-Hee Yoon
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Mi-Yang Kwen
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Ji Youn Oh
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Woo-Joo Song
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Sul-Hee Chung
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| |
Collapse
|
43
|
Abstract
Sleep is a fundamental biological process for all animals. However, the molecular mechanisms that regulate sleep are still poorly understood. Here we report that sleep-like behavior in Drosophila is severely impaired by mutations in sarah (sra), a member of the Regulator of Calcineurin (RCAN) family of genes. Sleep reduction in sra mutants is highly correlated with decreases in Sra protein levels. Pan-neural expression of sra rescues this behavioral phenotype, indicating that neuronal sra function is required for normal sleep. Since Sra regulates calcineurin (CN), we generated and examined the behavior of knock-out mutants for all Drosophila CN genes: CanA-14F, Pp2B-14D, and CanA1 (catalytic subunits), and CanB and CanB2 (regulatory subunits). While all mutants show at least minor changes in sleep, CanA-14F(KO) and CanB(KO) have striking reductions, suggesting that these are the major CN subunits regulating sleep. In addition, neuronal expression of constitutively active forms of CN catalytic subunits also significantly reduces sleep, demonstrating that both increases and decreases in CN activity inhibit sleep. sra sleep defects are suppressed by CN mutations, indicating that sra and CN affect sleep through a common mechanism. Our results demonstrate that CN and its regulation by Sra are required for normal sleep in Drosophila and identify a critical role of Ca(2+)/calmodulin-dependent signaling in sleep regulation.
Collapse
|
44
|
Smillie KJ, Cousin MA. The Role of GSK3 in Presynaptic Function. Int J Alzheimers Dis 2011; 2011:263673. [PMID: 21547219 PMCID: PMC3087464 DOI: 10.4061/2011/263673] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/20/2011] [Indexed: 11/20/2022] Open
Abstract
The past ten years of research have identified a number of key roles for glycogen synthase kinase 3 (GSK3) at the synapse. In terms of presynaptic physiology, critical roles for GSK3 have been revealed in the growth and maturation of the nerve terminal and more recently a key role in the control of activity-dependent bulk endocytosis of synaptic vesicles. This paper will summarise the major roles assigned to GSK3 in both immature and mature nerve terminals, the substrates GSK3 phosphorylates to exert its action, and how GSK3 activity is regulated by different presynaptic signalling cascades. The number of essential roles for GSK3, coupled with the numerous signalling cascades all converging to regulate its activity, suggests that GSK3 is a key integrator of multiple inputs to modulate the strength of neurotransmission. Modulation of these pathways may point to potential mechanisms to overcome synaptic failure in neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Karen Janet Smillie
- Membrane Biology Group, Centre for Integrative Physiology, University of Edinburgh, George Square, EH8 9XD, Edinburgh, UK
| | | |
Collapse
|
45
|
Li H, Rao A, Hogan PG. Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol 2011; 21:91-103. [PMID: 21115349 PMCID: PMC3244350 DOI: 10.1016/j.tcb.2010.09.011] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 09/15/2010] [Accepted: 09/27/2010] [Indexed: 12/18/2022]
Abstract
Calcineurin is a calcium activated protein phosphatase with a major role in calcium signaling in diverse cells and organs and clinical importance as the target of the immunosuppressive drugs cyclosporin A and tacrolimus (FK506). Cell biology studies have focused mainly on the role of calcineurin in transcriptional signaling. Calcium entry in response to extracellular stimuli results in calcineurin activation, and signal transmission from the cytosol into the nucleus through dephosphorylation and nuclear translocation of the transcription factor nuclear factor of activated T cells (NFAT). This initiates a cascade of transcriptional events involved in physiological and developmental processes. Molecular analyses of the calcineurin-NFAT interaction have been extended recently to encompass the interaction of calcineurin with other substrates, targeting proteins and regulators of calcineurin activity. These studies have increased our understanding of how this essential calcium activated enzyme orchestrates intracellular events in cooperation with other signaling pathways, and have suggested a link between altered calcineurin signaling and the developmental anomalies of Down syndrome.
Collapse
Affiliation(s)
- Huiming Li
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
46
|
Sun X, Wu Y, Chen B, Zhang Z, Zhou W, Tong Y, Yuan J, Xia K, Gronemeyer H, Flavell RA, Song W. Regulator of calcineurin 1 (RCAN1) facilitates neuronal apoptosis through caspase-3 activation. J Biol Chem 2011; 286:9049-62. [PMID: 21216952 DOI: 10.1074/jbc.m110.177519] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Individuals with Down syndrome (DS) will inevitably develop Alzheimer disease (AD) neuropathology sometime after middle age, which may be attributable to genes triplicated in individuals with DS. The characteristics of AD neuropathology include neuritic plaques, neurofibrillary tangles, and neuronal loss in various brain regions. The mechanism underlying neurodegeneration in AD and DS remains elusive. Regulator of calcineurin 1 (RCAN1) has been implicated in the pathogenesis of DS. Our data show that RCAN1 expression is elevated in the cortex of DS and AD patients. RCAN1 expression can be activated by the stress hormone dexamethasone. A functional glucocorticoid response element was identified in the RCAN1 isoform 1 (RCAN1-1) promoter region, which is able to mediate the up-regulation of RCAN1 expression. Here we show that overexpression of RCAN1-1 in primary neurons activates caspase-9 and caspase-3 and subsequently induces neuronal apoptosis. Furthermore, we found that the neurotoxicity of RCAN1-1 is inhibited by knock-out of caspase-3 in caspase-3(-/-) neurons. Our study provides a novel mechanism by which RCAN1 functions as a mediator of stress- and Aβ-induced neuronal death, and overexpression of RCAN1 due to an extra copy of the RCAN1 gene on chromosome 21 contributes to AD pathogenesis in DS.
Collapse
Affiliation(s)
- Xiulian Sun
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shin SY, Yang HW, Kim JR, Do Heo W, Cho KH. A hidden incoherent switch regulates RCAN1 in the calcineurin–NFAT signaling network. J Cell Sci 2011; 124:82-90. [DOI: 10.1242/jcs.076034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Regulator of calcineurin 1 (RCAN1) is a key regulator of the calcineurin–NFAT signaling network in organisms ranging from yeast to human, but its functional role is still under debate because different roles of RCAN1 have been suggested under various experimental conditions. To elucidate the mechanisms underlying the RCAN1 regulatory system, we used a systems approach by combining single-cell experimentation with in silico simulations. In particular, we found that the nuclear export of GSK3β, which switches on the facilitative role of RCAN1 in the calcineurin–NFAT signaling pathway, is promoted by PI3K signaling. Based on this, along with integrated information from previous experiments, we developed a mathematical model in which the functional role of RCAN1 changes in a dose-dependent manner: RCAN1 functions as an inhibitor when its levels are low, but as a facilitator when its levels are high. Furthermore, we identified a hidden incoherent regulation switch that mediates this role change, which entails negative regulation through RCAN1 binding to calcineurin and positive regulation through sequential phosphorylation of RCAN1.
Collapse
Affiliation(s)
- Sung-Young Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Hee Won Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Jeong-Rae Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
- Department of Mathematics, University of Seoul, Seoul 130-743, Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| |
Collapse
|
48
|
Holmes K, Chapman E, See V, Cross MJ. VEGF stimulates RCAN1.4 expression in endothelial cells via a pathway requiring Ca2+/calcineurin and protein kinase C-delta. PLoS One 2010; 5:e11435. [PMID: 20625401 PMCID: PMC2897886 DOI: 10.1371/journal.pone.0011435] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 06/03/2010] [Indexed: 11/18/2022] Open
Abstract
Background Vascular endothelial growth factor (VEGF) has previously been shown to upregulate the expression of the endogenous calcineurin inhibitor, regulator of calcineurin 1, variant 4 (RCAN1.4). The aim of this study was to determine the role and regulation of VEGF-mediated RCAN1.4 expression, using human dermal microvascular endothelial cells (HDMECs) as a model system. Methodology/Principal Findings We show that VEGF is able to induce RCAN1.4 expression during cellular proliferation and differentiation, and that VEGF-mediated expression of RCAN1.4 was inhibited by the use of inhibitors to protein kinase C (PKC) and calcineurin. Further analysis revealed that siRNA silencing of PKC-delta expression partially inhibited VEGF-stimulated RCAN1.4 expression. Knockdown of RCAN1.4 with siRNA resulted in a decrease in cellular migration and disrupted tubular morphogenesis when HDMECs were either stimulated with VEGF in a collagen gel or in an endothelial/fibroblast co-culture model of angiogenesis. Analysis of intracellular signalling revealed that siRNA mediated silencing of RCAN1.4 resulted in increased expression of specific nuclear factor of activated T-cells (NFAT) regulated genes. Conclusions/Significance Our data suggests that RCAN1.4 expression is induced by VEGFR-2 activation in a Ca2+ and PKC-delta dependent manner and that RCAN1.4 acts to regulate calcineurin activity and gene expression facilitating endothelial cell migration and tubular morphogenesis.
Collapse
Affiliation(s)
- Katherine Holmes
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Elinor Chapman
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
- North West Cancer Research Institute, School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | - Violaine See
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael J. Cross
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Takeo S, Hawley RS, Aigaki T. Calcineurin and its regulation by Sra/RCAN is required for completion of meiosis in Drosophila. Dev Biol 2010; 344:957-67. [PMID: 20561515 DOI: 10.1016/j.ydbio.2010.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 11/15/2022]
Abstract
Ca(2+) signaling pathways play important roles to complete meiosis from metaphase II arrest in vertebrate oocytes. However, less is known about the molecular mechanism of completion of meiosis in Drosophila females. Here, we provide direct evidence that calcineurin, a Ca(2+)/calmodulin (CaM)-dependent phosphatase, is essential for meiotic progression beyond metaphase I in Drosophila oocytes. Oocytes from germline clones lacking CanB2, a calcineurin regulatory subunit B, failed to complete meiosis after egg activation, and laid eggs exhibited a meiotic arrested anaphase I chromosome configuration. Genetic analyses suggest that calcineurin activity is regulated by Sarah (Sra), a family member of regulators of calcineurin (RCANs), through a Sra phosphorylation-dependent mechanism. Our results support a view in which the phosphorylation of Sra not only acts to relieve the inhibitory effects of Sra, but also acts to activate calcineurin, thus explaining the role of RCAN proteins as positive regulators of calcineurin.
Collapse
Affiliation(s)
- Satomi Takeo
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | | | |
Collapse
|
50
|
|