1
|
Kumari D, Jain A, Mukhopadhyay K. Comprehensive identification, characterization and expression analysis of genes underpinning heat acclimatization in Triticum durum and Aegilops tauschii. PLANT, CELL & ENVIRONMENT 2024; 47:3936-3952. [PMID: 38847343 DOI: 10.1111/pce.14992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 11/20/2024]
Abstract
Wheat (Triticum aestivum L.) is an important cereal crop cultivated and consumed worldwide. Global warming-induced escalation of temperature during the seedling and grain-filling phase adversely affects productivity. To survive under elevated temperatures, most crop plants develop natural mechanisms at molecular level by activating heat shock proteins. However, other heat stress-related proteins like heat acclimatization (HA) proteins are documented in hexaploid wheat but have not been explored in detail in its diploid and tetraploid progenitors, which might help to overcome elevated temperature regimes for short periods. Our study aims to explore the potential HA genes in progenitors Triticum durum and Aegilops tauschii that perform well at higher temperatures. Seven genes were identified and phylogenetically classified into three families: K homology (KH), Chloroplast protein-enhancing stress tolerance (CEST), and heat-stress-associated 32 kDa (HSA32). Protein-protein interaction network revealed partner proteins that aid mRNA translation, protein refolding, and reactive species detoxification. Syntenic analysis displayed highly conserved relationships. RT-qPCR-based expression profiling revealed HA genes to exhibit diverse and dynamic patterns under high-temperature regimes, suggesting their critical role in providing tolerance to heat stress. The present study furnishes genetic landscape of HA genes that might help in developing climate-resilient wheat with higher acclimatization potential.
Collapse
Affiliation(s)
- Dipti Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, India
| | - Alok Jain
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, India
| |
Collapse
|
2
|
The pathway for coenzyme M biosynthesis in bacteria. Proc Natl Acad Sci U S A 2022; 119:e2207190119. [PMID: 36037354 PMCID: PMC9457059 DOI: 10.1073/pnas.2207190119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mercaptoethane sulfonate or coenzyme M (CoM) is the smallest known organic cofactor and is most commonly associated with the methane-forming step in all methanogenic archaea but is also associated with the anaerobic oxidation of methane to CO2 in anaerobic methanotrophic archaea and the oxidation of short-chain alkanes in Syntrophoarchaeum species. It has also been found in a small number of bacteria capable of the metabolism of small organics. Although many of the steps for CoM biosynthesis in methanogenic archaea have been elucidated, a complete pathway for the biosynthesis of CoM in archaea or bacteria has not been reported. Here, we present the complete CoM biosynthesis pathway in bacteria, revealing distinct chemical steps relative to CoM biosynthesis in methanogenic archaea. The existence of different pathways represents a profound instance of convergent evolution. The five-step pathway involves the addition of sulfite, the elimination of phosphate, decarboxylation, thiolation, and the reduction to affect the sequential conversion of phosphoenolpyruvate to CoM. The salient features of the pathway demonstrate reactivities for members of large aspartase/fumarase and pyridoxal 5'-phosphate-dependent enzyme families.
Collapse
|
3
|
Burchill L, Williams SJ. Chemistry and biology of the aminosulfonate cysteinolic acid: discovery, distribution, synthesis and metabolism. Org Biomol Chem 2022; 20:3043-3055. [PMID: 35354198 DOI: 10.1039/d2ob00362g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
D-Cysteinolic acid is a zwitterionic aminosulfonate found in marine (and occasionally freshwater) environments. It is distributed in a wide range of algae (red, green and brown algae and diatoms), and some bacteria and sea animals. It was discovered in 1957 and in spite of its long history, its biosynthesis and degradation is poorly understood. Cysteinolic acid is found conjugated to steroids, lipids and arsenosugars, and the cysteinolic acid motif is found within the structures of various capnoid and sulfoceramide sulfonolipids. This review provides an historical account of the discovery of D-cysteinolic acid and related molecules, its distribution and occurrence within marine and freshwater organisms, routes for its chemical synthesis, and summarizes knowledge and speculations surrounding its biosynthesis, degradation and bioconversions.
Collapse
Affiliation(s)
- Laura Burchill
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
4
|
Protective Role of Bacterial Alkanesulfonate Monooxygenase under Oxidative Stress. Appl Environ Microbiol 2020; 86:AEM.00692-20. [PMID: 32503904 DOI: 10.1128/aem.00692-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/26/2020] [Indexed: 01/05/2023] Open
Abstract
Bacterial alkane metabolism is associated with a number of cellular stresses, including membrane stress and oxidative stress, and the limited uptake of charged ions such as sulfate. In the present study, the genes ssuD and tauD in Acinetobacter oleivorans DR1 cells, which encode an alkanesulfonate monooxygenase and a taurine dioxygenase, respectively, were found to be responsible for hexadecanesulfonate (C16SO3H) and taurine metabolism, and Cbl was experimentally identified as a potential regulator of ssuD and tauD expression. The expression of ssuD and tauD occurred under sulfate-limited conditions generated during n-hexadecane degradation. Interestingly, expression analysis and knockout experiments suggested that both genes are required to protect cells against oxidative stress, including that generated by n-hexadecane degradation and H2O2 exposure. Measurable levels of intracellular hexadecanesulfonate were also produced during n-hexadecane degradation. Phylogenetic analysis suggested that ssuD and tauD are mainly present in soil-dwelling aerobes within the Betaproteobacteria and Gammaproteobacteria classes, which suggests that they function as controllers of the sulfur cycle and play a protective role against oxidative stress in sulfur-limited conditions.IMPORTANCE ssuD and tauD, which play a role in the degradation of organosulfonate, were expressed during n-hexadecane metabolism and oxidative stress conditions in A. oleivorans DR1. Our study confirmed that hexadecanesulfonate was accidentally generated during bacterial n-hexadecane degradation in sulfate-limited conditions. Removal of this by-product by SsuD and TauD must be necessary for bacterial survival under oxidative stress generated during n-hexadecane degradation.
Collapse
|
5
|
Chen L, Naowarojna N, Chen B, Xu M, Quill M, Wang J, Deng Z, Zhao C, Liu P. Mechanistic Studies of a Nonheme Iron Enzyme OvoA in Ovothiol Biosynthesis Using a Tyrosine Analogue, 2-Amino-3-(4-hydroxy-3-(methoxyl) phenyl) Propanoic Acid (MeOTyr). ACS Catal 2018. [DOI: 10.1021/acscatal.8b03903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Li Chen
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Nathchar Naowarojna
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Bin Chen
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Meiling Xu
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Melissa Quill
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Changming Zhao
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
6
|
Liu X, Wu Y, Wilson FP, Yu K, Lintner C, Cupples AM, Mattes TE. Integrated methodological approach reveals microbial diversity and functions in aerobic groundwater microcosms adapted to vinyl chloride. FEMS Microbiol Ecol 2018; 94:5045312. [DOI: 10.1093/femsec/fiy124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/25/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Xikun Liu
- Department of Civil and Environmental Engineering, 4105 Seamans Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Yang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Nanshan District, Shenzhen 518055, China
| | - Fernanda P Wilson
- Department of Civil and Environmental Engineering, Engineering Building, 428 S. Shaw Lane, Room 3546, East Lansing, MI 48824, USA
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Nanshan District, Shenzhen 518055, China
| | - Carly Lintner
- Department of Civil and Environmental Engineering, 4105 Seamans Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Engineering Building, 428 S. Shaw Lane, Room 3546, East Lansing, MI 48824, USA
| | - Timothy E Mattes
- Department of Civil and Environmental Engineering, 4105 Seamans Center, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
7
|
Miller DV, Rauch BJ, Harich K, Xu H, Perona JJ, White RH. Promiscuity of methionine salvage pathway enzymes in Methanocaldococcus jannaschii. MICROBIOLOGY-SGM 2018; 164:969-981. [PMID: 29877790 DOI: 10.1099/mic.0.000670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The methionine salvage pathway (MSP) is critical for regeneration of S-adenosyl-l-methionine (SAM), a widely used cofactor involved in many essential metabolic reactions. The MSP has been completely elucidated in aerobic organisms, and found to rely on molecular oxygen. Since anaerobic organisms do not use O2, an alternative pathway(s) must be operating. We sought to evaluate whether the functions of two annotated MSP enzymes from Methanocaldococcus jannaschii, a methylthioinosine phosphorylase (MTIP) and a methylthioribose 1-phosphate isomerase (MTRI), are consistent with functioning in a modified anaerobic MSP (AnMSP). We show here that recombinant MTIP is active with six different purine nucleosides, consistent with its function as a general purine nucleoside phosphorylase for both AnMSP and purine salvage. Recombinant MTRI is active with both 5-methylthioribose 1-phosphate and 5-deoxyribose 1-phosphate as substrates, which are generated from phosphororolysis of 5'-methylthioinosine and 5'-deoxyinosine by MTIP, respectively. Together, these data suggest that MTIP and MTRI may function in a novel pathway for recycling the 5'-deoxyadenosine moiety of SAM in M. jannaschii. These enzymes may also enable biosynthesis of 6-deoxy-5-ketofructose 1-phosphate (DKFP), an essential intermediate in aromatic amino acid biosynthesis. Finally, we utilized a homocysteine auxotrophic strain of Methanosarcina acetivorans Δma1821-22Δoahs (HcyAux) to identify potential AnMSP intermediates in vivo. Growth recovery experiments of the M. acetivorans HcyAux were performed with known and proposed intermediates for the AnMSP. Only one metabolite, 2-keto-(4-methylthio)butyric acid, rescued growth of M. acetivorans HcyAux in the absence of homocysteine. This observation may indicate that AnMSP pathways substantially differ among methanogens from phylogenetically divergent genera.
Collapse
Affiliation(s)
- Danielle V Miller
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Present address: Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Benjamin J Rauch
- Department of Chemistry, Portland State University, Portland, OR, USA.,Present address: Zymergen, Inc., 1650 65th Street, Emeryville, CA 94608, USA
| | - Kim Harich
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Huimin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - John J Perona
- Department of Chemistry, Portland State University, Portland, OR, USA.,Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR, USA
| | - Robert H White
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
8
|
Naowarojna N, Cheng R, Chen L, Quill M, Xu M, Zhao C, Liu P. Mini-Review: Ergothioneine and Ovothiol Biosyntheses, an Unprecedented Trans-Sulfur Strategy in Natural Product Biosynthesis. Biochemistry 2018; 57:3309-3325. [PMID: 29589901 DOI: 10.1021/acs.biochem.8b00239] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As one of the most abundant elements on earth, sulfur is part of many small molecular metabolites and is key to their biological activities. Over the past few decades, some general strategies have been discovered for the incorporation of sulfur into natural products. In this review, we summarize recent efforts in elucidating the biosynthetic details for two sulfur-containing metabolites, ergothioneine and ovothiol. Their biosyntheses involve an unprecedented trans-sulfur strategy, a combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation reaction and a PLP enzyme-mediated C-S lyase reaction.
Collapse
Affiliation(s)
- Nathchar Naowarojna
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Ronghai Cheng
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Li Chen
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States.,Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Melissa Quill
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Meiling Xu
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Changming Zhao
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States.,Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Pinghua Liu
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
9
|
Partovi SE, Mus F, Gutknecht AE, Martinez HA, Tripet BP, Lange BM, DuBois JL, Peters JW. Coenzyme M biosynthesis in bacteria involves phosphate elimination by a functionally distinct member of the aspartase/fumarase superfamily. J Biol Chem 2018; 293:5236-5246. [PMID: 29414784 DOI: 10.1074/jbc.ra117.001234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/23/2018] [Indexed: 11/06/2022] Open
Abstract
For nearly 30 years, coenzyme M (CoM) was assumed to be present solely in methanogenic archaea. In the late 1990s, CoM was reported to play a role in bacterial propene metabolism, but no biosynthetic pathway for CoM has yet been identified in bacteria. Here, using bioinformatics and proteomic approaches in the metabolically versatile bacterium Xanthobacter autotrophicus Py2, we identified four putative CoM biosynthetic enzymes encoded by the xcbB1, C1, D1, and E1 genes. Only XcbB1 was homologous to a known CoM biosynthetic enzyme (ComA), indicating that CoM biosynthesis in bacteria involves enzymes different from those in archaea. We verified that the ComA homolog produces phosphosulfolactate from phosphoenolpyruvate (PEP), demonstrating that bacterial CoM biosynthesis is initiated similarly as the phosphoenolpyruvate-dependent methanogenic archaeal pathway. The bioinformatics analysis revealed that XcbC1 and D1 are members of the aspartase/fumarase superfamily (AFS) and that XcbE1 is a pyridoxal 5'-phosphate-containing enzyme with homology to d-cysteine desulfhydrases. Known AFS members catalyze β-elimination reactions of succinyl-containing substrates, yielding fumarate as the common unsaturated elimination product. Unexpectedly, we found that XcbC1 catalyzes β-elimination on phosphosulfolactate, yielding inorganic phosphate and a novel metabolite, sulfoacrylic acid. Phosphate-releasing β-elimination reactions are unprecedented among the AFS, indicating that XcbC1 is an unusual phosphatase. Direct demonstration of phosphosulfolactate synthase activity for XcbB1 and phosphate β-elimination activity for XcbC1 strengthened their hypothetical assignment to a CoM biosynthetic pathway and suggested functions also for XcbD1 and E1. Our results represent a critical first step toward elucidating the CoM pathway in bacteria.
Collapse
Affiliation(s)
- Sarah E Partovi
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | | | - Andrew E Gutknecht
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | - Hunter A Martinez
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | - Brian P Tripet
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | - Bernd Markus Lange
- the Institute of Biological Chemistry and.,M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164
| | - Jennifer L DuBois
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | | |
Collapse
|
10
|
Zhu Y, Wang X, Huang L, Lin C, Zhang X, Xu W, Peng J, Li Z, Yan H, Luo F, Wang X, Yao L, Peng D. Transcriptomic Identification of Drought-Related Genes and SSR Markers in Sudan Grass Based on RNA-Seq. FRONTIERS IN PLANT SCIENCE 2017; 8:687. [PMID: 28523007 PMCID: PMC5415614 DOI: 10.3389/fpls.2017.00687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/13/2017] [Indexed: 05/24/2023]
Abstract
Sudan grass (Sorghum sudanense) is an annual warm-season gramineous forage grass that is widely used as pasture, hay, and silage. However, drought stress severely impacts its yield, and there is limited information about the mechanisms of drought tolerance in Sudan grass. In this study, we used next-generation sequencing to identify differentially expressed genes (DEGs) in the Sudan grass variety Wulate No.1, and we developed simple sequence repeat (SSR) markers associated with drought stress. From 852,543,826 raw reads, nearly 816,854,366 clean reads were identified and used for analysis. A total of 80,686 unigenes were obtained via de novo assembly of the clean reads including 45,065 unigenes (55.9%) that were identified as coding sequences (CDSs). According to Gene Ontology analysis, 31,444 unigenes were annotated, 11,778 unigenes were identified to 25 categories in the clusters of orthologous groups of proteins (KOG) classification, and 11,223 unigenes were assigned to 280 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Additionally, there were 2,329 DEGs under a short-term of 25% polyethylene glycol (PEG) treatment, while 5,101 DEGs were identified under the long-term of 25% PEG treatment. DEGs were enriched in pathways of carbon fixation in photosynthetic organisms and plant hormone signal transduction which played a leading role in short-term of drought stress. However, DEGs were mainly enriched in pathway of plant hormone signal transduction that played an important role under long-term of drought stress. To increase accuracy, we excluded all the DEGs of all controls, specifically, five DEGs that were associated with high PEG concentrations were found through RNA-Seq. All five genes were up-regulated under drought stress, but the functions of the genes remain unclear. In addition, we identified 17,548 SSRs obtained from 80,686 unigenes. The newly identified drought tolerance DEGs will contribute to transgenic breeding efforts, while SSRs developed from high-throughput transcriptome data will facilitate marker-assisted selection for all traits in Sudan grass.
Collapse
Affiliation(s)
- Yongqun Zhu
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural SciencesChengdu, China
| | - Xia Wang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Linkai Huang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Chaowen Lin
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural SciencesChengdu, China
| | - Xinquan Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Wenzhi Xu
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural SciencesChengdu, China
| | - Jianhua Peng
- Sichuan Academy of Agricultural SciencesChengdu, China
| | - Zhou Li
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Haidong Yan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Fuxiang Luo
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural SciencesChengdu, China
| | - Xie Wang
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural SciencesChengdu, China
| | - Li Yao
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural SciencesChengdu, China
| | - Dandan Peng
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural SciencesChengdu, China
| |
Collapse
|
11
|
Miller DV, Brown AM, Xu H, Bevan DR, White RH. Purine salvage inMethanocaldococcus jannaschii: Elucidating the role of a conserved cysteine in adenine deaminase. Proteins 2016; 84:828-40. [DOI: 10.1002/prot.25033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/22/2016] [Accepted: 03/06/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Danielle V. Miller
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| | - Anne M. Brown
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| | - Huimin Xu
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| | - David R. Bevan
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| | - Robert H. White
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| |
Collapse
|
12
|
Nobu MK, Narihiro T, Kuroda K, Mei R, Liu WT. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME JOURNAL 2016; 10:2478-87. [PMID: 26943620 DOI: 10.1038/ismej.2016.33] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 02/06/2023]
Abstract
The ecophysiology of one candidate methanogen class WSA2 (or Arc I) remains largely uncharacterized, despite the long history of research on Euryarchaeota methanogenesis. To expand our understanding of methanogen diversity and evolution, we metagenomically recover eight draft genomes for four WSA2 populations. Taxonomic analyses indicate that WSA2 is a distinct class from other Euryarchaeota. None of genomes harbor pathways for CO2-reducing and aceticlastic methanogenesis, but all possess H2 and CO oxidation and energy conservation through H2-oxidizing electron confurcation and internal H2 cycling. As the only discernible methanogenic outlet, they consistently encode a methylated thiol coenzyme M methyltransferase. Although incomplete, all draft genomes point to the proposition that WSA2 is the first discovered methanogen restricted to methanogenesis through methylated thiol reduction. In addition, the genomes lack pathways for carbon fixation, nitrogen fixation and biosynthesis of many amino acids. Acetate, malonate and propionate may serve as carbon sources. Using methylated thiol reduction, WSA2 may not only bridge the carbon and sulfur cycles in eutrophic methanogenic environments, but also potentially compete with CO2-reducing methanogens and even sulfate reducers. These findings reveal a remarkably unique methanogen 'Candidatus Methanofastidiosum methylthiophilus' as the first insight into the sixth class of methanogens 'Candidatus Methanofastidiosa'.
Collapse
Affiliation(s)
- Masaru Konishi Nobu
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kyohei Kuroda
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
13
|
S-Inosyl-L-Homocysteine Hydrolase, a Novel Enzyme Involved in S-Adenosyl-L-Methionine Recycling. J Bacteriol 2015; 197:2284-91. [PMID: 25917907 DOI: 10.1128/jb.00080-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/22/2015] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED S-Adenosyl-L-homocysteine, the product of S-adenosyl-L-methionine (SAM) methyltransferases, is known to be a strong feedback inhibitor of these enzymes. A hydrolase specific for S-adenosyl-L-homocysteine produces L-homocysteine, which is remethylated to methionine and can be used to regenerate SAM. Here, we show that the annotated S-adenosyl-L-homocysteine hydrolase in Methanocaldococcus jannaschii is specific for the hydrolysis and synthesis of S-inosyl-L-homocysteine, not S-adenosyl-L-homocysteine. This is the first report of an enzyme specific for S-inosyl-L-homocysteine. As with S-adenosyl-L-homocysteine hydrolase, which shares greater than 45% sequence identity with the M. jannaschii homologue, the M. jannaschii enzyme was found to copurify with bound NAD(+) and has Km values of 0.64 ± 0.4 mM, 0.0054 ± 0.006 mM, and 0.22 ± 0.11 mM for inosine, L-homocysteine, and S-inosyl-L-homocysteine, respectively. No enzymatic activity was detected with S-adenosyl-L-homocysteine as the substrate in either the synthesis or hydrolysis direction. These results prompted us to redesignate the M. jannaschii enzyme an S-inosyl-L-homocysteine hydrolase (SIHH). Identification of SIHH demonstrates a modified pathway in this methanogen for the regeneration of SAM from S-adenosyl-L-homocysteine that uses the deamination of S-adenosyl-L-homocysteine to form S-inosyl-L-homocysteine. IMPORTANCE In strictly anaerobic methanogenic archaea, such as Methanocaldococcus jannaschii, canonical metabolic pathways are often not present, and instead, unique pathways that are deeply rooted on the phylogenetic tree are utilized by the organisms. Here, we discuss the recycling pathway for S-adenosyl-L-homocysteine, produced from S-adenosyl-L-methionine (SAM)-dependent methylation reactions, which uses a hydrolase specific for S-inosyl-L-homocysteine, an uncommon metabolite. Identification of the pathways and the enzymes involved in the unique pathways in the methanogens will provide insight into the biochemical reactions that were occurring when life originated.
Collapse
|
14
|
Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brune A. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus methanoplasma termitum”. Appl Environ Microbiol 2015; 81:1338-52. [PMID: 25501486 PMCID: PMC4309702 DOI: 10.1128/aem.03389-14] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/08/2014] [Indexed: 11/20/2022] Open
Abstract
The recently discovered seventh order of methanogens, the Methanomassiliicoccales (previously referred to as “Methanoplasmatales”), so far consists exclusively of obligately hydrogen-dependent methylotrophs. We sequenced the complete genome of “Candidatus Methanoplasma termitum” from a highly enriched culture obtained from the intestinal tract of termites and compared it with the previously published genomes of three other strains from the human gut, including the first isolate of the order. Like all other strains, “Ca. Methanoplasma termitum” lacks the entire pathway for CO2 reduction to methyl coenzyme Mand produces methane by hydrogen-dependent reduction of methanol or methylamines, which is consistent with additional physiological data. However, the shared absence of cytochromes and an energy-converting hydrogenase for the reoxidation of the ferredoxin produced by the soluble heterodisulfide reductase indicates that Methanomassiliicoccales employ a new mode of energy metabolism, which differs from that proposed for the obligately methylotrophic Methanosphaera stadtmanae. Instead, all strains possess a novel complex that is related to the F420:methanophenazine oxidoreductase (Fpo) of Methanosarcinales butlacks an F420-oxidizing module, resembling the apparently ferredoxin-dependent Fpo-like homolog in Methanosaeta thermophila. Since all Methanomassiliicoccales also lack the subunit E of the membrane-bound heterodisulfide reductase (HdrDE), wepropose that the Fpo-like complex interacts directly with subunit D, forming an energy-converting ferredoxin: heterodisulfideoxidoreductase. The dual function of heterodisulfide in Methanomassiliicoccales, which serves both in electron bifurcation and as terminal acceptor in a membrane-associated redox process, may be a unique characteristic of the novel order.
Collapse
Affiliation(s)
- Kristina Lang
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörg Schuldes
- Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Andreas Klingl
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Anja Poehlein
- Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Andreas Brune
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
15
|
Borrel G, Parisot N, Harris HMB, Peyretaillade E, Gaci N, Tottey W, Bardot O, Raymann K, Gribaldo S, Peyret P, O’Toole PW, Brugère JF. Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 2014; 15:679. [PMID: 25124552 PMCID: PMC4153887 DOI: 10.1186/1471-2164-15-679] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/18/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A seventh order of methanogens, the Methanomassiliicoccales, has been identified in diverse anaerobic environments including the gastrointestinal tracts (GIT) of humans and other animals and may contribute significantly to methane emission and global warming. Methanomassiliicoccales are phylogenetically distant from all other orders of methanogens and belong to a large evolutionary branch composed by lineages of non-methanogenic archaea such as Thermoplasmatales, the Deep Hydrothermal Vent Euryarchaeota-2 (DHVE-2, Aciduliprofundum boonei) and the Marine Group-II (MG-II). To better understand this new order and its relationship to other archaea, we manually curated and extensively compared the genome sequences of three Methanomassiliicoccales representatives derived from human GIT microbiota, "Candidatus Methanomethylophilus alvus", "Candidatus Methanomassiliicoccus intestinalis" and Methanomassiliicoccus luminyensis. RESULTS Comparative analyses revealed atypical features, such as the scattering of the ribosomal RNA genes in the genome and the absence of eukaryotic-like histone gene otherwise present in most of Euryarchaeota genomes. Previously identified in Thermoplasmatales genomes, these features are presently extended to several completely sequenced genomes of this large evolutionary branch, including MG-II and DHVE2. The three Methanomassiliicoccales genomes share a unique composition of genes involved in energy conservation suggesting an original combination of two main energy conservation processes previously described in other methanogens. They also display substantial differences with each other, such as their codon usage, the nature and origin of their CRISPRs systems and the genes possibly involved in particular environmental adaptations. The genome of M. luminyensis encodes several features to thrive in soil and sediment conditions suggesting its larger environmental distribution than GIT. Conversely, "Ca. M. alvus" and "Ca. M. intestinalis" do not present these features and could be more restricted and specialized on GIT. Prediction of the amber codon usage, either as a termination signal of translation or coding for pyrrolysine revealed contrasted patterns among the three genomes and suggests a different handling of the Pyl-encoding capacity. CONCLUSIONS This study represents the first insights into the genomic organization and metabolic traits of the seventh order of methanogens. It suggests contrasted evolutionary history among the three analyzed Methanomassiliicoccales representatives and provides information on conserved characteristics among the overall methanogens and among Thermoplasmata.
Collapse
Affiliation(s)
- Guillaume Borrel
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
- />School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Nicolas Parisot
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
- />CNRS, UMR 6023, Université Blaise Pascal, 63000 Clermont-Ferrand, France
| | - Hugh MB Harris
- />School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Eric Peyretaillade
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| | - Nadia Gaci
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| | - William Tottey
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| | - Olivier Bardot
- />GReD, CNRS, UMR 6293, Inserm, UMR 1103, Clermont Université, Université d’Auvergne 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| | - Kasie Raymann
- />Département de Microbiologie, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Paris Cedex 15, 75724 France
- />Cellule Pasteur UPMC, Université Pierre et Marie Curie, Paris Cedex 15, 75724 France
| | - Simonetta Gribaldo
- />Département de Microbiologie, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Paris Cedex 15, 75724 France
- />Cellule Pasteur UPMC, Université Pierre et Marie Curie, Paris Cedex 15, 75724 France
| | - Pierre Peyret
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| | - Paul W O’Toole
- />School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Jean-François Brugère
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| |
Collapse
|
16
|
Thioredoxin targets fundamental processes in a methane-producing archaeon, Methanocaldococcus jannaschii. Proc Natl Acad Sci U S A 2014; 111:2608-13. [PMID: 24505058 DOI: 10.1073/pnas.1324240111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Thioredoxin (Trx), a small redox protein, controls multiple processes in eukaryotes and bacteria by changing the thiol redox status of selected proteins. The function of Trx in archaea is, however, unexplored. To help fill this gap, we have investigated this aspect in methanarchaea--strict anaerobes that produce methane, a fuel and greenhouse gas. Bioinformatic analyses suggested that Trx is nearly universal in methanogens. Ancient methanogens that produce methane almost exclusively from H2 plus CO2 carried approximately two Trx homologs, whereas nutritionally versatile members possessed four to eight. Due to its simplicity, we studied the Trx system of Methanocaldococcus jannaschii--a deeply rooted hyperthermophilic methanogen growing only on H2 plus CO2. The organism carried two Trx homologs, canonical Trx1 that reduced insulin and accepted electrons from Escherichia coli thioredoxin reductase and atypical Trx2. Proteomic analyses with air-oxidized extracts treated with reduced Trx1 revealed 152 potential targets representing a range of processes--including methanogenesis, biosynthesis, transcription, translation, and oxidative response. In enzyme assays, Trx1 activated two selected targets following partial deactivation by O2, validating proteomics observations: methylenetetrahydromethanopterin dehydrogenase, a methanogenesis enzyme, and sulfite reductase, a detoxification enzyme. The results suggest that Trx assists methanogens in combating oxidative stress and synchronizing metabolic activities with availability of reductant, making it a critical factor in the global carbon cycle and methane emission. Because methanogenesis developed before the oxygenation of Earth, it seems possible that Trx functioned originally in metabolic regulation independently of O2, thus raising the question whether a complex biological system of this type evolved at least 2.5 billion years ago.
Collapse
|
17
|
Denger K, Weiss M, Felux AK, Schneider A, Mayer C, Spiteller D, Huhn T, Cook AM, Schleheck D. Sulphoglycolysis in Escherichia coli K-12 closes a gap in the biogeochemical sulphur cycle. Nature 2014; 507:114-7. [PMID: 24463506 DOI: 10.1038/nature12947] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/12/2013] [Indexed: 01/01/2023]
Abstract
Sulphoquinovose (SQ, 6-deoxy-6-sulphoglucose) has been known for 50 years as the polar headgroup of the plant sulpholipid in the photosynthetic membranes of all higher plants, mosses, ferns, algae and most photosynthetic bacteria. It is also found in some non-photosynthetic bacteria, and SQ is part of the surface layer of some Archaea. The estimated annual production of SQ is 10,000,000,000 tonnes (10 petagrams), thus it comprises a major portion of the organo-sulphur in nature, where SQ is degraded by bacteria. However, despite evidence for at least three different degradative pathways in bacteria, no enzymic reaction or gene in any pathway has been defined, although a sulphoglycolytic pathway has been proposed. Here we show that Escherichia coli K-12, the most widely studied prokaryotic model organism, performs sulphoglycolysis, in addition to standard glycolysis. SQ is catabolised through four newly discovered reactions that we established using purified, heterologously expressed enzymes: SQ isomerase, 6-deoxy-6-sulphofructose (SF) kinase, 6-deoxy-6-sulphofructose-1-phosphate (SFP) aldolase, and 3-sulpholactaldehyde (SLA) reductase. The enzymes are encoded in a ten-gene cluster, which probably also encodes regulation, transport and degradation of the whole sulpholipid; the gene cluster is present in almost all (>91%) available E. coli genomes, and is widespread in Enterobacteriaceae. The pathway yields dihydroxyacetone phosphate (DHAP), which powers energy conservation and growth of E. coli, and the sulphonate product 2,3-dihydroxypropane-1-sulphonate (DHPS), which is excreted. DHPS is mineralized by other bacteria, thus closing the sulphur cycle within a bacterial community.
Collapse
Affiliation(s)
- Karin Denger
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Weiss
- Konstanz Research School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Ann-Katrin Felux
- Konstanz Research School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Alexander Schneider
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076 Tübingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076 Tübingen, Germany
| | - Dieter Spiteller
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Thomas Huhn
- Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany
| | - Alasdair M Cook
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
18
|
Identification of a 5'-deoxyadenosine deaminase in Methanocaldococcus jannaschii and its possible role in recycling the radical S-adenosylmethionine enzyme reaction product 5'-deoxyadenosine. J Bacteriol 2013; 196:1064-72. [PMID: 24375099 DOI: 10.1128/jb.01308-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We characterize here the MJ1541 gene product from Methanocaldococcus jannaschii, an enzyme that was annotated as a 5'-methylthioadenosine/S-adenosylhomocysteine deaminase (EC 3.5.4.31/3.5.4.28). The MJ1541 gene product catalyzes the conversion of 5'-deoxyadenosine to 5'-deoxyinosine as its major product but will also deaminate 5'-methylthioadenosine, S-adenosylhomocysteine, and adenosine to a small extent. On the basis of these findings, we are naming this new enzyme 5'-deoxyadenosine deaminase (DadD). The Km for 5'-deoxyadenosine was found to be 14.0 ± 1.2 μM with a kcat/Km of 9.1 × 10(9) M(-1) s(-1). Radical S-adenosylmethionine (SAM) enzymes account for nearly 2% of the M. jannaschii genome, where the major SAM derived products is 5'-deoxyadenosine. Since 5'-dA has been demonstrated to be an inhibitor of radical SAM enzymes; a pathway for removing this product must be present. We propose here that DadD is involved in the recycling of 5'-deoxyadenosine, whereupon the 5'-deoxyribose moiety of 5'-deoxyinosine is further metabolized to deoxyhexoses used for the biosynthesis of aromatic amino acids in methanogens.
Collapse
|
19
|
Wu TY, Juan YT, Hsu YH, Wu SH, Liao HT, Fung RW, Charng YY. Interplay between heat shock proteins HSP101 and HSA32 prolongs heat acclimation memory posttranscriptionally in Arabidopsis. PLANT PHYSIOLOGY 2013; 161:2075-84. [PMID: 23439916 PMCID: PMC3613477 DOI: 10.1104/pp.112.212589] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/23/2013] [Indexed: 05/20/2023]
Abstract
Heat acclimation improves the tolerance of organisms to severe heat stress. Our previous work showed that in Arabidopsis (Arabidopsis thaliana), the "memory" of heat acclimation treatment decayed faster in the absence of the heat-stress-associated 32-kD protein HSA32, a heat-induced protein predominantly found in plants. The HSA32 null mutant attains normal short-term acquired thermotolerance but is defective in long-term acquired thermotolerance. To further explore this phenomenon, we isolated Arabidopsis defective in long-term acquired thermotolerance (dlt) mutants using a forward genetic screen. Two recessive missense alleles, dlt1-1 and dlt1-2, encode the molecular chaperone heat shock protein101 (HSP101). Results of immunoblot analyses suggest that HSP101 enhances the translation of HSA32 during recovery after heat treatment, and in turn, HSA32 retards the decay of HSP101. The dlt1-1 mutation has little effect on HSP101 chaperone activity and thermotolerance function but compromises the regulation of HSA32. In contrast, dlt1-2 impairs the chaperone activity and thermotolerance function of HSP101 but not the regulation of HSA32. These results suggest that HSP101 has a dual function, which could be decoupled by the mutations. Pulse-chase analysis showed that HSP101 degraded faster in the absence of HSA32. The autophagic proteolysis inhibitor E-64d, but not the proteasome inhibitor MG132, inhibited the degradation of HSP101. Ectopic expression of HSA32 confirmed its effect on the decay of HSP101 at the posttranscriptional level and showed that HSA32 was not sufficient to confer long-term acquired thermotolerance when the HSP101 level was low. Taken together, we propose that a positive feedback loop between HSP101 and HSA32 at the protein level is a novel mechanism for prolonging the memory of heat acclimation.
Collapse
MESH Headings
- Acclimatization/drug effects
- Acclimatization/genetics
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/physiology
- Arabidopsis Proteins/metabolism
- Autophagy/drug effects
- Autophagy/genetics
- Crosses, Genetic
- Cycloheximide/pharmacology
- Epistasis, Genetic/drug effects
- Ethyl Methanesulfonate
- Gene Expression Regulation, Plant/drug effects
- Genetic Complementation Test
- Heat-Shock Proteins/metabolism
- Hot Temperature
- Leucine/analogs & derivatives
- Leucine/pharmacology
- Luciferases/metabolism
- Mutation, Missense/genetics
- Phenotype
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Protein Stability/drug effects
- Proteolysis/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
|
20
|
Genetic Confirmation of the Role of Sulfopyruvate Decarboxylase in Coenzyme M Biosynthesis in Methanococcus maripaludis. ARCHAEA 2013; 2013:185250. [PMID: 24151448 PMCID: PMC3787637 DOI: 10.1155/2013/185250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/08/2013] [Indexed: 12/04/2022]
Abstract
Coenzyme M is an essential coenzyme for methanogenesis. The proposed biosynthetic pathway consists of five steps, of which the fourth step is catalyzed by sulfopyruvate decarboxylase (ComDE). Disruption of the gene comE by transposon mutagenesis resulted in a partial coenzyme M auxotroph, which grew poorly in the absence of coenzyme M and retained less than 3% of the wild type level of coenzyme M biosynthesis. Upon coenzyme M addition, normal growth of the mutant was restored. Moreover, complementation of the mutation with the wild type comE gene in trans restored full growth in the absence of coenzyme M. These results confirm that ComE plays an important role in coenzyme M biosynthesis. The inability to yield a complete CoM auxotroph suggests that either the transposon insertion failed to completely inactivate the gene or M. maripaludis possesses a promiscuous activity that partially complemented the mutation.
Collapse
|
21
|
Susanti D, Mukhopadhyay B. An intertwined evolutionary history of methanogenic archaea and sulfate reduction. PLoS One 2012; 7:e45313. [PMID: 23028926 PMCID: PMC3448663 DOI: 10.1371/journal.pone.0045313] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/20/2012] [Indexed: 12/29/2022] Open
Abstract
Hydrogenotrophic methanogenesis and dissimilatory sulfate reduction, two of the oldest energy conserving respiratory systems on Earth, apparently could not have evolved in the same host, as sulfite, an intermediate of sulfate reduction, inhibits methanogenesis. However, certain methanogenic archaea metabolize sulfite employing a deazaflavin cofactor (F(420))-dependent sulfite reductase (Fsr) where N- and C-terminal halves (Fsr-N and Fsr-C) are homologs of F(420)H(2) dehydrogenase and dissimilatory sulfite reductase (Dsr), respectively. From genome analysis we found that Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP), both being abundant in methanogens. Dsr-LPs fell into two groups defined by following sequence features: Group I (simplest), carrying a coupled siroheme-[Fe(4)-S(4)] cluster and sulfite-binding Arg/Lys residues; Group III (most complex), with group I features, a Dsr-type peripheral [Fe(4)-S(4)] cluster and an additional [Fe(4)-S(4)] cluster. Group II Dsr-LPs with group I features and a Dsr-type peripheral [Fe(4)-S(4)] cluster were proposed as evolutionary intermediates. Group III is the precursor of Fsr-C. The freestanding Fsr-N homologs serve as F(420)H(2) dehydrogenase unit of a putative novel glutamate synthase, previously described membrane-bound electron transport system in methanogens and of assimilatory type sulfite reductases in certain haloarchaea. Among archaea, only methanogens carried Dsr-LPs. They also possessed homologs of sulfate activation and reduction enzymes. This suggested a shared evolutionary history for methanogenesis and sulfate reduction, and Dsr-LPs could have been the source of the oldest (3.47-Gyr ago) biologically produced sulfide deposit.
Collapse
Affiliation(s)
- Dwi Susanti
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Genetics, Bioinformatics and Computational Biology Ph.D Program, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Biswarup Mukhopadhyay
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Departments of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
Studies on sulfur metabolism in archaea have revealed many novel enzymes and pathways and have advanced our understanding on metabolic processes, not only of the archaea, but of biology in general. A variety of dissimilatory sulfur metabolisms, i.e. reactions used for energy conservation, are found in archaea from both the Crenarchaeota and Euryarchaeota phyla. Although not yet fully characterized, major processes include aerobic elemental sulfur (S(0)) oxidation, anaerobic S(0) reduction, anaerobic sulfate/sulfite reduction and anaerobic respiration of organic sulfur. Assimilatory sulfur metabolism, i.e. reactions used for biosynthesis of sulfur-containing compounds, also possesses some novel features. Cysteine biosynthesis in some archaea uses a unique tRNA-dependent pathway. Fe-S cluster biogenesis in many archaea differs from that in bacteria and eukaryotes and requires unidentified components. The eukaryotic ubiquitin system is conserved in archaea and involved in both protein degradation and biosynthesis of sulfur-containing cofactors. Lastly, specific pathways are utilized for the biosynthesis of coenzyme M and coenzyme B, the sulfur-containing cofactors required for methanogenesis.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
23
|
A five-gene cluster involved in utilization of taurine-nitrogen and excretion of sulfoacetaldehyde by Acinetobacter radioresistens SH164. Arch Microbiol 2012; 194:857-63. [DOI: 10.1007/s00203-012-0806-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 01/23/2012] [Accepted: 03/15/2012] [Indexed: 11/26/2022]
|
24
|
Miller D, Xu H, White RH. A New Subfamily of Agmatinases Present in Methanogenic Archaea Is Fe(II) Dependent. Biochemistry 2012; 51:3067-78. [DOI: 10.1021/bi300039f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Danielle Miller
- Department
of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
24061, United States
| | - Huimin Xu
- Department
of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
24061, United States
| | - Robert H. White
- Department
of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
24061, United States
| |
Collapse
|
25
|
|
26
|
Spring S, Scheuner C, Lapidus A, Lucas S, Glavina Del Rio T, Tice H, Copeland A, Cheng JF, Chen F, Nolan M, Saunders E, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Lykidis A, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Goodwin L, Detter JC, Brettin T, Rohde M, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. The genome sequence of Methanohalophilus mahii SLP(T) reveals differences in the energy metabolism among members of the Methanosarcinaceae inhabiting freshwater and saline environments. ARCHAEA (VANCOUVER, B.C.) 2010; 2010:690737. [PMID: 21234345 PMCID: PMC3017947 DOI: 10.1155/2010/690737] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/09/2010] [Indexed: 11/17/2022]
Abstract
Methanohalophilus mahii is the type species of the genus Methanohalophilus, which currently comprises three distinct species with validly published names. Mhp. mahii represents moderately halophilic methanogenic archaea with a strictly methylotrophic metabolism. The type strain SLP(T) was isolated from hypersaline sediments collected from the southern arm of Great Salt Lake, Utah. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,012,424 bp genome is a single replicon with 2032 protein-coding and 63 RNA genes and part of the Genomic Encyclopedia of Bacteria and Archaea project. A comparison of the reconstructed energy metabolism in the halophilic species Mhp. mahii with other representatives of the Methanosarcinaceae reveals some interesting differences to freshwater species.
Collapse
Affiliation(s)
- Stefan Spring
- DSMZ—German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| | - Carmen Scheuner
- DSMZ—German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| | - Alla Lapidus
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
| | - Susan Lucas
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
| | | | - Hope Tice
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
| | - Alex Copeland
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
| | - Feng Chen
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
| | - Matt Nolan
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
| | - Elizabeth Saunders
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545-001, USA
| | - Sam Pitluck
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
| | | | - Natalia Ivanova
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
| | | | | | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
| | - Amy Chen
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Krishna Palaniappan
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miriam Land
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
- Oak Ridge National Laboratory, Oak Ridge, TN 37830-8026, USA
| | - Loren Hauser
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
- Oak Ridge National Laboratory, Oak Ridge, TN 37830-8026, USA
| | - Yun-Juan Chang
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
- Oak Ridge National Laboratory, Oak Ridge, TN 37830-8026, USA
| | - Cynthia D. Jeffries
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
- Oak Ridge National Laboratory, Oak Ridge, TN 37830-8026, USA
| | - Lynne Goodwin
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545-001, USA
| | - John C. Detter
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545-001, USA
| | - Thomas Brettin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545-001, USA
| | - Manfred Rohde
- HZI—Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Markus Göker
- DSMZ—German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
| | - Jim Bristow
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
| | - Jonathan A. Eisen
- DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
- Davis Genome Center, University of California, Davis, CA 95817, USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Hans-Peter Klenk
- DSMZ—German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| |
Collapse
|
27
|
Weinitschke S, Hollemeyer K, Kusian B, Bowien B, Smits THM, Cook AM. Sulfoacetate is degraded via a novel pathway involving sulfoacetyl-CoA and sulfoacetaldehyde in Cupriavidus necator H16. J Biol Chem 2010; 285:35249-54. [PMID: 20693281 PMCID: PMC2975148 DOI: 10.1074/jbc.m110.127043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 08/05/2010] [Indexed: 11/06/2022] Open
Abstract
Bacterial degradation of sulfoacetate, a widespread natural product, proceeds via sulfoacetaldehyde and requires a considerable initial energy input. Whereas the fate of sulfoacetaldehyde in Cupriavidus necator (Ralstonia eutropha) H16 is known, the pathway from sulfoacetate to sulfoacetaldehyde is not. The genome sequence of the organism enabled us to hypothesize that the inducible pathway, which initiates sau (sulfoacetate utilization), involved a four-gene cluster (sauRSTU; H16_A2746 to H16_A2749). The sauR gene, divergently orientated to the other three genes, probably encodes the transcriptional regulator of the presumed sauSTU operon, which is subject to inducible transcription. SauU was tentatively identified as a transporter of the major facilitator superfamily, and SauT was deduced to be a sulfoacetate-CoA ligase. SauT was a labile protein, but it could be separated and shown to generate AMP and an unknown, labile CoA-derivative from sulfoacetate, CoA, and ATP. This unknown compound, analyzed by MALDI-TOF-MS, had a relative molecular mass of 889.7, which identified it as protonated sulfoacetyl-CoA (calculated 889.6). SauS was deduced to be sulfoacetaldehyde dehydrogenase (acylating). The enzyme was purified 175-fold to homogeneity and characterized. Peptide mass fingerprinting confirmed the sauS locus (H16_A2747). SauS converted sulfoacetyl-CoA and NADPH to sulfoacetaldehyde, CoA, and NADP(+), thus confirming the hypothesis.
Collapse
Affiliation(s)
- Sonja Weinitschke
- From the Department of Biology, The University of Konstanz, D-78457 Konstanz, Germany
| | - Klaus Hollemeyer
- the Institute of Biochemical Engineering, Saarland University, D-66041 Saarbrücken, Germany
| | - Bernhard Kusian
- the Institute of Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany, and
| | - Botho Bowien
- the Institute of Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany, and
| | - Theo H. M. Smits
- From the Department of Biology, The University of Konstanz, D-78457 Konstanz, Germany
- Agroscope Changins-Wädenswil, Swiss Federal Research Station, CH-8820 Wädenswil, Switzerland
| | - Alasdair M. Cook
- From the Department of Biology, The University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
28
|
Mashhadi Z, Xu H, Grochowski LL, White RH. Archaeal RibL: a new FAD synthetase that is air sensitive. Biochemistry 2010; 49:8748-55. [PMID: 20822113 DOI: 10.1021/bi100817q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FAD synthetases catalyze the transfer of the AMP portion of ATP to FMN to produce FAD and pyrophosphate (PP(i)). Monofunctional FAD synthetases exist in eukaryotes, while bacteria have bifunctional enzymes that catalyze both the phosphorylation of riboflavin and adenylation of FMN to produce FAD. Analyses of archaeal genomes did not reveal the presence of genes encoding either group, yet the archaea contain FAD. Our recent identification of a CTP-dependent archaeal riboflavin kinase strongly indicated the presence of a monofunctional FAD synthetase. Here we report the identification and characterization of an archaeal FAD synthetase. Methanocaldococcus jannaschii gene MJ1179 encodes a protein that is classified in the nucleotidyl transferase protein family and was previously annotated as glycerol-3-phosphate cytidylyltransferase (GCT). The MJ1179 gene was cloned and its protein product heterologously expressed in Escherichia coli. The resulting enzyme catalyzes the adenylation of FMN with ATP to produce FAD and PP(i). The MJ1179-derived protein has been designated RibL to indicate that it follows the riboflavin kinase (RibK) step in the archaeal FAD biosynthetic pathway. Aerobically isolated RibL is active only under reducing conditions. RibL was found to require divalent metals for activity, the best activity being observed with Co(2+), where the activity was 4 times greater than that with Mg(2+). Alkylation of the two conserved cysteines in the C-terminus of the protein resulted in complete inactivation. RibL was also found to catalyze cytidylation of FMN with CTP, making the modified FAD, flavin cytidine dinucleotide (FCD). Unlike other FAD synthetases, RibL does not catalyze the reverse reaction to produce FMN and ATP from FAD and PP(i). Also in contrast to other FAD synthetases, PP(i) inhibits the activity of RibL.
Collapse
Affiliation(s)
- Zahra Mashhadi
- Department of Biochemistry (0308), Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
29
|
Broberg CA, Clark DD. Shotgun proteomics of Xanthobacter autotrophicus Py2 reveals proteins specific to growth on propylene. Arch Microbiol 2010; 192:945-57. [DOI: 10.1007/s00203-010-0623-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/13/2010] [Indexed: 11/28/2022]
|
30
|
Mattes TE, Alexander AK, Coleman NV. Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol Rev 2010; 34:445-75. [DOI: 10.1111/j.1574-6976.2010.00210.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
31
|
Casale M, Di Martino A, Salvinelli F, Trombetta M, Denaro V. MESNA for chemically assisted tissue dissection. Expert Opin Investig Drugs 2010; 19:699-707. [DOI: 10.1517/13543784.2010.485192] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Manuele Casale
- University Campus Bio-Medico of Rome, Department of Otolaryngology, Rome, Italy
| | - Alberto Di Martino
- University Campus Bio-Medico of Rome, Department of Orthopedics and Trauma Surgery, Via Alvaro del Portillo 200, 00128 Rome, Italy ;
| | - Fabrizio Salvinelli
- University Campus Bio-Medico of Rome, Department of Otolaryngology, Rome, Italy
| | - Marcella Trombetta
- Laboratory of Chemistry and Biomaterials, University Campus Bio-Medico of Rome, Rome, Italy
| | - Vincenzo Denaro
- University Campus Bio-Medico of Rome, Department of Orthopedics and Trauma Surgery, Via Alvaro del Portillo 200, 00128 Rome, Italy ;
| |
Collapse
|
32
|
Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, Li D, Kong Z, McTavish S, Sang C, Lambie SC, Janssen PH, Dey D, Attwood GT. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One 2010; 5:e8926. [PMID: 20126622 PMCID: PMC2812497 DOI: 10.1371/journal.pone.0008926] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 12/07/2009] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Methane (CH(4)) is a potent greenhouse gas (GHG), having a global warming potential 21 times that of carbon dioxide (CO(2)). Methane emissions from agriculture represent around 40% of the emissions produced by human-related activities, the single largest source being enteric fermentation, mainly in ruminant livestock. Technologies to reduce these emissions are lacking. Ruminant methane is formed by the action of methanogenic archaea typified by Methanobrevibacter ruminantium, which is present in ruminants fed a wide variety of diets worldwide. To gain more insight into the lifestyle of a rumen methanogen, and to identify genes and proteins that can be targeted to reduce methane production, we have sequenced the 2.93 Mb genome of M. ruminantium M1, the first rumen methanogen genome to be completed. METHODOLOGY/PRINCIPAL FINDINGS The M1 genome was sequenced, annotated and subjected to comparative genomic and metabolic pathway analyses. Conserved and methanogen-specific gene sets suitable as targets for vaccine development or chemogenomic-based inhibition of rumen methanogens were identified. The feasibility of using a synthetic peptide-directed vaccinology approach to target epitopes of methanogen surface proteins was demonstrated. A prophage genome was described and its lytic enzyme, endoisopeptidase PeiR, was shown to lyse M1 cells in pure culture. A predicted stimulation of M1 growth by alcohols was demonstrated and microarray analyses indicated up-regulation of methanogenesis genes during co-culture with a hydrogen (H(2)) producing rumen bacterium. We also report the discovery of non-ribosomal peptide synthetases in M. ruminantium M1, the first reported in archaeal species. CONCLUSIONS/SIGNIFICANCE The M1 genome sequence provides new insights into the lifestyle and cellular processes of this important rumen methanogen. It also defines vaccine and chemogenomic targets for broad inhibition of rumen methanogens and represents a significant contribution to worldwide efforts to mitigate ruminant methane emissions and reduce production of anthropogenic greenhouse gases.
Collapse
Affiliation(s)
- Sinead C. Leahy
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - William J. Kelly
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Eric Altermann
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Ron S. Ronimus
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Carl J. Yeoman
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Diana M. Pacheco
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Dong Li
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Zhanhao Kong
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Sharla McTavish
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Carrie Sang
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Suzanne C. Lambie
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Peter H. Janssen
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Debjit Dey
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Graeme T. Attwood
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
33
|
Convergent evolution of coenzyme M biosynthesis in the Methanosarcinales: cysteate synthase evolved from an ancestral threonine synthase. Biochem J 2009; 424:467-78. [PMID: 19761441 DOI: 10.1042/bj20090999] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The euryarchaeon Methanosarcina acetivorans has no homologues of the first three enzymes that produce the essential methanogenic coenzyme M (2-mercaptoethanesulfonate) in Methanocaldococcus jannaschii. A single M. acetivorans gene was heterologously expressed to produce a functional sulfopyruvate decarboxylase protein, the fourth canonical enzyme in this biosynthetic pathway. An adjacent gene, at locus MA3297, encodes one of the organism's two threonine synthase homologues. When both paralogues from this organism were expressed in an Escherichia coli threonine synthase mutant, the MA1610 gene complemented the thrC mutation, whereas the MA3297 gene did not. Both PLP (pyridoxal 5'-phosphate)-dependent proteins were heterologously expressed and purified, but only the MA1610 protein catalysed the canonical threonine synthase reaction. The MA3297 protein specifically catalysed a new beta-replacement reaction that converted L-phosphoserine and sulfite into L-cysteate and inorganic phosphate. This oxygen-independent mode of sulfonate biosynthesis exploits the facile nucleophilic addition of sulfite to an alpha,beta-unsaturated intermediate (PLP-bound dehydroalanine). An amino acid sequence comparison indicates that cysteate synthase evolved from an ancestral threonine synthase through gene duplication, and the remodelling of active site loop regions by amino acid insertion and substitutions. The cysteate product can be converted into sulfopyruvate by an aspartate aminotransferase enzyme, establishing a new convergent pathway for coenzyme M biosynthesis that appears to function in members of the orders Methanosarcinales and Methanomicrobiales. These differences in coenzyme M biosynthesis afford the opportunity to develop methanogen inhibitors that discriminate between the classes of methanogenic archaea.
Collapse
|
34
|
Mashhadi Z, Xu H, White RH. An Fe2+-dependent cyclic phosphodiesterase catalyzes the hydrolysis of 7,8-dihydro-D-neopterin 2',3'-cyclic phosphate in methanopterin biosynthesis. Biochemistry 2009; 48:9384-92. [PMID: 19746965 DOI: 10.1021/bi9010336] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
7,8-Dihydro-D-neopterin 2',3'-cyclic phosphate (H(2)N-cP) is the first intermediate in biosynthesis of the pterin portion of tetrahydromethanopterin (H(4)MPT), a C(1) carrier coenzyme first identified in the methanogenic archaea. This intermediate is produced from GTP by MptA (MJ0775 gene product), a new class of GTP cyclohydrolase I [Grochowski, L. L., Xu, H., Leung, K., and White, R. H. (2007) Biochemistry 46, 6658-6667]. Here we report the identification of a cyclic phosphodiesterase that hydrolyzes the cyclic phosphate of H(2)N-cP and converts it to a mixture of 7,8-dihydro-D-neopterin 2'-monophosphate and 7,8-dihydro-d-neopterin 3'-monophosphate. The enzyme from Methanocaldococcus jannachii is designated MptB (MJ0837 gene product) to indicate that it catalyzes the second step of the biosynthesis of methanopterin. MptB is a member of the HD domain superfamily of enzymes, which require divalent metals for activity. Direct metal analysis of the recombinant enzyme demonstrated that MptB contained 1.0 mol of zinc and 0.8 mol of iron per protomer. MptB requires Fe(2+) for activity, the same as observed for MptA. Thus the first two enzymes involved in H(4)MPT biosynthesis in the archaea are Fe(2+) dependent.
Collapse
Affiliation(s)
- Zahra Mashhadi
- Department of Biochemistry (0308), Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
35
|
The missing link in linear alkylbenzenesulfonate surfactant degradation: 4-sulfoacetophenone as a transient intermediate in the degradation of 3-(4-sulfophenyl)butyrate by Comamonas testosteroni KF-1. Appl Environ Microbiol 2009; 76:196-202. [PMID: 19915037 DOI: 10.1128/aem.02181-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biodegradation of the laundry surfactant linear alkylbenzenesulfonate (LAS) involves complex bacterial communities. The known heterotrophic community has two tiers. First, all LAS congeners are oxygenated and oxidized to about 50 sulfophenylcarboxylates (SPC). Second, the SPCs are mineralized. Comamonas testosteroni KF-1 mineralizes 3-(4-sulfophenyl)butyrate (3-C4-SPC). During growth of strain KF-1 with 3-C4-SPC, two transient intermediates were detected in the culture medium. One intermediate was identified as 4-sulfoacetophenone (SAP) (4-acetylbenzenesulfonate) by nuclear magnetic resonance (NMR). The other was 4-sulfophenol (SP). This information allowed us to postulate a degradation pathway that comprises the removal of an acetyl moiety from (derivatized) 3-C4-SPC, followed by a Baeyer-Villiger monooxygenation of SAP and subsequent ester cleavage to yield SP. Inducible NADPH-dependent SAP-oxygenase was detected in crude extracts of strain KF-1. The enzyme reaction involved transient formation of 4-sulfophenol acetate (SPAc), which was completely hydrolyzed to SP and acetate. SP was subject to NADH-dependent oxygenation in crude extract, and 4-sulfocatechol (SC) was subject to oxygenolytic ring cleavage. The first complete degradative pathway for an SPC can now be depicted with 3-C4-SPC: transport, ligation to a coenzyme A (CoA) ester, and manipulation to allow abstraction of acetyl-CoA to yield SAP, Baeyer-Villiger monooxygenation to SPAc, hydrolysis of the ester to acetate and SP, monooxygenation of SP to SC, the ortho ring-cleavage pathway with desulfonation, and sulfite oxidation.
Collapse
|
36
|
Denger K, Mayer J, Buhmann M, Weinitschke S, Smits THM, Cook AM. Bifurcated degradative pathway of 3-sulfolactate in Roseovarius nubinhibens ISM via sulfoacetaldehyde acetyltransferase and (S)-cysteate sulfolyase. J Bacteriol 2009; 191:5648-56. [PMID: 19581363 PMCID: PMC2737982 DOI: 10.1128/jb.00569-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/28/2009] [Indexed: 11/20/2022] Open
Abstract
Data from the genome sequence of the aerobic, marine bacterium Roseovarius nubinhibens ISM were interpreted such that 3-sulfolactate would be degraded as a sole source of carbon and energy for growth via a novel bifurcated pathway including two known desulfonative enzymes, sulfoacetaldehyde acetyltransferase (EC 2.3.3.15) (Xsc) and cysteate sulfo-lyase (EC 4.4.1.25) (CuyA). Strain ISM utilized sulfolactate quantitatively with stoichiometric excretion of the sulfonate sulfur as sulfate. A combination of enzyme assays, analytical chemistry, enzyme purification, peptide mass fingerprinting, and reverse transcription-PCR data supported the presence of an inducible, tripartite sulfolactate uptake system (SlcHFG), and a membrane-bound sulfolactate dehydrogenase (SlcD) which generated 3-sulfopyruvate, the point of bifurcation. 3-Sulfopyruvate was in part decarboxylated by 3-sulfopyruvate decarboxylase (EC 4.1.1.79) (ComDE), which was purified. The sulfoacetaldehyde that was formed was desulfonated by Xsc, which was identified, and the acetyl phosphate was converted to acetyl-coenzyme A by phosphate acetyltransferase (Pta). The other portion of the 3-sulfopyruvate was transaminated to (S)-cysteate, which was desulfonated by CuyA, which was identified. The sulfite that was formed was presumably exported by CuyZ (TC 9.B.7.1.1 in the transport classification system), and a periplasmic sulfite dehydrogenase is presumed. Bioinformatic analyses indicated that transporter SlcHFG is rare but that SlcD is involved in three different combinations of pathways, the bifurcated pathway shown here, via CuyA alone, and via Xsc alone. This novel pathway involves ComDE in biodegradation, whereas it was discovered in the biosynthesis of coenzyme M. The different pathways of desulfonation of sulfolactate presumably represent final steps in the biodegradation of sulfoquinovose (and exudates derived from it) in marine and aquatic environments.
Collapse
Affiliation(s)
- Karin Denger
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Ruff J, Smits THM, Cook AM, Schleheck D. Identification of two vicinal operons for the degradation of 2-aminobenzenesulfonate encoded on plasmid pSAH in Alcaligenes sp. strain O-1. Microbiol Res 2009; 165:288-99. [PMID: 19577910 DOI: 10.1016/j.micres.2009.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/20/2009] [Accepted: 05/25/2009] [Indexed: 11/18/2022]
Abstract
Alcaligenes sp. strain O-1 inducibly deaminates 2-aminobenzenesulfonate (ABS) via dioxygenation to 3-sulfocatechol, which is desulfonated during meta ring-cleavage to yield 2-hydroxymuconate. This intermediate is transformed through the oxalocrotonate-branch of the sulfocatechol meta-pathway (Scm). The complete pathway is encoded on the 180-kb plasmid pSAH, 20kb of which was sequenced. Twenty open reading frames (ORFs) were detected. Two clusters (abs and scm) with degradative genes were surrounded by several transposon-related ORFs. The six genes of the abs cluster were shown to be co-transcribed, and contained the genes for two characterised subunits of the oxygenase component of the ABS-dioxygenase system, and genes putatively encoding ABS-transport functions with similarities to (a) an ABC-type transporter system and (b) a putative major facilitator superfamily transporter. No gene encoding the reductase for the oxygenase system was present in the abs gene cluster, but a candidate gene was found in the scm cluster. The seven-gene scm cluster was also transcribed as single polycistronic message. Functions could be attributed to the gene products, but one enzyme, which was shown to be present, 2-hydroxymuconate isomerase, was not encoded in the scm cluster. No transcriptional regulator was found. This genetic information on the degradation of ABS in strain O-1 provides another example of both split operons and dispersed pathway genes.
Collapse
Affiliation(s)
- Jürgen Ruff
- Fachbereich Biologie der Universität Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
38
|
Grochowski LL, Xu H, White RH. An iron(II) dependent formamide hydrolase catalyzes the second step in the archaeal biosynthetic pathway to riboflavin and 7,8-didemethyl-8-hydroxy-5-deazariboflavin. Biochemistry 2009; 48:4181-8. [PMID: 19309161 DOI: 10.1021/bi802341p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The early steps in the biosynthesis of 7,8-didemethyl-8-hydroxy-5-deazariboflavin (Fo) and riboflavin in the archaea differ from the established eukaryotic and bacterial pathways. The archaeal pathway has been proposed to begin with an archaeal-specific GTP cyclohydrolase III that hydrolyzes the imidazole ring of GTP but does not remove the resulting formyl group from the formamide [Graham, D. E., Xu, H., and White, R. H. (2002) Biochemistry 41, 15074-15084 ]. This enzyme is different than the bacterial GTP cyclohydrolase II which catalyzes both reactions. Here we describe the identification and characterization of the formamide hydrolase that catalyzes the second step in the archaeal Fo and riboflavin biosynthetic pathway. The Methanocaldococcus jannaschii MJ0116 gene was cloned and heterologously expressed, and the resulting enzyme was shown to catalyze the formation of 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (APy) and formate from 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-monophosphate (FAPy). The MJ0116-derived protein has been named ArfB to indicate that it catalyzes the second step in archaeal riboflavin and Fo biosynthesis. ArfB was found to require ferrous iron for activity although metal analysis by ICP indicated the presence of zinc as well as iron in the purified protein. The identification of this enzyme confirms the involvement of GTP cyclohydrolase III (ArfA) in archaeal riboflavin and Fo biosynthesis.
Collapse
Affiliation(s)
- Laura L Grochowski
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0308, USA
| | | | | |
Collapse
|
39
|
Barriuso-Iglesias M, Schluesener D, Barreiro C, Poetsch A, Martín JF. Response of the cytoplasmic and membrane proteome of Corynebacterium glutamicum ATCC 13032 to pH changes. BMC Microbiol 2008; 8:225. [PMID: 19091079 PMCID: PMC2627906 DOI: 10.1186/1471-2180-8-225] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 12/17/2008] [Indexed: 11/10/2022] Open
Abstract
Background C. glutamicum has traditionally been grown in neutral-pH media for amino acid production, but in a previous article we reported that this microorganism is a moderate alkaliphile since it grows optimally at pH 7.0–9.0, as shown in fermentor studies under tightly controlled pH conditions. We determined the best pH values to study differential expression of several genes after acidic or basic pH conditions (pH 6.0 for acidic expression and pH 9.0 for alkaline expression). Thus, it was interesting to perform a detailed analysis of the pH-adaptation response of the proteome of C. glutamicum ATCC 13032 to clarify the circuits involved in stress responses in this bacterium. In this paper we used the above indicated pH conditions, based on transcriptional studies, to confirm that pH adaptation results in significant changes in cytoplasmatic and membrane proteins. Results The cytoplasmatic and membrane proteome of Corynebacterium glutamicum ATCC 13032 at different pH conditions (6.0, 7.0 and 9.0) was analyzed by classical 2D-electrophoresis, and by anion exchange chromatography followed by SDS-PAGE (AIEC/SDS-PAGE). A few cytoplasmatic proteins showed differential expression at the three pH values with the classical 2D-technique including a hypothetical protein cg2797, L-2.3-butanediol dehydrogenase (ButA), and catalase (KatA). The AIEC/SDS-PAGE technique revealed several membrane proteins that respond to pH changes, including the succinate dehydrogenase complex (SdhABCD), F0F1-ATP synthase complex subunits b, α and δ (AtpF, AtpH and AtpA), the nitrate reductase II α subunit (NarG), and a hypothetical secreted/membrane protein cg0752. Induction of the F0F1-ATP synthase complex β subunit (AtpD) at pH 9.0 was evidenced by Western analysis. By contrast, L-2.3-butanediol dehydrogenase (ButA), an ATPase with chaperone activity, the ATP-binding subunit (ClpC) of an ATP-dependent protease complex, a 7 TMHs hypothetical protein cg0896, a conserved hypothetical protein cg1556, and the dihydrolipoamide acyltransferase SucB, were clearly up-regulated at pH 6.0. Conclusion The observed protein changes explain the effect of the extracellular pH on the growth and physiology of C. glutamicum. Some of the proteins up-regulated at alkaline pH respond also to other stress factors suggesting that they serve to integrate the cell response to different stressing conditions.
Collapse
Affiliation(s)
- Mónica Barriuso-Iglesias
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006. León, Spain.
| | | | | | | | | |
Collapse
|
40
|
Mayr S, Günther D, Jaun B, Schweizer WB. Sodium 2-mercaptoethanesulfonate monohydrate (coenzyme M sodium salt monohydrate). Acta Crystallogr Sect E Struct Rep Online 2008; 64:m1476-7. [PMID: 21580910 PMCID: PMC2959637 DOI: 10.1107/s1600536808031814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 10/02/2008] [Indexed: 11/10/2022]
Abstract
The 2-thioethanesulfonate anion is the smallest known coenzyme in nature (HS–CoM) and plays a key role in methanogenesis by anaerobic archaea, as well as in the oxidation of alkenes by Gram-negative and Gram-positive eubacteria. The title compound, Na+·C2H5O3S2−·H2O, is the Na+ salt of HS–CoM crystallized as the monohydrate. Six O atoms form a distorted octahedral coordination geometry around the Na atom, at distances in the range 2.312 (4)–2.517 (3) Å. Two O atoms of the sulfonate group, one O atom of each of three other symmetry-related sulfonate groups plus the water O atom form the coordination environment of the Na+ ion. This arrangement forms Na–O–Na layers in the crystal structure, parallel to (100).
Collapse
|
41
|
Denger K, Mayer J, Hollemeyer K, Cook AM. Amphoteric surfactant N-oleoyl-N-methyltaurine utilized by Pseudomonas alcaligenes with excretion of N-methyltaurine. FEMS Microbiol Lett 2008; 288:112-7. [PMID: 18783436 DOI: 10.1111/j.1574-6968.2008.01341.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The amphoteric surfactant N-oleoyl-N-methyltaurine, which is in use in skin-care products, was utilized by aerobic bacteria as the sole source of carbon or of nitrogen in enrichment cultures. One isolate, which was identified as Pseudomonas alcaligenes, grew with the xenobiotic compound as the sole source of carbon and energy. The sulfonate moiety, N-methyltaurine, was excreted quantitatively during growth, while the fatty acid was dissimilated. The initial degradative reaction was shown to be hydrolytic and inducible. This amidase reaction could be demonstrated with crude cell extracts. The excreted N-methyltaurine could be utilized by other bacteria in cocultures. Complete degradation of similar natural compounds in bacterial communities seems likely.
Collapse
|
42
|
Grochowski LL, Xu H, White RH. Identification and characterization of the 2-phospho-L-lactate guanylyltransferase involved in coenzyme F420 biosynthesis. Biochemistry 2008; 47:3033-7. [PMID: 18260642 DOI: 10.1021/bi702475t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coenzyme F 420 is a hydride carrier cofactor functioning in methanogenesis. One step in the biosynthesis of coenzyme F 420 involves the coupling of 2-phospho- l-lactate (LP) to 7,8-didemethyl-8-hydroxy-5-deazaflavin, the F 420 chromophore. This condensation requires an initial activation of 2-phospho- l-lactate through a pyrophosphate linkage to GMP. Bioinformatic analysis identified an uncharacterized archaeal protein in the Methanocaldococcus jannaschii genome, MJ0887, which could be involved in this transformation. The predicted MJ0887-derived protein has domain similarity with other known nucleotidyl transferases. The MJ0887 gene was cloned and overexpressed, and the purified protein was found to catalyze the formation of lactyl-2-diphospho-5'-guanosine from LP and GTP. Kinetic constants were determined for the MJ0887-derived protein with both LP and GTP substrates and are as follows: V max = 3 micromol min (-1) mg (-1), GTP K M (app) = 56 microM, and k cat/ K M (app) = 2 x 10 (4) M (-1) s (-1) and LP K M (app) = 36 microM, and k cat/ K M (app) = 4 x 10 (4) M (-1) s (-1). The MJ0887 gene product has been designated CofC to indicate its involvement in the third step of coenzyme F 420 biosynthesis.
Collapse
Affiliation(s)
- Laura L Grochowski
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0308, USA
| | | | | |
Collapse
|
43
|
Mayer J, Denger K, Kaspar K, Hollemeyer K, Smits THM, Huhn T, Cook AM. Assimilation of homotaurine-nitrogen by Burkholderia sp. and excretion of sulfopropanoate. FEMS Microbiol Lett 2007; 279:77-82. [PMID: 18081842 DOI: 10.1111/j.1574-6968.2007.01014.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Homotaurine (3-aminopropanesulfonate), free or derivatized, is in widespread pharmaceutical and laboratory use. Studies with enrichment cultures indicated that the compound is degradable as a sole source of carbon or as a sole source of nitrogen for bacterial growth. A pure culture of Burkholderia sp. was isolated which assimilated the amino group from homotaurine in a glucose-salts medium, and which released an organosulfonate, 3-sulfopropanoate, into the medium stoichiometrically. The deamination involved an inducible 2-oxoglutarate-dependent aminotransferase to yield glutamate, and 3-sulfopropanal. Release of the amino group was attributed to the measured NADP-coupled glutamate dehydrogenase.
Collapse
Affiliation(s)
- Jutta Mayer
- Department of Biology University of Konstanz, Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Grochowski LL, Xu H, White RH. Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J Bacteriol 2006; 188:3192-8. [PMID: 16621811 PMCID: PMC1447442 DOI: 10.1128/jb.188.9.3192-3198.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Archaea have been shown to produce isoprenoids from mevalonate; however, genome analysis has failed to identify several genes in the mevalonate pathway on the basis of sequence similarity. A predicted archaeal kinase, coded for by the MJ0044 gene, was associated with other mevalonate pathway genes in the archaea and was predicted to be the "missing" phosphomevalonate kinase. The MJ0044-derived protein was tested for phosphomevalonate kinase activity and was found not to catalyze this reaction. The MJ0044 gene product was found to phosphorylate isopentenyl phosphate, generating isopentenyl diphosphate. Unlike other known kinases associated with isoprene biosynthesis, Methanocaldococcus jannaschii isopentenyl phosphate kinase is predicted to be a member of the aspartokinase superfamily.
Collapse
Affiliation(s)
- Laura L. Grochowski
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0308
| | - Huimin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0308
| | - Robert H. White
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0308
- Corresponding author. Mailing address: Department of Biochemistry (0308), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061. Phone: (540) 231-6605. Fax: (540) 231-9070. E-mail:
| |
Collapse
|
45
|
Weinitschke S, Denger K, Smits THM, Hollemeyer K, Cook AM. The sulfonated osmolyte N-methyltaurine is dissimilated by Alcaligenes faecalis and by Paracoccus versutus with release of methylamine. Microbiology (Reading) 2006; 152:1179-1186. [PMID: 16549680 DOI: 10.1099/mic.0.28622-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selective enrichments yielded bacterial cultures able to utilize the osmolyte N-methyltaurine as sole source of carbon and energy or as sole source of fixed nitrogen for aerobic growth. Strain MT1, which degraded N-methyltaurine as a sole source of carbon concomitantly with growth, was identified as a strain of Alcaligenes faecalis. Stoichiometric amounts of methylamine, whose identity was confirmed by matrix-assisted, laser-desorption ionization time-of-flight mass spectrometry, and of sulfate were released during growth. Inducible N-methyltaurine dehydrogenase, sulfoacetaldehyde acetyltransferase (Xsc) and a sulfite dehydrogenase could be detected. Taurine dehydrogenase was also present and it was hypothesized that taurine dehydrogenase has a substrate range that includes N-methyltaurine. Partial sequences of a tauY-like gene (encoding the putative large component of taurine dehydrogenase) and an xsc gene were obtained by PCR with degenerate primers. Strain N-MT utilized N-methyltaurine as a sole source of fixed nitrogen for growth and could also utilize the compound as sole source of carbon. This bacterium was identified as a strain of Paracoccus versutus. This organism also expressed inducible (N-methyl)taurine dehydrogenase, Xsc and a sulfite dehydrogenase. The presence of a gene cluster with high identity to a larger cluster from Paracoccus pantotrophus NKNCYSA, which is now known to dissimilate N-methyltaurine via Xsc, allowed most of the overall pathway, including transport and excretion, to be defined. N-Methyltaurine is thus another compound whose catabolism is channelled directly through sulfoacetaldehyde.
Collapse
Affiliation(s)
- Sonja Weinitschke
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Karin Denger
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Theo H M Smits
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Klaus Hollemeyer
- Institute of Biochemical Engineering, Saarland University, Box 50 11 50, D-66041 Saarbrücken, Germany
| | - Alasdair M Cook
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
46
|
Charng YY, Liu HC, Liu NY, Hsu FC, Ko SS. Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. PLANT PHYSIOLOGY 2006; 140:1297-305. [PMID: 16500991 PMCID: PMC1435801 DOI: 10.1104/pp.105.074898] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants and animals share similar mechanisms in the heat shock (HS) response, such as synthesis of the conserved HS proteins (Hsps). However, because plants are confined to a growing environment, in general they require unique features to cope with heat stress. Here, we report on the analysis of the function of a novel Hsp, heat-stress-associated 32-kD protein (Hsa32), which is highly conserved in land plants but absent in most other organisms. The gene responds to HS at the transcriptional level in moss (Physcomitrella patens), Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa). Like other Hsps, Hsa32 protein accumulates greatly in Arabidopsis seedlings after HS treatment. Disruption of Hsa32 by T-DNA insertion does not affect growth and development under normal conditions. However, the acquired thermotolerance in the knockout line was compromised following a long recovery period (>24 h) after acclimation HS treatment, when a severe HS challenge killed the mutant but not the wild-type plants, but no significant difference was observed if they were challenged within a short recovery period. Quantitative hypocotyl elongation assay also revealed that thermotolerance decayed faster in the absence of Hsa32 after a long recovery. Similar results were obtained in Arabidopsis transgenic plants with Hsa32 expression suppressed by RNA interference. Microarray analysis of the knockout mutant indicates that only the expression of Hsa32 was significantly altered in HS response. Taken together, our results suggest that Hsa32 is required not for induction but rather maintenance of acquired thermotolerance, a feature that could be important to plants.
Collapse
Affiliation(s)
- Yee-yung Charng
- Institute of BioAgricultural Sciences, Academia Sinica, Taipei, Taiwan 11529, Republic of China.
| | | | | | | | | |
Collapse
|
47
|
Grochowski LL, Xu H, White RH. Identification of lactaldehyde dehydrogenase in Methanocaldococcus jannaschii and its involvement in production of lactate for F420 biosynthesis. J Bacteriol 2006; 188:2836-44. [PMID: 16585745 PMCID: PMC1447007 DOI: 10.1128/jb.188.8.2836-2844.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 02/07/2006] [Indexed: 11/20/2022] Open
Abstract
One of the early steps in the biosynthesis of coenzyme F(420) in Methanocaldococcus jannaschii requires generation of 2-phospho-L-lactate, which is formed by the phosphorylation of L-lactate. Preliminary studies had shown that L-lactate in M. jannaschii is not derived from pyruvate, and thus an alternate pathway(s) for its formation was examined. Here we report that L-lactate is formed by the NAD(+)-dependent oxidation of l-lactaldehyde by the MJ1411 gene product. The lactaldehyde, in turn, was found to be generated either by the NAD(P)H reduction of methylglyoxal or by the aldol cleavage of fuculose-1-phosphate by fuculose-1-phosphate aldolase, the MJ1418 gene product.
Collapse
Affiliation(s)
- Laura L Grochowski
- Department of Biochemistry (0308), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
48
|
Denger K, Smits T, Cook A. L-cysteate sulpho-lyase, a widespread pyridoxal 5'-phosphate-coupled desulphonative enzyme purified from Silicibacter pomeroyi DSS-3(T). Biochem J 2006; 394:657-64. [PMID: 16302849 PMCID: PMC1383715 DOI: 10.1042/bj20051311] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 11/14/2005] [Accepted: 11/23/2005] [Indexed: 11/17/2022]
Abstract
Quantitative utilization of L-cysteate (2-amino-3-sulphopropionate) as the sole source of carbon and energy for growth of the aerobic, marine bacterium Silicibacter pomeroyi DSS-3(T) was observed. The sulphonate moiety was recovered in the medium largely as sulphite, and the appropriate amount of the ammonium ion was also observed. Genes [suyAB (3-sulpholactate sulpho-lyase)] encoding the known desulphonation reaction in cysteate degradation were absent from the genome, but a homologue of a putative sulphate exporter gene (suyZ) was found, and its neighbour, annotated as a D-cysteine desulphhydrase, was postulated to encode pyridoxal 5'-phosphate-coupled L-cysteate sulpho-lyase (CuyA), a novel enzyme. Inducible CuyA was detected in cysteate-grown cells. The enzyme released equimolar pyruvate, sulphite and the ammonium ion from L-cysteate and was purified to homogeneity by anion-exchange, hydrophobic-interaction and gel-filtration chromatography. The N-terminal amino acid sequence of this 39-kDa subunit confirmed the identification of the cuyA gene. The native enzyme was soluble and homomultimeric. The K(m)-value for L-cysteate was high (11.7 mM) and the enzyme also catalysed the D-cysteine desulphhydrase reaction. The gene cuyZ, encoding the putative sulphite exporter, was co-transcribed with cuyA. Sulphite was exported despite the presence of a ferricyanide-coupled sulphite dehydrogenase. CuyA was found in many bacteria that utilize cysteate.
Collapse
Affiliation(s)
- Karin Denger
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Theo H. M. Smits
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Alasdair M. Cook
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
49
|
Cook AM, Denger K. Metabolism of taurine in microorganisms: a primer in molecular biodiversity? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 583:3-13. [PMID: 17153584 DOI: 10.1007/978-0-387-33504-9_1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Alasdair M Cook
- Department of Biological Sciences, The University, D-78457 Konstanz, Germany.
| | | |
Collapse
|
50
|
Cook AM, Denger K, Smits THM. Dissimilation of C3-sulfonates. Arch Microbiol 2005; 185:83-90. [PMID: 16341843 DOI: 10.1007/s00203-005-0069-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 11/02/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
Cysteate and sulfolactate are widespread natural products in the environment, while propanesulfonate, 3-aminopropanesulfonate and propane-1,3-disulfonate are xenobiotics. While some understanding of the bacterial assimilation of cysteate sulfur has been achieved, details of the dissimilation of cysteate and sulfolactate by microbes together with information on the degradation of the xenobiotics have only recently become available. This minireview centres on bacterial catabolism of the carbon moiety in these C(3)-sulfonates and on the fate of the sulfonate group. Three mechanisms of desulfonation have been established. Firstly, cysteate is converted via sulfopyruvate to sulfolactate, which is desulfonated to pyruvate and sulfite; the latter is oxidized to sulfate by a sulfite dehydrogenase and excreted as sulfate in Paracoccus pantotrophus NKNCYSA. Secondly, sulfolactate can be converted to cysteate, which is cleaved in a pyridoxal 5'-phosphate-coupled reaction to pyruvate, sulfite and ammonium ions; in Silicibacter pomeroyi DSS-3, the sulfite is excreted largely as sulfite. Both desulfonation reactions seem to be widespread. The third desulfonation mechanism is oxygenolysis of, e.g. propanesulfonate(s), about which less is known.
Collapse
Affiliation(s)
- Alasdair M Cook
- Department of Biology, The University of Konstanz, 78457, Konstanz, Germany.
| | | | | |
Collapse
|