1
|
Yu TC, Liu WL, Brinck MS, Davis JE, Shek J, Bower G, Einav T, Insigne KD, Phillips R, Kosuri S, Urtecho G. Multiplexed characterization of rationally designed promoter architectures deconstructs combinatorial logic for IPTG-inducible systems. Nat Commun 2021; 12:325. [PMID: 33436562 PMCID: PMC7804116 DOI: 10.1038/s41467-020-20094-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
A crucial step towards engineering biological systems is the ability to precisely tune the genetic response to environmental stimuli. In the case of Escherichia coli inducible promoters, our incomplete understanding of the relationship between sequence composition and gene expression hinders our ability to predictably control transcriptional responses. Here, we profile the expression dynamics of 8269 rationally designed, IPTG-inducible promoters that collectively explore the individual and combinatorial effects of RNA polymerase and LacI repressor binding site strengths. We then fit a statistical mechanics model to measured expression that accurately models gene expression and reveals properties of theoretically optimal inducible promoters. Furthermore, we characterize three alternative promoter architectures and show that repositioning binding sites within promoters influences the types of combinatorial effects observed between promoter elements. In total, this approach enables us to deconstruct relationships between inducible promoter elements and discover practical insights for engineering inducible promoters with desirable characteristics.
Collapse
Affiliation(s)
- Timothy C Yu
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Winnie L Liu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Marcia S Brinck
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Jessica E Davis
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Jeremy Shek
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Grace Bower
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Tal Einav
- Department of Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Kimberly D Insigne
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, CA, 90095, USA
| | - Rob Phillips
- Department of Physics, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Sriram Kosuri
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, 90095, USA.
- Institute for Quantitative and Computational Biosciences (QCB), University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA.
- Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, CA, 90095, USA.
| | - Guillaume Urtecho
- Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Tungtur S, Schwingen KM, Riepe JJ, Weeramange CJ, Swint-Kruse L. Homolog comparisons further reconcile in vitro and in vivo correlations of protein activities by revealing over-looked physiological factors. Protein Sci 2019; 28:1806-1818. [PMID: 31351028 DOI: 10.1002/pro.3695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022]
Abstract
To bridge biological and biochemical disciplines, the relationship between in vitro protein biochemical function and in vivo activity must be established. Such studies can (a) help determine whether properties measured in simple, dilute solutions extrapolate to the complex in vivo conditions and (b) illuminate cryptic biological factors that are new avenues for study. We have explored the in vivo-in vitro relationship for chimeras built from LacI/GalR transcription regulators. In prior studies of individual chimeras, amino acid changes that altered in vitro DNA binding affinity exhibited correlated changes in in vivo transcription repression. However, discrepancies arose when the two datasets were compared to each other: Although their DNA binding domains were identical and their in vitro binding affinities spanned the same range, their in vivo repression ranges differed by >50-fold. Here, we determined that the presence of endogenous ligand for one chimera further exacerbated the offset, but that different abilities to simultaneously bind and "loop" two DNA operators resolves the discrepancy. Indeed, results suggest that the lac operon can be looped by even weakly interacting repressor dimers. For looping-competent repressors, we measured in vitro binding to the secondary operator. Surprisingly, this was largely insensitive to amino acid changes in the repressor protein, which reflects altered specificity; this supports the emerging view that the locations of specificity determining positions can be unique to each protein homolog. In aggregate, this work illustrates how a comparative approach can enrich understanding of the in vivo-in vitro relationship and suggest unexpected avenues for future study.
Collapse
Affiliation(s)
- Sudheer Tungtur
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Kristen M Schwingen
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Joshua J Riepe
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Chamitha J Weeramange
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
3
|
Sousa FL, Parente DJ, Hessman JA, Chazelle A, Teichmann SA, Swint-Kruse L. Data on publications, structural analyses, and queries used to build and utilize the AlloRep database. Data Brief 2016; 8:948-57. [PMID: 27508249 PMCID: PMC4961497 DOI: 10.1016/j.dib.2016.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/22/2016] [Accepted: 07/04/2016] [Indexed: 01/08/2023] Open
Abstract
The AlloRep database (www.AlloRep.org) (Sousa et al., 2016) [1] compiles extensive sequence, mutagenesis, and structural information for the LacI/GalR family of transcription regulators. Sequence alignments are presented for >3000 proteins in 45 paralog subfamilies and as a subsampled alignment of the whole family. Phenotypic and biochemical data on almost 6000 mutants have been compiled from an exhaustive search of the literature; citations for these data are included herein. These data include information about oligomerization state, stability, DNA binding and allosteric regulation. Protein structural data for 65 proteins are presented as easily-accessible, residue-contact networks. Finally, this article includes example queries to enable the use of the AlloRep database. See the related article, “AlloRep: a repository of sequence, structural and mutagenesis data for the LacI/GalR transcription regulators” (Sousa et al., 2016) [1].
Collapse
Affiliation(s)
- Filipa L Sousa
- Institute of Molecular Evolution, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany
| | - Daniel J Parente
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jacob A Hessman
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Allen Chazelle
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sarah A Teichmann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Liskin Swint-Kruse
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
The transcriptional regulator GalR self-assembles to form highly regular tubular structures. Sci Rep 2016; 6:27672. [PMID: 27279285 PMCID: PMC4899725 DOI: 10.1038/srep27672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/23/2016] [Indexed: 11/09/2022] Open
Abstract
The Gal repressor regulates transport and metabolism of D-galactose in Escherichia coli and can mediate DNA loop formation by forming a bridge between adjacent or distant sites. GalR forms insoluble aggregates at lower salt concentrations in vitro, which can be solubilized at higher salt concentrations. Here, we investigate the assembly and disassembly of GalR aggregates. We find that a sharp transition from aggregates to soluble species occurs between 200 and 400 mM NaCl, incompatible with a simple salting-in effect. The aggregates are highly ordered rod-like structures, highlighting a remarkable ability for organized self-assembly. Mutant studies reveal that aggregation is dependent on two separate interfaces of GalR. The highly ordered structures dissociate to smaller aggregates in the presence of D-galactose. We propose that these self-assembled structures may constitute galactose-tolerant polymers for chromosome compaction in stationary phase cells, in effect linking self-assembly with regulatory function.
Collapse
|
5
|
Molecular Mechanisms of Transcription Initiation at gal Promoters and their Multi-Level Regulation by GalR, CRP and DNA Loop. Biomolecules 2015; 5:2782-807. [PMID: 26501343 PMCID: PMC4693257 DOI: 10.3390/biom5042782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/25/2015] [Indexed: 11/16/2022] Open
Abstract
Studying the regulation of transcription of the gal operon that encodes the amphibolic pathway of d-galactose metabolism in Escherichia coli discerned a plethora of principles that operate in prokaryotic gene regulatory processes. In this chapter, we have reviewed some of the more recent findings in gal that continues to reveal unexpected but important mechanistic details. Since the operon is transcribed from two overlapping promoters, P1 and P2, regulated by common regulatory factors, each genetic or biochemical experiment allowed simultaneous discernment of two promoters. Recent studies range from genetic, biochemical through biophysical experiments providing explanations at physiological, mechanistic and single molecule levels. The salient observations highlighted here are: the axiom of determining transcription start points, discovery of a new promoter element different from the known ones that influences promoter strength, occurrence of an intrinsic DNA sequence element that overrides the transcription elongation pause created by a DNA-bound protein roadblock, first observation of a DNA loop and determination its trajectory, and piggybacking proteins and delivering to their DNA target.
Collapse
|
6
|
Weng X, Xiao J. Spatial organization of transcription in bacterial cells. Trends Genet 2014; 30:287-97. [PMID: 24862529 DOI: 10.1016/j.tig.2014.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 11/27/2022]
Abstract
Prokaryotic transcription has been extensively studied over the past half a century. However, there often exists a gap between the structural, mechanistic description of transcription obtained from in vitro biochemical studies, and the cellular, phenomenological observations from in vivo genetic studies. It is now accepted that a living bacterial cell is a complex entity; the heterogeneous cellular environment is drastically different from the homogenous, well-mixed situation in vitro. Where molecules are inside a cell may be important for their function; hence, the spatial organization of different molecular components may provide a new means of transcription regulation in vivo, possibly bridging this gap. In this review, we survey current evidence for the spatial organization of four major components of transcription [genes, transcription factors, RNA polymerase (RNAP) and RNAs] and critically analyze their biological significance.
Collapse
Affiliation(s)
- Xiaoli Weng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Parente DJ, Swint-Kruse L. Multiple co-evolutionary networks are supported by the common tertiary scaffold of the LacI/GalR proteins. PLoS One 2013; 8:e84398. [PMID: 24391951 PMCID: PMC3877293 DOI: 10.1371/journal.pone.0084398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/15/2013] [Indexed: 11/18/2022] Open
Abstract
Protein families might evolve paralogous functions on their common tertiary scaffold in two ways. First, the locations of functionally-important sites might be "hard-wired" into the structure, with novel functions evolved by altering the amino acid (e.g. Ala vs Ser) at these positions. Alternatively, the tertiary scaffold might be adaptable, accommodating a unique set of functionally important sites for each paralogous function. To discriminate between these possibilities, we compared the set of functionally important sites in the six largest paralogous subfamilies of the LacI/GalR transcription repressor family. LacI/GalR paralogs share a common tertiary structure, but have low sequence identity (≤ 30%), and regulate a variety of metabolic processes. Functionally important positions were identified by conservation and co-evolutionary sequence analyses. Results showed that conserved positions use a mixture of the "hard-wired" and "accommodating" scaffold frameworks, but that the co-evolution networks were highly dissimilar between any pair of subfamilies. Therefore, the tertiary structure can accommodate multiple networks of functionally important positions. This possibility should be included when designing and interpreting sequence analyses of other protein families. Software implementing conservation and co-evolution analyses is available at https://sourceforge.net/projects/coevolutils/.
Collapse
Affiliation(s)
- Daniel J. Parente
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
8
|
Hensel Z, Weng X, Lagda AC, Xiao J. Transcription-factor-mediated DNA looping probed by high-resolution, single-molecule imaging in live E. coli cells. PLoS Biol 2013; 11:e1001591. [PMID: 23853547 PMCID: PMC3708714 DOI: 10.1371/journal.pbio.1001591] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 05/09/2013] [Indexed: 11/19/2022] Open
Abstract
DNA looping mediated by transcription factors plays critical roles in prokaryotic gene regulation. The "genetic switch" of bacteriophage λ determines whether a prophage stays incorporated in the E. coli chromosome or enters the lytic cycle of phage propagation and cell lysis. Past studies have shown that long-range DNA interactions between the operator sequences O(R) and O(L) (separated by 2.3 kb), mediated by the λ repressor CI (accession number P03034), play key roles in regulating the λ switch. In vitro, it was demonstrated that DNA segments harboring the operator sequences formed loops in the presence of CI, but CI-mediated DNA looping has not been directly visualized in vivo, hindering a deep understanding of the corresponding dynamics in realistic cellular environments. We report a high-resolution, single-molecule imaging method to probe CI-mediated DNA looping in live E. coli cells. We labeled two DNA loci with differently colored fluorescent fusion proteins and tracked their separations in real time with ∼40 nm accuracy, enabling the first direct analysis of transcription-factor-mediated DNA looping in live cells. Combining looping measurements with measurements of CI expression levels in different operator mutants, we show quantitatively that DNA looping activates transcription and enhances repression. Further, we estimated the upper bound of the rate of conformational change from the unlooped to the looped state, and discuss how chromosome compaction may impact looping kinetics. Our results provide insights into transcription-factor-mediated DNA looping in a variety of operator and CI mutant backgrounds in vivo, and our methodology can be applied to a broad range of questions regarding chromosome conformations in prokaryotes and higher organisms.
Collapse
Affiliation(s)
- Zach Hensel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xiaoli Weng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Arvin Cesar Lagda
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
9
|
Meinhardt S, Manley MW, Becker NA, Hessman JA, Maher LJ, Swint-Kruse L. Novel insights from hybrid LacI/GalR proteins: family-wide functional attributes and biologically significant variation in transcription repression. Nucleic Acids Res 2012; 40:11139-54. [PMID: 22965134 PMCID: PMC3505978 DOI: 10.1093/nar/gks806] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
LacI/GalR transcription regulators have extensive, non-conserved interfaces between their regulatory domains and the 18 amino acids that serve as ‘linkers’ to their DNA-binding domains. These non-conserved interfaces might contribute to functional differences between paralogs. Previously, two chimeras created by domain recombination displayed novel functional properties. Here, we present a synthetic protein family, which was created by joining the LacI DNA-binding domain/linker to seven additional regulatory domains. Despite ‘mismatched’ interfaces, chimeras maintained allosteric response to their cognate effectors. Therefore, allostery in many LacI/GalR proteins does not require interfaces with precisely matched interactions. Nevertheless, the chimeric interfaces were not silent to mutagenesis, and preliminary comparisons suggest that the chimeras provide an ideal context for systematically exploring functional contributions of non-conserved positions. DNA looping experiments revealed higher order (dimer–dimer) oligomerization in several chimeras, which might be possible for the natural paralogs. Finally, the biological significance of repression differences was determined by measuring bacterial growth rates on lactose minimal media. Unexpectedly, moderate and strong repressors showed an apparent induction phase, even though inducers were not provided; therefore, an unknown mechanism might contribute to regulation of the lac operon. Nevertheless, altered growth correlated with altered repression, which indicates that observed functional modifications are significant.
Collapse
Affiliation(s)
- Sarah Meinhardt
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
10
|
Galactose repressor mediated intersegmental chromosomal connections in Escherichia coli. Proc Natl Acad Sci U S A 2012; 109:11336-41. [PMID: 22733746 DOI: 10.1073/pnas.1208595109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
By microscopic analysis of fluorescent-labeled GalR, a regulon-specific transcription factor in Escherichia coli, we observed that GalR is present in the cell as aggregates (one to three fluorescent foci per cell) in nongrowing cells. To investigate whether these foci represent GalR-mediated association of some of the GalR specific DNA binding sites (gal operators), we used the chromosome conformation capture (3C) method in vivo. Our 3C data demonstrate that, in stationary phase cells, many of the operators distributed around the chromosome are interacted. By the use of atomic force microscopy, we showed that the observed remote chromosomal interconnections occur by direct interactions between DNA-bound GalR not involving any other factors. Mini plasmid DNA circles with three or five operators positioned at defined loci showed GalR-dependent loops of expected sizes of the intervening DNA segments. Our findings provide unique evidence that a transcription factor participates in organizing the chromosome in a three-dimensional structure. We believe that these chromosomal connections increase local concentration of GalR for coordinating the regulation of widely separated target genes, and organize the chromosome structure in space, thereby likely contributing to chromosome compaction.
Collapse
|
11
|
Meinhardt S, Swint-Kruse L. Experimental identification of specificity determinants in the domain linker of a LacI/GalR protein: bioinformatics-based predictions generate true positives and false negatives. Proteins 2008; 73:941-57. [PMID: 18536016 DOI: 10.1002/prot.22121] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In protein families, conserved residues often contribute to a common general function, such as DNA-binding. However, unique attributes for each homolog (e.g. recognition of alternative DNA sequences) must arise from variation in other functionally-important positions. The locations of these "specificity determinant" positions are obscured amongst the background of varied residues that do not make significant contributions to either structure or function. To isolate specificity determinants, a number of bioinformatics algorithms have been developed. When applied to the LacI/GalR family of transcription regulators, several specificity determinants are predicted in the 18 amino acids that link the DNA-binding and regulatory domains. However, results from alternative algorithms are only in partial agreement with each other. Here, we experimentally evaluate these predictions using an engineered repressor comprising the LacI DNA-binding domain, the LacI linker, and the GalR regulatory domain (LLhG). "Wild-type" LLhG has altered DNA specificity and weaker lacO(1) repression compared to LacI or a similar LacI:PurR chimera. Next, predictions of linker specificity determinants were tested, using amino acid substitution and in vivo repression assays to assess functional change. In LLhG, all predicted sites are specificity determinants, as well as three sites not predicted by any algorithm. Strategies are suggested for diminishing the number of false negative predictions. Finally, individual substitutions at LLhG specificity determinants exhibited a broad range of functional changes that are not predicted by bioinformatics algorithms. Results suggest that some variants have altered affinity for DNA, some have altered allosteric response, and some appear to have changed specificity for alternative DNA ligands.
Collapse
Affiliation(s)
- Sarah Meinhardt
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
12
|
Lia G, Semsey S, Lewis DEA, Adhya S, Bensimon D, Dunlap D, Finzi L. The antiparallel loops in gal DNA. Nucleic Acids Res 2008; 36:4204-10. [PMID: 18573800 PMCID: PMC2475638 DOI: 10.1093/nar/gkn389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Interactions between proteins bound to distant sites along a DNA molecule require bending and twisting deformations in the intervening DNA. In certain systems, the sterically allowed protein–DNA and protein–protein interactions are hypothesized to produce loops with distinct geometries that may also be thermodynamically and biologically distinct. For example, theoretical models of Gal repressor/HU-mediated DNA-looping suggest that the antiparallel DNA loops, A1 and A2, are thermodynamically quite different. They are also biologically different, since in experiments using DNA molecules engineered to form only one of the two loops, the A2 loop failed to repress in vitro transcription. Surprisingly, single molecule measurements show that both loop trajectories form and that they appear to be quite similar energetically and kinetically.
Collapse
Affiliation(s)
- Giuseppe Lia
- Department of Chemistry, Harvard University, Cambridge, MA, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Chodavarapu S, Felczak MM, Yaniv JR, Kaguni JM. Escherichia coli DnaA interacts with HU in initiation at the E. coli replication origin. Mol Microbiol 2007; 67:781-92. [PMID: 18179598 DOI: 10.1111/j.1365-2958.2007.06094.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Escherichia coli HU protein is a dimer encoded by two closely related genes whose expression is growth phase-dependent. As a major component of the bacterial nucleoid, HU binds to DNA non-specifically, but acts at the chromosomal origin (oriC) during initiation by stimulating strand opening in vitro. We show that the alpha dimer of HU is more active than other forms of HU in initiation of an oriC-containing plasmid because it more effectively promotes strand opening of oriC. Other results demonstrate that HU stabilizes the DnaA oligomer bound to oriC, and that the alpha subunit of HU interacts with the N-terminal region of DnaA. These observations support a model whereby DnaA interacts with the alpha dimer or the alphabeta heterodimer, depending on their cellular abundance, to recruit the respective form of HU to oriC. The greater activity of the alpha dimer of HU at oriC may stimulate initiation during early log phase compared with the lesser activity of the alphabeta heterodimer or the beta dimer.
Collapse
Affiliation(s)
- Sundari Chodavarapu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | |
Collapse
|
14
|
Choi SK, Saier MH. Mechanism of CcpA-mediated glucose repression of the resABCDE operon of Bacillus subtilis. J Mol Microbiol Biotechnol 2006; 11:104-10. [PMID: 16825793 DOI: 10.1159/000092822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The resABCDE operon of Bacillus subtilis encodes a three-protein complex involved in cytochrome c biogenesis as well as the ResE sensor kinase and the ResD response regulator that control electron transfer and other functions in response to oxygen availability. We have investigated the mechanism of CcpA-mediated control of res operon expression which occurs maximally in the stationary phase of growth. Two CcpA-binding (CRE) sites were found in the res operon, one (CRE1) in the control region in front of the resA promoter, the other (CRE2) in the resB structural gene. Both CRE sites proved to be essential for full CcpA-mediated glucose repression of res operon expression. We propose that both looping and road block mechanisms are involved in res operon control by CcpA.
Collapse
Affiliation(s)
- Soo-Keun Choi
- Division of Biological Sciences, University of California at San Diego, La Jolla, Calif., USA
| | | |
Collapse
|
15
|
Semsey S, Virnik K, Adhya S. A gamut of loops: meandering DNA. Trends Biochem Sci 2005; 30:334-41. [PMID: 15950878 DOI: 10.1016/j.tibs.2005.04.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 03/29/2005] [Accepted: 04/22/2005] [Indexed: 11/18/2022]
Abstract
Nucleoprotein complexes comprising short DNA loops (150 base pairs or less) are involved in a wide variety of DNA transactions (e.g. transcription regulation, replication and recombination) in both prokaryotes and eukaryotes, and also can be useful in designing nanostructures. In these higher-order nucleoprotein complexes, proteins bound to spatially separated sites on a DNA interact with each other by looping out the relatively stiff intervening DNA. Recent technological developments have enabled determination of DNA trajectories in a few DNA-loop-containing regulatory complexes. Results show that, in a given system, a specific DNA trajectory is preferred over others.
Collapse
Affiliation(s)
- Szabolcs Semsey
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | | | | |
Collapse
|
16
|
Das N, Chattoraj DK. Origin pairing ('handcuffing') and unpairing in the control of P1 plasmid replication. Mol Microbiol 2005; 54:836-49. [PMID: 15491371 DOI: 10.1111/j.1365-2958.2004.04322.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The P1 plasmid origin has an array of five binding sites (iterons) for the plasmid-encoded initiator protein RepA. Saturation of these sites is required for initiation. Iterons can also pair via their bound RepAs. The reaction, called handcuffing, is believed to be the key to control initiation negatively. Here we have determined some of the mechanistic details of the reaction. We show that handcuffed RepA-iteron complexes dissociate when they are diluted or challenged with cold competitor iterons, suggesting spontaneous reversibility of the handcuffing reaction. The complex formation increases with increased RepA binding, but decreases upon saturation of binding. Complex formation also decreases in the presence of molecular chaperones (DnaK and DnaJ) that convert RepA dimers to monomers. This indicates that dimers participate in handcuffing, and that chaperones are involved in reversing handcuffing. They could play a direct role by reducing dimers and an indirect role by increasing monomers that would compete out the weaker binding dimers from the origin. We propose that an increased monomer to dimer ratio is the key to reverse handcuffing.
Collapse
Affiliation(s)
- Nilangshu Das
- Laboratory of Biochemistry, CCR, NCI, NIH, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
17
|
Abstract
The number of E. coli genes/operons regulated from sites distant from the gene, though limited, steadily increases. The regulation of the ula genes, in charge of L-ascorbate utilization, as well as the negative autoregulation of the non-related lambdaCI and 186CI repressors, for efficient switching of the corresponding phages from lysogeny to lysis, are recent examples. The interaction between the two GalR dimers, separated by 114 bp, undetectable in vitro, has been genetically mapped. lac repressor-operator loops might insulate a gene and its expression from the genomic environment. The genes in charge of nitrogen assimilation sequentially react to ammonia deprivation, via an increasing intracellular NRI concentration. Other sigma54-dependent genes are activated in response to various stimuli.
Collapse
Affiliation(s)
- Michèle Amouyal
- Interactions à distance, CNRS, 121, av. Philippe-Auguste, 75011 Paris, France.
| |
Collapse
|
18
|
Semsey S, Tolstorukov MY, Virnik K, Zhurkin VB, Adhya S. DNA trajectory in the Gal repressosome. Genes Dev 2004; 18:1898-907. [PMID: 15289461 PMCID: PMC517409 DOI: 10.1101/gad.1209404] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 05/25/2004] [Indexed: 11/24/2022]
Abstract
The Gal repressosome is a higher-order nucleoprotein complex that represses transcription of the gal operon in Escherichia coli. During the repressosome assembly, a DNA loop is formed by the interaction of two GalR dimers, bound to two spatially separated operators, OE and OI, flanking the gal promoters. Structure-based genetic analysis indicated that GalR homodimers interact directly and form a V-shaped stacked tetramer in repressosome, further stabilized by HU binding to an architecturally critical position on the DNA. In this scheme of GalR tetramerization, the alignment of the operators in the DNA loop could be in either parallel (PL) or antiparallel (AL) mode. As each mode can have two alternative geometries differing in the mutual stacking of the OE- and OI-bound GalR dimers, it is possible to have four different DNA trajectories in the repressosome. Feasibilities of these trajectories were tested by in vitro transcription repression assays, first by isolating GalR mutants with altered operator specificity and then by constructing four different potential loops with mutant GalR heterodimers bound to specifically designed hybrid operators in such a way as to give rise to only one of the four putative trajectories. Results show that OE and OI adopt a mutual antiparallel orientation in an under-twisted DNA loop, consistent with the energetically optimal structural model. In this structure the center of the HU-binding site is located at the apex of the DNA loop. The approach reported here can be used to distinguish between otherwise indistinguishable DNA trajectories in complex nucleoprotein machines.
Collapse
Affiliation(s)
- Szabolcs Semsey
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
19
|
Guazzaroni ME, Terán W, Zhang X, Gallegos MT, Ramos JL. TtgV bound to a complex operator site represses transcription of the promoter for the multidrug and solvent extrusion TtgGHI pump. J Bacteriol 2004; 186:2921-7. [PMID: 15126451 PMCID: PMC400617 DOI: 10.1128/jb.186.10.2921-2927.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TtgGHI efflux pump of Pseudomonas putida extrudes a variety of antibiotics and solvents. We show that the ttgGHI operon is transcribed in vitro and in vivo from a single promoter and not from two overlapping promoters as previously proposed. The expression of this promoter is controlled by the TtgV repressor, whose operator expands through four helical turns that overlap the -10 region of the promoter. We also show that TtgV is released from its operator on binding of effectors such as aliphatic alcohols. Mutational analysis of the ttgGHI promoter revealed that substitutions at -13, -12, and -8 yielded promoters that were unable to drive transcription whereas certain mutations at -9, -11, and -6 to -3 increased expression in vivo. The cause of the increased expression was either a decrease in the affinity of the TtgV protein for its operator or an increase in the affinity of RNA polymerase for the mutant promoters.
Collapse
Affiliation(s)
- María-Eugenia Guazzaroni
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain
| | | | | | | | | |
Collapse
|
20
|
Virnik K, Lyubchenko YL, Karymov MA, Dahlgren P, Tolstorukov MY, Semsey S, Zhurkin VB, Adhya S. "Antiparallel" DNA loop in gal repressosome visualized by atomic force microscopy. J Mol Biol 2003; 334:53-63. [PMID: 14596799 DOI: 10.1016/j.jmb.2003.09.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA looping is often involved in positive and negative regulation of gene transcription in both prokaryotes and eukaryotes. The transcription of the gal operon of Escherichia coli from two overlapping promoters P1 and P2 is negatively regulated via Gal repressosome assembly. It involves binding of two dimeric Gal repressor proteins (GalR) to two operators, O(E) and O(I), flanking the two promoters, and formation of 113 bp DNA loop due to tetramerization of the two bound GalR dimers. The process requires negatively supercoiled DNA and the presence of the histone-like protein HU. Previous modeling of the repressosome based on evaluation of DNA elastic energy suggested a mutual antiparallel, rather than parallel, orientation of the two gal operators in an under-twisted DNA loop. To visualize the Gal loop by atomic force microscopy (AFM), plasmid DNA molecules were constructed with increased distance between the two operators. The AFM results demonstrated the formation of an antiparallel DNA loop in the Gal repressosome consistent with our earlier hypothesis. Importantly, the overall shape of the GalR mediated loop proved to be indistinguishable from that in the chimerical loop of the same size containing two lac operators (instead of two gal operators) and formed by LacI. In addition, a possibility of the gal operon repression mediated by GalR in the absence of HU was shown in the new DNA constructs. Implications of these findings for the DNA structural organization in bacterial nucleoid are discussed.
Collapse
Affiliation(s)
- Konstantin Virnik
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Semsey S, Geanacopoulos M, Lewis DE, Adhya S. Operator-bound GalR dimers close DNA loops by direct interaction: tetramerization and inducer binding. EMBO J 2002; 21:4349-56. [PMID: 12169637 PMCID: PMC126169 DOI: 10.1093/emboj/cdf431] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The assembly of the Gal repressosome, a higher order nucleoprotein complex that represses transcription of the gal operon in Escherichia coli, involves the formation of a DNA loop encompassing the promoter segment. GalR dimers bound to two spatially separated operators, O(E) and O(I), specifically interact with the histone-like protein HU and close the loop in supercoiled DNA. We isolated and characterized a GalR mutant containing an amino acid substitution (R282L) that can repress transcription in the absence of HU and supercoiled DNA both in vivo and in vitro. Repression involves the same DNA looping; deletion of either O(E) or O(I) makes the mutant GalR ineffective in repression. This and other results suggest that the R282L substitution increases the normal affinity between two DNA-bound GalR dimers, allowing looping. We conclude that GalR dimers interact directly and do not use HU as an adaptor in loop closure; HU and DNA supercoiling act in concert to stabilize the GalR tetramer. The stronger GalR-GalR interaction also made the gal transcription non-inducible, suggesting that the inducer binding acts by modulating tetramerization.
Collapse
Affiliation(s)
| | | | | | - Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
Corresponding author e-mail:
| |
Collapse
|