1
|
Mulyanti D, Soewandhi SN, Riani C. Insertion of prpoD_rpoS fragment enhances expression of recombinant protein by dps auto-inducible promoter in Escherichia coli. Mol Biol Rep 2021; 48:5833-5845. [PMID: 34342815 DOI: 10.1007/s11033-021-06562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Nowadays, recombinant therapeutic proteins have been widely produced and consumed. For the safety and effectiveness of the protein production, an auto-inducible expression vector is required to replace inducer interference, which is uneconomic and could be harmful. In this research, an auto-inducible expression plasmid, pCAD2_sod (a pBR322 derivate plasmid), which was under dps (RpoS-dependent gene) promoter control, was modified to provide RpoS at earlier phase. Hence, accumulates more target protein and resulting a new plasmid, pCAD2+_sod. pCAD2_sod had been constructed to automatically induces the expression of recombinant superoxide dismutase (SOD) from Staphylococcus equorum (rMnSODSeq) in the stationary growth phase of Escherichia coli. This work aimed to obtain pCAD2+_sod and determine the expression level of rMnSODSeq on mRNA and protein level. METHOD AND RESULTS A synthetic rpoS coding region under rpoD promoter control (prpoD_rpoS) was inserted to pCAD2_sod and generated pCAD2+_sod. The rMnSODSeq (24.3 kDa) produced from pCAD2+_sod was ~ 1.5 fold higher at 37 °C and more intense at 43 °C compared to that from pCAD2_sod, likewise shifted to earlier phase (after 1 h of incubation), as shown in the SDS-PAGE. The dismutase activity was also retained after zymography assay. The mRNA level from pCAD2+_sod was determined by qPCR and gave quantification cycle (Cq) values of cDNA lowest among others. It made the relative quantification (RQ) of the mRNA expression towards rho reference gene were high. CONCLUSIONS The prpoD_rpoS insertion shifts and increases the rMnSODSeq production from stationary to exponential phase. The pCAD2+_sod plasmid is potential for further recombinant protein productions.
Collapse
Affiliation(s)
- Dina Mulyanti
- School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung, 40132, Indonesia.,Department of Pharmacy, Bandung Islamic University, Ranggagading 8, Bandung, 40116, Indonesia
| | | | - Catur Riani
- School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung, 40132, Indonesia.
| |
Collapse
|
2
|
Ziegler CA, Freddolino PL. The leucine-responsive regulatory proteins/feast-famine regulatory proteins: an ancient and complex class of transcriptional regulators in bacteria and archaea. Crit Rev Biochem Mol Biol 2021; 56:373-400. [PMID: 34151666 DOI: 10.1080/10409238.2021.1925215] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Since the discovery of the Escherichia coli leucine-responsive regulatory protein (Lrp) almost 50 years ago, hundreds of Lrp homologs have been discovered, occurring in 45% of sequenced bacteria and almost all sequenced archaea. Lrp-like proteins are often referred to as the feast/famine regulatory proteins (FFRPs), reflecting their common regulatory roles. Acting as either global or local transcriptional regulators, FFRPs detect the environmental nutritional status by sensing small effector molecules (usually amino acids) and regulate the expression of genes involved in metabolism, virulence, motility, nutrient transport, stress tolerance, and antibiotic resistance to implement appropriate behaviors for the specific ecological niche of each organism. Despite FFRPs' complexity, a significant role in gene regulation, and prevalence throughout prokaryotes, the last comprehensive review on this family of proteins was published about a decade ago. In this review, we integrate recent notable findings regarding E. coli Lrp and other FFRPs across bacteria and archaea with previous observations to synthesize a more complete view on the mechanistic details and biological roles of this ancient class of transcription factors.
Collapse
Affiliation(s)
- Christine A Ziegler
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Zamora M, Ziegler CA, Freddolino PL, Wolfe AJ. A Thermosensitive, Phase-Variable Epigenetic Switch: pap Revisited. Microbiol Mol Biol Rev 2020; 84:e00030-17. [PMID: 32727743 PMCID: PMC7392537 DOI: 10.1128/mmbr.00030-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It has been more than a decade since the last comprehensive review of the phase-variable uropathogen-associated pyelonephritis-associated pilus (pap) genetic switch. Since then, important data have come to light, including additional factors that regulate pap expression, better characterization of H-NS regulation, the structure of the Lrp octamer in complex with pap regulatory DNA, the temperature-insensitive phenotype of a mutant lacking the acetyltransferase RimJ, evidence that key components of the regulatory machinery are acetylated, and new insights into the role of DNA binding by key regulators in shaping both the physical structure and regulatory state of the papI and papBA promoters. This review revisits pap, integrating these newer observations with older ones to produce a new model for the concerted behavior of this virulence-regulatory region.
Collapse
Affiliation(s)
- Mario Zamora
- Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Christine A Ziegler
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
4
|
Ariza Colpas P, Vicario E, De-La-Hoz-Franco E, Pineres-Melo M, Oviedo-Carrascal A, Patara F. Unsupervised Human Activity Recognition Using the Clustering Approach: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2702. [PMID: 32397446 PMCID: PMC7249206 DOI: 10.3390/s20092702] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 11/20/2022]
Abstract
Currently, many applications have emerged from the implementation of software development and hardware use, known as the Internet of things. One of the most important application areas of this type of technology is in health care. Various applications arise daily in order to improve the quality of life and to promote an improvement in the treatments of patients at home that suffer from different pathologies. That is why there has emerged a line of work of great interest, focused on the study and analysis of daily life activities, on the use of different data analysis techniques to identify and to help manage this type of patient. This article shows the result of the systematic review of the literature on the use of the Clustering method, which is one of the most used techniques in the analysis of unsupervised data applied to activities of daily living, as well as the description of variables of high importance as a year of publication, type of article, most used algorithms, types of dataset used, and metrics implemented. These data will allow the reader to locate the recent results of the application of this technique to a particular area of knowledge.
Collapse
Affiliation(s)
- Paola Ariza Colpas
- Department of Computer Science and Electronics, Universidad de la Costa CUC, Barranquilla 080002, Colombia;
| | - Enrico Vicario
- Department of Information Engineering, University of Florence, 50139 Firenze, Italy;
| | - Emiro De-La-Hoz-Franco
- Department of Computer Science and Electronics, Universidad de la Costa CUC, Barranquilla 080002, Colombia;
| | - Marlon Pineres-Melo
- Department of Systems Engineering, Universidad del Norte, Barranquilla 081001, Colombia;
| | - Ana Oviedo-Carrascal
- Faculty of Engineering in Information and Communication Technologies, Universidad Pontificia Bolivariana, Medellín 050031, Colombia;
| | - Fulvio Patara
- Department of Information Engineering, University of Florence, 50139 Firenze, Italy;
| |
Collapse
|
5
|
Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 2019; 43:304-339. [PMID: 30721976 PMCID: PMC6524683 DOI: 10.1093/femsre/fuz001] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
6
|
Torres Montaguth OE, Bervoets I, Peeters E, Charlier D. Competitive Repression of the artPIQM Operon for Arginine and Ornithine Transport by Arginine Repressor and Leucine-Responsive Regulatory Protein in Escherichia coli. Front Microbiol 2019; 10:1563. [PMID: 31354664 PMCID: PMC6640053 DOI: 10.3389/fmicb.2019.01563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/21/2019] [Indexed: 11/20/2022] Open
Abstract
Two out of the three major uptake systems for arginine in Escherichia coli are encoded by the artJ-artPIQM gene cluster. ArtJ is the high-affinity periplasmic arginine-specific binding protein (ArgBP-I), whereas artI encodes the arginine and ornithine periplasmic binding protein (AO). Both ArtJ and ArtI are supposed to combine with the inner membrane-associated ArtQMP2 transport complex of the ATP-binding cassette-type (ABC). Transcription of artJ is repressed by arginine repressor (ArgR) and the artPIQM operon is regulated by the transcriptional regulators ArgR and Leucine-responsive regulatory protein (Lrp). Whereas repression by ArgR requires arginine as corepressor, repression of PartP by Lrp is partially counteracted by leucine, its major effector molecule. We demonstrate that binding of dimeric Lrp to the artP control region generates four complexes with a distinct migration velocity, and that leucine has an effect on both global binding affinity and cooperativity in the binding. We identify the binding sites for Lrp in the artP control region, reveal interferences in the binding of ArgR and Lrp in vitro and demonstrate that the two transcription factors act as competitive repressors in vivo, each one being a more potent regulator in the absence of the other. This competitive behavior may be explained by the partial steric overlap of their respective binding sites. Furthermore, we demonstrate ArgR binding to an unusual position in the control region of the lrp gene, downstream of the transcription initiation site. From this unusual position for an ArgR-specific operator, ArgR has little direct effect on lrp expression, but interferes with the negative leucine-sensitive autoregulation exerted by Lrp. Direct arginine and ArgR-dependent repression of lrp could be observed with a 25-bp deletion mutant, in which the ArgR binding site was artificially moved to a position immediately downstream of the lrp transcription initiation site. This finding is reminiscent of a previous observation made for the carAB operon encoding carbamoylphosphate synthase, where ArgR bound in overlap with the downstream promoter P2 does not block transcription initiated 67 bp upstream at the P1 promoter, and further supports the hypothesis that ArgR does not act as an efficient roadblock.
Collapse
Affiliation(s)
- Oscar E Torres Montaguth
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
7
|
Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli. Amino Acids 2019; 51:1103-1127. [DOI: 10.1007/s00726-019-02757-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 11/26/2022]
|
8
|
Wang YY, Xu JZ, Zhang WG. Metabolic engineering of l-leucine production in Escherichia coli and Corynebacterium glutamicum: a review. Crit Rev Biotechnol 2019; 39:633-647. [PMID: 31055970 DOI: 10.1080/07388551.2019.1577214] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
l-Leucine, as an essential branched-chain amino acid for humans and animals, has recently been attracting much attention because of its potential for a fast-growing market demand. The applicability ranges from flavor enhancers, animal feed additives and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. Microbial fermentation is the major method for producing l-leucine by using Escherichia coli and Corynebacterium glutamicum as host bacteria. This review gives an overview of the metabolic pathway of l-leucine (i.e. production, import and export systems) and highlights the main regulatory mechanisms of operons in E. coli and C. glutamicum l-leucine biosynthesis. We summarize here the current trends in metabolic engineering techniques and strategies for manipulating l-leucine producing strains. Finally, future perspectives to construct industrially advantageous strains are considered with respect to recent advances in biology.
Collapse
Affiliation(s)
- Ying-Yu Wang
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China
| | - Jian-Zhong Xu
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China.,b The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China
| | - Wei-Guo Zhang
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China
| |
Collapse
|
9
|
Lu Z, Zhang X, Dai J, Wang Y, He W. Engineering of leucine-responsive regulatory protein improves spiramycin and bitespiramycin biosynthesis. Microb Cell Fact 2019; 18:38. [PMID: 30782164 PMCID: PMC6379999 DOI: 10.1186/s12934-019-1086-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/07/2019] [Indexed: 11/21/2022] Open
Abstract
Background Bitespiramycin (BT) is produced by recombinant spiramycin (SP) producing strain Streptomyces spiramyceticus harboring a heterologous 4″-O-isovaleryltransferase gene (ist). Exogenous l-Leucine (l-Leu) could improve the production of BT. The orf2 gene found from the genomic sequence of S. spiramyceticus encodes a leucine-responsive regulatory protein (Lrp) family regulator named as SSP_Lrp. The functions of SSP_Lrp and l-Leu involved in the biosynthesis of spiramycin (SP) and BT were investigated in S. spiramyceticus. Results SSP_Lrp was a global regulator directly affecting the expression of three positive regulatory genes, bsm23, bsm42 and acyB2, in SP or BT biosynthesis. Inactivation of SSP_Lrp gene in S. spiramyceticus 1941 caused minor increase of SP production. However, SP production of the ΔSSP_Lrp-SP strain containing an SSP_Lrp deficient of putative l-Leu binding domain was higher than that of S. spiramyceticus 1941 (476.2 ± 3.1 μg/L versus 313.3 ± 25.2 μg/L, respectively), especially SP III increased remarkably. The yield of BT in ΔSSP_Lrp-BT strain was more than twice than that in 1941-BT. The fact that intracellular concentrations of branched-chain amino acids (BCAAs) decreased markedly in the ΔSSP_Lrp-SP demonstrated increasing catabolism of BCAAs provided more precursors for SP biosynthesis. Comparative analysis of transcriptome profiles of the ΔSSP_Lrp-SP and S. spiramyceticus 1941 found 12 genes with obvious differences in expression, including 6 up-regulated genes and 6 down-regulated genes. The up-regulated genes are related to PKS gene for SP biosynthesis, isoprenoid biosynthesis, a Sigma24 family factor, the metabolism of aspartic acid, pyruvate and acyl-CoA; and the down-regulated genes are associated with ribosomal proteins, an AcrR family regulator, and biosynthesis of terpenoid, glutamate and glutamine. Conclusion SSP_Lrp in S. spiramyceticus was a negative regulator involved in the SP and BT biosynthesis. The deletion of SSP_Lrp putative l-Leu binding domain was advantageous for production of BT and SP, especially their III components. Electronic supplementary material The online version of this article (10.1186/s12934-019-1086-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoting Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, No. 1 Tian Tan Xi Li, Beijing, 100050, People's Republic of China
| | - Jianlu Dai
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, No. 1 Tian Tan Xi Li, Beijing, 100050, People's Republic of China
| | - Yiguang Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, No. 1 Tian Tan Xi Li, Beijing, 100050, People's Republic of China
| | - Weiqing He
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, No. 1 Tian Tan Xi Li, Beijing, 100050, People's Republic of China.
| |
Collapse
|
10
|
Mouammine A, Eich K, Frandi A, Collier J. Control of proline utilization by the Lrp-like regulator PutR in Caulobacter crescentus. Sci Rep 2018; 8:14677. [PMID: 30279528 PMCID: PMC6168545 DOI: 10.1038/s41598-018-32660-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/11/2018] [Indexed: 11/09/2022] Open
Abstract
Cellular metabolism recently emerged as a central player modulating the bacterial cell cycle. The Alphaproteobacterium Caulobacter crescentus appears as one of the best models to study these connections, but its metabolism is still poorly characterized. Considering that it lives in oligotrophic environments, its capacity to use amino-acids is often critical for its growth. Here, we characterized the C. crescentus PutA bi-functional enzyme and showed that it is required for the utilization of proline as a carbon source. We also found that putA transcription and proline utilization by PutA are strictly dependent on the Lrp-like PutR activator. The activation of putA by PutR needs proline, which most likely acts as an effector molecule for PutR. Surprisingly, we also observed that an over-production of PutR leads to cell elongation in liquid medium containing proline, while it inhibits colony formation even in the absence of proline on solid medium. These cell division and growth defects were equally pronounced in a ΔputA mutant background, indicating that PutR can play other roles beyond the control of proline catabolism. Altogether, these findings suggest that PutR might connect central metabolism with cell cycle processes.
Collapse
Affiliation(s)
- Annabelle Mouammine
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH, 1015, Switzerland
| | - Katharina Eich
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH, 1015, Switzerland
| | - Antonio Frandi
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH, 1015, Switzerland
| | - Justine Collier
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH, 1015, Switzerland.
| |
Collapse
|
11
|
Clinically Relevant Plasmid-Host Interactions Indicate that Transcriptional and Not Genomic Modifications Ameliorate Fitness Costs of Klebsiella pneumoniae Carbapenemase-Carrying Plasmids. mBio 2018; 9:mBio.02303-17. [PMID: 29691332 PMCID: PMC5915730 DOI: 10.1128/mbio.02303-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The rapid dissemination of antimicrobial resistance (AMR) around the globe is largely due to mobile genetic elements, such as plasmids. They confer resistance to critically important drugs, including extended-spectrum beta-lactams, carbapenems, and colistin. Large, complex resistance plasmids have evolved alongside their host bacteria. However, much of the research on plasmid-host evolution has focused on small, simple laboratory plasmids in laboratory-adapted bacterial hosts. These and other studies have documented mutations in both host and plasmid genes which occur after plasmid introduction to ameliorate fitness costs of plasmid carriage. We describe here the impact of two naturally occurring variants of a large AMR plasmid (pKpQIL) on a globally successful pathogen. In our study, after pKpQIL plasmid introduction, no changes in coding domain sequences were observed in their natural host, Klebsiella pneumoniae However, significant changes in chromosomal and plasmid gene expression may have allowed the bacterium to adapt to the acquisition of the AMR plasmid. We hypothesize that this was sufficient to ameliorate the associated fitness costs of plasmid carriage, as pKpQIL plasmids were maintained without selection pressure. The dogma that removal of selection pressure (e.g., antimicrobial exposure) results in plasmid loss due to bacterial fitness costs is not true for all plasmid/host combinations. We also show that pKpQIL impacted the ability of K. pneumoniae to form a biofilm, an important aspect of virulence. This study used highly relevant models to study the interaction between AMR plasmids and pathogens and revealed striking differences from results of studies done on laboratory-adapted plasmids and strains.IMPORTANCE Antimicrobial resistance is a serious problem facing society. Many of the genes that confer resistance can be shared between bacteria through mobile genetic elements, such as plasmids. Our work shows that when two clinically relevant AMR plasmids enter their natural host bacteria, there are changes in gene expression, rather than changes to gene coding sequences. These changes in gene expression ameliorate the potential fitness costs of carriage of these AMR plasmids. In line with this, the plasmids were stable within their natural host and were not lost in the absence of selective pressure. We also show that better understanding of the impact of resistance plasmids on fundamental pathogen biology, including biofilm formation, is crucial for fighting drug-resistant infections.
Collapse
|
12
|
Qin R, Sang Y, Ren J, Zhang Q, Li S, Cui Z, Yao YF. The Bacterial Two-Hybrid System Uncovers the Involvement of Acetylation in Regulating of Lrp Activity in Salmonella Typhimurium. Front Microbiol 2016; 7:1864. [PMID: 27909434 PMCID: PMC5112231 DOI: 10.3389/fmicb.2016.01864] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022] Open
Abstract
N𝜀-lysine acetylation is an abundant and important Post-translational modification in bacteria. We used the bacterial two-hybrid system to screen the genome library of the Salmonella Typhimurium to identify potential proteins involved in acetyltransferase Pat - or deacetylase CobB-mediated acetylation. Then, the in vitro (de)acetylation assays were used to validate the potential targets, such as STM14_1074, NrdF, RhaR. Lrp, a leucine-responsive regulatory protein and global regulator, was shown to interact with Pat. We further demonstrate that Lrp could be acetylated by Pat and deacetylated by NAD+-dependent CobB in vitro. Specifically, the conserved lysine residue 36 (K36) in helix-turn-helix (HTH) DNA-binding domain of Lrp was acetylated. Acetylation of K36 impaired the function of Lrp through altering the affinity with the target promoter. The mutation of K36 in chromosome mimicking acetylation enhanced the transcriptional level of itself and attenuated the mRNA levels of Lrp-regulated genes including fimA, which was confirmed by yeast agglutination assay. These findings demonstrate that the acetylation regulates the DNA-binding activity of Lrp, suggesting that acetylation modification of transcription factors is a conserved regulatory manner to modulate gene expression in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Ran Qin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University Nanjing, China
| | - Yu Sang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Jie Ren
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Qiufen Zhang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Shuxian Li
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University Nanjing, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of MedicineShanghai, China; Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China
| |
Collapse
|
13
|
Haverkorn van Rijsewijk BRB, Kochanowski K, Heinemann M, Sauer U. Distinct transcriptional regulation of the two Escherichia coli transhydrogenases PntAB and UdhA. MICROBIOLOGY-SGM 2016; 162:1672-1679. [PMID: 27488847 DOI: 10.1099/mic.0.000346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transhydrogenases catalyse interconversion of the redox cofactors NADH and NADPH, thereby conveying metabolic flexibility to balance catabolic NADPH formation with anabolic or stress-based consumption of NADPH. Escherichia coli is one of the very few microbes that possesses two isoforms: the membrane-bound, proton-translocating transhydrogenase PntAB and the cytosolic, energy-independent transhydrogenase UdhA. Despite their physiological relevance, we have only fragmented information on their regulation and the signals coordinating their counteracting activities. Here we investigated PntAB and UdhA regulation by studying transcriptional responses to environmental and genetic perturbations. By testing pntAB and udhA GFP reporter constructs in the background of WT E. coli and 62 transcription factor mutants during growth on different carbon sources, we show distinct transcriptional regulation of the two transhydrogenase promoters. Surprisingly, transhydrogenase regulation was independent of the actual catabolic overproduction or underproduction of NADPH but responded to nutrient levels and growth rate in a fashion that matches the cellular need for the redox cofactors NADPH and/or NADH. Specifically, the identified transcription factors Lrp, ArgP and Crp link transhydrogenase expression to particular amino acids and intracellular concentrations of cAMP. The overall identified set of regulators establishes a primarily biosynthetic role for PntAB and link UdhA to respiration.
Collapse
Affiliation(s)
- Bart R B Haverkorn van Rijsewijk
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Molecular Life Science Graduate School, Zurich, Switzerland
| | - Karl Kochanowski
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Systems Biology Graduate School, Zurich, Switzerland
| | - Matthias Heinemann
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Fu Y, Chen L, Zhang W. Regulatory mechanisms related to biofuel tolerance in producing microbes. J Appl Microbiol 2016; 121:320-32. [PMID: 27123568 DOI: 10.1111/jam.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/20/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Fu
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - L. Chen
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - W. Zhang
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| |
Collapse
|
15
|
Unoarumhi Y, Blumenthal RM, Matson JS. Evolution of a global regulator: Lrp in four orders of γ-Proteobacteria. BMC Evol Biol 2016; 16:111. [PMID: 27206730 PMCID: PMC4875751 DOI: 10.1186/s12862-016-0685-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/12/2016] [Indexed: 11/11/2022] Open
Abstract
Background Bacterial global regulators each regulate the expression of several hundred genes. In Escherichia coli, the top seven global regulators together control over half of all genes. Leucine-responsive regulatory protein (Lrp) is one of these top seven global regulators. Lrp orthologs are very widely distributed, among both Bacteria and Archaea. Surprisingly, even within the phylum γ-Proteobacteria (which includes E. coli), Lrp is a global regulator in some orders and a local regulator in others. This raises questions about the evolution of Lrp and, more broadly, of global regulators. Results We examined Lrp sequences from four bacterial orders of the γ-Proteobacteria using phylogenetic and Logo analyses. The orders studied were Enterobacteriales and Vibrionales, in which Lrp plays a global role in tested species; Pasteurellales, in which Lrp is a local regulator in the tested species; and Alteromonadales, an order closely related to the other three but in which Lrp has not yet been studied. For comparison, we analyzed the Lrp paralog AsnC, which in all tested cases is a local regulator. The Lrp and AsnC phylogenetic clusters each divided, as expected, into subclusters representing the Enterobacteriales, Vibrionales, and Pasteuralles. However the Alteromonadales did not yield coherent clusters for either Lrp or AsnC. Logo analysis revealed signatures associated with globally- vs. locally- acting Lrp orthologs, providing testable hypotheses for which portions of Lrp are responsible for a global vs. local role. These candidate regions include both ends of the Lrp polypeptide but not, interestingly, the highly-conserved helix-turn-helix motif responsible for DNA sequence specificity. Conclusions Lrp and AsnC have conserved sequence signatures that allow their unambiguous annotation, at least in γ-Proteobacteria. Among Lrp orthologs, specific residues correlated with global vs. local regulatory roles, and can now be tested to determine which are functionally relevant and which simply reflect divergence. In the Alteromonadales, it appears that there are different subgroups of Lrp orthologs, one of which may act globally while the other may act locally. These results suggest experiments to improve our understanding of the evolution of bacterial global regulators. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0685-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yvette Unoarumhi
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.,Program in Bioinformatics and Proteomics/Genomics, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.,Program in Bioinformatics and Proteomics/Genomics, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jyl S Matson
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.
| |
Collapse
|
16
|
Lee HJ, Gottesman S. sRNA roles in regulating transcriptional regulators: Lrp and SoxS regulation by sRNAs. Nucleic Acids Res 2016; 44:6907-23. [PMID: 27137887 PMCID: PMC5001588 DOI: 10.1093/nar/gkw358] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/21/2016] [Indexed: 11/13/2022] Open
Abstract
Post-transcriptional regulation of transcription factors contributes to regulatory circuits. We created translational reporter fusions for multiple central regulators in Escherichia coli and examined the effect of Hfq-dependent non-coding RNAs on these fusions. This approach yields an 'RNA landscape,' identifying Hfq-dependent sRNAs that regulate a given fusion. No significant sRNA regulation of crp or fnr was detected. hns was regulated only by DsrA, as previously reported. Lrp and SoxS were both found to be regulated post-transcriptionally. Lrp, ' L: eucine-responsive R: egulatory P: rotein,' regulates genes involved in amino acid biosynthesis and catabolism and other cellular functions. sRNAs DsrA, MicF and GcvB each independently downregulate the lrp translational fusion, confirming previous reports for MicF and GcvB. MicF and DsrA interact with an overlapping site early in the lrp ORF, while GcvB acts upstream at two independent sites in the long lrp leader. Surprisingly, GcvB was found to be responsible for significant downregulation of lrp after oxidative stress; MicF also contributed. SoxS, an activator of genes used to combat oxidative stress, is negatively regulated by sRNA MgrR. This study demonstrates that while not all global regulators are subject to sRNA regulation, post-transcriptional control by sRNAs allows multiple environmental signals to affect synthesis of the transcriptional regulator.
Collapse
Affiliation(s)
- Hyun-Jung Lee
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Song N, Cui Y, Li Z, Chen L, Liu S. New Targets and Cofactors for the Transcription Factor LrpA fromMycobacterium tuberculosis. DNA Cell Biol 2016; 35:167-76. [DOI: 10.1089/dna.2015.3040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Ningning Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yingying Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhaoli Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liping Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
18
|
Abstract
The biosynthesis of serine, glycine, and one-carbon (C1) units constitutes a major metabolic pathway in Escherichia coli and Salmonella enterica serovar Typhimurium. C1 units derived from serine and glycine are used in the synthesis of purines, histidine, thymine, pantothenate, and methionine and in the formylation of the aminoacylated initiator fMet-TRNAfMet used to start translation in E. coli and serovar Typhimurium. The need for serine, glycine, and C1 units in many cellular functions makes it necessary for the genes encoding enzymes for their synthesis to be carefully regulated to meet the changing demands of the cell for these intermediates. This review discusses the regulation of the following genes: serA, serB, and serC; gly gene; gcvTHP operon; lpdA; gcvA and gcvR; and gcvB genes. Threonine utilization (the Tut cycle) constitutes a secondary pathway for serine and glycine biosynthesis. L-Serine inhibits the growth of E. coli cells in GM medium, and isoleucine releases this growth inhibition. The E. coli glycine transport system (Cyc) has been shown to transport glycine, D-alanine, D-serine, and the antibiotic D-cycloserine. Transport systems often play roles in the regulation of gene expression, by transporting effector molecules into the cell, where they are sensed by soluble or membrane-bound regulatory proteins.
Collapse
|
19
|
Franchini AG, Ihssen J, Egli T. Effect of Global Regulators RpoS and Cyclic-AMP/CRP on the Catabolome and Transcriptome of Escherichia coli K12 during Carbon- and Energy-Limited Growth. PLoS One 2015. [PMID: 26204448 PMCID: PMC4512719 DOI: 10.1371/journal.pone.0133793] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
For heterotrophic microbes, limited availability of carbon and energy sources is one of the major nutritional factors restricting the rate of growth in most ecosystems. Physiological adaptation to this hunger state requires metabolic versatility which usually involves expression of a wide range of different catabolic pathways and of high-affinity carbon transporters; together, this allows for simultaneous utilization of mixtures of carbonaceous compounds at low concentrations. In Escherichia coli the stationary phase sigma factor RpoS and the signal molecule cAMP are the major players in the regulation of transcription under such conditions; however, their interaction is still not fully understood. Therefore, during growth of E. coli in carbon-limited chemostat culture at different dilution rates, the transcriptomes, expression of periplasmic proteins and catabolomes of strains lacking one of these global regulators, either rpoS or adenylate cyclase (cya), were compared to those of the wild-type strain. The inability to synthesize cAMP exerted a strong negative influence on the expression of alternative carbon source uptake and degradation systems. In contrast, absence of RpoS increased the transcription of genes belonging to high-affinity uptake systems and central metabolism, presumably due to reduced competition of σD with σS. Phenotypical analysis confirmed this observation: The ability to respire alternative carbon substrates and to express periplasmic high-affinity binding proteins was eliminated in cya and crp mutants, while these properties were not affected in the rpoS mutant. As expected, transcription of numerous stress defence genes was negatively affected by the rpoS knock-out mutation. Interestingly, several genes of the RpoS stress response regulon were also down-regulated in the cAMP-negative strain indicating a coordinated global regulation. The results demonstrate that cAMP is crucial for catabolic flexibility during slow, carbon-limited growth, whereas RpoS is primarily involved in the regulation of stress response systems necessary for the survival of this bacterium under hunger conditions.
Collapse
Affiliation(s)
- Alessandro G. Franchini
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
- * E-mail:
| | - Julian Ihssen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Thomas Egli
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Shimada T, Saito N, Maeda M, Tanaka K, Ishihama A. Expanded roles of leucine-responsive regulatory protein in transcription regulation of the Escherichia coli genome: Genomic SELEX screening of the regulation targets. Microb Genom 2015; 1:e000001. [PMID: 28348809 PMCID: PMC5320599 DOI: 10.1099/mgen.0.000001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/26/2015] [Indexed: 12/27/2022] Open
Abstract
Leucine-responsive regulatory protein (Lrp) is a transcriptional regulator for the genes involved in transport, biosynthesis and catabolism of amino acids in Escherichia coli. In order to identify the whole set of genes under the direct control of Lrp, we performed Genomic SELEX screening and identified a total of 314 Lrp-binding sites on the E. coli genome. As a result, the regulation target of Lrp was predicted to expand from the hitherto identified genes for amino acid metabolism to a set of novel target genes for utilization of amino acids for protein synthesis, including tRNAs, aminoacyl-tRNA synthases and rRNAs. Northern blot analysis indicated alteration of mRNA levels for at least some novel targets, including the aminoacyl-tRNA synthetase genes. Phenotype MicroArray of the lrp mutant indicated significant alteration in utilization of amino acids and peptides, whilst metabolome analysis showed variations in the concentration of amino acids in the lrp mutant. From these two datasets we realized a reverse correlation between amino acid levels and cell growth rate: fast-growing cells contain low-level amino acids, whilst a high level of amino acids exists in slow-growing cells. Taken together, we propose that Lrp is a global regulator of transcription of a large number of the genes involved in not only amino acid transport and metabolism, but also amino acid utilization.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan.,Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan.,Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
| | - Natsumi Saito
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan.,Department of Chemistry and Material Engineering, Tsuruoka National College of Technology, Yamagata, Japan
| | - Michihisa Maeda
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Kan Tanaka
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan.,Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
21
|
Shintani M, Suzuki-Minakuchi C, Nojiri H. Nucleoid-associated proteins encoded on plasmids: Occurrence and mode of function. Plasmid 2015; 80:32-44. [PMID: 25952329 DOI: 10.1016/j.plasmid.2015.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/14/2015] [Accepted: 04/22/2015] [Indexed: 01/31/2023]
Abstract
Nucleoid-associated proteins (NAPs) play a role in changing the shape of microbial DNA, making it more compact and affecting the regulation of transcriptional networks in host cells. Genes that encode NAPs include H-NS family proteins (H-NS, Ler, MvaT, BpH3, Bv3F, HvrA, and Lsr2), FIS, HU, IHF, Lrp, and NdpA, and are found in both microbial chromosomes and plasmid DNA. In the present study, NAP genes were distributed among 442 plasmids out of 4602 plasmid sequences, and many H-NS family proteins, and HU, IHF, Lrp, and NdpA were found in plasmids of Alpha-, Beta-, and Gammaproteobacteria, while HvrA, Lsr2, HU, and Lrp were found in other classes including Actinobacteria and Bacilli. Larger plasmids frequently carried multiple NAP genes. In addition, NAP genes were more frequently found in conjugative plasmids than non-transmissible plasmids. Several host cells carried the same types of H-NS family proteins on both their plasmids and chromosome(s), while this was not observed for other NAPs. Recent studies have shown that NAP genes on plasmids and chromosomes play important roles in the physical and regulatory integration of plasmids into the host cell.
Collapse
Affiliation(s)
- Masaki Shintani
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
22
|
Abstract
In this paper, we present KEGGscape a pathway data integration and visualization app for Cytoscape (
http://apps.cytoscape.org/apps/keggscape). KEGG is a comprehensive public biological database that contains large collection of human curated pathways. KEGGscape utilizes the database to reproduce the corresponding hand-drawn pathway diagrams with as much detail as possible in Cytoscape. Further, it allows users to import pathway data sets to visualize biologist-friendly diagrams using the Cytoscape core visualization function (Visual Style) and the ability to perform pathway analysis with a variety of Cytoscape apps. From the analyzed data, users can create complex and interactive visualizations which cannot be done in the KEGG PATHWAY web application. Experimental data with Affymetrix E. coli chips are used as an example to demonstrate how users can integrate pathways, annotations, and experimental data sets to create complex visualizations that clarify biological systems using KEGGscape and other Cytoscape apps.
Collapse
Affiliation(s)
- Kozo Nishida
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Osaka, 565-0874, Japan ; JST, National Bioscience Database Center (NBDC), Tokyo, 102-0081, Japan
| | - Keiichiro Ono
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Shigehiko Kanaya
- Graduate School of Information Science, Nara Institute of Science and Technology, Nara, 630-0101, Japan
| | - Koichi Takahashi
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Osaka, 565-0874, Japan
| |
Collapse
|
23
|
Leucine-responsive regulatory protein Lrp and PapI homologues influence phase variation of CS31A fimbriae. J Bacteriol 2014; 196:2944-53. [PMID: 24914179 DOI: 10.1128/jb.01622-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CS31A, a K88-related surface antigen specified by the clp operon, is a member of the type P family of adhesive factors and plays a key role in the establishment of disease caused by septicemic and enterotoxigenic Escherichia coli strains. Its expression is under the control of methylation-dependent transcriptional regulation, for which the leucine-responsive regulatory protein (Lrp) is essential. CS31A is preferentially in the OFF state and exhibits distinct regulatory features compared to the regulation of other P family members. In the present study, surface plasmon resonance and DNase I protection assays showed that Lrp binds to the distal moiety of the clp regulatory region with low micromolar affinity compared to its binding to the proximal moiety, which exhibits stronger, nanomolar affinity. The complex formation was also influenced by the addition of PapI or FooI, which increased the affinity of Lrp for the clp distal and proximal regions and was required to induce phase variation. The influence of PapI or FooI, however, was predominantly associated with a more complete shutdown of clp expression, in contrast to what has previously been observed with AfaF (a PapI ortholog). Taken together, these results suggest that the preferential OFF state observed in CS31A cells is mainly due to the weak interaction of the leucine-responsive regulatory protein with the clp distal region and that the PapI homolog favors the OFF phase. Within the large repertoire of fimbrial variants in the P family, our study illustrates that having a fimbrial operon that lacks its own PapI ortholog allows it to be more flexibly regulated by other orthologs in the cell.
Collapse
|
24
|
Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 2013; 26:308-41. [PMID: 23554419 DOI: 10.1128/cmr.00066-12] [Citation(s) in RCA: 460] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a primary enteric pathogen infecting both humans and animals. Infection begins with the ingestion of contaminated food or water so that salmonellae reach the intestinal epithelium and trigger gastrointestinal disease. In some patients the infection spreads upon invasion of the intestinal epithelium, internalization within phagocytes, and subsequent dissemination. In that case, antimicrobial therapy, based on fluoroquinolones and expanded-spectrum cephalosporins as the current drugs of choice, is indicated. To accomplish the pathogenic process, the Salmonella chromosome comprises several virulence mechanisms. The most important virulence genes are those located within the so-called Salmonella pathogenicity islands (SPIs). Thus far, five SPIs have been reported to have a major contribution to pathogenesis. Nonetheless, further virulence traits, such as the pSLT virulence plasmid, adhesins, flagella, and biofilm-related proteins, also contribute to success within the host. Several regulatory mechanisms which synchronize all these elements in order to guarantee bacterial survival have been described. These mechanisms govern the transitions from the different pathogenic stages and drive the pathogen to achieve maximal efficiency inside the host. This review focuses primarily on the virulence armamentarium of this pathogen and the extremely complicated regulatory network controlling its success.
Collapse
|
25
|
Membrane stress caused by octanoic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2013; 97:3239-51. [DOI: 10.1007/s00253-013-4773-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 02/04/2023]
|
26
|
Song N, Nguyen Duc T, van Oeffelen L, Muyldermans S, Peeters E, Charlier D. Expanded target and cofactor repertoire for the transcriptional activator LysM from Sulfolobus. Nucleic Acids Res 2013; 41:2932-49. [PMID: 23355617 PMCID: PMC3597687 DOI: 10.1093/nar/gkt021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Previously, Lrp-like transcriptional regulator LysM from the hyperthermoacidophilic crenarchaeon Sulfolobus solfataricus was proposed to have a single target, the lysWXJK operon of lysine biosynthesis, and a single effector molecule, l-lysine. Here we identify ∼70 novel binding sites for LysM in the S. solfataricus genome with a LysM-specific nanobody-based chromatin immunoprecipitation assay coupled to microarray hybridization (ChIP-chip) and in silico target site prediction using an energy-based position weight matrix, and validate these findings with in vitro binding. LysM binds to intergenic and coding regions, including promoters of various amino acid biosynthesis and transport genes. We confirm that l-lysine is the most potent effector molecule that reduces, but does not completely abolish, LysM binding, and show that several other amino acids and derivatives, including d-lysine, l-arginine, l-homoarginine, l-glutamine and l-methionine and branched-chain amino acids l-leucine, l-isoleucine and l-valine, significantly affect DNA-binding properties of LysM. Therefore, it appears from this study that LysM is a much more versatile regulator than previously thought, and that it uses a variety of amino acids to sense nutritional quality of the environment and to modulate expression of the metabolic machinery of Sulfolobus accordingly.
Collapse
Affiliation(s)
- Ningning Song
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
27
|
Vassart A, Van Wolferen M, Orell A, Hong Y, Peeters E, Albers SV, Charlier D. Sa-Lrp from Sulfolobus acidocaldarius is a versatile, glutamine-responsive, and architectural transcriptional regulator. Microbiologyopen 2012; 2:75-93. [PMID: 23255531 PMCID: PMC3584215 DOI: 10.1002/mbo3.58] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 11/30/2022] Open
Abstract
Sa-Lrp is a member of the leucine-responsive regulatory protein (Lrp)-like family of transcriptional regulators in Sulfolobus acidocaldarius. Previously, we demonstrated the binding of Sa-Lrp to the control region of its own gene in vitro. However, the function and cofactor of Sa-Lrp remained an enigma. In this work, we demonstrate that glutamine is the cofactor of Sa-Lrp by inducing the formation of octamers and increasing the DNA-binding affinity and sequence specificity. In vitro protein-DNA interaction assays indicate that Sa-Lrp binds to promoter regions of genes with a variety of functions including ammonia assimilation, transcriptional control, and UV-induced pili synthesis. DNA binding occurs with a specific affinity for AT-rich binding sites, and the protein induces DNA bending and wrapping upon binding, indicating an architectural role of the regulator. Furthermore, by analyzing an Sa-lrp deletion mutant, we demonstrate that the protein affects transcription of some of the genes of which the promoter region is targeted and that it is an important determinant of the cellular aggregation phenotype. Taking all these results into account, we conclude that Sa-Lrp is a glutamine-responsive global transcriptional regulator with an additional architectural role.
Collapse
Affiliation(s)
- Amelia Vassart
- Research Group of Microbiology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
28
|
He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH. Transcriptome profiling of Zymomonas mobilis under ethanol stress. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:75. [PMID: 23057803 PMCID: PMC3495753 DOI: 10.1186/1754-6834-5-75] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/02/2012] [Indexed: 05/12/2023]
Abstract
BACKGROUND High tolerance to ethanol is a desirable characteristics for ethanologenic strains used in industrial ethanol fermentation. A deeper understanding of the molecular mechanisms underlying ethanologenic strains tolerance of ethanol stress may guide the design of rational strategies to increase process performance in industrial alcoholic production. Many extensive studies have been performed in Saccharomyces cerevisiae and Escherichia coli. However, the physiological basis and genetic mechanisms involved in ethanol tolerance for Zymomonas mobilis are poorly understood on genomic level. To identify the genes required for tolerance to ethanol, microarray technology was used to investigate the transcriptome profiling of the ethanologenic Z. mobilis in response to ethanol stress. RESULTS We successfully identified 127 genes which were differentially expressed in response to ethanol. Ethanol up- or down-regulated genes related to cell wall/membrane biogenesis, metabolism, and transcription. These genes were classified as being involved in a wide range of cellular processes including carbohydrate metabolism, cell wall/membrane biogenesis, respiratory chain, terpenoid biosynthesis, DNA replication, DNA recombination, DNA repair, transport, transcriptional regulation, some universal stress response, etc. CONCLUSION In this study, genome-wide transcriptional responses to ethanol were investigated for the first time in Z. mobilis using microarray analysis.Our results revealed that ethanol had effects on multiple aspects of cellular metabolism at the transcriptional level and that membrane might play important roles in response to ethanol. Although the molecular mechanism involved in tolerance and adaptation of ethanologenic strains to ethanol is still unclear, this research has provided insights into molecular response to ethanol in Z. mobilis. These data will also be helpful to construct more ethanol resistant strains for cellulosic ethanol production in the future.
Collapse
Affiliation(s)
- Ming-xiong He
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renming Nanlu, Chengdu 610041, China
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041, P. R. China
| | - Bo Wu
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renming Nanlu, Chengdu 610041, China
| | - Zong-xia Shui
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renming Nanlu, Chengdu 610041, China
| | - Qi-chun Hu
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renming Nanlu, Chengdu 610041, China
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041, P. R. China
| | - Wen-guo Wang
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renming Nanlu, Chengdu 610041, China
| | - Fu-rong Tan
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renming Nanlu, Chengdu 610041, China
| | - Xiao-yu Tang
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renming Nanlu, Chengdu 610041, China
| | - Qi-li Zhu
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renming Nanlu, Chengdu 610041, China
| | - Ke Pan
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renming Nanlu, Chengdu 610041, China
| | - Qing Li
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renming Nanlu, Chengdu 610041, China
| | - Xiao-hong Su
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renming Nanlu, Chengdu 610041, China
| |
Collapse
|
29
|
A WNT/p21 circuit directed by the C-clamp, a sequence-specific DNA binding domain in TCFs. Mol Cell Biol 2012; 32:3648-62. [PMID: 22778133 DOI: 10.1128/mcb.06769-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The lymphoid enhancer factor 1/T cell factor (LEF/TCF) family of transcription factors are downstream effectors of the WNT signaling pathway, which drives colon tumorigenesis. LEF/TCFs have a DNA sequence-specific high-mobility group (HMG) box that binds Wnt response elements (WREs). The "E tail" isoforms of TCFs are alternatively spliced to include a second DNA binding domain called the C-clamp. We show that induction of a dominant negative C-clamp version of TCF1 (dnTCF1E) induces p21 expression and a stall in the growth of DLD1 colon cancer cells. Induction of a C-clamp mutant did not efficiently induce p21, nor did it stall cell growth. Microarray analysis revealed that induction of p21 by wild-type dnTCF1E (dnTCF1E(WT)) correlated with a decrease in expression of multiple p21 suppressors that act at multiple levels from transcription (SP5, YAP1, and RUNX1), RNA stability (MSI2), and protein stability (CUL4A). We show that the C-clamp is a sequence-specific DNA binding domain that can make contacts with 5'-RCCG-3' elements upstream or downstream of WREs. The C-clamp-RCCG interaction was critical for TCF1E-mediated transcriptional control of p21-connected target gene promoters. Our results indicate that a rapid-response WNT/p21 circuit is driven by C-clamp target gene selection.
Collapse
|
30
|
Prigent-Combaret C, Sanguin H, Champier L, Bertrand C, Monnez C, Colinon C, Blaha D, Ghigo JM, Cournoyer B. The bacterial thiopurine methyltransferase tellurite resistance process is highly dependent upon aggregation properties and oxidative stress response. Environ Microbiol 2012; 14:2645-60. [PMID: 22708879 DOI: 10.1111/j.1462-2920.2012.02802.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacterial thiopurine methyltransferases (bTPMTs) can favour resistance towards toxic tellurite oxyanions through a pathway leading to the emission of a garlic-like smell. Gene expression profiling completed by genetic, physiological and electron microscopy analyses was performed to identify key bacterial activities contributing to this resistance process. Escherichia coli strain MG1655 expressing the bTPMT was used as a cell model in these experiments. This strain produced a garlic-like smell which was found to be due to dimethyl telluride, and cell aggregates in culture media supplemented with tellurite. Properties involved in aggregation were correlated with cell attachment to polystyrene, which increased with tellurite concentrations. Gene expression profiling supported a role of adhesins in the resistance process with 14% of the tellurite-regulated genes involved in cell envelope, flagella and fimbriae biogenesis. Other tellurite-regulated genes were, at 27%, involved in energy, carbohydrate and amino acid metabolism including the synthesis of antioxidant proteins, and at 12% in the synthesis of transcriptional regulators and signal transduction systems. Escherichia coli mutants impaired in tellurite-regulated genes showed ubiquinone and adhesins synthesis, oxidative stress response, and efflux to be essential in the bTPMT resistance process. High tellurite resistance required a synergistic expression of these functions and an efficient tellurium volatilization by the bTPMT.
Collapse
Affiliation(s)
- Claire Prigent-Combaret
- Research group on «Bacterial Opportunistic Pathogens and Environment», Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Villeurbanne, F-69622, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH. Transcriptome profiling of Zymomonas mobilis under furfural stress. Appl Microbiol Biotechnol 2012; 95:189-99. [PMID: 22592554 DOI: 10.1007/s00253-012-4155-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/03/2012] [Accepted: 05/03/2012] [Indexed: 11/24/2022]
Abstract
Furfural from lignocellulosic hydrolysates is the prevalent inhibitor to microorganisms during cellulosic ethanol production, but the molecular mechanisms of tolerance to this inhibitor in Zymomonas mobilis are still unclear. In this study, genome-wide transcriptional responses to furfural were investigated in Z. mobilis using microarray analysis. We found that 433 genes were differentially expressed in response to furfural. Furfural up- or down-regulated genes related to cell wall/membrane biogenesis, metabolism, and transcription. However, furfural has a subtle negative effect on Entner-Doudoroff pathway mRNAs. Our results revealed that furfural had effects on multiple aspects of cellular metabolism at the transcriptional level and that membrane might play important roles in response to furfural. This research has provided insights into the molecular response to furfural in Z. mobilis, and it will be helpful to construct more furfural-resistant strains for cellulosic ethanol production.
Collapse
Affiliation(s)
- Ming-xiong He
- Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Section 4-13, Renming Nanlu, Chengdu 610041, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The Bayesian regularization method for high-throughput differential analysis, described in Baldi and Long (A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 2001: 17: 509-519) and implemented in the Cyber-T web server, is one of the most widely validated. Cyber-T implements a t-test using a Bayesian framework to compute a regularized variance of the measurements associated with each probe under each condition. This regularized estimate is derived by flexibly combining the empirical measurements with a prior, or background, derived from pooling measurements associated with probes in the same neighborhood. This approach flexibly addresses problems associated with low replication levels and technology biases, not only for DNA microarrays, but also for other technologies, such as protein arrays, quantitative mass spectrometry and next-generation sequencing (RNA-seq). Here we present an update to the Cyber-T web server, incorporating several useful new additions and improvements. Several preprocessing data normalization options including logarithmic and (Variance Stabilizing Normalization) VSN transforms are included. To augment two-sample t-tests, a one-way analysis of variance is implemented. Several methods for multiple tests correction, including standard frequentist methods and a probabilistic mixture model treatment, are available. Diagnostic plots allow visual assessment of the results. The web server provides comprehensive documentation and example data sets. The Cyber-T web server, with R source code and data sets, is publicly available at http://cybert.ics.uci.edu/.
Collapse
Affiliation(s)
- Matthew A Kayala
- Department of Computer Science and Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
33
|
Delihas N. Regulating the regulator: MicF RNA controls expression of the global regulator Lrp. Mol Microbiol 2012; 84:401-4. [PMID: 22380658 DOI: 10.1111/j.1365-2958.2012.08030.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies on the regulatory RNA MicF in Enterobacteriaceae reveal a pivotal role in gene regulation. Multiple target gene mRNAs were identified and, importantly, MicF RNA regulates the expression of the global regulatory gene lrp (Holmqvist et al., 2012; Corcoran et al., 2012). Thus MicF RNA is a central factor in a regulatory network that regulates bacterial cell physiology.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York, Stony Brook, NY 11794-5222, USA.
| |
Collapse
|
34
|
Kawamura T, Vartanian AS, Zhou H, Dahlquist FW. The Design Involved in PapI and Lrp Regulation of the pap Operon. J Mol Biol 2011; 409:311-32. [DOI: 10.1016/j.jmb.2011.01.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 11/30/2022]
|
35
|
Barkovits K, Schubert B, Heine S, Scheer M, Frankenberg-Dinkel N. Function of the bacteriophytochrome BphP in the RpoS/Las quorum-sensing network of Pseudomonas aeruginosa. Microbiology (Reading) 2011; 157:1651-1664. [DOI: 10.1099/mic.0.049007-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The bacterial phytochrome of Pseudomonas aeruginosa (PaBphP) is an in vitro-active red/far-red light sensor histidine kinase of a two-component regulatory system. Despite solid biochemical data, its function in this heterotrophic, opportunistic pathogen is still unknown. Previous studies established that the genes encoding the two necessary phytochrome components BphO, a chromophore-producing haem oxygenase, and BphP, the apo-phytochrome, are co-transcribed in a bicistronic operon. Transcription has been shown to be induced in the stationary phase and to be dependent on the alternative sigma factor RpoS. Here we show an additional regulation of bphP expression through the quorum-sensing (QS) regulator LasR. This regulation is also reflected in a combination of expression profile experiments and proteome analyses of wild-type and phytochrome-deficient strains. While PaBphP has a pleiotropic effect on global gene expression, 66 % of the downregulated genes in the phytochrome mutant display a link to the Las QS system. Most of these genes seem to be indirectly regulated by LasR through BphP and the unknown response regulator BphR. A model of phytochrome function within the Las QS network is presented.
Collapse
Affiliation(s)
- Katalin Barkovits
- Physiology of Microorganisms, Ruhr-University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | - Britta Schubert
- Physiology of Microorganisms, Ruhr-University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | - Sabrina Heine
- Physiology of Microorganisms, Ruhr-University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | - Maurice Scheer
- Institute for Microbiology, Technical University Braunschweig, 38106 Braunschweig, Germany
| | | |
Collapse
|
36
|
Ruiz J, Haneburger I, Jung K. Identification of ArgP and Lrp as transcriptional regulators of lysP, the gene encoding the specific lysine permease of Escherichia coli. J Bacteriol 2011; 193:2536-48. [PMID: 21441513 PMCID: PMC3133163 DOI: 10.1128/jb.00815-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 03/14/2011] [Indexed: 11/20/2022] Open
Abstract
Expression of lysP, which encodes the lysine-specific transporter LysP in Escherichia coli, is regulated by the concentration of exogenous available lysine. In this study, the LysR-type transcriptional regulator ArgP was identified as the activator of lysP expression. At lysine concentrations higher than 25 μM, lysP expression was shut off and phenocopied an argP deletion mutant. Purified ArgP-His(6) bound to the lysP promoter/control region at a sequence containing a conserved T-N(11)-A motif. Its affinity increased in the presence of lysine but not in the presence of the other known coeffector, arginine. In vivo data suggest that lysine-loaded ArgP and arginine-loaded ArgP compete at the lysP promoter. We propose that lysine-loaded ArgP prevents lysP transcription at the promoter clearance step, as described for the lysine-dependent regulation of argO (R. S. Laishram and J. Gowrishankar, Genes Dev. 21:1258-1272, 2007). The global regulator Lrp also bound to the lysP promoter/control region. An lrp mutant exhibited reduced lysP expression in the absence of external lysine. These results indicate that ArgP is a major regulator of lysP expression but that Lrp modulates lysP transcription under lysine-limiting conditions.
Collapse
Affiliation(s)
| | - Ina Haneburger
- Ludwig-Maximilians-Universität München, Munich Center for integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Grosshaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Ludwig-Maximilians-Universität München, Munich Center for integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Grosshaderner Strasse 2-4, 82152 Martinsried, Germany
| |
Collapse
|
37
|
Unexpected coregulator range for the global regulator Lrp of Escherichia coli and Proteus mirabilis. J Bacteriol 2010; 193:1054-64. [PMID: 21169483 DOI: 10.1128/jb.01183-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Lrp/AsnC family of transcription factors links gene regulation to metabolism in bacteria and archaea. Members of this family, collectively, respond to a wide range of amino acids as coregulators. In Escherichia coli, Lrp regulates over 200 genes directly and is well known to respond to leucine and, to a somewhat lesser extent, alanine. We focused on Lrp from Proteus mirabilis and E. coli, orthologs with 98% identity overall and identical helix-turn-helix motifs, for which a previous study nevertheless found functional differences. Sequence differences between these orthologs, within and adjacent to the amino acid-responsive RAM domain, led us to test for differential sensitivity to coregulatory amino acids. In the course of this investigation, we found, via in vivo reporter fusion assays and in vitro electrophoretic mobility shift experiments, that E. coli Lrp itself responded to a broader range of amino acids than was previously appreciated. In particular, for both the E. coli and P. mirabilis orthologs, Lrp responsiveness to methionine was similar in magnitude to that to leucine. Both Lrp orthologs are also fairly sensitive to Ile, His, and Thr. These observations suggest that Lrp ties gene expression in the Enterobacteriaceae rather extensively to physiological status, as reflected in amino acid pools. These findings also have substantial implications for attempts to model regulatory architecture from transcriptome measurements or to infer such architecture from genome sequences, and they suggest that even well-studied regulators deserve ongoing exploration.
Collapse
|
38
|
The Lrp family of transcription regulators in archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010:750457. [PMID: 21151646 PMCID: PMC2995911 DOI: 10.1155/2010/750457] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/20/2010] [Indexed: 11/26/2022]
Abstract
Archaea possess a eukaryotic-type basal transcription apparatus that is regulated by bacteria-like transcription regulators. A universal and abundant family of transcription regulators are the bacterial/archaeal Lrp-like regulators. The Lrp family is one of the best studied regulator families in archaea, illustrated by investigations of proteins from the archaeal model organisms: Sulfolobus, Pyrococcus, Methanocaldococcus, and Halobacterium. These regulators are extremely versatile in their DNA-binding properties, response to effector molecules, and molecular regulatory mechanisms. Besides being involved in the regulation of the amino acid metabolism, they also regulate central metabolic processes. It appears that these regulatory proteins are also involved in large regulatory networks, because of hierarchical regulations and the possible combinatorial use of different Lrp-like proteins. Here, we discuss the recent developments in our understanding of this important class of regulators.
Collapse
|
39
|
Trunk K, Benkert B, Quäck N, Münch R, Scheer M, Garbe J, Jänsch L, Trost M, Wehland J, Buer J, Jahn M, Schobert M, Jahn D. Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons. Environ Microbiol 2010; 12:1719-33. [PMID: 20553552 DOI: 10.1111/j.1462-2920.2010.02252.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The anaerobic metabolism of the opportunistic pathogen Pseudomonas aeruginosa is important for growth and biofilm formation during persistent infections. The two Fnr-type transcription factors Anr and Dnr regulate different parts of the underlying network in response to oxygen tension and NO. Little is known about all members of the Anr and Dnr regulons and the mediated immediate response to oxygen depletion. Comprehensive transcriptome and bioinformatics analyses in combination with a limited proteome analyses were used for the investigation of the P. aeruginosa response to an immediate oxygen depletion and for definition of the corresponding Anr and Dnr regulons. We observed at first the activation of fermentative pathways for immediate energy generation followed by induction of alternative respiratory chains. A solid position weight matrix model was deduced from the experimentally identified Anr boxes and used for identification of 170 putative Anr boxes in potential P. aeruginosa promoter regions. The combination with the experimental data unambiguously identified 130 new members for the Anr and Dnr regulons. The basis for the understanding of two regulons of P. aeruginosa central to biofilm formation and infection is now defined.
Collapse
Affiliation(s)
- Katharina Trunk
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ishihama A. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol Rev 2010; 34:628-45. [DOI: 10.1111/j.1574-6976.2010.00227.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Schwaiger R, Schwarz C, Furtwängler K, Tarasov V, Wende A, Oesterhelt D. Transcriptional control by two leucine-responsive regulatory proteins in Halobacterium salinarum R1. BMC Mol Biol 2010; 11:40. [PMID: 20509863 PMCID: PMC2894021 DOI: 10.1186/1471-2199-11-40] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 05/28/2010] [Indexed: 12/26/2022] Open
Abstract
Background Archaea combine bacterial-as well as eukaryotic-like features to regulate cellular processes. Halobacterium salinarum R1 encodes eight leucine-responsive regulatory protein (Lrp)-homologues. The function of two of them, Irp (OE3923F) and lrpA1 (OE2621R), were analyzed by gene deletion and overexpression, including genome scale impacts using microarrays. Results It was shown that Lrp affects the transcription of multiple target genes, including those encoding enzymes involved in amino acid synthesis, central metabolism, transport processes and other regulators of transcription. In contrast, LrpA1 regulates transcription in a more specific manner. The aspB3 gene, coding for an aspartate transaminase, was repressed by LrpA1 in the presence of L-aspartate. Analytical DNA-affinity chromatography was adapted to high salt, and demonstrated binding of LrpA1 to its own promoter, as well as L-aspartate dependent binding to the aspB3 promoter. Conclusion The gene expression profiles of two archaeal Lrp-homologues report in detail their role in H. salinarum R1. LrpA1 and Lrp show similar functions to those already described in bacteria, but in addition they play a key role in regulatory networks, such as controlling the transcription of other regulators. In a more detailed analysis ligand dependent binding of LrpA1 was demonstrated to its target gene aspB3.
Collapse
Affiliation(s)
- Rita Schwaiger
- Max Planck Institute of Biochemistry, Department of Membrane Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Gregg JL, Brown KE, Mintz EM, Piontkivska H, Fraizer GC. Analysis of gene expression in prostate cancer epithelial and interstitial stromal cells using laser capture microdissection. BMC Cancer 2010; 10:165. [PMID: 20426842 PMCID: PMC2876079 DOI: 10.1186/1471-2407-10-165] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 04/28/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The prostate gland represents a multifaceted system in which prostate epithelia and stroma have distinct physiological roles. To understand the interaction between stroma and glandular epithelia, it is essential to delineate the gene expression profiles of these two tissue types in prostate cancer. Most studies have compared tumor and normal samples by performing global expression analysis using a mixture of cell populations. This report presents the first study of prostate tumor tissue that examines patterns of differential expression between specific cell types using laser capture microdissection (LCM). METHODS LCM was used to isolate distinct cell-type populations and identify their gene expression differences using oligonucleotide microarrays. Ten differentially expressed genes were then analyzed in paired tumor and non-neoplastic prostate tissues by quantitative real-time PCR. Expression patterns of the transcription factors, WT1 and EGR1, were further compared in established prostate cell lines. WT1 protein expression was also examined in prostate tissue microarrays using immunohistochemistry. RESULTS The two-step method of laser capture and microarray analysis identified nearly 500 genes whose expression levels were significantly different in prostate epithelial versus stromal tissues. Several genes expressed in epithelial cells (WT1, GATA2, and FGFR-3) were more highly expressed in neoplastic than in non-neoplastic tissues; conversely several genes expressed in stromal cells (CCL5, CXCL13, IGF-1, FGF-2, and IGFBP3) were more highly expressed in non-neoplastic than in neoplastic tissues. Notably, EGR1 was also differentially expressed between epithelial and stromal tissues. Expression of WT1 and EGR1 in cell lines was consistent with these patterns of differential expression. Importantly, WT1 protein expression was demonstrated in tumor tissues and was absent in normal and benign tissues. CONCLUSIONS The prostate represents a complex mix of cell types and there is a need to analyze distinct cell populations to better understand their potential interactions. In the present study, LCM and microarray analysis were used to identify novel gene expression patterns in prostate cell populations, including identification of WT1 expression in epithelial cells. The relevance of WT1 expression in prostate cancer was confirmed by analysis of tumor tissue and cell lines, suggesting a potential role for WT1 in prostate tumorigenesis.
Collapse
Affiliation(s)
- Jennifer L Gregg
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | | | | | | | | |
Collapse
|
43
|
Hannah MA, Caldana C, Steinhauser D, Balbo I, Fernie AR, Willmitzer L. Combined transcript and metabolite profiling of Arabidopsis grown under widely variant growth conditions facilitates the identification of novel metabolite-mediated regulation of gene expression. PLANT PHYSIOLOGY 2010; 152:2120-9. [PMID: 20190096 PMCID: PMC2850026 DOI: 10.1104/pp.109.147306] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 02/12/2010] [Indexed: 05/19/2023]
Abstract
Regulation of metabolism at the level of transcription and its corollary metabolite-mediated regulation of transcription are well-documented mechanisms by which plants adapt to circumstance. That said the function of only a minority of transcription factor networks are fully understood and it seems likely that we have only identified a subset of the metabolites that play a mediator function in the regulation of transcription. Here we describe an integrated genomics approach in which we perform combined transcript and metabolite profiling on Arabidopsis (Arabidopsis thaliana) plants challenged by various environmental extremes. We chose this approach to generate a large variance in the levels of all parameters recorded. The data was then statistically evaluated to identify metabolites whose level robustly correlated with those of a particularly large number of transcripts. Since correlation alone provides no proof of causality we subsequently attempted to validate these putative mediators of gene expression via a combination of statistical analysis of data available in publicly available databases and iterative experimental evaluation. Data presented here suggest that, on adoption of appropriate caution, the approach can be used for the identification of metabolite mediators of gene expression. As an exemplary case study we document that in plants, as in yeast (Saccharomyces cerevisiae) and mammals, leucine plays an important role as a regulator of gene expression and provide a leucine response gene regulatory network.
Collapse
Affiliation(s)
| | | | | | | | | | - Lothar Willmitzer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| |
Collapse
|
44
|
Park JH, Lee SY. Fermentative production of branched chain amino acids: a focus on metabolic engineering. Appl Microbiol Biotechnol 2010; 85:491-506. [PMID: 19844702 DOI: 10.1007/s00253-009-2307-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 10/11/2009] [Accepted: 10/11/2009] [Indexed: 12/13/2022]
Abstract
The branched chain amino acids (BCAAs), L-valine, L-leucine, and L-isoleucine, have recently been attracting much attention as their potential to be applied in various fields, including animal feed additive, cosmetics, and pharmaceuticals, increased. Strategies for developing microbial strains efficiently producing BCAAs are now in transition toward systems metabolic engineering from random mutagenesis. The metabolism and regulatory circuits of BCAA biosynthesis need to be thoroughly understood for designing system-wide metabolic engineering strategies. Here we review the current knowledge on BCAAs including their biosynthetic pathways, regulations, and export and transport systems. Recent advances in the development of BCAA production strains are also reviewed with a particular focus on L-valine production strain. At the end, the general strategies for developing BCAA overproducers by systems metabolic engineering are suggested.
Collapse
Affiliation(s)
- Jin Hwan Park
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | | |
Collapse
|
45
|
Edwards D, de Abreu GCG, Labouriau R. Selecting high-dimensional mixed graphical models using minimal AIC or BIC forests. BMC Bioinformatics 2010; 11:18. [PMID: 20064242 PMCID: PMC2823705 DOI: 10.1186/1471-2105-11-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 01/11/2010] [Indexed: 01/24/2023] Open
Abstract
Background Chow and Liu showed that the maximum likelihood tree for multivariate discrete distributions may be found using a maximum weight spanning tree algorithm, for example Kruskal's algorithm. The efficiency of the algorithm makes it tractable for high-dimensional problems. Results We extend Chow and Liu's approach in two ways: first, to find the forest optimizing a penalized likelihood criterion, for example AIC or BIC, and second, to handle data with both discrete and Gaussian variables. We apply the approach to three datasets: two from gene expression studies and the third from a genetics of gene expression study. The minimal BIC forest supplements a conventional analysis of differential expression by providing a tentative network for the differentially expressed genes. In the genetics of gene expression context the method identifies a network approximating the joint distribution of the DNA markers and the gene expression levels. Conclusions The approach is generally useful as a preliminary step towards understanding the overall dependence structure of high-dimensional discrete and/or continuous data. Trees and forests are unrealistically simple models for biological systems, but can provide useful insights. Uses include the following: identification of distinct connected components, which can be analysed separately (dimension reduction); identification of neighbourhoods for more detailed analyses; as initial models for search algorithms with a larger search space, for example decomposable models or Bayesian networks; and identification of interesting features, such as hub nodes.
Collapse
Affiliation(s)
- David Edwards
- Institute of Genetics and Biotechnology, Faculty of Agricultural Sciences, Aarhus University, Aarhus, Denmark.
| | | | | |
Collapse
|
46
|
Peeters E, Nguyen Le Minh P, Foulquié-Moreno M, Charlier D. Competitive activation of the Escherichia coli argO gene coding for an arginine exporter by the transcriptional regulators Lrp and ArgP. Mol Microbiol 2009; 74:1513-26. [DOI: 10.1111/j.1365-2958.2009.06950.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Park CS, Zhong L, Tang SJ. Aberrant expression of synaptic plasticity-related genes in the NF1+/−mouse hippocampus. J Neurosci Res 2009; 87:3107-19. [DOI: 10.1002/jnr.22134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Michoel T, De Smet R, Joshi A, Marchal K, Van de Peer Y. Reverse-engineering transcriptional modules from gene expression data. Ann N Y Acad Sci 2009; 1158:36-43. [PMID: 19348630 DOI: 10.1111/j.1749-6632.2008.03943.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
"Module networks" are a framework to learn gene regulatory networks from expression data using a probabilistic model in which coregulated genes share the same parameters and conditional distributions. We present a method to infer ensembles of such networks and an averaging procedure to extract the statistically most significant modules and their regulators. We show that the inferred probabilistic models extend beyond the dataset used to learn the models.
Collapse
Affiliation(s)
- Tom Michoel
- Department of Plant Systems Biology, VIB, Gent, Belgium.
| | | | | | | | | |
Collapse
|
49
|
Dorman CJ. Nucleoid-associated proteins and bacterial physiology. ADVANCES IN APPLIED MICROBIOLOGY 2009; 67:47-64. [PMID: 19245936 DOI: 10.1016/s0065-2164(08)01002-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial physiology is enjoying a renaissance in the postgenomic era as investigators struggle to interpret the wealth of new data that has emerged and continues to emerge from genome sequencing projects and from analyses of bacterial gene regulation patterns using whole-genome methods at the transcriptional and posttranscriptional levels. Information from model organisms such as the Gram-negative bacterium Escherichia coli is proving to be invaluable in providing points of reference for such studies. An important feature of this work concerns the nature of global mechanisms of gene regulation where a relatively small number of regulatory proteins affect the expression of scores of genes simultaneously. The nucleoid-associated proteins, especially Factor for Inversion Stimulation (Fis), IHF, H-NS, HU, and Lrp, represent a prominent group of global regulators and studies of these proteins and their roles in bacterial physiology are providing new insights into how the bacterium governs gene expression in ways that maximize its competitive advantage.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, School of Genetics and Microbiology, Trinity College, Dublin 2, Ireland
| |
Collapse
|
50
|
Lemmens K, De Bie T, Dhollander T, De Keersmaecker SC, Thijs IM, Schoofs G, De Weerdt A, De Moor B, Vanderleyden J, Collado-Vides J, Engelen K, Marchal K. DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli. Genome Biol 2009; 10:R27. [PMID: 19265557 PMCID: PMC2690998 DOI: 10.1186/gb-2009-10-3-r27] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/15/2009] [Accepted: 03/06/2009] [Indexed: 11/13/2022] Open
Abstract
DISTILLER, a data integration framework for the inference of transcriptional module networks, is presented and used to investigate the condition dependency and modularity in Escherichia coli networks. We present DISTILLER, a data integration framework for the inference of transcriptional module networks. Experimental validation of predicted targets for the well-studied fumarate nitrate reductase regulator showed the effectiveness of our approach in Escherichia coli. In addition, the condition dependency and modularity of the inferred transcriptional network was studied. Surprisingly, the level of regulatory complexity seemed lower than that which would be expected from RegulonDB, indicating that complex regulatory programs tend to decrease the degree of modularity.
Collapse
Affiliation(s)
- Karen Lemmens
- Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|