1
|
Chen L, Weir JR. The molecular machinery of meiotic recombination. Biochem Soc Trans 2024; 52:379-393. [PMID: 38348856 PMCID: PMC10903461 DOI: 10.1042/bst20230712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
Meiotic recombination, a cornerstone of eukaryotic diversity and individual genetic identity, is essential for the creation of physical linkages between homologous chromosomes, facilitating their faithful segregation during meiosis I. This process requires that germ cells generate controlled DNA lesions within their own genome that are subsequently repaired in a specialised manner. Repair of these DNA breaks involves the modulation of existing homologous recombination repair pathways to generate crossovers between homologous chromosomes. Decades of genetic and cytological studies have identified a multitude of factors that are involved in meiotic recombination. Recent work has started to provide additional mechanistic insights into how these factors interact with one another, with DNA, and provide the molecular outcomes required for a successful meiosis. Here, we provide a review of the recent developments with a focus on protein structures and protein-protein interactions.
Collapse
Affiliation(s)
- Linda Chen
- Structural Biochemistry of Meiosis Group, Friedrich Miescher Laboratory, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - John R. Weir
- Structural Biochemistry of Meiosis Group, Friedrich Miescher Laboratory, Max-Planck-Ring 9, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Firlej M, Weir JR. Unwinding during stressful times: Mechanisms of helicases in meiotic recombination. Curr Top Dev Biol 2022; 151:191-215. [PMID: 36681470 DOI: 10.1016/bs.ctdb.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Successful meiosis I requires that homologous chromosomes be correctly linked before they are segregated. In most organisms this physical linkage is achieved through the generation of crossovers between the homologs. Meiotic recombination co-opts and modifies the canonical homologous recombination pathway to successfully generate crossovers One of the central components of this pathway are a number of conserved DNA helicases. Helicases couple nucleic acid binding to nucleotide hydrolysis and use this activity to modify DNA or protein-DNA substrates. During meiosis I it is necessary for the cell to modulate the canonical DNA repair pathways in order to facilitate the generation of interhomolog crossovers. Many of these meiotic modulations take place in pathways involving DNA helicases, or with a meiosis specific helicase. This short review explores what is currently understood about these helicases, their interaction partners, and the role of regulatory modifications during meiosis I. We focus in particular on the molecular structure and mechanisms of these helicases.
Collapse
Affiliation(s)
- Magdalena Firlej
- Structural Biochemistry of Meiosis Group, Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, Germany
| | - John R Weir
- Structural Biochemistry of Meiosis Group, Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, Germany.
| |
Collapse
|
3
|
OUP accepted manuscript. Hum Reprod 2022; 37:1664-1677. [DOI: 10.1093/humrep/deac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/02/2022] [Indexed: 11/13/2022] Open
|
4
|
Tekle YI, Wang F, Heidari A, Stewart AJ. Differential gene expression analysis and cytological evidence reveal a sexual stage of an amoeba with multiparental cellular and nuclear fusion. PLoS One 2020; 15:e0235725. [PMID: 33147262 PMCID: PMC7641356 DOI: 10.1371/journal.pone.0235725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
Sex is a hallmark of eukaryotes but its evolution in microbial eukaryotes is poorly elucidated. Recent genomic studies revealed microbial eukaryotes possess a genetic toolkit necessary for sexual reproduction. However, the mechanism of sexual development in a majority of microbial eukaryotes including amoebozoans is poorly characterized. The major hurdle in studying sex in microbial eukaryotes is a lack of observational evidence, primarily due to its cryptic nature. In this study, we used a tractable fusing amoeba, Cochliopodium, to investigate sexual development using stage-specific Differential Gene Expression (DGE) and cytological analyses. Both DGE and cytological results showed that most of the meiosis and sex-related genes are upregulated in Cochliopodium undergoing fusion in laboratory culture. Relative gene ontology (GO) category representations in unfused and fused cells revealed a functional skew of the fused transcriptome toward DNA metabolism, nucleus and ligases that are suggestive of a commitment to sexual development. However, the GO categories of unfused cells were dominated by metabolic pathways and other processes indicative of a vegetative phase. Our study provides strong evidence that the fused cells represent a sexual stage in Cochliopodium. Our findings have further implications in understanding the evolution and mechanism of inheritance involving multiparents in other eukaryotes with a similar reproductive strategy.
Collapse
Affiliation(s)
- Yonas I. Tekle
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
- * E-mail:
| | - Fang Wang
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Alireza Heidari
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | | |
Collapse
|
5
|
Hofstatter PG, Ribeiro GM, Porfírio‐Sousa AL, Lahr DJG. The Sexual Ancestor of all Eukaryotes: A Defense of the “Meiosis Toolkit”. Bioessays 2020; 42:e2000037. [DOI: 10.1002/bies.202000037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/08/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paulo G. Hofstatter
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Giulia M. Ribeiro
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Alfredo L. Porfírio‐Sousa
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Daniel J. G. Lahr
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| |
Collapse
|
6
|
Pyatnitskaya A, Borde V, De Muyt A. Crossing and zipping: molecular duties of the ZMM proteins in meiosis. Chromosoma 2019; 128:181-198. [PMID: 31236671 DOI: 10.1007/s00412-019-00714-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 11/25/2022]
Abstract
Accurate segregation of homologous chromosomes during meiosis depends on the ability of meiotic cells to promote reciprocal exchanges between parental DNA strands, known as crossovers (COs). For most organisms, including budding yeast and other fungi, mammals, nematodes, and plants, the major CO pathway depends on ZMM proteins, a set of molecular actors specifically devoted to recognize and stabilize CO-specific DNA intermediates that are formed during homologous recombination. The progressive implementation of ZMM-dependent COs takes place within the context of the synaptonemal complex (SC), a proteinaceous structure that polymerizes between homologs and participates in close homolog juxtaposition during prophase I of meiosis. While SC polymerization starts from ZMM-bound sites and ZMM proteins are required for SC polymerization in budding yeast and the fungus Sordaria, other organisms differ in their requirement for ZMM in SC elongation. This review provides an overview of ZMM functions and discusses their collaborative tasks for CO formation and SC assembly, based on recent findings and on a comparison of different model organisms.
Collapse
Affiliation(s)
- Alexandra Pyatnitskaya
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Paris Sorbonne Université, Paris, France
| | - Valérie Borde
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France.
- Paris Sorbonne Université, Paris, France.
| | - Arnaud De Muyt
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France.
- Paris Sorbonne Université, Paris, France.
| |
Collapse
|
7
|
Hofstatter PG, Lahr DJG. All Eukaryotes Are Sexual, unless Proven Otherwise: Many So-Called Asexuals Present Meiotic Machinery and Might Be Able to Have Sex. Bioessays 2019; 41:e1800246. [PMID: 31087693 DOI: 10.1002/bies.201800246] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/15/2019] [Indexed: 11/07/2022]
Abstract
Here a wide distribution of meiotic machinery is shown, indicating the occurrence of sexual processes in all major eukaryotic groups, without exceptions, including the putative "asexuals." Meiotic machinery has evolved from archaeal DNA repair machinery by means of ancestral gene duplications. Sex is very conserved and widespread in eukaryotes, even though its evolutionary importance is still a matter of debate. The main processes in sex are plasmogamy, followed by karyogamy and meiosis. Meiosis is fundamentally a chromosomal process, which implies recombination and ploidy reduction. Several eukaryotic lineages are proposed to be asexual because their sexual processes are never observed, but presumed asexuality correlates with lack of study. The authors stress the complete lack of meiotic proteins in nucleomorphs and their almost complete loss in the fungus Malassezia. Inversely, complete sets of meiotic proteins are present in fungal groups Glomeromycotina, Trichophyton, and Cryptococcus. Endosymbiont Perkinsela and endoparasitic Microsporidia also present meiotic proteins.
Collapse
Affiliation(s)
- Paulo G Hofstatter
- Departamento de ZoologiaRua do Matão, Instituto de Biociências, Universidade de São Paulo, travessa 14, 101CEP., 05508-090, Sâo Paulo, Brazil
| | - Daniel J G Lahr
- Departamento de ZoologiaRua do Matão, Instituto de Biociências, Universidade de São Paulo, travessa 14, 101CEP., 05508-090, Sâo Paulo, Brazil
| |
Collapse
|
8
|
Halldorsson BV, Palsson G, Stefansson OA, Jonsson H, Hardarson MT, Eggertsson HP, Gunnarsson B, Oddsson A, Halldorsson GH, Zink F, Gudjonsson SA, Frigge ML, Thorleifsson G, Sigurdsson A, Stacey SN, Sulem P, Masson G, Helgason A, Gudbjartsson DF, Thorsteinsdottir U, Stefansson K. Characterizing mutagenic effects of recombination through a sequence-level genetic map. Science 2019; 363:363/6425/eaau1043. [DOI: 10.1126/science.aau1043] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/16/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022]
Abstract
Genetic diversity arises from recombination and de novo mutation (DNM). Using a combination of microarray genotype and whole-genome sequence data on parent-child pairs, we identified 4,531,535 crossover recombinations and 200,435 DNMs. The resulting genetic map has a resolution of 682 base pairs. Crossovers exhibit a mutagenic effect, with overrepresentation of DNMs within 1 kilobase of crossovers in males and females. In females, a higher mutation rate is observed up to 40 kilobases from crossovers, particularly for complex crossovers, which increase with maternal age. We identified 35 loci associated with the recombination rate or the location of crossovers, demonstrating extensive genetic control of meiotic recombination, and our results highlight genes linked to the formation of the synaptonemal complex as determinants of crossovers.
Collapse
|
9
|
Hofstatter PG, Brown MW, Lahr DJG. Comparative Genomics Supports Sex and Meiosis in Diverse Amoebozoa. Genome Biol Evol 2018; 10:3118-3128. [PMID: 30380054 PMCID: PMC6263441 DOI: 10.1093/gbe/evy241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
Sex and reproduction are often treated as a single phenomenon in animals and plants, as in these organisms reproduction implies mixis and meiosis. In contrast, sex and reproduction are independent biological phenomena that may or may not be linked in the majority of other eukaryotes. Current evidence supports a eukaryotic ancestor bearing a mating type system and meiosis, which is a process exclusive to eukaryotes. Even though sex is ancestral, the literature regarding life cycles of amoeboid lineages depicts them as asexual organisms. Why would loss of sex be common in amoebae, if it is rarely lost, if ever, in plants and animals, as well as in fungi? One way to approach the question of meiosis in the "asexuals" is to evaluate the patterns of occurrence of genes for the proteins involved in syngamy and meiosis. We have applied a comparative genomic approach to study the occurrence of the machinery for plasmogamy, karyogamy, and meiosis in Amoebozoa, a major amoeboid supergroup. Our results support a putative occurrence of syngamy and meiotic processes in all major amoebozoan lineages. We conclude that most amoebozoans may perform mixis, recombination, and ploidy reduction through canonical meiotic processes. The present evidence indicates the possibility of sexual cycles in many lineages traditionally held as asexual.
Collapse
Affiliation(s)
- Paulo G Hofstatter
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University
| | - Daniel J G Lahr
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Brazil
| |
Collapse
|
10
|
Duroc Y, Kumar R, Ranjha L, Adam C, Guérois R, Md Muntaz K, Marsolier-Kergoat MC, Dingli F, Laureau R, Loew D, Llorente B, Charbonnier JB, Cejka P, Borde V. Concerted action of the MutLβ heterodimer and Mer3 helicase regulates the global extent of meiotic gene conversion. eLife 2017; 6. [PMID: 28051769 PMCID: PMC5215242 DOI: 10.7554/elife.21900] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022] Open
Abstract
Gene conversions resulting from meiotic recombination are critical in shaping genome diversification and evolution. How the extent of gene conversions is regulated is unknown. Here we show that the budding yeast mismatch repair related MutLβ complex, Mlh1-Mlh2, specifically interacts with the conserved meiotic Mer3 helicase, which recruits it to recombination hotspots, independently of mismatch recognition. This recruitment is essential to limit gene conversion tract lengths genome-wide, without affecting crossover formation. Contrary to expectations, Mer3 helicase activity, proposed to extend the displacement loop (D-loop) recombination intermediate, does not influence the length of gene conversion events, revealing non-catalytical roles of Mer3. In addition, both purified Mer3 and MutLβ preferentially recognize D-loops, providing a mechanism for limiting gene conversion in vivo. These findings show that MutLβ is an integral part of a new regulatory step of meiotic recombination, which has implications to prevent rapid allele fixation and hotspot erosion in populations. DOI:http://dx.doi.org/10.7554/eLife.21900.001
Collapse
Affiliation(s)
- Yann Duroc
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Rajeev Kumar
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Lepakshi Ranjha
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Céline Adam
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Raphaël Guérois
- I2BC, iBiTec-S, CEA, CNRS UMR 9198, Université Paris-Sud, Gif-sur-Yvette, France.,Université Paris Sud, Orsay, France
| | - Khan Md Muntaz
- CRCM, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, CNRS UMR7258, Marseille, France
| | - Marie-Claude Marsolier-Kergoat
- I2BC, iBiTec-S, CEA, CNRS UMR 9198, Université Paris-Sud, Gif-sur-Yvette, France.,Université Paris Sud, Orsay, France.,Musée de l'Homme, CNRS UMR 7206, Paris, France
| | - Florent Dingli
- Institut Curie, Centre de Recherche, PSL Research University, LSMP, Paris, France
| | - Raphaëlle Laureau
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, PSL Research University, LSMP, Paris, France
| | - Bertrand Llorente
- CRCM, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, CNRS UMR7258, Marseille, France
| | - Jean-Baptiste Charbonnier
- I2BC, iBiTec-S, CEA, CNRS UMR 9198, Université Paris-Sud, Gif-sur-Yvette, France.,Université Paris Sud, Orsay, France
| | - Petr Cejka
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Valérie Borde
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
11
|
Colas I, Macaulay M, Higgins JD, Phillips D, Barakate A, Posch M, Armstrong SJ, Franklin FCH, Halpin C, Waugh R, Ramsay L. A spontaneous mutation in MutL-Homolog 3 (HvMLH3) affects synapsis and crossover resolution in the barley desynaptic mutant des10. THE NEW PHYTOLOGIST 2016; 212:693-707. [PMID: 27392293 DOI: 10.1111/nph.14061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/11/2016] [Indexed: 05/18/2023]
Abstract
Although meiosis is evolutionarily conserved, many of the underlying mechanisms show species-specific differences. These are poorly understood in large genome plant species such as barley (Hordeum vulgare) where meiotic recombination is very heavily skewed to the ends of chromosomes. The characterization of mutant lines can help elucidate how recombination is controlled. We used a combination of genetic segregation analysis, cytogenetics, immunocytology and 3D imaging to genetically map and characterize the barley meiotic mutant DESYNAPTIC 10 (des10). We identified a spontaneous exonic deletion in the orthologue of MutL-Homolog 3 (HvMlh3) as the causal lesion. Compared with wild-type, des10 mutants exhibit reduced recombination and fewer chiasmata, resulting in the loss of obligate crossovers and leading to chromosome mis-segregation. Using 3D structured illumination microscopy (3D-SIM), we observed that normal synapsis progression was also disrupted in des10, a phenotype that was not evident with standard confocal microscopy and that has not been reported with Mlh3 knockout mutants in Arabidopsis. Our data provide new insights on the interplay between synapsis and recombination in barley and highlight the need for detailed studies of meiosis in nonmodel species. This study also confirms the importance of early stages of prophase I for the control of recombination in large genome cereals.
Collapse
Affiliation(s)
- Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Malcolm Macaulay
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - James D Higgins
- University of Leicester, Adrian Building, University Road, Leicester, LE1 7RH, UK
| | - Dylan Phillips
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Abdellah Barakate
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Markus Posch
- Light Microscopy Facility, College of Life Sciences, Dundee, DD1 5EH, UK
| | - Susan J Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Claire Halpin
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| |
Collapse
|
12
|
Baumbach J, Pudake RN, Johnson C, Kleinhans K, Ollhoff A, Palmer RG, Bhattacharyya MK, Sandhu D. Transposon Tagging of a Male-Sterility, Female-Sterility Gene, St8, Revealed that the Meiotic MER3 DNA Helicase Activity Is Essential for Fertility in Soybean. PLoS One 2016; 11:e0150482. [PMID: 26930200 PMCID: PMC4773125 DOI: 10.1371/journal.pone.0150482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/14/2016] [Indexed: 11/19/2022] Open
Abstract
The W4 locus in soybean encodes a dihydroflavonol-4-reductase (DFR2) that regulates pigmentation patterns in flowers and hypocotyl. The mutable w4-m allele that governs variegated flowers has arisen through insertion of a CACTA-type transposable element, Tgm9, in DFR2. In the w4-m line, reversion from variegated to purple flower indicates excision of Tgm9, and its insertion at a new locus. Previously, we have identified a male-sterile, female-sterile mutant among the selfed progenies of a revertant plant carrying only purple flowers. Co-segregation between Tgm9 and the sterility phenotype suggested that the mutant was generated by insertion of Tgm9 at the St8 locus. The transposon was localized to exon 10 of Glyma.16G072300 that shows high identity to the MER3 DNA helicase involved in crossing over. Molecular analysis of fertile branches from two independent revertant plants confirmed precise excision of Tgm9 from the st8 allele, which restored fertility. In soybean, the gene is expressed in flower-buds, trifoliate leaves and stem. Phylogenetic analysis placed St8 in a clade with the Arabidopsis and rice MER3 suggesting that St8 is most likely the orthologous MER3 soybean gene. This study established the utility of Tgm9 in gene identification as well as in forward and reverse genetics studies.
Collapse
Affiliation(s)
- Jordan Baumbach
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wiconsin, 54481, United States of America
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Ramesh N. Pudake
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Callie Johnson
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wiconsin, 54481, United States of America
| | - Kaylin Kleinhans
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wiconsin, 54481, United States of America
| | - Alexandrea Ollhoff
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wiconsin, 54481, United States of America
| | - Reid G. Palmer
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Madan K. Bhattacharyya
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Devinder Sandhu
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wiconsin, 54481, United States of America
- USDA-ARS Salinity Lab., 450 W. Big Springs Rd., Riverside, California, 92507, United States of America
| |
Collapse
|
13
|
Abstract
The study of homologous recombination has its historical roots in meiosis. In this context, recombination occurs as a programmed event that culminates in the formation of crossovers, which are essential for accurate chromosome segregation and create new combinations of parental alleles. Thus, meiotic recombination underlies both the independent assortment of parental chromosomes and genetic linkage. This review highlights the features of meiotic recombination that distinguish it from recombinational repair in somatic cells, and how the molecular processes of meiotic recombination are embedded and interdependent with the chromosome structures that characterize meiotic prophase. A more in-depth review presents our understanding of how crossover and noncrossover pathways of meiotic recombination are differentiated and regulated. The final section of this review summarizes the studies that have defined defective recombination as a leading cause of pregnancy loss and congenital disease in humans.
Collapse
Affiliation(s)
- Neil Hunter
- Howard Hughes Medical Institute, Department of Microbiology & Molecular Genetics, Department of Molecular & Cellular Biology, Department of Cell Biology & Human Anatomy, University of California Davis, Davis, California 95616
| |
Collapse
|
14
|
Li J, Farmer AD, Lindquist IE, Dukowic-Schulze S, Mudge J, Li T, Retzel EF, Chen C. Characterization of a set of novel meiotically-active promoters in Arabidopsis. BMC PLANT BIOLOGY 2012; 12:104. [PMID: 22776406 PMCID: PMC3462685 DOI: 10.1186/1471-2229-12-104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/13/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Homologous recombination, together with selection, laid the foundation for traditional plant breeding. The recombination process that takes place during meiotic cell division is crucial for the creation of novel variations of highly desired traits by breeders. Gaining control over this process is important for molecular breeding to achieve more precise, large-scale and quicker plant improvement. As conventional ubiquitous promoters are neither tissue-specific nor efficient in driving gene expression in meiocytes, promoters with high meiotic activities are potential candidates for manipulating the recombination process. So far, only a few meiotically-active promoters have been reported. Recently developed techniques to profile the transcriptome landscape of isolated meiocytes provided the means to discover promoters from genes that are actively expressed in meiosis. RESULTS In a screen for meiotically-active promoters, we examined ten promoter sequences that are associated with novel meiotic candidate genes. Each promoter was tested by expressing a GFP reporter gene in Arabidopsis. Characterization of regulatory regions revealed that these meiotically-active promoters possessed conserved motifs and motif arrangement. Some of the promoters unite optimal properties which are invaluable for meiosis-directed studies such as delivering specific gene expression in early meiosis I and/or meiosis II. Furthermore, the examination of homologs of the corresponding genes within green plants points to a great potential of applying the information from Arabidopsis to other species, especially crop plants. CONCLUSIONS We identified ten novel meiotically-active promoters; which, along with their homologs, are prime candidates to specifically drive gene expression during meiosis in plants and can thus provide important tools for meiosis study and crop breeding.
Collapse
Affiliation(s)
- Junhua Li
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN, 55108, USA
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Andrew D Farmer
- National Center for Genome Resources, 2935 Rodeo Park Drive E, Santa Fe, NM, 87505, USA
| | - Ingrid E Lindquist
- National Center for Genome Resources, 2935 Rodeo Park Drive E, Santa Fe, NM, 87505, USA
| | - Stefanie Dukowic-Schulze
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN, 55108, USA
| | - Joann Mudge
- National Center for Genome Resources, 2935 Rodeo Park Drive E, Santa Fe, NM, 87505, USA
| | - Tao Li
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN, 55108, USA
| | - Ernest F Retzel
- National Center for Genome Resources, 2935 Rodeo Park Drive E, Santa Fe, NM, 87505, USA
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN, 55108, USA
| |
Collapse
|
15
|
Shen Y, Tang D, Wang K, Wang M, Huang J, Luo W, Luo Q, Hong L, Li M, Cheng Z. ZIP4 in homologous chromosome synapsis and crossover formation in rice meiosis. J Cell Sci 2012; 125:2581-91. [PMID: 22393242 DOI: 10.1242/jcs.090993] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In budding yeast, the ZMM complex is closely associated with class I crossovers and synaptonemal complex (SC) formation. However, the relationship between the ZMM genes remains unclear in most higher eukaryotes. Here, we identify the rice ZIP4 homolog, a member of the ZMM gene group, and explore its relationship with two other characterized ZMM genes, MER3 and ZEP1. Our results show that in the rice zip4 mutant, the chiasma frequency is greatly reduced, although synapsis proceeds with only mild defects. Immunocytological analyses of wild-type rice reveal that ZIP4 presents as punctuate foci and colocalizes with MER3 in prophase I meiocytes. Additionally, ZIP4 is essential for the loading of MER3 onto chromosomes, but not vice versa. Double-mutant analyses show that zip4 mer3 displays a greater decrease in the mean number of chiasmata than either of the zip4 or mer3 single mutants, suggesting that ZIP4 and MER3 work cooperatively to promote CO formation but their individual contributions are not completely identical in rice. Although zep1 alone gives an increased chiasma number, both zip4 zep1 and mer3 zep1 show a much lower chiasma number than the zip4 or mer3 single mutants. These results imply that the normal functions of ZIP4 and MER3 are required for the regulation of COs by ZEP1.
Collapse
Affiliation(s)
- Yi Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation. Mol Cell 2011; 44:373-84. [PMID: 22055184 DOI: 10.1016/j.molcel.2011.08.039] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/08/2011] [Accepted: 08/27/2011] [Indexed: 12/26/2022]
Abstract
Demethylation by the AlkB dioxygenases represents an important mechanism for repair of N-alkylated nucleotides. However, little is known about their functions in mammalian cells. We report the purification of the ALKBH3 complex and demonstrate its association with the activating signal cointegrator complex (ASCC). ALKBH3 is overexpressed in various cancers, and both ALKBH3 and ASCC are important for alkylation damage resistance in these tumor cell lines. ASCC3, the largest subunit of ASCC, encodes a 3'-5' DNA helicase, whose activity is crucial for the generation of single-stranded DNA upon which ALKBH3 preferentially functions for dealkylation. In cell lines that are dependent on ALKBH3 and ASCC3 for alkylation damage resistance, loss of ALKBH3 or ASCC3 leads to increased 3-methylcytosine and reduced cell proliferation, which correlates with pH2A.X and 53BP1 foci formation. Our data provide a molecular mechanism by which ALKBH3 collaborates with ASCC to maintain genomic integrity in a cell-type specific manner.
Collapse
|
17
|
Factors affecting splicing strength of yeast genes. Comp Funct Genomics 2011; 2011:212146. [PMID: 22162666 PMCID: PMC3226532 DOI: 10.1155/2011/212146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 09/06/2011] [Indexed: 01/30/2023] Open
Abstract
Accurate and efficient splicing is of crucial importance for highly-transcribed intron-containing genes (ICGs) in rapidly replicating unicellular eukaryotes such as the budding yeast Saccharomyces cerevisiae. We characterize the 5' and 3' splice sites (ss) by position weight matrix scores (PWMSs), which is the highest for the consensus sequence and the lowest for splice sites differing most from the consensus sequence and used PWMS as a proxy for splicing strength. HAC1, which is known to be spliced by a nonspliceosomal mechanism, has the most negative PWMS for both its 5' ss and 3' ss. Several genes under strong splicing regulation and requiring additional splicing factors for their splicing also have small or negative PWMS values. Splicing strength is higher for highly transcribed ICGs than for lowly transcribed ICGs and higher for transcripts that bind strongly to spliceosomes than those that bind weakly. The 3' splice site features a prominent poly-U tract before the 3'AG. Our results suggest the potential of using PWMS as a screening tool for ICGs that are either spliced by a nonspliceosome mechanism or under strong splicing regulation in yeast and other fungal species.
Collapse
|
18
|
Wu Y, Sommers JA, Khan I, de Winter JP, Brosh RM. Biochemical characterization of Warsaw breakage syndrome helicase. J Biol Chem 2011; 287:1007-21. [PMID: 22102414 DOI: 10.1074/jbc.m111.276022] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the human ChlR1 gene are associated with a unique genetic disorder known as Warsaw breakage syndrome characterized by cellular defects in sister chromatid cohesion and hypersensitivity to agents that induce replication stress. A role of ChlR1 helicase in sister chromatid cohesion was first evidenced by studies of the yeast homolog Chl1p; however, its cellular functions in DNA metabolism are not well understood. We carefully examined the DNA substrate specificity of purified recombinant human ChlR1 protein and the biochemical effect of a patient-derived mutation, a deletion of a single lysine (K897del) in the extreme C terminus of ChlR1. The K897del clinical mutation abrogated ChlR1 helicase activity on forked duplex or D-loop DNA substrates by perturbing its DNA binding and DNA-dependent ATPase activity. Wild-type ChlR1 required a minimal 5' single-stranded DNA tail of 15 nucleotides to efficiently unwind a simple duplex DNA substrate. The additional presence of a 3' single-stranded DNA tail as short as five nucleotides dramatically increased ChlR1 helicase activity, demonstrating the preference of the enzyme for forked duplex structures. ChlR1 unwound G-quadruplex (G4) DNA with a strong preference for a two-stranded antiparallel G4 (G2') substrate and was only marginally active on a four-stranded parallel G4 structure. The marked difference in ChlR1 helicase activity on the G4 substrates, reflected by increased binding to the G2' substrate, distinguishes ChlR1 from the sequence-related FANCJ helicase mutated in Fanconi anemia. The biochemical results are discussed in light of the known cellular defects associated with ChlR1 deficiency.
Collapse
Affiliation(s)
- Yuliang Wu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
19
|
Pena V, Jovin SM, Fabrizio P, Orlowski J, Bujnicki JM, Lührmann R, Wahl MC. Common design principles in the spliceosomal RNA helicase Brr2 and in the Hel308 DNA helicase. Mol Cell 2009; 35:454-66. [PMID: 19716790 DOI: 10.1016/j.molcel.2009.08.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/17/2009] [Accepted: 08/12/2009] [Indexed: 10/20/2022]
Abstract
Brr2 is a unique DExD/H box protein required for catalytic activation and disassembly of the spliceosome. It contains two tandem helicase cassettes that both comprise dual RecA-like domains and a noncanonical Sec63 unit. The latter may bestow the enzyme with unique properties. We have determined crystal structures of the C-terminal Sec63 unit of yeast Brr2, revealing three domains, two of which resemble functional modules of a DNA helicase, Hel308, despite lacking significant sequence similarity. This structural similarity together with sequence conservation between the enzymes throughout the RecA-like domains and a winged helix domain allowed us to devise a structural model of the N-terminal active cassette of Brr2. We consolidated the model by rational mutagenesis combined with splicing and U4/U6 di-snRNA unwinding assays, highlighting how the RecA-like domains and the Sec63 unit form a functional entity that appears suitable for unidirectional and processive RNA duplex unwinding during spliceosome activation and disassembly.
Collapse
Affiliation(s)
- Vladimir Pena
- Abteilung Zelluläre Biochemie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Wang K, Tang D, Wang M, Lu J, Yu H, Liu J, Qian B, Gong Z, Wang X, Chen J, Gu M, Cheng Z. MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice. J Cell Sci 2009; 122:2055-63. [DOI: 10.1242/jcs.049080] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MER3, a ZMM protein, is required for the formation of crossovers in Saccharomyces cerevisiae and Arabidopsis. Here, MER3, the first identified ZMM gene in a monocot, is characterized by map-based cloning in rice (Oryza sativa). The null mutation of MER3 results in complete sterility without any vegetative defects. Cytological analyses show that chiasma frequency is reduced dramatically in mer3 mutants and the remaining chiasmata distribute randomly among different pollen mother cells, implying possible coexistence of two kinds of crossover in rice. Immunocytological analyses reveal that MER3 only exists as foci in prophase I meiocytes. In addition, MER3 does not colocalize with PAIR2 at the beginning of prophase I, but locates on one end of PAIR2 fragments at later stages, whereas MER3 foci merely locate on one end of REC8 fragments when signals start to be seen in early prophase I. The normal loading of PAIR2 and REC8 in mer3 implies that their loading is independent of MER3. On the contrary, the absence of MER3 signal in pair2 mutants indicates that PAIR2 is essential for the loading and further function of MER3.
Collapse
Affiliation(s)
- Kejian Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mo Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jufei Lu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Hengxiu Yu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jiafan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Baoxiang Qian
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiyun Gong
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xin Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jianmin Chen
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Minghong Gu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
21
|
Sakaguchi K, Ishibashi T, Uchiyama Y, Iwabata K. The multi-replication protein A (RPA) system--a new perspective. FEBS J 2009; 276:943-63. [PMID: 19154342 DOI: 10.1111/j.1742-4658.2008.06841.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Replication protein A (RPA) complex has been shown, using both in vivo and in vitro approaches, to be required for most aspects of eukaryotic DNA metabolism: replication, repair, telomere maintenance and homologous recombination. Here, we review recent data concerning the function and biological importance of the multi-RPA complex. There are distinct complexes of RPA found in the biological kingdoms, although for a long time only one type of RPA complex was believed to be present in eukaryotes. Each complex probably serves a different role. In higher plants, three distinct large and medium subunits are present, but only one species of the smallest subunit. Each of these protein subunits forms stable complexes with their respective partners. They are paralogs as complex. Humans possess two paralogs and one analog of RPA. The multi-RPA system can be regarded as universal in eukaryotes. Among eukaryotic kingdoms, paralogs, orthologs, analogs and heterologs of many DNA synthesis-related factors, including RPA, are ubiquitous. Convergent evolution seems to be ubiquitous in these processes. Using recent findings, we review the composition and biological functions of RPA complexes.
Collapse
Affiliation(s)
- Kengo Sakaguchi
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan.
| | | | | | | |
Collapse
|
22
|
Coprinus cinereus Mer3 is required for synaptonemal complex formation during meiosis. Chromosoma 2008; 118:127-39. [PMID: 18841377 DOI: 10.1007/s00412-008-0185-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 09/04/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
Abstract
Mer3 is an evolutionarily conserved DNA helicase that has crucial roles in meiotic recombination and crossover formation. We have identified the MER3 homolog in Coprinus cinereus (Ccmer3) and show that it is expressed in zygotene and pachytene meiocytes. Immunostaining analysis indicated that CcMer3 was localized on chromosomes at zygotene and pachytene and CcMer3 foci were more frequent on paired than unpaired chromosomes. We generated a C. cinereus mer3 mutant (#1) and found that it showed abnormal meiosis progression and underwent apoptosis after prophase I. Basidiospore production in #1 was reduced to 0.8% of the wild-type level; the spores showed slower germination at 25 degrees C but were similar to the wild type at 37 degrees C. Electron microscopic analysis of chromosome spreads revealed that axial elements were formed in the mutant but that synapsis was defective, resulting in a reduction in spore production. Our results demonstrate that CcMer3 is required for synaptonemal complex formation after axial elements align and is thus essential for homologous synapsis.
Collapse
|
23
|
Ehmsen KT, Heyer WD. Biochemistry of Meiotic Recombination: Formation, Processing, and Resolution of Recombination Intermediates. GENOME DYNAMICS AND STABILITY 2008; 3:91. [PMID: 20098639 PMCID: PMC2809983 DOI: 10.1007/7050_2008_039] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Meiotic recombination ensures accurate chromosome segregation during the first meiotic division and provides a mechanism to increase genetic heterogeneity among the meiotic products. Unlike homologous recombination in somatic (vegetative) cells, where sister chromatid interactions prevail and crossover formation is avoided, meiotic recombination is targeted to involve homologs, resulting in crossovers to connect the homologs before anaphase of the first meiotic division. The mechanisms responsible for homolog choice and crossover control are poorly understood, but likely involve meiosis-specific recombination proteins, as well as meiosis-specific chromosome organization and architecture. Much progress has been made to identify and biochemically characterize many of the proteins acting during meiotic recombination. This review will focus on the proteins that generate and process heteroduplex DNA, as well as those that process DNA junctions during meiotic recombination, with particular attention to how recombination activities promote crossover resolution between homologs.
Collapse
Affiliation(s)
- Kirk T. Ehmsen
- Section of Microbiology, University of California, Davis, One Shields Ave, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology, University of California, Davis, One Shields Ave, Davis, CA 95616-8665, USA
- Section of Molecular and Cellular Biology, University of California, Davis, One Shields Ave, Davis, CA 95616-8665, USA
| |
Collapse
|
24
|
Sung P, Klein H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 2006; 7:739-50. [PMID: 16926856 DOI: 10.1038/nrm2008] [Citation(s) in RCA: 489] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Homologous recombination (HR) is an important mechanism for the repair of damaged chromosomes, for preventing the demise of damaged replication forks, and for several other aspects of chromosome maintenance. As such, HR is indispensable for genome integrity, but it must be regulated to avoid deleterious events. Mutations in the tumour-suppressor protein BRCA2, which has a mediator function in HR, lead to cancer formation. DNA helicases, such as Bloom's syndrome protein (BLM), regulate HR at several levels, in attenuating unwanted HR events and in determining the outcome of HR. Defects in BLM are also associated with the cancer phenotype. The past several years have witnessed dramatic advances in our understanding of the mechanism and regulation of HR.
Collapse
Affiliation(s)
- Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
25
|
Abstract
New evidence suggests that the model plant Arabidopsis has two biochemically distinct pathways that produce genetic crossovers. Studies in several organisms have revealed that one kind of crossover regulation - crossover interference - is applied differently from species to species. Arabidopsis appears to use an interference system similar to that of budding yeast.
Collapse
Affiliation(s)
- Gregory P Copenhaver
- Department of Biology, The University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
26
|
Chen C, Zhang W, Timofejeva L, Gerardin Y, Ma H. The Arabidopsis ROCK-N-ROLLERS gene encodes a homolog of the yeast ATP-dependent DNA helicase MER3 and is required for normal meiotic crossover formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:321-34. [PMID: 16045469 DOI: 10.1111/j.1365-313x.2005.02461.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent studies in Saccharomyces cerevisiae have unveiled that meiotic recombination crossovers are formed by two genetically distinct pathways: a major interference-sensitive pathway and a minor interference-insensitive pathway. Several proteins, including the MSH4/MSH5 heterodimer and the MER3 DNA helicase, are indispensable for the interference-sensitive pathway. MSH4 homologs have been identified in mice and Arabidopsis and shown to be required for normal levels of crossovers, suggesting that the function of MSH4 may be conserved among major eukaryotic kingdoms. However, it is not known whether an MER3-like function is also required for meiosis in animals and plants. We have identified an Arabidopsis gene that encodes a putative MER3 homolog and is preferentially expressed in meiocytes. T-DNA insertional mutants of this gene exhibit defects in fertility and meiosis. Detailed cytological studies indicate that the mutants are defective in homolog synapsis and crossover formation, resulting in a reduction of bivalents and in the formation of univalents at late prophase I. We have named this gene ROCK-N-ROLLERS (RCK) to reflect the mutant phenotype of chromosomes undergoing the meiotic 'dance' either in pairs or individually. Our results demonstrate that an MER3-like function is required for meiotic crossover in plants and provide further support for the idea that Arabidopsis, like the budding yeast, possesses both interference-sensitive and insensitive pathways for crossover formation.
Collapse
Affiliation(s)
- Changbin Chen
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
27
|
Argueso JL, Wanat J, Gemici Z, Alani E. Competing crossover pathways act during meiosis in Saccharomyces cerevisiae. Genetics 2005; 168:1805-16. [PMID: 15611158 PMCID: PMC1448724 DOI: 10.1534/genetics.104.032912] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In Saccharomyces cerevisiae the MSH4-MSH5, MLH1-MLH3, and MUS81-MMS4 complexes act to promote crossing over during meiosis. MSH4-MSH5, but not MUS81-MMS4, promotes crossovers that display interference. A role for MLH1-MLH3 in crossover control is less clear partly because mlh1Delta mutants retain crossover interference yet display a decrease in crossing over that is only slightly less severe than that seen in msh4Delta and msh5Delta mutants. We analyzed the effects of msh5Delta, mlh1Delta, and mms4Delta single, double, and triple mutants on meiotic crossing over at four consecutive genetic intervals on chromosome XV using newly developed computer software. mlh1Delta mms4Delta double mutants displayed the largest decrease in crossing over (13- to 15-fold) of all mutant combinations, yet these strains displayed relatively high spore viability (42%). In contrast, msh5Delta mms4Delta and msh5Delta mms4Delta mlh1Delta mutants displayed smaller decreases in crossing over (4- to 6-fold); however, spore viability (18-19%) was lower in these strains than in mlh1Delta mms4Delta strains. These data suggest that meiotic crossing over can occur in yeast through three distinct crossover pathways. In one pathway, MUS81-MMS4 promotes interference-independent crossing over; in a second pathway, both MSH4-MSH5 and MLH1-MLH3 promote interference-dependent crossovers. A third pathway, which appears to be repressed by MSH4-MSH5, yields deleterious crossovers.
Collapse
Affiliation(s)
- Juan Lucas Argueso
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | |
Collapse
|
28
|
Gupta R, Sharma S, Sommers JA, Jin Z, Cantor SB, Brosh RM. Analysis of the DNA substrate specificity of the human BACH1 helicase associated with breast cancer. J Biol Chem 2005; 280:25450-60. [PMID: 15878853 DOI: 10.1074/jbc.m501995200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have investigated the DNA substrate specificity of BACH1 (BRCA1-associated C-terminal helicase). The importance of various DNA structural elements for efficient unwinding by purified recombinant BACH1 helicase was examined. The results indicated that BACH1 preferentially binds and unwinds a forked duplex substrate compared with a duplex flanked by only one single-stranded DNA (ssDNA) tail. In support of its DNA substrate preference, helicase sequestration studies revealed that BACH1 can be preferentially trapped by forked duplex molecules. BACH1 helicase requires a minimal 5 ' ssDNA tail of 15 nucleotides for unwinding of conventional duplex DNA substrates; however, the enzyme is able to catalytically release the third strand of the homologous recombination intermediate D-loop structure irrespective of DNA tail status. In contrast, BACH1 completely fails to unwind a synthetic Holliday junction structure. Moreover, BACH1 requires nucleic acid continuity in the 5 ' ssDNA tail of the forked duplex substrate within six nucleotides of the ssDNA-dsDNA junction to initiate efficiently DNA unwinding. These studies provide the first detailed information on the DNA substrate specificity of BACH1 helicase and provide insight to the types of DNA structures the enzyme is likely to act upon to perform its functions in DNA repair or recombination.
Collapse
Affiliation(s)
- Rigu Gupta
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
29
|
Anuradha S, Muniyappa K. Molecular aspects of meiotic chromosome synapsis and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:49-132. [PMID: 16096027 DOI: 10.1016/s0079-6603(04)79002-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- S Anuradha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
30
|
Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O'Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 2004; 68:1-108. [PMID: 15007097 PMCID: PMC362109 DOI: 10.1128/mmbr.68.1.1-108.2004] [Citation(s) in RCA: 434] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present an analysis of over 1,100 of the approximately 10,000 predicted proteins encoded by the genome sequence of the filamentous fungus Neurospora crassa. Seven major areas of Neurospora genomics and biology are covered. First, the basic features of the genome, including the automated assembly, gene calls, and global gene analyses are summarized. The second section covers components of the centromere and kinetochore complexes, chromatin assembly and modification, and transcription and translation initiation factors. The third area discusses genome defense mechanisms, including repeat induced point mutation, quelling and meiotic silencing, and DNA repair and recombination. In the fourth section, topics relevant to metabolism and transport include extracellular digestion; membrane transporters; aspects of carbon, sulfur, nitrogen, and lipid metabolism; the mitochondrion and energy metabolism; the proteasome; and protein glycosylation, secretion, and endocytosis. Environmental sensing is the focus of the fifth section with a treatment of two-component systems; GTP-binding proteins; mitogen-activated protein, p21-activated, and germinal center kinases; calcium signaling; protein phosphatases; photobiology; circadian rhythms; and heat shock and stress responses. The sixth area of analysis is growth and development; it encompasses cell wall synthesis, proteins important for hyphal polarity, cytoskeletal components, the cyclin/cyclin-dependent kinase machinery, macroconidiation, meiosis, and the sexual cycle. The seventh section covers topics relevant to animal and plant pathogenesis and human disease. The results demonstrate that a large proportion of Neurospora genes do not have homologues in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. The group of unshared genes includes potential new targets for antifungals as well as loci implicated in human and plant physiology and disease.
Collapse
Affiliation(s)
- Katherine A Borkovich
- Department of Plant Pathology, University of California, Riverside, California 92521, USA. Katherine/
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mazina OM, Mazin AV, Nakagawa T, Kolodner RD, Kowalczykowski SC. Saccharomyces cerevisiae Mer3 helicase stimulates 3'-5' heteroduplex extension by Rad51; implications for crossover control in meiotic recombination. Cell 2004; 117:47-56. [PMID: 15066281 DOI: 10.1016/s0092-8674(04)00294-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 03/10/2004] [Accepted: 03/17/2004] [Indexed: 11/22/2022]
Abstract
Crossover and noncrossover recombinants can form by two different pathways during meiotic recombination in Saccharomyces cerevisiae. The MER3 gene is known to affect selectively crossover, but not noncrossover, recombination. The Mer3 protein is a DNA helicase that unwinds duplex DNA in the 3' to 5' direction. To define the underlying molecular steps of meiotic recombination, we investigated the role of Mer3 helicase in DNA strand exchange promoted by Rad51 protein. We found that Mer3 helicase does not function as an initiator of DNA pairing events but, rather, it stimulates DNA heteroduplex extension in the 3' --> 5' direction relative to the incoming (or displaced) single-stranded DNA. Conversely, Mer3 helicase blocks DNA heteroduplex extension in the 5' --> 3' direction. Our results support the idea that Mer3 helicase stabilizes nascent joint molecules via DNA heteroduplex extension to permit capture of the second processed end of a double-stranded DNA break, a step which is required for crossover recombinant product formation.
Collapse
Affiliation(s)
- Olga M Mazina
- Ludwig Institute for Cancer Research, Cancer Center and Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
32
|
Ozsoy AZ, Ragonese HM, Matson SW. Analysis of helicase activity and substrate specificity of Drosophila RECQ5. Nucleic Acids Res 2003; 31:1554-64. [PMID: 12595564 PMCID: PMC149836 DOI: 10.1093/nar/gkg243] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RecQ5 is one of five RecQ helicase homologs identified in humans. Three of the human RecQ homologs (BLM, WRN and RTS) have been linked to autosomal recessive human genetic disorders (Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome, respectively) that display increased genomic instability and cause elevated levels of cancers in addition to other symptoms. To understand the role of RecQ helicases in maintaining genomic stability, the WRN, BLM and Escherichia coli RecQ helicases have been characterized in terms of their DNA substrate specificity. However, little is known about other members of the RecQ family. Here we show that Drosophila RECQ5 helicase is a structure-specific DNA helicase like the other RecQ helicases biochemically characterized so far, although the substrate specificity is not identical to that of WRN and BLM helicases. Drosophila RECQ5 helicase is capable of unwinding 3' Flap, three-way junction, fork and three-strand junction substrates at lower protein concentrations compared to 5' Flap, 12 nt bubble and synthetic Holliday junction structures, which can be unwound efficiently by WRN and BLM.
Collapse
Affiliation(s)
- A Zeynep Ozsoy
- Curriculum in Genetics and Molecular Biology and. Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|