1
|
Petsalaki E, Balafouti S, Kyriazi AA, Zachos G. The abscission checkpoint senses chromatin bridges through Top2α recruitment to DNA knots. J Cell Biol 2023; 222:e202303123. [PMID: 37638884 PMCID: PMC10461104 DOI: 10.1083/jcb.202303123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/13/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
In response to chromatin bridges, the abscission checkpoint delays completion of cytokinesis to prevent chromosome breakage or tetraploidization. Here, we show that spontaneous or replication stress-induced chromatin bridges exhibit "knots" of catenated and overtwisted DNA next to the midbody. Topoisomerase IIα (Top2α) forms abortive Top2-DNA cleavage complexes (Top2ccs) on DNA knots; furthermore, impaired Top2α-DNA cleavage activity correlates with chromatin bridge breakage in cytokinesis. Proteasomal degradation of Top2ccs is required for Rad17 localization to Top2-generated double-strand DNA ends on DNA knots; in turn, Rad17 promotes local recruitment of the MRN complex and downstream ATM-Chk2-INCENP signaling to delay abscission and prevent chromatin breakage. In contrast, dicentric chromosomes that do not exhibit knotted DNA fail to activate the abscission checkpoint in human cells. These findings are the first to describe a mechanism by which the abscission checkpoint detects chromatin bridges, through generation of abortive Top2ccs on DNA knots, to preserve genome integrity.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Heraklion, Greece
| | - Sofia Balafouti
- Department of Biology, University of Crete, Heraklion, Greece
| | | | - George Zachos
- Department of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
2
|
Vann KR, Oviatt AA, Osheroff N. Topoisomerase II Poisons: Converting Essential Enzymes into Molecular Scissors. Biochemistry 2021; 60:1630-1641. [PMID: 34008964 PMCID: PMC8209676 DOI: 10.1021/acs.biochem.1c00240] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extensive length, compaction, and interwound nature of DNA, together with its controlled and restricted movement in eukaryotic cells, create a number of topological issues that profoundly affect all of the functions of the genetic material. Topoisomerases are essential enzymes that modulate the topological structure of the double helix, including the regulation of DNA under- and overwinding and the removal of tangles and knots from the genome. Type II topoisomerases alter DNA topology by generating a transient double-stranded break in one DNA segment and allowing another segment to pass through the DNA gate. These enzymes are involved in a number of critical nuclear processes in eukaryotic cells, such as DNA replication, transcription, and recombination, and are required for proper chromosome structure and segregation. However, because type II topoisomerases generate double-stranded breaks in the genetic material, they also are intrinsically dangerous enzymes that have the capacity to fragment the genome. As a result of this dualistic nature, type II topoisomerases are the targets for a number of widely prescribed anticancer drugs. This article will describe the structure and catalytic mechanism of eukaryotic type II topoisomerases and will go on to discuss the actions of topoisomerase II poisons, which are compounds that stabilize DNA breaks generated by the type II enzyme and convert these essential enzymes into "molecular scissors." Topoisomerase II poisons represent a broad range of structural classes and include anticancer drugs, dietary components, and environmental chemicals.
Collapse
Affiliation(s)
- Kendra R Vann
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Alexandria A Oviatt
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Departments of Biochemistry and Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
3
|
Heintzman DR, Campos LV, Byl JAW, Osheroff N, Dewar JM. Topoisomerase II Is Crucial for Fork Convergence during Vertebrate Replication Termination. Cell Rep 2020; 29:422-436.e5. [PMID: 31597101 PMCID: PMC6919565 DOI: 10.1016/j.celrep.2019.08.097] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/27/2019] [Accepted: 08/28/2019] [Indexed: 11/28/2022] Open
Abstract
Termination of DNA replication occurs when two replication forks converge upon the same stretch of DNA. Resolution of topological stress by topoisomerases is crucial for fork convergence in bacteria and viruses, but it is unclear whether similar mechanisms operate during vertebrate termination. Using Xenopus egg extracts, we show that topoisomerase II (Top2) resolves topological stress to prevent converging forks from stalling during termination. Under these conditions, stalling arises due to an inability to unwind the final stretch of DNA ahead of each fork. By promoting fork convergence, Top2 facilitates all downstream events of termination. Converging forks ultimately overcome stalling independently of Top2, indicating that additional mechanisms support fork convergence. Top2 acts throughout replication to prevent the accumulation of topological stress that would otherwise stall converging forks. Thus, termination poses evolutionarily conserved topological problems that can be mitigated by careful execution of the earlier stages of replication.
Collapse
Affiliation(s)
- Darren R Heintzman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lillian V Campos
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Medicine (Hematology, Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - James M Dewar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Jang Y, Son H, Lee SW, Hwang W, Jung SR, Byl JAW, Osheroff N, Lee S. Selection of DNA Cleavage Sites by Topoisomerase II Results from Enzyme-Induced Flexibility of DNA. Cell Chem Biol 2019; 26:502-511.e3. [PMID: 30713098 DOI: 10.1016/j.chembiol.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/04/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022]
Abstract
Topoisomerase II cleaves DNA at preferred sequences with different efficiencies; however, the mechanism of cleavage site selection is not known. Here we used single-molecule fluorescence assays that monitor several critical steps of DNA-topoisomerase II interactions, including binding/dissociation, bending/straightening, and cleavage/religation, and reveal that the cleavage site is selected mainly during the bending step. Furthermore, despite the sensitivity of the bending rate to the DNA sequence, it is not an intrinsic property of the DNA itself. Rather, it is determined by protein-DNA interactions.
Collapse
Affiliation(s)
- Yunsu Jang
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Heyjin Son
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Sang-Wook Lee
- Department of Physics and Astronomy, National Center for Creative Research Initiatives, Seoul National University, Seoul 08826, South Korea
| | - Wonseok Hwang
- Department of Physics and Astronomy, National Center for Creative Research Initiatives, Seoul National University, Seoul 08826, South Korea
| | - Seung-Ryoung Jung
- Department of Physics and Astronomy, National Center for Creative Research Initiatives, Seoul National University, Seoul 08826, South Korea
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| | - Sanghwa Lee
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea.
| |
Collapse
|
5
|
|
6
|
Schellenberg MJ, Perera L, Strom CN, Waters CA, Monian B, Appel CD, Vilas CK, Williams JG, Ramsden DA, Williams RS. Reversal of DNA damage induced Topoisomerase 2 DNA-protein crosslinks by Tdp2. Nucleic Acids Res 2016; 44:3829-44. [PMID: 27060144 PMCID: PMC4857006 DOI: 10.1093/nar/gkw228] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/23/2016] [Indexed: 01/12/2023] Open
Abstract
Mammalian Tyrosyl-DNA phosphodiesterase 2 (Tdp2) reverses Topoisomerase 2 (Top2) DNA-protein crosslinks triggered by Top2 engagement of DNA damage or poisoning by anticancer drugs. Tdp2 deficiencies are linked to neurological disease and cellular sensitivity to Top2 poisons. Herein, we report X-ray crystal structures of ligand-free Tdp2 and Tdp2-DNA complexes with alkylated and abasic DNA that unveil a dynamic Tdp2 active site lid and deep substrate binding trench well-suited for engaging the diverse DNA damage triggers of abortive Top2 reactions. Modeling of a proposed Tdp2 reaction coordinate, combined with mutagenesis and biochemical studies support a single Mg(2+)-ion mechanism assisted by a phosphotyrosyl-arginine cation-π interface. We further identify a Tdp2 active site SNP that ablates Tdp2 Mg(2+) binding and catalytic activity, impairs Tdp2 mediated NHEJ of tyrosine blocked termini, and renders cells sensitive to the anticancer agent etoposide. Collectively, our results provide a structural mechanism for Tdp2 engagement of heterogeneous DNA damage that causes Top2 poisoning, and indicate that evaluation of Tdp2 status may be an important personalized medicine biomarker informing on individual sensitivities to chemotherapeutic Top2 poisons.
Collapse
Affiliation(s)
- Matthew J Schellenberg
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Christina N Strom
- Lineberger Comprehensive Cancer, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Crystal A Waters
- Lineberger Comprehensive Cancer, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brinda Monian
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - C Denise Appel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Caroline K Vilas
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jason G Williams
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| |
Collapse
|
7
|
Huang NL, Lin JH. Recovery of the poisoned topoisomerase II for DNA religation: coordinated motion of the cleavage core revealed with the microsecond atomistic simulation. Nucleic Acids Res 2015; 43:6772-86. [PMID: 26150421 PMCID: PMC4538842 DOI: 10.1093/nar/gkv672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/19/2015] [Indexed: 01/24/2023] Open
Abstract
Type II topoisomerases resolve topological problems of DNA double helices by passing one duplex through the reversible double-stranded break they generated on another duplex. Despite the wealth of information in the cleaving operation, molecular understanding of the enzymatic DNA ligation remains elusive. Topoisomerase poisons are widely used in anti-cancer and anti-bacterial therapy and have been employed to entrap the intermediates of topoisomerase IIβ with religatable DNA substrate. We removed drug molecules from the structure and conducted molecular dynamics simulations to investigate the enzyme-mediated DNA religation. The drug-unbound intermediate displayed transitions toward the resealing-compliant configuration: closing distance between the cleaved DNA termini, B-to-A transformation of the double helix, and restoration of the metal-binding motif. By mapping the contact configurations and the correlated motions between enzyme and DNA, we identified the indispensable role of the linker preceding winged helix domain (WHD) in coordinating the movements of TOPRIM, the nucleotide-binding motifs, and the bound DNA substrate during gate closure. We observed a nearly vectorial transition in the recovery of the enzyme and identified the previously uncharacterized roles of Asn508 and Arg677 in DNA rejoining. Our findings delineate the dynamic mechanism of the DNA religation conducted by type II topoisomerases.
Collapse
Affiliation(s)
- Nan-Lan Huang
- Research Center for Applied Sciences, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Jung-Hsin Lin
- Research Center for Applied Sciences, Academia Sinica, Nangang, Taipei 11529, Taiwan Institute of Biomedical Sciences, Academia Sinica, Nangang, Taipei 11529, Taiwan School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan
| |
Collapse
|
8
|
Regal KM, Mercer SL, Deweese JE. HU-331 is a catalytic inhibitor of topoisomerase IIα. Chem Res Toxicol 2014; 27:2044-51. [PMID: 25409338 DOI: 10.1021/tx500245m] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Topoisomerases are essential enzymes that are involved in DNA metabolism. Topoisomerase II generates transient DNA strand breaks that are stabilized by anticancer drugs, such as doxorubicin, causing an accumulation of DNA damage. However, doxorubicin causes cardiac toxicity and, like etoposide and other topoisomerase II-targeted agents, can induce DNA damage, resulting in secondary cancers. The cannabinoid quinone HU-331 has been identified as a potential anticancer drug that demonstrates more potency in cancer cells with less off-target toxicity than that of doxorubicin. Reports indicate that HU-331 does not promote cell death via apoptosis, cell cycle arrest, caspase activation, or DNA strand breaks. However, the precise mechanism of action is poorly understood. We employed biochemical assays to study the mechanism of action of HU-331 against purified topoisomerase IIα. These assays examined DNA binding, cleavage, ligation, relaxation, and ATPase activities of topoisomerase IIα. Our results demonstrate that HU-331 inhibits topoisomerase IIα-mediated DNA relaxation at micromolar levels. We find that HU-331 does not induce DNA strand breaks in vitro. When added prior to the DNA substrate, HU-331 blocks DNA cleavage and relaxation activities of topoisomerase IIα in a redox-sensitive manner. The action of HU-331 can be blocked, but not reversed, by the presence of dithiothreitol. Our results also show that HU-331 inhibits the ATPase activity of topoisomerase IIα using a noncompetitive mechanism. Preliminary binding studies also indicate that HU-331 decreases the ability of topoisomerase IIα to bind DNA. In summary, HU-331 inhibits relaxation activity without poisoning DNA cleavage. This action is sensitive to reducing agents and appears to involve noncompetitive inhibition of the ATPase activity and possibly inhibition of DNA binding. These studies provide a promising foundation for the exploration of HU-331 as a catalytic inhibitor of topoisomerase IIα.
Collapse
Affiliation(s)
- Kellie M Regal
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences , Nashville, Tennessee 37204-3951, United States
| | | | | |
Collapse
|
9
|
DNA cleavage and opening reactions of human topoisomerase IIα are regulated via Mg2+-mediated dynamic bending of gate-DNA. Proc Natl Acad Sci U S A 2012; 109:2925-30. [PMID: 22323612 DOI: 10.1073/pnas.1115704109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Topoisomerase II resolves intrinsic topological problems of double-stranded DNA. As part of its essential cellular functions, the enzyme generates DNA breaks, but the regulation of this potentially dangerous process is not well understood. Here we report single-molecule fluorescence experiments that reveal a previously uncharacterized sequence of events during DNA cleavage by topoisomerase II: nonspecific DNA binding, sequence-specific DNA bending, and stochastic cleavage of DNA. We have identified unexpected structural roles of Mg(2+) ions coordinated in the TOPRIM (topoisomerase-primase) domain in inducing cleavage-competent DNA bending. A break at one scissile bond dramatically stabilized DNA bending, explaining how two scission events in opposing strands can be coordinated to achieve a high probability of double-stranded cleavage. Clamping of the protein N-gate greatly enhanced the rate and degree of DNA bending, resulting in a significant stimulation of the DNA cleavage and opening reactions. Our data strongly suggest that the accurate cleavage of DNA by topoisomerase II is regulated through a tight coordination with DNA bending.
Collapse
|
10
|
Gomez-Monterrey I, Campiglia P, Aquino C, Bertamino A, Granata I, Carotenuto A, Brancaccio D, Stiuso P, Scognamiglio I, Rusciano MR, Maione AS, Illario M, Grieco P, Maresca B, Novellino E. Design, Synthesis, and Cytotoxic Evaluation of Acyl Derivatives of 3-Aminonaphtho[2,3-b]thiophene-4,9-dione, a Quinone-Based System. J Med Chem 2011; 54:4077-91. [DOI: 10.1021/jm200094h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Isabel Gomez-Monterrey
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Naples, Italy
| | - Pietro Campiglia
- Department of Pharmaceutical Science, Division of BioMedicine, University of Salerno, Salerno, Italy
| | - Claudio Aquino
- Kellogg School of Science and Technology at The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States
| | - Alessia Bertamino
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Naples, Italy
| | - Ilaria Granata
- Department of Pharmaceutical Science, Division of BioMedicine, University of Salerno, Salerno, Italy
| | - Alfonso Carotenuto
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Naples, Italy
| | - Diego Brancaccio
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Naples, Italy
| | - Paola Stiuso
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Ilaria Scognamiglio
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - M. Rosaria Rusciano
- Department of Experimental Pharmacology, University of Naples “Federico II”, Naples, Italy
| | - Angela Serena Maione
- Department of Experimental Pharmacology, University of Naples “Federico II”, Naples, Italy
| | - Maddalena Illario
- Department of Experimental Pharmacology, University of Naples “Federico II”, Naples, Italy
| | - Paolo Grieco
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Naples, Italy
| | - Bruno Maresca
- Department of Pharmaceutical Science, Division of BioMedicine, University of Salerno, Salerno, Italy
| | - Ettore Novellino
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
11
|
Abstract
Type II topoisomerases are essential enzymes that regulate DNA under- and overwinding and remove knots and tangles from the genetic material. In order to carry out their critical physiological functions, these enzymes utilize a double-stranded DNA passage mechanism that requires them to generate a transient double-stranded break. Consequently, while necessary for cell survival, type II topoisomerases also have the capacity to fragment the genome. This feature of the prokaryotic and eukaryotic enzymes, respectively, is exploited to treat a variety of bacterial infections and cancers in humans. All type II topoisomerases require divalent metal ions for catalytic function. These metal ions function in two separate active sites and are necessary for the ATPase and DNA cleavage/ligation activities of the enzymes. ATPase activity is required for the strand passage process and utilizes the metal-dependent binding and hydrolysis of ATP to drive structural rearrangements in the protein. Both the DNA cleavage and ligation activities of type II topoisomerases require divalent metal ions and appear to utilize a novel variant of the canonical two-metal-ion phosphotransferase/hydrolase mechanism to facilitate these reactions. This article will focus primarily on eukaryotic type II topoisomerases and the roles of metal ions in the catalytic functions of these enzymes.
Collapse
Affiliation(s)
- Joseph E Deweese
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy, Nashville, TN 37204-3951, USA
| | | |
Collapse
|
12
|
Rojas E, Mussali P, Tovar E, Valverde M. DNA-AP sites generation by etoposide in whole blood cells. BMC Cancer 2009; 9:398. [PMID: 19917085 PMCID: PMC2785836 DOI: 10.1186/1471-2407-9-398] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 11/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Etoposide is currently one of the most commonly used antitumor drugs. The mechanisms of action proposed for its antitumor activity are based mainly on its interaction with topoisomerase II. Etoposide effects in transformed cells have been described previously. The aim of the present study was to evaluate the genotoxic effects of this drug in non-transformed whole blood cells, such as occurs as collateral damage induced by some chemotherapies. METHODS To determine etoposide genotoxicity, we employed Comet assay in two alkaline versions. To evaluate single strand breaks and delay repair sites we use pH 12.3 conditions and pH >13 to evidence alkali labile sites. With the purpose to quantified apurinic or apyrimidine (AP) sites we employed a specific restriction enzyme. Etoposide effects were determined on whole blood cells cultured in absence or presence of phytohemagglutinin (PHA) treated during 2 and 24 hours of cultured. RESULTS Alkaline (pH > 13) single cell gel electrophoresis (SCGE) assay experiments revealed etoposide-induced increases in DNA damage in phytohemaglutinine (PHA)-stimulated blood and non-stimulated blood cells. When the assay was performed at a less alkaline pH, 12.3, we observed DNA damage in PHA-stimulated blood cells consistent with the existence of alkali labile sites (ALSs). In an effort to elucidate the molecular events underlying this result, we applied exonuclease III (Exo III) in conjunction with a SCGE assay, enabling detection of DNA-AP sites along the genome. More DNA AP-sites were revealed by Exo III and ALSs were recognized by the SCGE assay only in the non-stimulated blood cells treated with etoposide. CONCLUSION Our results indicate that etoposide induces DNA damage specifically at DNA-AP sites in quiescent blood cells. This effect could be involved in the development of secondary malignancies associated with etoposide chemotherapy.
Collapse
Affiliation(s)
- Emilio Rojas
- Departamento de Medicina Genómica y Toxicología Ambiental Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México D.F. C.P. 04510, México
| | - Patricia Mussali
- Departamento de Medicina Genómica y Toxicología Ambiental Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México D.F. C.P. 04510, México
| | - Efrain Tovar
- Centro de Educación Ambiental e Investigación, Sierra de Huautla (CEAMISH), UAEM. Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, México
| | - Mahara Valverde
- Departamento de Medicina Genómica y Toxicología Ambiental Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México D.F. C.P. 04510, México
| |
Collapse
|
13
|
Deweese JE, Burgin AB, Osheroff N. Using 3'-bridging phosphorothiolates to isolate the forward DNA cleavage reaction of human topoisomerase IIalpha. Biochemistry 2008; 47:4129-40. [PMID: 18318502 DOI: 10.1021/bi702194x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to cleave DNA is critical to the cellular and pharmacological functions of human type II topoisomerases. However, the low level of cleavage at equilibrium and the tight coupling of the cleavage and ligation reactions make it difficult to characterize the mechanism by which these enzymes cut DNA. Therefore, to establish a system that isolates topoisomerase II-mediated DNA scission from ligation, oligonucleotide substrates were developed that contained a 3'-bridging phosphorothiolate at the scissile bond. Scission of these substrates generates a 3'-terminal -SH moiety that is a poor nucleophile relative to the normal 3'-terminal -OH group. Consequently, topoisomerase II cannot efficiently ligate phosphorothiolate substrates once they are cleaved. The characteristics of topoisomerase IIalpha-mediated cleavage of phosphorothiolate oligonucleotides were identical to those seen with wild-type substrates, except that no ligation was observed. This unidirectional accumulation of cleavage complexes provided critical information regarding coordination of the protomer subunits of topoisomerase IIalpha and the mechanism of action of topoisomerase II poisons. Results indicate that the two enzyme subunits are partially coordinated and that cleavage at one scissile bond increases the degree of cleavage at the other. Furthermore, anticancer drugs such as etoposide and amsacrine that strongly inhibit topoisomerase II-mediated DNA ligation have little effect on the forward scission reaction. In contrast, abasic sites that increase levels of cleavage complexes without affecting ligation stimulate the forward rate of scission. Phosphorothiolate substrates provide significant advantages over traditional "suicide substrates" and should be valuable for future studies on DNA scission and the topoisomerase II-DNA cleavage complex.
Collapse
Affiliation(s)
- Joseph E Deweese
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
14
|
McClendon AK, Rodriguez AC, Osheroff N. Human topoisomerase IIalpha rapidly relaxes positively supercoiled DNA: implications for enzyme action ahead of replication forks. J Biol Chem 2005; 280:39337-45. [PMID: 16188892 DOI: 10.1074/jbc.m503320200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Movement of the DNA replication machinery through the double helix induces acute positive supercoiling ahead of the fork and precatenanes behind it. Because topoisomerase I and II create transient single- and double-stranded DNA breaks, respectively, it has been assumed that type I enzymes relax the positive supercoils that precede the replication fork. Conversely, type II enzymes primarily resolve the precatenanes and untangle catenated daughter chromosomes. However, studies on yeast and bacteria suggest that type II topoisomerases may also function ahead of the replication machinery. If this is the case, then positive DNA supercoils should be the preferred relaxation substrate for topoisomerase IIalpha, the enzyme isoform involved in replicative processes in humans. Results indicate that human topoisomerase IIalpha relaxes positively supercoiled plasmids >10-fold faster than negatively supercoiled molecules. In contrast, topoisomerase IIbeta, which is not required for DNA replication, displays no such preference. In addition to its high rates of relaxation, topoisomerase IIalpha maintains lower levels of DNA cleavage complexes with positively supercoiled molecules. These properties suggest that human topoisomerase IIalpha has the potential to alleviate torsional stress ahead of replication forks in an efficient and safe manner.
Collapse
Affiliation(s)
- A Kathleen McClendon
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
15
|
Lindsey RH, Bender RP, Osheroff N. Effects of benzene metabolites on DNA cleavage mediated by human topoisomerase II alpha: 1,4-hydroquinone is a topoisomerase II poison. Chem Res Toxicol 2005; 18:761-70. [PMID: 15833037 DOI: 10.1021/tx049659z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although benzene induces leukemias in humans, the compound is not believed to generate chromosomal damage directly. Rather, benzene is thought to act through a series of phenolic- and quinone-based metabolites, especially 1,4-benzoquinone. A recent study found that 1,4-benzoquinone is a potent topoisomerase II poison in vitro and in cultured human cells [Lindsey et al. (2004) Biochemistry 43, 7363-7374]. Because benzene is metabolized to multiple compounds in addition to 1,4-benzoquinone, we determined the effects of several phenolic metabolites, including catechol, 1,2,4-benzenetriol, 1,4-hydroquinone, 2,2'-biphenol, and 4,4'-biphenol, on the DNA cleavage activity of human topoisomerase II alpha. Only 1,4-hydroquinone generated substantial levels of topoisomerase II-mediated DNA scission. DNA cleavage with this compound approached levels observed with 1,4-benzoquinone (approximately 5- vs 8-fold) but required a considerably higher concentration (approximately 250 vs 25 microM). 1,4-Hydroquinone is a precursor to 1,4-benzoquinone in the body and can be activated to the quinone by redox cycling. It is not known whether the effects of 1,4-hydroquinone on human topoisomerase II alpha reflect a lower reactivity of the hydroquinone or a low level of activation to the quinone. The high concentration of 1,4-hydroquinone required to increase enzyme-mediated DNA cleavage is consistent with either explanation. 1,4-Hydroquinone displayed attributes against topoisomerase II alpha, including DNA cleavage specificity, that were similar to those of 1,4-benzoquinone. However, 1,4-hydroquinone consistently inhibited DNA ligation to a greater extent than 1,4-benzoquinone. This latter result implies that the hydroquinone may display (at least in part) independent activity against topoisomerase II alpha. The present findings are consistent with the hypothesis that topoisomerase II alpha plays a role in the initiation of specific types of leukemia that are induced by benzene and its metabolites.
Collapse
Affiliation(s)
- R Hunter Lindsey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
16
|
Vélez-Cruz R, Riggins JN, Daniels JS, Cai H, Guengerich FP, Marnett LJ, Osheroff N. Exocyclic DNA lesions stimulate DNA cleavage mediated by human topoisomerase II alpha in vitro and in cultured cells. Biochemistry 2005; 44:3972-81. [PMID: 15751973 DOI: 10.1021/bi0478289] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA adducts are mutagenic and clastogenic. Because of their harmful nature, lesions are recognized by many proteins involved in DNA repair. However, mounting evidence suggests that lesions also are recognized by proteins with no obvious role in repair processes. One such protein is topoisomerase II, an essential enzyme that removes knots and tangles from the DNA. Because topoisomerase II generates a protein-linked double-stranded DNA break during its catalytic cycle, it has the potential to fragment the genome. Previous studies indicate that abasic sites and other lesions that distort the double helix stimulate topoisomerase II-mediated DNA cleavage. Therefore, to further explore interactions between DNA lesions and the enzyme, the effects of exocyclic adducts on DNA cleavage mediated by human topoisomerase IIalpha were determined. When located within the four-base overhang of a topoisomerase II cleavage site (at the +2 or +3 position 3' relative to the scissile bond), 3,N(4)-ethenodeoxycytidine, 3,N(4)-etheno-2'-ribocytidine, 1,N(2)-ethenodeoxyguanosine, pyrimido[1,2-a]purin-10(3H)-one deoxyribose (M(1)dG), and 1,N(2)-propanodeoxyguanosine increased DNA scission approximately 5-17-fold. Enhanced cleavage did not result from an increased affinity of topoisomerase IIalpha for adducted DNA or a decreased rate of religation. Therefore, it is concluded that these exocyclic lesions act by accelerating the forward rate of enzyme-mediated DNA scission. Finally, treatment of cultured human cells with 2-chloroacetaldehyde, a reactive metabolite of vinyl chloride that generates etheno adducts, increased cellular levels of DNA cleavage by topoisomerase IIalpha. This finding suggests that type II topoisomerases interact with exocyclic DNA lesions in physiological systems.
Collapse
Affiliation(s)
- Renier Vélez-Cruz
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Bromberg KD, Vélez-Cruz R, Burgin AB, Osheroff N. DNA ligation catalyzed by human topoisomerase II alpha. Biochemistry 2004; 43:13416-23. [PMID: 15491148 DOI: 10.1021/bi049420h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA ligation reaction of topoisomerase II is essential for genomic integrity. However, it has been impossible to examine many fundamental aspects of this reaction because ligation assays historically required the enzyme to cleave a DNA substrate before sealing the nucleic acid break. Recently, a cleavage-independent DNA ligation assay was developed for human topoisomerase IIalpha [Bromberg, K. D., Hendricks, C., Burgin, A. B., and Osheroff, N. (2002) J. Biol. Chem. 277, 31201-31206]. This assay overcomes the requirement for DNA cleavage by monitoring the ability of the enzyme to ligate a nicked oligonucleotide in which the 5'-terminal phosphate at the nick has been activated by covalent attachment to the tyrosine mimic, p-nitrophenol. The cleavage-independent ligation assay was used to more fully characterize the DNA ligation activity of human topoisomerase IIalpha. Results suggest that the active site tyrosine contributes little to the catalysis of DNA ligation beyond its primary role as an activating/leaving group. Although arginine 804 (the residue immediately N-terminal to the active site tyrosine) has been proposed to help anchor the 5'-DNA terminus during cleavage, conversion of this residue to alanine had only a modest effect on DNA ligation. Thus, it appears that arginine 804 does not play an essential role in DNA strand joining. In contrast, disruption of base pairing at the 5'-DNA terminus abrogated DNA ligation in the absence of a covalent enzyme-DNA bond. Therefore, it is proposed that base pairing represents a secondary mechanism for aligning the 5'-DNA termini for ligation. Finally, the human enzyme appears to ligate the two scissile bonds of a cleavage site in a nonconcerted fashion.
Collapse
Affiliation(s)
- Kenneth D Bromberg
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | |
Collapse
|
18
|
Lindsey RH, Bromberg KD, Felix CA, Osheroff N. 1,4-Benzoquinone Is a Topoisomerase II Poison†. Biochemistry 2004; 43:7563-74. [PMID: 15182198 DOI: 10.1021/bi049756r] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benzene is a human carcinogen that induces hematopoietic malignancies. It is believed that benzene does not initiate leukemias directly, but rather generates DNA damage through a series of phenolic metabolites, especially 1,4-benzoquinone. The cellular consequences of 1,4-benzoquinone are consistent with those of topoisomerase II-targeted drugs. Therefore, it has been proposed that the compound initiates specific leukemias by acting as a topoisomerase II poison. This hypothesis, however, has not been supported by in vitro studies. While 1,4-benzoquinone has been shown to inhibit topoisomerase II catalysis, increases in enzyme-mediated DNA cleavage have not been reported. Because of the potential involvement of topoisomerase II in benzene-induced leukemias, we re-examined the effects of the compound on DNA cleavage mediated by human topoisomerase IIalpha. In contrast to previous reports, we found that 1,4-benzoquinone was a strong topoisomerase II poison and was more potent in vitro than the anticancer drug etoposide. DNA cleavage enhancement probably was unseen in previous studies due to the presence of reducing agents in reaction buffers and the incubation of 1,4-benzoquinone with the enzyme prior to the addition of DNA. 1,4-Benzoquinone increased topoisomerase II-mediated DNA cleavage primarily by enhancing the forward rate of scission. In vitro, the compound induced cleavage at DNA sites proximal to a defined leukemic chromosomal breakpoint and displayed a sequence specificity that differed from that of etoposide. Finally, 1,4-benzoquinone stimulated DNA cleavage by topoisomerase IIalpha in cultured human cells. The present findings are consistent with the hypothesis that topoisomerase IIalpha plays a role in the initiation of specific leukemias induced by benzene and its metabolites.
Collapse
Affiliation(s)
- R Hunter Lindsey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | |
Collapse
|
19
|
Bromberg KD, Burgin AB, Osheroff N. Quinolone action against human topoisomerase IIalpha: stimulation of enzyme-mediated double-stranded DNA cleavage. Biochemistry 2003; 42:3393-8. [PMID: 12653542 DOI: 10.1021/bi027383t] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several important antineoplastic drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. These compounds act by two distinct mechanisms. Agents such as etoposide inhibit the ability of topoisomerase II to ligate enzyme-linked DNA breaks. Conversely, compounds such as quinolones have little effect on ligation and are believed to stimulate the forward rate of topoisomerase II-mediated DNA cleavage. The fact that there are two scissile bonds per double-stranded DNA break implies that there are two sites for drug action in every enzyme-DNA cleavage complex. However, since agents in the latter group are believed to act by locally perturbing DNA structure, it is possible that quinolone interactions at a single scissile bond are sufficient to distort both strands of the double helix and generate an enzyme-mediated double-stranded DNA break. Therefore, an oligonucleotide system was established to further define the actions of topoisomerase II-targeted drugs that stimulate the forward rate of DNA cleavage. Results indicate that the presence of the quinolone CP-115,953 at one scissile bond increased the extent of enzyme-mediated scission at the opposite scissile bond and was sufficient to stimulate the formation of a double-stranded DNA break by human topoisomerase IIalpha. These findings stand in marked contrast to those for etoposide, which must be present at both scissile bonds to stabilize a double-stranded DNA break [Bromberg, K. D., et al. (2003) J. Biol. Chem. 278, 7406-7412]. Moreover, they underscore important mechanistic differences between drugs that enhance DNA cleavage and those that inhibit ligation.
Collapse
Affiliation(s)
- Kenneth D Bromberg
- Department of Biochemistry, (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
20
|
Bromberg KD, Burgin AB, Osheroff N. A two-drug model for etoposide action against human topoisomerase IIalpha. J Biol Chem 2003; 278:7406-12. [PMID: 12473657 DOI: 10.1074/jbc.m212056200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The widely used anticancer drug etoposide kills cells by increasing levels of topoisomerase II-mediated DNA breaks. While it is known that the drug acts by inhibiting the ability of topoisomerase II to ligate cleaved DNA molecules, the precise mechanism by which it accomplishes this action is not well understood. Because there are two scissile bonds per enzyme-mediated double-stranded DNA break, it has been assumed that there are two sites for etoposide in every cleavage complex. However, it is not known whether the action of etoposide at only one scissile bond is sufficient to stabilize a double-stranded DNA break or whether both drug sites need to be occupied. An oligonucleotide system was utilized to address this important issue. Results of DNA cleavage and ligation assays support a two-drug model for the action of etoposide against human topoisomerase IIalpha. This model postulates that drug interactions at both scissile bonds are required in order to increase enzyme-mediated double-stranded DNA breaks. Etoposide actions at either of the two scissile bonds appear to be independent of one another, with each individual drug molecule stabilizing a strand-specific nick rather than a double-stranded DNA break. This finding suggests (at least in the presence of drug) that there is little or no communication between the two promoter active sites of topoisomerase II. The two-drug model has implications for cancer chemotherapy, the cellular processing of etoposide-stabilized enzyme-DNA cleavage complexes, and the catalytic mechanism of eukaryotic topoisomerase II.
Collapse
Affiliation(s)
- Kenneth D Bromberg
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|