1
|
Abstract
DNA polymerase beta (Pol β) is a 39 kD vertebrate polymerase that lacks proofreading ability, yet still maintains a moderate fidelity of DNA synthesis. Pol β is a key enzyme that functions in the base excision repair and non-homologous end joining pathways of DNA repair. Mechanisms of fidelity for Pol β are still being elucidated but are likely to involve dynamic conformational motions of the enzyme upon its binding to DNA and deoxynucleoside triphosphates. Recent studies have linked germline and somatic variants of Pol β with cancer and autoimmunity. These variants induce genomic instability by a number of mechanisms, including error-prone DNA synthesis and accumulation of single nucleotide gaps that lead to replication stress. Here, we review the structure and function of Pol β, and we provide insights into how structural changes in Pol β variants may contribute to genomic instability, mutagenesis, disease, cancer development, and impacts on treatment outcomes.
Collapse
Affiliation(s)
- Danielle L Sawyer
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
2
|
Al-Kawaz A, Ali R, Toss MS, Miligy IM, Mohammed OJ, Green AR, Madhusudan S, Rakha EA. The frequency and clinical significance of DNA polymerase beta (POLβ) expression in breast ductal carcinoma in situ (DCIS). Breast Cancer Res Treat 2021; 190:39-51. [PMID: 34406589 PMCID: PMC8557137 DOI: 10.1007/s10549-021-06357-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/06/2021] [Indexed: 11/06/2022]
Abstract
Background The prediction of clinical behaviour of breast ductal carcinoma in situ (DCIS) and its progression to invasive disease remains a challenge. Alterations of DNA damage repair mechanisms are associated with invasive breast cancer (BC). This study aims to assess the role of base excision repair (BER) DNA Polymerase Beta (POLβ) in DCIS. Methods A cohort of DCIS comprising pure DCIS (n = 776) and DCIS coexisting with invasive BC (n = 239) were prepared as tissue microarrays. POLβ protein expression was assessed using immunohistochemistry and correlated with clinicopathological parameters and patient outcome. Preclinically, we investigated the impact of POLβ depletion on stem cell markers in representative DCIS cell line models. Results Reduced POLβ expression was associated with aggressive DCIS features including high nuclear grade, comedo necrosis, larger tumour size, hormonal receptor negativity, HER2 overexpression and high Ki67 index. Combined low nuclear/low cytoplasmic POLβ expression showed the strongest association with the features’ characteristics of aggressive behaviour. There was a gradual reduction in the POLβ expression from normal breast tissue, to DCIS, with the lowest expression observed in the invasive BC. Low POLβ expression was an independent predictor of recurrence in DCIS patients treated with breast conserving surgery (BCS). POLβ knockdown was associated with a significant increase in cell stemness markers including SOX2, NANOG and OCT4 levels in MCF10-DCIS cell lines. Conclusion Loss of POLβ in DCIS is associated with aggressive behaviour and it can predict recurrence. POLβ expression in DCIS provides an additional feature for patients’ risk stratification for personalised therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06357-7.
Collapse
Affiliation(s)
- Abdulbaqi Al-Kawaz
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Pathology, College of Dentistry, Al Mustansiriya University, Baghdad, Iraq
| | - Reem Ali
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Michael S Toss
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Islam M Miligy
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Omar J Mohammed
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Srinivasan Madhusudan
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK. .,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt. .,Department of Histopathology, Nottingham University Hospital NHS Trust, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
3
|
Alnajjar KS, Krylov IS, Negahbani A, Haratipour P, Kashemirov BA, Huang J, Mahmoud M, McKenna CE, Goodman MF, Sweasy JB. A pre-catalytic non-covalent step governs DNA polymerase β fidelity. Nucleic Acids Res 2020; 47:11839-11849. [PMID: 31732732 PMCID: PMC7145665 DOI: 10.1093/nar/gkz1076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/23/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022] Open
Abstract
DNA polymerase β (pol β) selects the correct deoxyribonucleoside triphosphate for incorporation into the DNA polymer. Mistakes made by pol β lead to mutations, some of which occur within specific sequence contexts to generate mutation hotspots. The adenomatous polyposis coli (APC) gene is mutated within specific sequence contexts in colorectal carcinomas but the underlying mechanism is not fully understood. In previous work, we demonstrated that a somatic colon cancer variant of pol β, K289M, misincorporates deoxynucleotides at significantly increased frequencies over wild-type pol β within a mutation hotspot that is present several times within the APC gene. Kinetic studies provide evidence that the rate-determining step of pol β catalysis is phosphodiester bond formation and suggest that substrate selection is governed at this step. Remarkably, we show that, unlike WT, a pre-catalytic step in the K289M pol β kinetic pathway becomes slower than phosphodiester bond formation with the APC DNA sequence but not with a different DNA substrate. Based on our studies, we propose that pre-catalytic conformational changes are of critical importance for DNA polymerase fidelity within specific DNA sequence contexts.
Collapse
Affiliation(s)
- Khadijeh S Alnajjar
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Ivan S Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Amirsoheil Negahbani
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Pouya Haratipour
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Boris A Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Ji Huang
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Mariam Mahmoud
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Myron F Goodman
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA.,University of Arizona Cancer Center, Tucson, AZ 85724, USA
| |
Collapse
|
4
|
Alnajjar KS, Negahbani A, Nakhjiri M, Krylov IS, Kashemirov BA, McKenna CE, Goodman MF, Sweasy JB. DNA Polymerase β Cancer-Associated Variant I260M Exhibits Nonspecific Selectivity toward the β-γ Bridging Group of the Incoming dNTP. Biochemistry 2017; 56:5449-5456. [PMID: 28862868 DOI: 10.1021/acs.biochem.7b00713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydrophobic hinge region of DNA polymerase β (pol β) is located between the fingers and palm subdomains. The hydrophobicity of the hinge region is important for maintaining the geometry of the binding pocket and for the selectivity of the enzyme. Various cancer-associated pol β variants in the hinge region have reduced fidelity resulting from a decreased discrimination at the level of dNTP binding. Specifically, I260M, a prostate cancer-associated variant of pol β, has been shown to have a reduced discrimination during dNTP binding and also during nucleotidyl transfer. To test whether fidelity of the I260M variant is dependent on leaving group chemistry, we employed a toolkit comprising dNTP bisphosphonate analogues modified at the β-γ bridging methylene to modulate leaving group (pCXYp mimicking PPi) basicity. Construction of linear free energy relationship plots for the dependence of log(kpol) on leaving group pKa4 revealed that I260M catalyzes dNMP incorporation with a marked negative dependence on leaving group basicity, consistent with a chemical transition state, during both correct and incorrect incorporation. Additionally, we provide evidence that I260M fidelity is altered in the presence of some of the analogues, possibly resulting from a lack of coordination between the fingers and palm subdomains in the presence of the I260M mutation.
Collapse
Affiliation(s)
- Khadijeh S Alnajjar
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Amirsoheil Negahbani
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Maryam Nakhjiri
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Ivan S Krylov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Boris A Kashemirov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Charles E McKenna
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Myron F Goodman
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Joann B Sweasy
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
5
|
Alnajjar KS, Garcia-Barboza B, Negahbani A, Nakhjiri M, Kashemirov B, McKenna C, Goodman MF, Sweasy JB. A Change in the Rate-Determining Step of Polymerization by the K289M DNA Polymerase β Cancer-Associated Variant. Biochemistry 2017; 56:2096-2105. [PMID: 28326765 DOI: 10.1021/acs.biochem.6b01230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
K289M is a variant of DNA polymerase β (pol β) that has previously been identified in colorectal cancer. The expression of this variant leads to a 16-fold increase in mutation frequency at a specific site in vivo and a reduction in fidelity in vitro in a sequence context-specific manner. Previous work shows that this reduction in fidelity results from a decreased level of discrimination against incorrect nucleotide incorporation at the level of polymerization. To probe the transition state of the K289M mutator variant of pol β, single-turnover kinetic experiments were performed using β,γ-CXY dGTP analogues with a wide range of leaving group monoacid dissociation constants (pKa4), including a corresponding set of novel β,γ-CXY dCTP analogues. Surprisingly, we found that the values of the log of the catalytic rate constant (kpol) for correct insertion by K289M, in contrast to those of wild-type pol β, do not decrease with increased leaving group pKa4 for analogues with pKa4 values of <11. This suggests that one of the relative rate constants differs for the K289M reaction in comparison to that of the wild type (WT). However, a plot of log(kpol) values for incorrect insertion by K289M versus pKa4 reveals a linear correlation with a negative slope, in this respect resembling kpol values for misincorporation by the WT enzyme. We also show that some of these analogues improve the fidelity of K289M. Taken together, our data show that Lys289 critically influences the catalytic pathway of pol β.
Collapse
Affiliation(s)
- Khadijeh S Alnajjar
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Beatriz Garcia-Barboza
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Amirsoheil Negahbani
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Maryam Nakhjiri
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Boris Kashemirov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Charles McKenna
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Myron F Goodman
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Joann B Sweasy
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
6
|
Daskalova SM, Bhattacharya C, Dedkova LM, Hecht SM. Probing the Flexibility of the Catalytic Nucleophile in the Lyase Catalytic Pocket of Human DNA Polymerase β with Unnatural Lysine Analogues. Biochemistry 2017; 56:500-513. [PMID: 28005340 DOI: 10.1021/acs.biochem.6b00807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
DNA polymerase β (Pol β) is a key enzyme in mammalian base excision repair (BER), contributing stepwise 5'-deoxyribose phosphate (dRP) lyase and "gap-filling" DNA polymerase activities. The lyase reaction is believed to occur via a β-elimination reaction following the formation of a Schiff base between the dRP group at the pre-incised apurinic/apyrimidinic site and the ε-amino group of Lys72. To probe the steric constraints on the formation and subsequent resolution of the putative Schiff base intermediate within the lyase catalytic pocket, Lys72 was replaced with each of several nonproteinogenic lysine analogues. The modified Pol β enzymes were produced by coupled in vitro transcription and translation from a modified DNA template containing a TAG codon at the position corresponding to Lys72. In the presence of a misacylated tRNACUA transcript, suppression of the UAG codon in the transcribed mRNA led to elaboration of full length Pol β having a lysine analogue at position 72. Replacement of the primary nucleophilic amine with a secondary amine in the form of N-methyllysine (4) affected mainly the stability of the Schiff base intermediate and resulted in relatively moderate inhibition of lyase activity and BER. Elongation of the side chain of the catalytic residue by one methylene group, achieved by introduction of homolysine (6) at position 72, apparently shifted the amino group to a position less favorable for Schiff base formation. Interestingly, this effect was attenuated when the side chain was elongated by replacing one side-chain methylene group with a bridging S atom (thialysine, 2). In comparison, replacement of lysine 72 with an analogue having a guanidine moiety in lieu of an ε-amino group (homoarginine, 5) or a sterically constrained secondary amine (piperidinylalanine, 3) led to almost complete suppression of dRP excision activity and the ability of Pol β to support BER. These results help to define the tolerance of Pol β to subtle local structural and functional alterations.
Collapse
Affiliation(s)
- Sasha M Daskalova
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Chandrabali Bhattacharya
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
7
|
Towle-Weicksel JB, Dalal S, Sohl CD, Doublié S, Anderson KS, Sweasy JB. Fluorescence resonance energy transfer studies of DNA polymerase β: the critical role of fingers domain movements and a novel non-covalent step during nucleotide selection. J Biol Chem 2014; 289:16541-50. [PMID: 24764311 DOI: 10.1074/jbc.m114.561878] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During DNA repair, DNA polymerase β (Pol β) is a highly dynamic enzyme that is able to select the correct nucleotide opposite a templating base from a pool of four different deoxynucleoside triphosphates (dNTPs). To gain insight into nucleotide selection, we use a fluorescence resonance energy transfer (FRET)-based system to monitor movement of the Pol β fingers domain during catalysis in the presence of either correct or incorrect dNTPs. By labeling the fingers domain with ((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS) and the DNA substrate with Dabcyl, we are able to observe rapid fingers closing in the presence of correct dNTPs as the IAEDANS comes into contact with a Dabcyl-labeled, one-base gapped DNA. Our findings show that not only do the fingers close after binding to the correct dNTP, but that there is a second conformational change associated with a non-covalent step not previously reported for Pol β. Further analyses suggest that this conformational change corresponds to the binding of the catalytic metal into the polymerase active site. FRET studies with incorrect dNTP result in no changes in fluorescence, indicating that the fingers do not close in the presence of incorrect dNTP. Together, our results show that nucleotide selection initially occurs in an open fingers conformation and that the catalytic pathways of correct and incorrect dNTPs differ from each other. Overall, this study provides new insight into the mechanism of substrate choice by a polymerase that plays a critical role in maintaining genome stability.
Collapse
Affiliation(s)
| | | | - Christal D Sohl
- Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Sylvie Doublié
- the Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405
| | - Karen S Anderson
- Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | | |
Collapse
|
8
|
Jacewicz A, Trzemecka A, Guja KE, Plochocka D, Yakubovskaya E, Bebenek A, Garcia-Diaz M. A remote palm domain residue of RB69 DNA polymerase is critical for enzyme activity and influences the conformation of the active site. PLoS One 2013; 8:e76700. [PMID: 24116139 PMCID: PMC3792054 DOI: 10.1371/journal.pone.0076700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/23/2013] [Indexed: 11/26/2022] Open
Abstract
Non-conserved amino acids that are far removed from the active site can sometimes have an unexpected effect on enzyme catalysis. We have investigated the effects of alanine replacement of residues distant from the active site of the replicative RB69 DNA polymerase, and identified a substitution in a weakly conserved palm residue (D714A), that renders the enzyme incapable of sustaining phage replication in vivo. D714, located several angstroms away from the active site, does not contact the DNA or the incoming dNTP, and our apoenzyme and ternary crystal structures of the PolD714A mutant demonstrate that D714A does not affect the overall structure of the protein. The structures reveal a conformational change of several amino acid side chains, which cascade out from the site of the substitution towards the catalytic center, substantially perturbing the geometry of the active site. Consistent with these structural observations, the mutant has a significantly reduced kpol for correct incorporation. We propose that the observed structural changes underlie the severe polymerization defect and thus D714 is a remote, non-catalytic residue that is nevertheless critical for maintaining an optimal active site conformation. This represents a striking example of an action-at-a-distance interaction.
Collapse
Affiliation(s)
- Agata Jacewicz
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Trzemecka
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kip E. Guja
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Danuta Plochocka
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Elena Yakubovskaya
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Anna Bebenek
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AB); (MGD)
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (AB); (MGD)
| |
Collapse
|
9
|
An C, Beard WA, Chen D, Wilson SH, Makridakis NM. Understanding the loss-of-function in a triple missense mutant of DNA polymerase β found in prostate cancer. Int J Oncol 2013; 43:1131-40. [PMID: 23877444 PMCID: PMC3981039 DOI: 10.3892/ijo.2013.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/07/2013] [Indexed: 11/06/2022] Open
Abstract
Human DNA polymerase (pol) β is essential for base excision repair. We previously reported a triple somatic mutant of pol β (p.P261L/T292A/I298T) found in an early onset prostate tumor. This mutation abolishes polymerase activity, and the wild-type allele was not present in the tumor, indicating a complete deficiency in pol β function. The effect on polymerase activity is unexpected because the point mutations that comprise the triple mutant are not part of the active site. Herein, we demonstrate the mechanism of this loss-of-function. In order to understand the effect of the individual point mutations we biochemically analyzed all single and double mutants that comprise the triple mutant. We found that the p.I298T mutation is responsible for a marked instability of the triple mutant protein at 37°C. At room temperature the triple mutant’s low efficiency is also due to a decrease in the apparent binding affinity for the dNTP substrate, which is due to the p.T292A mutation. Furthermore, the triple mutant displays lower fidelity for transversions in vitro, due to the p.T292A mutation. We conclude that distinct mutations of the triple pol β mutant are responsible for the loss of activity, lower fidelity, and instability observed in vitro.
Collapse
Affiliation(s)
- Changlong An
- Department of Epidemiology and Tulane Cancer Center, Tulane University, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
10
|
Parsons JL, Nicolay NH, Sharma RA. Biological and therapeutic relevance of nonreplicative DNA polymerases to cancer. Antioxid Redox Signal 2013; 18:851-73. [PMID: 22794079 PMCID: PMC3557440 DOI: 10.1089/ars.2011.4203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apart from surgical approaches, the treatment of cancer remains largely underpinned by radiotherapy and pharmacological agents that cause damage to cellular DNA, which ultimately causes cancer cell death. DNA polymerases, which are involved in the repair of cellular DNA damage, are therefore potential targets for inhibitors for improving the efficacy of cancer therapy. They can be divided, according to their main function, into two groups, namely replicative and nonreplicative enzymes. At least 15 different DNA polymerases, including their homologs, have been discovered to date, which vary considerably in processivity and fidelity. Many of the nonreplicative (specialized) DNA polymerases replicate DNA in an error-prone fashion, and they have been shown to participate in multiple DNA damage repair and tolerance pathways, which are often aberrant in cancer cells. Alterations in DNA repair pathways involving DNA polymerases have been linked with cancer survival and with treatment response to radiotherapy or to classes of cytotoxic drugs routinely used for cancer treatment, particularly cisplatin, oxaliplatin, etoposide, and bleomycin. Indeed, there are extensive preclinical data to suggest that DNA polymerase inhibition may prove to be a useful approach for increasing the effectiveness of therapies in patients with cancer. Furthermore, specialized DNA polymerases warrant examination of their potential use as clinical biomarkers to select for particular cancer therapies, to individualize treatment for patients.
Collapse
Affiliation(s)
- Jason L Parsons
- Cancer Research UK-Medical Research Council, Oncology Department, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
11
|
Donigan KA, Sun KW, Nemec AA, Murphy DL, Cong X, Northrup V, Zelterman D, Sweasy JB. Human POLB gene is mutated in high percentage of colorectal tumors. J Biol Chem 2012; 287:23830-9. [PMID: 22577134 PMCID: PMC3390656 DOI: 10.1074/jbc.m111.324947] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 05/10/2012] [Indexed: 12/11/2022] Open
Abstract
Previous small scale sequencing studies have indicated that DNA polymerase β (pol β) variants are present on average in 30% of human tumors of varying tissue origin. Many of these variants have been shown to have aberrant enzyme function in vitro and to induce cellular transformation and/or genomic instability in vivo, suggesting that their presence is associated with tumorigenesis or its progression. In this study, the human POLB gene was sequenced in a collection of 134 human colorectal tumors and was found to contain coding region mutations in 40% of the samples. The variants map to many different sites of the pol β protein and are not clustered. Many variants are nonsynonymous amino acid substitutions predicted to affect enzyme function. A subset of these variants was found to have reduced enzyme activity in vitro and failed to fully rescue pol β-deficient cells from methylmethane sulfonate-induced cytotoxicity. Tumors harboring variants with reduced enzyme activity may have compromised base excision repair function, as evidenced by our methylmethane sulfonate sensitivity studies. Such compromised base excision repair may drive tumorigenesis by leading to an increase in mutagenesis or genomic instability.
Collapse
Affiliation(s)
| | - Ka-wai Sun
- From the Departments of Therapeutic Radiology and Genetics and
| | | | - Drew L. Murphy
- From the Departments of Therapeutic Radiology and Genetics and
| | - Xiangyu Cong
- Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Veronika Northrup
- Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Daniel Zelterman
- Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Joann B. Sweasy
- From the Departments of Therapeutic Radiology and Genetics and
| |
Collapse
|
12
|
An CL, Chen D, Makridakis NM. Systematic biochemical analysis of somatic missense mutations in DNA polymerase β found in prostate cancer reveal alteration of enzymatic function. Hum Mutat 2011; 32:415-23. [PMID: 21305655 DOI: 10.1002/humu.21465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 01/03/2011] [Indexed: 11/11/2022]
Abstract
DNA polymerase β is essential for short-patch base excision repair. We have previously identified 20 somatic pol β mutations in prostate tumors, many of them missense. In the current article we describe the effect of all of these somatic missense pol β mutations (p.K27N, p.E123K, p.E232K, p.P242R, p.E216K, p.M236L, and the triple mutant p.P261L/T292A/I298T) on the biochemical properties of the polymerase in vitro, following bacterial expression and purification of the respective enzymatic variants. We report that all missense somatic pol β mutations significantly affect enzyme function. Two of the pol β variants reduce catalytic efficiency, while the remaining five missense mutations alter the fidelity of DNA synthesis. Thus, we conclude that a significant proportion (9 out of 26; 35%) of prostate cancer patients have functionally important somatic mutations of pol β. Many of these missense mutations are clonal in the tumors, and/or are associated with loss of heterozygosity and microsatellite instability. These results suggest that interfering with normal polymerase β function may be a frequent mechanism of prostate tumor progression. Furthermore, the availability of detailed structural information for pol β allows understanding of the potential mechanistic effects of these mutants on polymerase function.
Collapse
Affiliation(s)
- Chang Long An
- Department of Epidemiology and Tulane Cancer Center, Tulane University, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
13
|
Yamtich J, Sweasy JB. DNA polymerase family X: function, structure, and cellular roles. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1136-50. [PMID: 19631767 DOI: 10.1016/j.bbapap.2009.07.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
The X family of DNA polymerases in eukaryotic cells consists of terminal transferase and DNA polymerases beta, lambda, and mu. These enzymes have similar structural portraits, yet different biochemical properties, especially in their interactions with DNA. None of these enzymes possesses a proofreading subdomain, and their intrinsic fidelity of DNA synthesis is much lower than that of a polymerase that functions in cellular DNA replication. In this review, we discuss the similarities and differences of three members of Family X: polymerases beta, lambda, and mu. We focus on biochemical mechanisms, structural variation, fidelity and lesion bypass mechanisms, and cellular roles. Remarkably, although these enzymes have similar three-dimensional structures, their biochemical properties and cellular functions differ in important ways that impact cellular function.
Collapse
Affiliation(s)
- Jennifer Yamtich
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | |
Collapse
|
14
|
A novel function of adenomatous polyposis coli (APC) in regulating DNA repair. Cancer Lett 2008; 271:272-80. [PMID: 18662849 DOI: 10.1016/j.canlet.2008.06.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 04/07/2008] [Accepted: 06/11/2008] [Indexed: 11/22/2022]
Abstract
Prevailing literature suggests diversified cellular functions for the adenomatous polyposis coli (APC) gene. Among them a recently discovered unique role of APC is in DNA repair. The APC gene can modulate the base excision repair (BER) pathway through an interaction with DNA polymerase beta (Pol-beta) and flap endonuclease 1 (Fen-1). Taken together with the transcriptional activation of APC gene by alkylating agents and modulation of BER activity, APC may play an important role in carcinogenesis and chemotherapy by determining whether cells with DNA damage survive or undergo apoptosis. In this review, we summarize the evidence supporting this novel concept and suggest that these results will have implications for the development of more effective strategies for chemoprevention, prognosis and chemotherapy of certain types of tumors.
Collapse
|
15
|
Balusu R, Jaiswal AS, Armas ML, Kundu CN, Bloom LB, Narayan S. Structure/function analysis of the interaction of adenomatous polyposis coli with DNA polymerase beta and its implications for base excision repair. Biochemistry 2007; 46:13961-74. [PMID: 17999539 DOI: 10.1021/bi701632e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in the adenomatous polyposis coli (APC) gene are associated with an early onset of colorectal carcinogenesis. Previously, we described a novel role for the APC polypeptide in base excision repair (BER). The single-nucleotide (SN) and long-patch (LP) BER pathways act to repair the abasic sites in DNA that are induced by stressors, such as spontaneous oxidation/reduction, alkylation, and hyperthermia. We have shown that APC interacts with DNA polymerase beta (Pol-beta) and flap endonuclease 1 (Fen-1) and blocks Pol-beta-directed strand-displacement synthesis. In this study, we have mapped the APC interaction site in Pol-beta and have found that Thr79, Lys81, and Arg83 of Pol-beta were critical for its interaction with APC. The Pol-beta protein (T79A/K81A/R83A) blocked strand-displacement DNA synthesis in which tetrahydrofuran was used as DNA substrate. We further showed that the APC-mediated blockage of LP-BER was due to inhibition of Fen-1 activity. Analysis of the APC-mediated blockage of SN-BER indicated that the interaction of APC with Pol-beta blocked SN-BER activity by inhibiting Pol-beta-directed deoxyribose phosphate lyase activity. Collectively, our findings indicate that APC blocked both Pol-beta-directed SN- and LP-BER pathways and increased sensitivity of cells to alkylation induced DNA damage.
Collapse
Affiliation(s)
- Ramesh Balusu
- Department of Anatomy and Cell Biology, UF Shands Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
It has recently become clear that the classical notion of the random nature of mutation does not hold for the distribution of mutations among genes: most collections of mutants contain more isolates with two or more mutations than predicted by the mutant frequency on the assumption of a random distribution of mutations. Excesses of multiples are seen in a wide range of organisms, including riboviruses, DNA viruses, prokaryotes, yeasts, and higher eukaryotic cell lines and tissues. In addition, such excesses are produced by DNA polymerases in vitro. These "multiples" appear to be generated by transient, localized hypermutation rather than by heritable mutator mutations. The components of multiples are sometimes scattered at random and sometimes display an excess of smaller distances between mutations. As yet, almost nothing is known about the mechanisms that generate multiples, but such mutations have the capacity to accelerate those evolutionary pathways that require multiple mutations where the individual mutations are neutral or deleterious. Examples that impinge on human health may include carcinogenesis and the adaptation of microbial pathogens as they move between individual hosts.
Collapse
Affiliation(s)
- John W Drake
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709-2233, USA.
| |
Collapse
|
17
|
Sliwinski T, Ziemba P, Morawiec Z, Kowalski M, Zadrozny M, Blasiak J. Polymorphisms of the DNA polymerase beta gene in breast cancer. Breast Cancer Res Treat 2006; 103:161-6. [PMID: 17131038 DOI: 10.1007/s10549-006-9357-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 07/24/2006] [Indexed: 10/23/2022]
Abstract
DNA polymerase beta (Polbeta) provides most of the gap-filling synthesis at apurinic/apyrimidine sites of damaged DNA in the base excision repair pathway. Mutations in the gene encoding DNA polbeta have been identified in various carcinomas. We performed a case-control study to test the association between two polymorphisms in the polbeta gene: a Pro --> Arg change at codon 242 (the Pro242Arg polymorphism) and a Lys --> Met change at codon 289 (the Lys289Met polymorphism) and breast cancer risk and cancer progression. Genotypes were determined in DNA from peripheral blood lymphocytes of 150 breast cancer patients and 150 cancer-free, age-matched women (controls) by PCR-RFLP. A strong association between breast cancer occurrence and the Met/Met phenotype of the Lys289Met polymorphism [odds ratio (OR) 3.67; 95% confidence interval (CI) 1.87-7.56] and the Pro/Arg phenotype of the Pro242Lys polymorphism (OR 1.96; 95% CI 1.15-3.34) was found. Polymorphism-polymorphism interaction between the Met/Met phenotype of the Lys289Met and the Pro/Arg phenotype of the Pro242Arg variants increased the risk of breast cancer (OR 3.05; 95% CI 1.31-7.09). We did not observe any correlation between studied polymorphisms and breast cancer progression evaluated by node-metastasis, tumor size and Bloom-Richardson grading. In conclusion, Polbeta may play a role in the breast carcinogenesis and the Lys289Met polymorphism of the polbeta gene may be considered as an independent, early, molecular diagnostic marker in breast cancer. The Pro242Arg polymorphism may contribute to the carcinogenesis through the interaction with the Lys289Met and therefore may be regarded as a dependent, auxiliary marker.
Collapse
Affiliation(s)
- Tomasz Sliwinski
- Department of Molecular Genetics, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | | | | | | | | | | |
Collapse
|
18
|
Noah JW, Park S, Whitt JT, Perutka J, Frey W, Lambowitz AM. Atomic force microscopy reveals DNA bending during group II intron ribonucleoprotein particle integration into double-stranded DNA. Biochemistry 2006; 45:12424-35. [PMID: 17029398 PMCID: PMC2526057 DOI: 10.1021/bi060612h] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mobile Lactococcus lactis Ll.LtrB group II intron integrates into DNA target sites by a mechanism in which the intron RNA reverse splices into one DNA strand while the intron-encoded protein uses a C-terminal DNA endonuclease domain to cleave the opposite strand and then uses the cleaved 3' end to prime reverse transcription of the inserted intron RNA. These reactions are mediated by an RNP particle that contains the intron-encoded protein and the excised intron lariat RNA, with both the protein and base pairing of the intron RNA used to recognize DNA target sequences. Here, computational analysis indicates that Escherichia coli DNA target sequences that support Ll.LtrB integration have greater predicted bendability than do random E. coli genomic sequences, and atomic force microscopy shows that target DNA is bent during the reaction with Ll.LtrB RNPs. Time course and mutational analyses show that DNA bending occurs after reverse splicing and requires subsequent interactions between the intron-encoded protein and the 3' exon, which lead to two progressively larger bend angles. Our results suggest a model in which RNPs bend the target DNA by maintaining initial contacts with the 5' exon while engaging in subsequent 3' exon interactions that successively position the scissile phosphate for bottom-strand cleavage at the DNA endonuclease active site and then reposition the 3' end of the cleaved bottom strand to the reverse transcriptase active site for initiation of cDNA synthesis. Our findings indicate that bendability of the DNA target site is a significant factor for Ll.LtrB RNP integration.
Collapse
Affiliation(s)
- James W. Noah
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712−0159 USA
| | - Soyeun Park
- Department of Biomedical Engineering, Texas Materials Institute, and Center for Nano and Molecular Science and Technology, University of Texas at Austin, Austin, Texas 78712−1062 USA
| | - Jacob T. Whitt
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712−0159 USA
| | - Jiri Perutka
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712−0159 USA
| | - Wolfgang Frey
- Department of Biomedical Engineering, Texas Materials Institute, and Center for Nano and Molecular Science and Technology, University of Texas at Austin, Austin, Texas 78712−1062 USA
| | - Alan M. Lambowitz
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712−0159 USA
- To whom correspondence should be addressed: Telephone: (512)-232−3418. Fax: (512)-232−3420. E-mail:
| |
Collapse
|
19
|
Murakami S, Kamisuki S, Takata KI, Kasai N, Kimura S, Mizushina Y, Ohta K, Sugawara F, Sakaguchi K. Site-directed mutational analysis of structural interactions of low molecule compounds binding to the N-terminal 8 kDa domain of DNA polymerase beta. Biochem Biophys Res Commun 2006; 350:7-16. [PMID: 16996474 DOI: 10.1016/j.bbrc.2006.08.195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 08/16/2006] [Indexed: 11/25/2022]
Abstract
We previously reported the mode of inhibition of DNA polymerase beta (pol. beta) by long chain fatty acids and a bile acid, involving binding analyses to the N-terminal 8-kDa DNA binding domain. Here we describe a site-directed mutational analysis in which the key amino acids (L11, K35, H51, K60, L77, and T79), which are direct interaction sites in the domain, were substituted with K, A, A, A, K, and A, respectively. And their pol. beta interactions with a C24-long chain fatty acid, nervonic acid (NA), and a bile acid, lithocholic acid (LCA), were investigated by gel mobility shift assay and NMR spectroscopy. In the case of K35A, there was complete loss of DNA binding activity while K60A hardly has any activity. In contrast the other mutations had no appreciable effects. Thus, K35 and K60 are key amino acid sites for binding to template DNA. The DNA binding activities of L11K, H51A, and T79A as well as the wild type were inhibited by NA to the same extent. T79A demonstrated a disturbed interaction with LCA. 1H-15N HSQC NMR analysis indicated that despite their many similarities, the wild-type and the mutant proteins displayed some significant chemical shift differences. Not only were the substituted amino acid residues three-dimensionally shifted, but some amino acids which are positioned far distant from the key amino acids showed a shift. These results suggest that the interaction surface was significantly distorted with the result that LCA could not bind to the domain. These findings confirm our previous biochemical and 3D structural proposals concerning inhibition by NA and LCA.
Collapse
Affiliation(s)
- Shizuka Murakami
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lin P, Pedersen LC, Batra VK, Beard WA, Wilson SH, Pedersen LG. Energy analysis of chemistry for correct insertion by DNA polymerase beta. Proc Natl Acad Sci U S A 2006; 103:13294-9. [PMID: 16938895 PMCID: PMC1569157 DOI: 10.1073/pnas.0606006103] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-ray crystallographic structures of human DNA polymerase beta with nonhydrolyzable analogs containing all atoms in the active site required for catalysis provide a secure starting point for a theoretical analysis (quantum mechanics/molecular mechanics) of the mechanism of chemistry without biasing of modeling assumptions as required in previous studies. These structures provide the basis for a detailed quantum mechanics/molecular mechanics study of the path for the complete transfer of a monophosphate nucleoside donor to the sugar acceptor in the active site. The reaction is largely associative with the main energetic step preceded by proton transfer from the terminal primer deoxyribose O3' to Asp-256. The key residues that provide electrostatic stabilization of the transition state are identified and compared with those identified by mutational studies.
Collapse
Affiliation(s)
- Ping Lin
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599; and
| | - Lars C. Pedersen
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709-2233
| | - Vinod K. Batra
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709-2233
| | - William A. Beard
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709-2233
| | - Samuel H. Wilson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709-2233
| | - Lee G. Pedersen
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599; and
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709-2233
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Affiliation(s)
- William A Beard
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709-12233, USA
| | | |
Collapse
|
22
|
Dalal S, Hile S, Eckert KA, Sun KW, Starcevic D, Sweasy JB. Prostate-cancer-associated I260M variant of DNA polymerase beta is a sequence-specific mutator. Biochemistry 2006; 44:15664-73. [PMID: 16313169 DOI: 10.1021/bi051179z] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studies show that 30% of 189 tumors sequenced to date express variants of the polymerase beta (pol beta) protein that are not present in normal tissue. This raises the possibility that variants of pol beta might be linked to the etiology of cancer. Here, we characterize the I260M prostate-cancer-associated variant of pol beta. Ile260 is a key residue of the hydrophobic hinge that is important for the closing of the polymerase. In this study, we demonstrate that the I260M variant is a sequence context-dependent mutator polymerase. Specifically, I260M is a mutator for misalignment-mediated errors in dipyrimidine sequences. I260M is also a low-fidelity polymerase with regard to the induction of transversions within specific sequence contexts. Our results suggest that the hinge influences the geometry of the DNA within the polymerase active site that is important for accurate DNA synthesis. Importantly, characterization of the I260M variant shows that it has a functional phenotype that could be linked to the etiology or malignant progression of human cancer.
Collapse
Affiliation(s)
- Shibani Dalal
- Department of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
23
|
Drake JW, Bebenek A, Kissling GE, Peddada S. Clusters of mutations from transient hypermutability. Proc Natl Acad Sci U S A 2005; 102:12849-54. [PMID: 16118275 PMCID: PMC1200270 DOI: 10.1073/pnas.0503009102] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Indexed: 11/18/2022] Open
Abstract
Collections of mutants usually contain more mutants bearing multiple mutations than expected from the mutant frequency and a random distribution of mutations. This excess is seen in a variety of organisms and also after DNA synthesis in vitro. The excess is unlikely to originate in mutator mutants but rather from transient hypermutability resulting from a perturbation of one of the many transactions that maintain genetic fidelity. The multiple mutations are sometimes clustered and sometimes randomly distributed. We model some spectra as populations comprising a majority with a low mutation frequency and a minority with a high mutation frequency. In the case of mutants produced in vitro by a bacteriophage RB69 mutator DNA polymerase, mutants with two mutations are in approximately 10-fold excess and mutants with three mutations are in even greater excess. However, phenotypically undetectable mutations seen only as hitchhikers with detectable mutations are approximately 5-fold more frequent than mutants bearing detectable mutations, indicating that they arose in a subpopulation with a higher mutation frequency. Excess multiple mutations may contribute critically to carcinogenesis and to adaptive mutation, including the adaptations of pathogens as they move from host to host. In the case of the rapidly mutating riboviruses, the viral population appears to be composed of a majority with a mutation frequency substantially lower than the average and a minority with a huge mutational load.
Collapse
Affiliation(s)
- John W Drake
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
24
|
Lang T, Maitra M, Starcevic D, Li SX, Sweasy JB. A DNA polymerase beta mutant from colon cancer cells induces mutations. Proc Natl Acad Sci U S A 2004; 101:6074-9. [PMID: 15075389 PMCID: PMC395925 DOI: 10.1073/pnas.0308571101] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous investigations have shown that approximately 35% of the 90 tumors analyzed to date contain mutations within the DNA polymerasebeta (pol beta) gene. The existence of pol beta mutations in a substantial fraction of human tumors studied suggests a link between DNA pol beta and cancer. A DNA pol beta variant, in which Lys-289 has been altered to Met, was identified previously in a colorectal carcinoma. The K289M protein was expressed in mouse L cells containing the lambda cII mutational target. The lambda DNA was packaged and used to infect bacterial cells to obtain the spontaneous mutation frequency. We found that expression of K289M in the mouse cells resulted in a 2.5-fold increase in the mutation frequency. What was most interesting was that expression of K289M in these cells resulted in a 16-fold increase in the frequency of C to G or G to C base substitutions at a specific site within the cII target. By using this cII target sequence, kinetic analysis of the purified K289M protein revealed that it was able to misincorporate dCTP opposite template C and dGTP opposite template G with significantly higher efficiency than the wild-type pol beta protein. We provide evidence that misincorporation of nucleotides by K289M results from altered positioning of the DNA within the active site of the enzyme. Our data are consistent with the interpretation that misincorporation of nucleotides resulting from altered DNA positioning by the K289M protein has the potential to result in tumorigenesis or neoplastic progression.
Collapse
Affiliation(s)
- Tieming Lang
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
25
|
Sweasy JB. Fidelity mechanisms of DNA polymerase beta. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 73:137-69. [PMID: 12882517 DOI: 10.1016/s0079-6603(03)01005-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA polymerase 3 (Pol beta) is one of the best characterized eukaryotic DNA polymerases. Pol beta is a member of the X family of DNA polymerases. The Pol beta protein has two catalytic activities: DNA polymerase activity and dRP lyase activity. Pol beta has no known proofreading activity, so its accuracy in vitro results exclusively from the nucleotide selectivity of this enzyme. Presteady-state kinetic analysis has shown that Pol beta functions in nucleotide selectivity predominantly during phosphodiester bond formation, although this enzyme also possesses some ability to discriminate the correct from the incorrect deoxynucleoside triphosphate (dNTP) substrate during ground state binding. Recent results strongly suggest that Pol beta does not employ an induced fit mechanism of nucleotide discrimination. The fidelity of Pol beta appears to be determined through steric exclusion against the incorrect substrate and by the precise positioning of the catalytic residues, DNA, and substrate within the active site of the enzyme. Imprecise positioning of active site residues or DNA can result in the incorporation of the incorrect substrate into DNA. Amino acid residues both distant and near to the active site of Pol beta influence its geometry, suggesting that the movements and positioning of subdomains of Pol beta have a significant impact upon its fidelity.
Collapse
Affiliation(s)
- Joann B Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|