1
|
Kishore S, Del Rio Flores A, Lynch SR, Yuet KP, Khosla C. Discovery and Characterization of the Fully Decorated Nocardiosis-Associated Polyketide Natural Product. J Am Chem Soc 2024; 146:4212-4220. [PMID: 38295028 PMCID: PMC11009873 DOI: 10.1021/jacs.3c13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The genomes of 40 strains of Nocardia, most of which were associated with life-threatening human infections, encode a highly conserved assembly line polyketide synthase designated as the NOCAP (NOCardiosis-Associated Polyketide) synthase, whose product structure has been previously described. Here we report the structure and inferred biosynthetic pathway of the fully decorated glycolipid natural product. Its structure reveals a fully substituted benzaldehyde headgroup harboring an unusual polyfunctional tail and an O-linked disaccharide comprising a 3-α-epimycarose and 2-O-methyl-α-rhamnose whose installation requires flavin monooxygenase-dependent hydroxylation of the polyketide product. Production of the fully decorated glycolipid was verified in cultures of two patient-derived Nocardia species. In both E. coli and Nocardia spp., the glycolipid was only detected in culture supernatants, consistent with data from genetic knockout experiments implicating roles for two dedicated proteins in installing the second sugar substituent only after the monoglycosyl intermediate is exported across the bacterial cell membrane. With the NOCAP product in hand, the stage is set for investigating the evolutionary benefit of this polyketide biosynthetic pathway for Nocardia strains capable of infecting human hosts.
Collapse
Affiliation(s)
- Shreya Kishore
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | | - Stephen R Lynch
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kai P Yuet
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Sarafan ChEM-H, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Fluorescence Imaging-Based Discovery of Membrane Domain-Associated Proteins in Mycobacterium smegmatis. J Bacteriol 2021; 203:e0041921. [PMID: 34516286 DOI: 10.1128/jb.00419-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacteria spatially organize their plasma membrane, and many enzymes involved in envelope biosynthesis associate with a membrane compartment termed the intracellular membrane domain (IMD). The IMD is concentrated in the polar regions of growing cells and becomes less polarized under nongrowing conditions. Because mycobacteria elongate from the poles, the observed polar localization of the IMD during growth likely supports the localized biosynthesis of envelope components. While we have identified more than 300 IMD-associated proteins by proteomic analyses, only a few of these have been verified by independent experimental methods. Furthermore, some IMD-associated proteins may have escaped proteomic identification and remain to be identified. Here, we visually screened an arrayed library of 523 Mycobacterium smegmatis strains, each producing a Dendra2-FLAG-tagged recombinant protein. We identified 29 fusion proteins that showed polar fluorescence patterns characteristic of IMD proteins. Twenty of these had previously been suggested to localize to the IMD based on proteomic data. Of the nine remaining IMD candidate proteins, three were confirmed by biochemical methods to be associated with the IMD. Taken together, this new colocalization strategy is effective in verifying the IMD association of proteins found by proteomic analyses while facilitating the discovery of additional IMD-associated proteins. IMPORTANCE The intracellular membrane domain (IMD) is a membrane subcompartment found in Mycobacterium smegmatis cells. Proteomic analysis of purified IMD identified more than 300 proteins, including enzymes involved in cell envelope biosynthesis. However, proteomics on its own is unlikely to detect every IMD-associated protein because of technical and biological limitations. Here, we describe fluorescent protein colocalization as an alternative, independent approach. Using a combination of fluorescence microscopy, proteomics, and subcellular fractionation, we identified three new proteins associated with the IMD. Such a robust method to rigorously define IMD proteins will benefit future investigations to decipher the synthesis, maintenance, and functions of this membrane domain and help delineate a more general mechanism of subcellular protein localization in mycobacteria.
Collapse
|
3
|
Smith AA, Villarreal-Ramos B, Mendum TA, Williams KJ, Jones GJ, Wu H, McFadden J, Vordermeier HM, Stewart GR. Genetic screening for the protective antigenic targets of BCG vaccination. Tuberculosis (Edinb) 2020; 124:101979. [PMID: 32814303 DOI: 10.1016/j.tube.2020.101979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Abstract
Bovine tuberculosis is an important animal health problem and the predominant cause of zoonotic tuberculosis worldwide. It results in serious economic burden due to losses in productivity and the cost of control programmes. Control could be greatly improved by the introduction of an efficacious cattle vaccine but the most likely candidate, BCG, has several limitations including variable efficacy. Augmentation of BCG with a subunit vaccine booster has been shown to increase protection but the selection of antigens has hitherto been left largely to serendipity. In the present study, we take a rational approach to identify the protective antigens of BCG, selecting a BCG transposon mutant library in naïve and BCG-vaccinated cattle. Ten mutants had increased relative survival in vaccinated compared to naïve cattle, consistent with loss of protective antigen targets making the mutants less visible to the BCG immune response. The immunogenicity of three putative protective antigens, BCG_0116, BCG_0205 (YrbE1B) and BCG_1448 (PPE20) was investigated using peptide pools and PBMCs from BCG vaccinated cattle. BCG vaccination induced PBMC to release elevated levels of IP10, IL-17a and IL-10 in response to all three antigens. Taken together, the data supports the further study of these antigens for use in subunit vaccines.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- BCG Vaccine/administration & dosage
- BCG Vaccine/immunology
- Cattle
- Cytokines/immunology
- Cytokines/metabolism
- DNA Transposable Elements
- Immunogenicity, Vaccine
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/microbiology
- Mutation
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Tuberculosis, Bovine/immunology
- Tuberculosis, Bovine/metabolism
- Tuberculosis, Bovine/microbiology
- Tuberculosis, Bovine/prevention & control
- Vaccination/veterinary
Collapse
Affiliation(s)
- Alex A Smith
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Bernardo Villarreal-Ramos
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, KT15 3NB, UK; Centre of Excellence for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK.
| | - Tom A Mendum
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Kerstin J Williams
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Gareth J Jones
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, KT15 3NB, UK
| | - Huihai Wu
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Johnjoe McFadden
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - H Martin Vordermeier
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, KT15 3NB, UK; Centre of Excellence for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK.
| | - Graham R Stewart
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
4
|
Dautin N, Argentini M, Mohiman N, Labarre C, Cornu D, Sago L, Chami M, Dietrich C, de Sousa d'Auria C, Houssin C, Masi M, Salmeron C, Bayan N. Role of the unique, non-essential phosphatidylglycerol::prolipoprotein diacylglyceryl transferase (Lgt) in Corynebacterium glutamicum. MICROBIOLOGY-SGM 2020; 166:759-776. [PMID: 32490790 DOI: 10.1099/mic.0.000937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bacterial lipoproteins are secreted proteins that are post-translationally lipidated. Following synthesis, preprolipoproteins are transported through the cytoplasmic membrane via the Sec or Tat translocon. As they exit the transport machinery, they are recognized by a phosphatidylglycerol::prolipoprotein diacylglyceryl transferase (Lgt), which converts them to prolipoproteins by adding a diacylglyceryl group to the sulfhydryl side chain of the invariant Cys+1 residue. Lipoprotein signal peptidase (LspA or signal peptidase II) subsequently cleaves the signal peptide, liberating the α-amino group of Cys+1, which can eventually be further modified. Here, we identified the lgt and lspA genes from Corynebacterium glutamicum and found that they are unique but not essential. We found that Lgt is necessary for the acylation and membrane anchoring of two model lipoproteins expressed in this species: MusE, a C. glutamicum maltose-binding lipoprotein, and LppX, a Mycobacterium tuberculosis lipoprotein. However, Lgt is not required for these proteins' signal peptide cleavage, or for LppX glycosylation. Taken together, these data show that in C. glutamicum the association of some lipoproteins with membranes through the covalent attachment of a lipid moiety is not essential for further post-translational modification.
Collapse
Affiliation(s)
- Nathalie Dautin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,Present address: Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Manuela Argentini
- Present address: Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Niloofar Mohiman
- Present address: Curakliniken, Erikslustvägen 22, 217 73 Malmö, Sweden.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Cécile Labarre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Laila Sago
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Mohamed Chami
- CBioEM lab, Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Christiane Dietrich
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Célia de Sousa d'Auria
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Christine Houssin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Muriel Masi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Christophe Salmeron
- Present address: Observatoire Océanologique de Banyuls Sur Mer, FR 3724-Laboratoire Arago - Sorbonne Université / CNRS, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Nicolas Bayan
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
5
|
Xia J, Feng B, Wen G, Xue W, Ma G, Zhang H, Wu S. Bacterial Lipoprotein Biosynthetic Pathway as a Potential Target for Structure-based Design of Antibacterial Agents. Curr Med Chem 2020; 27:1132-1150. [PMID: 30360704 DOI: 10.2174/0929867325666181008143411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Antibiotic resistance is currently a serious problem for global public health. To this end, discovery of new antibacterial drugs that interact with novel targets is important. The biosynthesis of lipoproteins is vital to bacterial survival and its inhibitors have shown efficacy against a range of bacteria, thus bacterial lipoprotein biosynthetic pathway is a potential target. METHODS At first, the literature that covered the basic concept of bacterial lipoprotein biosynthetic pathway as well as biochemical characterization of three key enzymes was reviewed. Then, the recently resolved crystal structures of the three enzymes were retrieved from Protein Data Bank (PDB) and the essential residues in the active sites were analyzed. Lastly, all the available specific inhibitors targeting this pathway and their Structure-activity Relationship (SAR) were discussed. RESULTS We briefly introduce the bacterial lipoprotein biosynthetic pathway and describe the structures and functions of three key enzymes in detail. In addition, we present much knowledge on ligand recognition that may facilitate structure-based drug design. Moreover, we focus on the SAR of LspA inhibitors and discuss their potency and drug-likeness. CONCLUSION This review presents a clear background of lipoprotein biosynthetic pathway and provides practical clues for structure-based drug design. In particular, the most up-to-date knowledge on the SAR of lead compounds targeting this pathway would be a good reference for discovery of a novel class of antibacterial agents.
Collapse
Affiliation(s)
- Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bo Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Gang Wen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenjie Xue
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guixing Ma
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and SUSTech-HKU joint laboratories for matrix biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongmin Zhang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and SUSTech-HKU joint laboratories for matrix biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Belardinelli JM, Stevens CM, Li W, Tan YZ, Jones V, Mancia F, Zgurskaya HI, Jackson M. The MmpL3 interactome reveals a complex crosstalk between cell envelope biosynthesis and cell elongation and division in mycobacteria. Sci Rep 2019; 9:10728. [PMID: 31341202 PMCID: PMC6656915 DOI: 10.1038/s41598-019-47159-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/08/2019] [Indexed: 01/19/2023] Open
Abstract
Integral membrane transporters of the Mycobacterial Membrane Protein Large (MmpL) family and their interactome play important roles in the synthesis and export of mycobacterial outer membrane lipids. Despite the current interest in the mycolic acid transporter, MmpL3, from the perspective of drug discovery, the nature and biological significance of its interactome remain largely unknown. We here report on a genome-wide screening by two-hybrid system for MmpL3 binding partners. While a surprisingly low number of proteins involved in mycolic acid biosynthesis was found to interact with MmpL3, numerous enzymes and transporters participating in the biogenesis of peptidoglycan, arabinogalactan and lipoglycans, and the cell division regulatory protein, CrgA, were identified among the hits. Surface plasmon resonance and co-immunoprecipitation independently confirmed physical interactions for three proteins in vitro and/or in vivo. Results are in line with the focal localization of MmpL3 at the poles and septum of actively-growing bacilli where the synthesis of all major constituents of the cell wall core are known to occur, and are further suggestive of a role for MmpL3 in the coordination of new cell wall deposition during cell septation and elongation. This novel aspect of the physiology of MmpL3 may contribute to the extreme vulnerability and high therapeutic potential of this transporter.
Collapse
Affiliation(s)
- Juan Manuel Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Casey M Stevens
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Yong Zi Tan
- Department of Physiology and Cellular Biophysics, Columbia University, 1150 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Victoria Jones
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, 1150 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Helen I Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA.
| |
Collapse
|
7
|
Starr EP, Shi S, Blazewicz SJ, Probst AJ, Herman DJ, Firestone MK, Banfield JF. Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. MICROBIOME 2018; 6:122. [PMID: 29970182 PMCID: PMC6031116 DOI: 10.1186/s40168-018-0499-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/11/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND The transformation of plant photosynthate into soil organic carbon and its recycling to CO2 by soil microorganisms is one of the central components of the terrestrial carbon cycle. There are currently large knowledge gaps related to which soil-associated microorganisms take up plant carbon in the rhizosphere and the fate of that carbon. RESULTS We conducted an experiment in which common wild oats (Avena fatua) were grown in a 13CO2 atmosphere and the rhizosphere and non-rhizosphere soil was sampled for genomic analyses. Density gradient centrifugation of DNA extracted from soil samples enabled distinction of microbes that did and did not incorporate the 13C into their DNA. A 1.45-Mbp genome of a Saccharibacteria (TM7) was identified and, despite the microbial complexity of rhizosphere soil, curated to completion. The genome lacks many biosynthetic pathways, including genes required to synthesize DNA de novo. Rather, it requires externally derived nucleotides for DNA and RNA synthesis. Given this, we conclude that rhizosphere-associated Saccharibacteria recycle DNA from bacteria that live off plant exudates and/or phage that acquired 13C because they preyed upon these bacteria and/or directly from the labeled plant DNA. Isotopic labeling indicates that the population was replicating during the 6-week period of plant growth. Interestingly, the genome is ~ 30% larger than other complete Saccharibacteria genomes from non-soil environments, largely due to more genes for complex carbon utilization and amino acid metabolism. Given the ability to degrade cellulose, hemicellulose, pectin, starch, and 1,3-β-glucan, we predict that this Saccharibacteria generates energy by fermentation of soil necromass and plant root exudates to acetate and lactate. The genome also encodes a linear electron transport chain featuring a terminal oxidase, suggesting that this Saccharibacteria may respire aerobically. The genome encodes a hydrolase that could breakdown salicylic acid, a plant defense signaling molecule, and genes to interconvert a variety of isoprenoids, including the plant hormone zeatin. CONCLUSIONS Rhizosphere Saccharibacteria likely depend on other bacteria for basic cellular building blocks. We propose that isotopically labeled CO2 is incorporated into plant-derived carbon and then into the DNA of rhizosphere organisms capable of nucleotide synthesis, and the nucleotides are recycled into Saccharibacterial genomes.
Collapse
Affiliation(s)
- Evan P. Starr
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Shengjing Shi
- Lincoln Science Centre, AgResearch Ltd, Christchurch, 8140 New Zealand
| | - Steven J. Blazewicz
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, 94550 USA
| | | | - Donald J. Herman
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94704 USA
| | - Mary K. Firestone
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94704 USA
| | - Jillian F. Banfield
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94704 USA
- Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
8
|
Puffal J, García-Heredia A, Rahlwes KC, Siegrist MS, Morita YS. Spatial control of cell envelope biosynthesis in mycobacteria. Pathog Dis 2018; 76:4953754. [DOI: 10.1093/femspd/fty027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/25/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Julia Puffal
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Alam García-Heredia
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
9
|
Abstract
Cell elongation occurs primarily at the mycobacterial cell poles, but the molecular mechanisms governing this spatial regulation remain elusive. We recently reported the presence of an intracellular membrane domain (IMD) that was spatially segregated from the conventional plasma membrane in Mycobacterium smegmatis. The IMD is enriched in the polar region of actively elongating cells and houses many essential enzymes involved in envelope biosynthesis, suggesting its role in spatially restricted elongation at the cell poles. Here, we examined reorganization of the IMD when the cells are no longer elongating. To monitor the IMD, we used a previously established reporter strain expressing fluorescent IMD markers and grew it to the stationary growth phase or exposed the cells to nutrient starvation. In both cases, the IMD was delocalized from the cell pole and distributed along the sidewall. Importantly, the IMD could still be isolated biochemically by density gradient fractionation, indicating its maintenance as a membrane domain. Chemical and genetic inhibition of peptidoglycan biosynthesis led to the delocalization of the IMD, suggesting the suppression of peptidoglycan biosynthesis as a trigger of spatial IMD rearrangement. Starved cells with a delocalized IMD can resume growth upon nutrient repletion, and polar enrichment of the IMD coincides with the initiation of cell elongation. These data reveal that the IMD is a membrane domain with the unprecedented capability of subcellular repositioning in response to the physiological conditions of the mycobacterial cell. Mycobacteria include medically important species, such as the human tuberculosis pathogen Mycobacterium tuberculosis. The highly impermeable cell envelope is a hallmark of these microbes, and its biosynthesis is a proven chemotherapeutic target. Despite the accumulating knowledge regarding the biosynthesis of individual envelope components, the regulatory mechanisms behind the coordinated synthesis of the complex cell envelope remain elusive. We previously reported the presence of a metabolically active membrane domain enriched in the elongating poles of actively growing mycobacteria. However, the spatiotemporal dynamics of the membrane domain in response to stress have not been examined. Here, we show that the membrane domain is spatially reorganized when growth is inhibited in the stationary growth phase, under nutrient starvation, or in response to perturbation of peptidoglycan biosynthesis. Our results suggest that mycobacteria have a mechanism to spatiotemporally coordinate the membrane domain in response to metabolic needs under different growth conditions.
Collapse
|
10
|
Jankute M, Byng CV, Alderwick LJ, Besra GS. Elucidation of a protein-protein interaction network involved in Corynebacterium glutamicum cell wall biosynthesis as determined by bacterial two-hybrid analysis. Glycoconj J 2015; 31:475-83. [PMID: 25117516 PMCID: PMC4213368 DOI: 10.1007/s10719-014-9549-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mycobacterium species have a highly complex and unique cell wall that consists of a large macromolecular structure termed the mycolyl-arabinogalactan-peptidoglycan (mAGP) complex. This complex is essential for growth, survival and virulence of the human pathogen Mycobacterium tuberculosis, and is the target of several anti-tubercular drugs. The closely related species Corynebacterium glutamicum has proven useful in the study of orthologous M. tuberculosis genes and proteins involved in mAGP synthesis. This study examines the construction of a protein-protein interaction network for the major cell wall component arabinogalactan in C. glutamicum based on the use of a bacterial two-hybrid system. We have identified twenty-four putative homotypic and heterotypic protein interactions in vivo. Our results demonstrate an association between glycosyltransferases, GlfT1 and AftB, and interaction between the sub-units of decaprenylphosphoribose epimerase, DprE1 and DprE2. These analyses have also shown that AftB interacts with AftA, which catalyzes the addition of the first three arabinose units onto the galactan chain. Both AftA and AftB associate with other arabinofuranosyltransferases, including Emb and AftC, that elongate and branch the arabinan domain. Moreover, a number of proteins involved in arabinogalactan biosynthesis were shown to form dimers or multimers. These findings provide a useful recourse for understanding the biosynthesis and function of the mycobacterial cell wall, as well as providing new therapeutic targets.
Collapse
Affiliation(s)
- Monika Jankute
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
11
|
Buddelmeijer N. The molecular mechanism of bacterial lipoprotein modification—How, when and why? FEMS Microbiol Rev 2015; 39:246-61. [DOI: 10.1093/femsre/fuu006] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
12
|
Córdova-Dávalos LE, Espitia C, González-Cerón G, Arreguín-Espinosa R, Soberón-Chávez G, Servín-González L. LipoproteinN-acyl transferase (Lnt1) is dispensable for proteinO-mannosylation byStreptomyces coelicolor. FEMS Microbiol Lett 2013; 350:72-82. [DOI: 10.1111/1574-6968.12298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/09/2013] [Accepted: 10/07/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Laura Elena Córdova-Dávalos
- Departamento de Biología Molecular y Biotecnología; Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Ciudad Universitaria; Ciudad de Mexico DF México
| | - Clara Espitia
- Departamento de Inmunología; Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Ciudad Universitaria; Ciudad de Mexico DF México
| | - Gabriela González-Cerón
- Departamento de Biología Molecular y Biotecnología; Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Ciudad Universitaria; Ciudad de Mexico DF México
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas; Instituto de Química; Universidad Nacional Autónoma de México; Ciudad Universitaria; Ciudad de Mexico DF México
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología; Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Ciudad Universitaria; Ciudad de Mexico DF México
| | - Luis Servín-González
- Departamento de Biología Molecular y Biotecnología; Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Ciudad Universitaria; Ciudad de Mexico DF México
| |
Collapse
|
13
|
Promponas VJ, Ouzounis CA, Iliopoulos I. Experimental evidence validating the computational inference of functional associations from gene fusion events: a critical survey. Brief Bioinform 2012; 15:443-54. [PMID: 23220349 PMCID: PMC4017328 DOI: 10.1093/bib/bbs072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
More than a decade ago, a number of methods were proposed for the inference of protein interactions, using whole-genome information from gene clusters, gene fusions and phylogenetic profiles. This structural and evolutionary view of entire genomes has provided a valuable approach for the functional characterization of proteins, especially those without sequence similarity to proteins of known function. Furthermore, this view has raised the real possibility to detect functional associations of genes and their corresponding proteins for any entire genome sequence. Yet, despite these exciting developments, there have been relatively few cases of real use of these methods outside the computational biology field, as reflected from citation analysis. These methods have the potential to be used in high-throughput experimental settings in functional genomics and proteomics to validate results with very high accuracy and good coverage. In this critical survey, we provide a comprehensive overview of 30 most prominent examples of single pairwise protein interaction cases in small-scale studies, where protein interactions have either been detected by gene fusion or yielded additional, corroborating evidence from biochemical observations. Our conclusion is that with the derivation of a validated gold-standard corpus and better data integration with big experiments, gene fusion detection can truly become a valuable tool for large-scale experimental biology.
Collapse
Affiliation(s)
- Vasilis J Promponas
- Institute of Agrobiotechnology, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece.
| | | | | |
Collapse
|
14
|
Rana AK, Singh A, Gurcha SS, Cox LR, Bhatt A, Besra GS. Ppm1-encoded polyprenyl monophosphomannose synthase activity is essential for lipoglycan synthesis and survival in mycobacteria. PLoS One 2012; 7:e48211. [PMID: 23118955 PMCID: PMC3485146 DOI: 10.1371/journal.pone.0048211] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/26/2012] [Indexed: 02/03/2023] Open
Abstract
The biosynthesis of mycobacterial mannose-containing lipoglycans, such as lipomannan (LM) and the immunomodulator lipoarabinomanan (LAM), is carried out by the GT-C superfamily of glycosyltransferases that require polyprenylphosphate-based mannose (PPM) as a sugar donor. The essentiality of lipoglycan synthesis for growth makes the glycosyltransferase that synthesizes PPM, a potential drug target in Mycobacterium tuberculosis, the causative agent of tuberculosis. In M. tuberculosis, PPM has been shown to be synthesized by Ppm1 in enzymatic assays. However, genetic evidence for its essentiality and in vivo role in LM/LAM and PPM biosynthesis is lacking. In this study, we demonstrate that MSMEG3859, a Mycobacterium smegmatis gene encoding the homologue of the catalytic domain of M. tuberculosis Ppm1, is essential for survival. Depletion of MSMEG3859 in a conditional mutant of M. smegmatis resulted in the loss of higher order phosphatidyl-myo-inositol mannosides (PIMs) and lipomannan. We were also able to demonstrate that two other M. tuberculosis genes encoding glycosyltransferases that either had been shown to possess PPM synthase activity (Rv3779), or were involved in synthesizing similar polyprenol-linked donors (ppgS), were unable to compensate for the loss of MSMEG3859 in the conditional mutant.
Collapse
Affiliation(s)
- Amrita K. Rana
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Albel Singh
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sudagar S. Gurcha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Liam R. Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail: (LRC); (AB); (GSB)
| | - Apoorva Bhatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail: (LRC); (AB); (GSB)
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail: (LRC); (AB); (GSB)
| |
Collapse
|
15
|
Larrouy-Maumus G, Škovierová H, Dhouib R, Angala SK, Zuberogoitia S, Pham H, Villela AD, Mikušová K, Noguera A, Gilleron M, Valentínová L, Korduláková J, Brennan PJ, Puzo G, Nigou J, Jackson M. A small multidrug resistance-like transporter involved in the arabinosylation of arabinogalactan and lipoarabinomannan in mycobacteria. J Biol Chem 2012; 287:39933-41. [PMID: 23038254 DOI: 10.1074/jbc.m112.400986] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of the major cell envelope glycoconjugates of Mycobacterium tuberculosis is topologically split across the plasma membrane, yet nothing is known of the transporters required for the translocation of lipid-linked sugar donors and oligosaccharide intermediates from the cytoplasmic to the periplasmic side of the membrane in mycobacteria. One of the mechanisms used by prokaryotes to translocate lipid-linked phosphate sugars across the plasma membrane relies on translocases that share resemblance with small multidrug resistance transporters. The presence of an small multidrug resistance-like gene, Rv3789, located immediately upstream from dprE1/dprE2 responsible for the formation of decaprenyl-monophosphoryl-β-D-arabinose (DPA) in the genome of M. tuberculosis led us to investigate its potential involvement in the formation of the major arabinosylated glycopolymers, lipoarabinomannan (LAM) and arabinogalactan (AG). Disruption of the ortholog of Rv3789 in Mycobacterium smegmatis resulted in a reduction of the arabinose content of both AG and LAM that accompanied the accumulation of DPA in the mutant cells. Interestingly, AG and LAM synthesis was restored in the mutant not only upon expression of Rv3789 but also upon that of the undecaprenyl phosphate aminoarabinose flippase arnE/F genes from Escherichia coli. A bacterial two-hybrid system further indicated that Rv3789 interacts in vivo with the galactosyltransferase that initiates the elongation of the galactan domain of AG. Biochemical and genetic evidence is thus consistent with Rv3789 belonging to an AG biosynthetic complex, where its role is to reorient DPA to the periplasm, allowing this arabinose donor to then be used in the buildup of the arabinan domains of AG and LAM.
Collapse
Affiliation(s)
- Gérald Larrouy-Maumus
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Département Mécanismes Moléculaires des Infections Mycobactériennes, F-31077 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mohiman N, Argentini M, Batt SM, Cornu D, Masi M, Eggeling L, Besra G, Bayan N. The ppm operon is essential for acylation and glycosylation of lipoproteins in Corynebacterium glutamicum. PLoS One 2012; 7:e46225. [PMID: 23029442 PMCID: PMC3460810 DOI: 10.1371/journal.pone.0046225] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] Open
Abstract
Background Due to their contribution to bacterial virulence, lipoproteins and members of the lipoprotein biogenesis pathway represent potent drug targets. Following translocation across the inner membrane, lipoprotein precursors are acylated by lipoprotein diacylglycerol transferase (Lgt), cleaved off their signal peptides by lipoprotein signal peptidase (Lsp) and, in Gram-negative bacteria, further triacylated by lipoprotein N-acyl transferase (Lnt). The existence of an active apolipoprotein N-acyltransferase (Ms-Ppm2) involved in the N-acylation of LppX was recently reported in M. smegmatis. Ms-Ppm2 is part of the ppm operon in which Ppm1, a polyprenol-monophosphomannose synthase, has been shown to be essential in lipoglycans synthesis but whose function in lipoprotein biosynthesis is completely unknown. Results In order to clarify the role of the ppm operon in lipoprotein biosynthesis, we investigated the post-translational modifications of two model lipoproteins (AmyE and LppX) in C. glutamicum Δppm1 and Δppm2 mutants. Our results show that both proteins are anchored into the membrane and that their N-termini are N-acylated by Cg-Ppm2. The acylated N-terminal peptide of LppX was also found to be modified by hexose moieties. This O-glycosylation is localized in the N-terminal peptide of LppX and disappeared in the Δppm1 mutant. While compromised in the absence of Cg-Ppm2, LppX O-glycosylation could be restored when Cg-Ppm1, Cg-Ppm2 or the homologous Mt-Ppm1 of M. tuberculosis was overexpressed. Conclusion Together, these results show for the first time that Cg-Ppm1 (Ppm synthase) and Cg-Ppm2 (Lnt) operate in a common biosynthetic pathway in which lipoprotein N-acylation and glycosylation are tightly coupled.
Collapse
Affiliation(s)
- Niloofar Mohiman
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique UMR 8619, Orsay, France
| | - Manuela Argentini
- Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles, Gif sur Yvette, France
| | - Sarah M. Batt
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - David Cornu
- Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles, Gif sur Yvette, France
| | - Muriel Masi
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique UMR 8619, Orsay, France
| | | | - Gurdyal Besra
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Nicolas Bayan
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique UMR 8619, Orsay, France
- * E-mail:
| |
Collapse
|
17
|
Skovierová H, Larrouy-Maumus G, Pham H, Belanová M, Barilone N, Dasgupta A, Mikusová K, Gicquel B, Gilleron M, Brennan PJ, Puzo G, Nigou J, Jackson M. Biosynthetic origin of the galactosamine substituent of Arabinogalactan in Mycobacterium tuberculosis. J Biol Chem 2010; 285:41348-55. [PMID: 21030587 DOI: 10.1074/jbc.m110.188110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The arabinogalactan (AG) of slow growing pathogenic Mycobacterium spp. is characterized by the presence of galactosamine (GalN) modifying some of the interior branched arabinosyl residues. The biosynthetic origin of this substituent and its role(s) in the physiology and/or pathogenicity of mycobacteria are not known. We report on the discovery of a polyprenyl-phospho-N-acetylgalactosaminyl synthase (PpgS) and the glycosyltransferase Rv3779 from Mycobacterium tuberculosis required, respectively, for providing and transferring the GalN substrate for the modification of AG. Disruption of either ppgS (Rv3631) or Rv3779 totally abolished the synthesis of the GalN substituent of AG in M. tuberculosis H37Rv. Conversely, expression of ppgS in Mycobacterium smegmatis conferred upon this species otherwise devoid of ppgS ortholog and any detectable polyprenyl-phospho-N-acetylgalactosaminyl synthase activity the ability to synthesize polyprenyl-phospho-N-acetylgalactosamine (polyprenyl-P-GalNAc) from polyprenyl-P and UDP-GalNAc. Interestingly, this catalytic activity was increased 40-50-fold by co-expressing Rv3632, the encoding gene of a small membrane protein apparently co-transcribed with ppgS in M. tuberculosis H37Rv. The discovery of this novel lipid-linked sugar donor and the involvement of a the glycosyltransferase C-type glycosyltransferase in its transfer onto its final acceptor suggest that pathogenic mycobacteria modify AG on the periplasmic side of the plasma membrane. The availability of a ppgS knock-out mutant of M. tuberculosis provides unique opportunities to investigate the physiological function of the GalN substituent and the potential impact it may have on host-pathogen interactions.
Collapse
Affiliation(s)
- Henrieta Skovierová
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Espitia C, Servín-González L, Mancilla R. New insights into protein O-mannosylation in actinomycetes. MOLECULAR BIOSYSTEMS 2010; 6:775-81. [PMID: 20567761 DOI: 10.1039/b916394h] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycosylation is a common post-translational modification of surface exposed proteins and lipids present in all kingdoms of life. Information derived from bacterial genome sequencing, together with proteomic and genomic analysis has allowed the identification of the enzymatic glycosylation machinery. Among prokaryotes, O-mannosylation of proteins has been found in the actinomycetes and resembles protein O-mannosylation in fungi and higher eukaryotes. In this review we summarize the main features of the biosynthetic pathway of O-mannosylation in prokaryotes with special emphasis on the actinomycetes, as well as the biological role of the glycosylated target proteins.
Collapse
Affiliation(s)
- Clara Espitia
- Departamento de Inmunologia, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México DF, México
| | | | | |
Collapse
|
19
|
Identification of a polyprenylphosphomannosyl synthase involved in the synthesis of mycobacterial mannosides. J Bacteriol 2009; 191:6769-72. [PMID: 19717608 DOI: 10.1128/jb.00431-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report on the identification of a glycosyltransferase (GT) from Mycobacterium tuberculosis H37Rv, Rv3779, of the membranous GT-C superfamily responsible for the direct synthesis of polyprenyl-phospho-mannopyranose and thus indirectly for lipoarabinomannan, lipomannan, and the higher-order phosphatidyl-myo-inositol mannosides.
Collapse
|
20
|
Tschumi A, Nai C, Auchli Y, Hunziker P, Gehrig P, Keller P, Grau T, Sander P. Identification of apolipoprotein N-acyltransferase (Lnt) in mycobacteria. J Biol Chem 2009; 284:27146-56. [PMID: 19661058 DOI: 10.1074/jbc.m109.022715] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoproteins of Gram-negative and Gram-positive bacteria carry a thioether-bound diacylglycerol but differ by a fatty acid amide bound to the alpha-amino group of the universally conserved cysteine. In Escherichia coli the N-terminal acylation is catalyzed by the N-acyltransferase Lnt. Using E. coli Lnt as a query in a BLASTp search, we identified putative lnt genes also in Gram-positive mycobacteria. The Mycobacterium tuberculosis lipoprotein LppX, heterologously expressed in Mycobacterium smegmatis, was N-acylated at the N-terminal cysteine, whereas LppX expressed in a M. smegmatis lnt::aph knock-out mutant was accessible for N-terminal sequencing. Western blot analyses of a truncated and tagged form of LppX indicated a smaller size of about 0.3 kDa in the lnt::aph mutant compared with the parental strain. Matrix-assisted laser desorption ionization time-of-flight/time-of-flight analyses of a trypsin digest of LppX proved the presence of the diacylglycerol modification in both strains, the parental strain and lnt::aph mutant. N-Acylation was found exclusively in the M. smegmatis parental strain. Complementation of the lnt::aph mutant with M. tuberculosis ppm1 restored N-acylation. The substrate for N-acylation is a C16 fatty acid, whereas the two fatty acids of the diacylglycerol residue were identified as C16 and C19:0 fatty acid, the latter most likely tuberculostearic acid. We demonstrate that mycobacterial lipoproteins are triacylated. For the first time to our knowledge, we identify Lnt activity in Gram-positive bacteria and assigned the responsible genes. In M. smegmatis and M. tuberculosis the open reading frames are annotated as MSMEG_3860 and M. tuberculosis ppm1, respectively.
Collapse
Affiliation(s)
- Andreas Tschumi
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, CH-8006 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Protein O-mannosylation is an essential modification in fungi and animals. Different from most other types of O-glycosylation, protein O-mannosylation is initiated in the endoplasmic reticulum by the transfer of mannose from dolichol monophosphate-activated mannose to serine and threonine residues of secretory proteins. In recent years, it has emerged that even bacteria are capable of O-mannosylation and that the biosynthetic pathway of O-mannosyl glycans is conserved between pro- and eukaryotes. In this review, we summarize the observations that have opened up the field and highlight characteristics of O-mannosylation in the different domains/kingdoms of life.
Collapse
Affiliation(s)
- Mark Lommel
- Department V Cell Chemistry, Heidelberg Institute for Plant Sciences, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
22
|
Torrelles JB, DesJardin LE, MacNeil J, Kaufman TM, Kutzbach B, Knaup R, McCarthy TR, Gurcha SS, Besra GS, Clegg S, Schlesinger LS. Inactivation of Mycobacterium tuberculosis mannosyltransferase pimB reduces the cell wall lipoarabinomannan and lipomannan content and increases the rate of bacterial-induced human macrophage cell death. Glycobiology 2009; 19:743-55. [PMID: 19318518 DOI: 10.1093/glycob/cwp042] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Mycobacterium tuberculosis (M.tb) cell wall contains an important group of structurally related mannosylated lipoglycans called phosphatidyl-myo-inositol mannosides (PIMs), lipomannan (LM), and mannose-capped lipoarabinomannan (ManLAM), where the terminal alpha-[1-->2] mannosyl structures on higher order PIMs and ManLAM have been shown to engage C-type lectins such as the macrophage mannose receptor directing M.tb phagosome maturation arrest. An important gene described in the biosynthesis of these molecules is the mannosyltransferase pimB (Rv0557). Here, we disrupted pimB in a virulent strain of M.tb. We demonstrate that the inactivation of pimB in M.tb does not abolish the production of any of its cell wall mannosylated lipoglycans; however, it results in a quantitative decrease in the ManLAM and LM content without affecting higher order PIMs. This finding indicates gene redundancy or the possibility of an alternative biosynthetic pathway that may compensate for the PimB deficiency. Furthermore, infection of human macrophages by the pimB mutant leads to an alteration in macrophage phenotype concomitant with a significant increase in the rate of macrophage death.
Collapse
Affiliation(s)
- Jordi B Torrelles
- Division of Infectious Diseases, Department of Medicine, The Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wehmeier S, Varghese AS, Gurcha SS, Tissot B, Panico M, Hitchen P, Morris HR, Besra GS, Dell A, Smith MCM. Glycosylation of the phosphate binding protein, PstS, in Streptomyces coelicolor by a pathway that resembles protein O-mannosylation in eukaryotes. Mol Microbiol 2008; 71:421-33. [PMID: 19017269 DOI: 10.1111/j.1365-2958.2008.06536.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously mutations in a putative protein O-mannosyltransferase (SCO3154, Pmt) and a polyprenol phosphate mannose synthase (SCO1423, Ppm1) were found to cause resistance to phage, phiC31, in the antibiotic producing bacteria Streptomyces coelicolor A3(2). It was proposed that these two enzymes were part of a protein O-glycosylation pathway that was necessary for synthesis of the phage receptor. Here we provide the evidence that Pmt and Ppm1 are indeed both required for protein O-glycosylation. The phosphate binding protein PstS was found to be glycosylated with a trihexose in the S. coelicolor parent strain, J1929, but not in the pmt(-) derivative, DT1025. Ppm1 was necessary for the transfer of mannose to endogenous polyprenol phosphate in membrane preparations of S. coelicolor. A mutation in ppm1 that conferred an E218V substitution in Ppm1 abolished mannose transfer and glycosylation of PstS. Mass spectrometry analysis of extracted lipids showed the presence of a glycosylated polyprenol phosphate (PP) containing nine repeated isoprenyl units (C(45)-PP). S. coelicolor membranes were also able to catalyse the transfer of mannose to peptides derived from PstS, indicating that these could be targets for Pmt in vivo.
Collapse
Affiliation(s)
- S Wehmeier
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Maeda Y, Kinoshita T. Dolichol-phosphate mannose synthase: Structure, function and regulation. Biochim Biophys Acta Gen Subj 2008; 1780:861-8. [DOI: 10.1016/j.bbagen.2008.03.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/11/2008] [Accepted: 03/06/2008] [Indexed: 11/30/2022]
|
25
|
Wolucka BA. Biosynthesis of D-arabinose in mycobacteria - a novel bacterial pathway with implications for antimycobacterial therapy. FEBS J 2008; 275:2691-711. [PMID: 18422659 DOI: 10.1111/j.1742-4658.2008.06395.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Decaprenyl-phospho-arabinose (beta-D-arabinofuranosyl-1-O-monophosphodecaprenol), the only known donor of d-arabinose in bacteria, and its precursor, decaprenyl-phospho-ribose (beta-D-ribofuranosyl-1-O-monophosphodecaprenol), were first described in 1992. En route to D-arabinofuranose, the decaprenyl-phospho-ribose 2'-epimerase converts decaprenyl-phospho-ribose to decaprenyl-phospho-arabinose, which is a substrate for arabinosyltransferases in the synthesis of the cell-wall arabinogalactan and lipoarabinomannan polysaccharides of mycobacteria. The first step of the proposed decaprenyl-phospho-arabinose biosynthesis pathway in Mycobacterium tuberculosis and related actinobacteria is the formation of D-ribose 5-phosphate from sedoheptulose 7-phosphate, catalysed by the Rv1449 transketolase, and/or the isomerization of d-ribulose 5-phosphate, catalysed by the Rv2465 d-ribose 5-phosphate isomerase. d-Ribose 5-phosphate is a substrate for the Rv1017 phosphoribosyl pyrophosphate synthetase which forms 5-phosphoribosyl 1-pyrophosphate (PRPP). The activated 5-phosphoribofuranosyl residue of PRPP is transferred by the Rv3806 5-phosphoribosyltransferase to decaprenyl phosphate, thus forming 5'-phosphoribosyl-monophospho-decaprenol. The dephosphorylation of 5'-phosphoribosyl-monophospho-decaprenol to decaprenyl-phospho-ribose by the putative Rv3807 phospholipid phosphatase is the committed step of the pathway. A subsequent 2'-epimerization of decaprenyl-phospho-ribose by the heteromeric Rv3790/Rv3791 2'-epimerase leads to the formation of the decaprenyl-phospho-arabinose precursor for the synthesis of the cell-wall arabinans in Actinomycetales. The mycobacterial 2'-epimerase Rv3790 subunit is similar to the fungal D-arabinono-1,4-lactone oxidase, the last enzyme in the biosynthesis of D-erythroascorbic acid, thus pointing to an evolutionary link between the D-arabinofuranose- and L-ascorbic acid-related pathways. Decaprenyl-phospho-arabinose has been a lead compound for the chemical synthesis of substrates for mycobacterial arabinosyltransferases and of new inhibitors and potential antituberculosis drugs. The peculiar (omega,mono-E,octa-Z) configuration of decaprenol has yielded insights into lipid biosynthesis, and has led to the identification of the novel Z-polyprenyl diphosphate synthases of mycobacteria. Mass spectrometric methods were developed for the analysis of anomeric linkages and of dolichol phosphate-related lipids. In the field of immunology, the renaissance in mycobacterial polyisoprenoid research has led to the identification of mimetic mannosyl-beta-1-phosphomycoketides of pathogenic mycobacteria as potent lipid antigens presented by CD1c proteins to human T cells.
Collapse
Affiliation(s)
- Beata A Wolucka
- Laboratory of Mycobacterial Biochemistry, Institute of Public Health, Brussels, Belgium.
| |
Collapse
|
26
|
Structure, function and biosynthesis of the Mycobacterium tuberculosis cell wall: arabinogalactan and lipoarabinomannan assembly with a view to discovering new drug targets. Biochem Soc Trans 2008; 35:1325-8. [PMID: 17956343 DOI: 10.1042/bst0351325] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In spite of effective antibiotics to treat TB (tuberculosis) since the early 1960s, we enter the new millennium with TB, currently the leading cause of death from a single infectious agent, killing more than three million people worldwide each year. Thus an understanding of drug-resistance mechanisms, the immunobiology of cell wall components to elucidate host-pathogen interactions and the discovery of new drug targets are now required for the treatment of TB. Above the plasma membrane is a classical chemotype IV PG (peptidoglycan) to which is attached the macromolecular structure, mycolyl-arabinogalactan, via a unique diglycosylphosphoryl bridge. This review will discuss the assembly of the mAGP (mycolyl-arabinogalactan-peptidoglycan), its associated glycolipids and the site of action of EMB (ethambutol), bringing forward a new era in TB research and focus on new drugs to combat multidrug resistant TB.
Collapse
|
27
|
McLaughlin B, Chon JS, MacGurn JA, Carlsson F, Cheng TL, Cox JS, Brown EJ. A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PLoS Pathog 2007; 3:e105. [PMID: 17676952 PMCID: PMC1937011 DOI: 10.1371/journal.ppat.0030105] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 06/11/2007] [Indexed: 11/30/2022] Open
Abstract
Specialized secretion systems of pathogenic bacteria commonly transport multiple effectors that act in concert to control and exploit the host cell as a replication-permissive niche. Both the Mycobacterium marinum and the Mycobacterium tuberculosis genomes contain an extended region of difference 1 (extRD1) locus that encodes one such pathway, the early secretory antigenic target 6 (ESAT-6) system 1 (ESX-1) secretion apparatus. ESX-1 is required for virulence and for secretion of the proteins ESAT-6, culture filtrate protein 10 (CFP-10), and EspA. Here, we show that both Rv3881c and its M. marinum homolog, Mh3881c, are secreted proteins, and disruption of RD1 in either organism blocks secretion. We have renamed the Rv3881c/Mh3881c gene espB for ESX-1 substrate protein B. Secretion of M. marinum EspB (EspBM) requires both the Mh3879c and Mh3871 genes within RD1, while CFP-10 secretion is not affected by disruption of Mh3879c. In contrast, disruption of Mh3866 or Mh3867 within the extRD1 locus prevents CFP-10 secretion without effect on EspBM. Mutants that fail to secrete only EspBM or only CFP-10 are less attenuated in macrophages than mutants failing to secrete both substrates. EspBM physically interacts with Mh3879c; the M. tuberculosis homolog, EspBT, physically interacts with Rv3879c; and mutants of EspBM that fail to bind Mh3879c fail to be secreted. We also found interaction between Rv3879c and Rv3871, a component of the ESX-1 machine, suggesting a mechanism for the secretion of EspB. The results establish EspB as a substrate of ESX-1 that is required for virulence and growth in macrophages and suggests that the contribution of ESX-1 to virulence may arise from the secretion of multiple independent substrates. A major mechanism used by pathogenic bacteria for disabling host defenses is secretion of virulence proteins. These effectors are often transported by specialized secretion machines. One such pathway, present in Mycobacterium and other Gram-positive genera, is ESX-1 (early secretory antigenic target 6 system 1). Although ESX-1 is required for multiple phenotypes related to the pathogenesis of infection, only three substrates of the secretion machine have been identified to date, and the mechanism by which these substrates are exported is not understood. In our efforts to understand this virulence-related secretion mechanism, we identified a novel substrate and found that its delivery to the ESX-1 machine requires different protein interactions than previously identified substrates. Finally, we present data that the various ESX-1 substrates contribute additively to virulence. These data are incorporated into a model of ESX-1 function.
Collapse
Affiliation(s)
- Bryant McLaughlin
- Program in Microbial Pathogenesis and Host Defense, University of California San Francisco, San Francisco, California, United States of America
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Lipoproteins are a functionally diverse class of secreted bacterial proteins characterized by an N-terminal lipid moiety. The lipid moiety serves to anchor these proteins to the cell surface. Lipoproteins are synthesized as pre-prolipoproteins and mature by post-translational modifications. The post-translational modifications are directed by the lipobox motif located within the signal peptide. Enzymes involved in lipoprotein synthesis are essential in Gram-negative bacteria but not in Gram-positive bacteria. Inactivation of genes involved in lipoprotein synthesis attenuates a variety of Gram-positive pathogens, including Mycobacterium tuberculosis. The attenuated phenotype of these mutants indicates an important role of lipoproteins and lipoprotein synthesis in bacterial virulence. M. tuberculosis, the causative agent of tuberculosis, is one of the most devastating pathogens in the world. This article reviews recent findings on the synthesis, localization and function of lipoproteins in mycobacteria.
Collapse
Affiliation(s)
- Mandana Rezwan
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 32, CH-8006 Zürich, Switzerland
| | - Thomas Grau
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 32, CH-8006 Zürich, Switzerland
| | - Andreas Tschumi
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 32, CH-8006 Zürich, Switzerland
| | - Peter Sander
- Nationales Zentrum für Mykobakterien, Gloriastrasse 30, CH-8006 Zürich, Switzerland
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 32, CH-8006 Zürich, Switzerland
| |
Collapse
|
29
|
Berg S, Kaur D, Jackson M, Brennan PJ. The glycosyltransferases of Mycobacterium tuberculosis - roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Glycobiology 2007; 17:35-56R. [PMID: 17261566 DOI: 10.1093/glycob/cwm010] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several human pathogens are to be found within the bacterial genus Mycobacterium, notably Mycobacterium tuberculosis, the causative agent of tuberculosis, one of the most threatening of human infectious diseases, with an annual lethality of about two million people. The characteristic mycobacterial cell envelope is the dominant feature of the biology of M. tuberculosis and other mycobacterial pathogens, based on sugars and lipids of exceptional structure. The cell wall consists of a peptidoglycan-arabinogalactan-mycolic acid complex beyond the plasma membrane. Free-standing lipids, lipoglycans, and proteins intercalate within this complex, complement the mycolic acid monolayer and may also appear in a capsular-like arrangement. The consequences of these structural oddities are an extremely robust and impermeable cell envelope. This review reflects on these entities from the perspective of their synthesis, particularly the structural and functional aspects of the glycosyltransferases (GTs) of M. tuberculosis, the dominating group of enzymes responsible for the terminal stages of their biosynthesis. Besides the many nucleotide-sugar dependent GTs with orthologs in prokaryotes and eukaryotes, M. tuberculosis and related species of the order Actinomycetales, in light of the highly lipophilic environment prevailing within the cell envelope, carry a significant number of GTs of the GT-C class dependent on polyprenyl-phosphate-linked sugars. These are of special emphasis in this review.
Collapse
Affiliation(s)
- Stefan Berg
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
30
|
Murakami M, Ohba T, Takahashi Y, Watanabe H, Miyoshi I, Nakayama S, Ono K, Ito H, Iijima T. Identification of a cardiac isoform of the murine calcium channel alpha1C (Cav1.2-a) subunit and its preferential binding with the beta2 subunit. J Mol Cell Cardiol 2006; 41:115-25. [PMID: 16787652 DOI: 10.1016/j.yjmcc.2006.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/11/2006] [Accepted: 05/01/2006] [Indexed: 11/29/2022]
Abstract
We describe a cardiac muscle isoform of the voltage-dependent calcium channel alpha1 subunit, which corresponds to the rabbit ortholog of alpha1C-a (Cav1.2a). We also cloned smooth muscle isoforms alpha1C-b (Cav1.2b) and alpha1C-d (Cav1.2d). Differences among these three isoforms lie within the N-terminal region (exon 1A or 1B), the sixth transmembrane segment of domain I (exon 8A or 8B), and the use of exon 10, which forms the intracellular loop between transmembrane domains I and II. Two-hybrid analysis revealed interactions among the three alpha1 isoforms and beta subunits. In vitro overlay and immunoprecipitation analyses revealed preferential binding between alpha1C-a and beta2, which is also expressed at a high level in the heart.
Collapse
Affiliation(s)
- Manabu Murakami
- Department of Pharmacology, Akita University School of Medicine, Akita 010-8543, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Morita YS, Velasquez R, Taig E, Waller RF, Patterson JH, Tull D, Williams SJ, Billman-Jacobe H, McConville MJ. Compartmentalization of lipid biosynthesis in mycobacteria. J Biol Chem 2005; 280:21645-52. [PMID: 15805104 DOI: 10.1074/jbc.m414181200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasma membrane of Mycobacterium sp. is the site of synthesis of several distinct classes of lipids that are either retained in the membrane or exported to the overlying cell envelope. Here, we provide evidence that enzymes involved in the biosynthesis of two major lipid classes, the phosphatidylinositol mannosides (PIMs) and aminophospholipids, are compartmentalized within the plasma membrane. Enzymes involved in the synthesis of early PIM intermediates were localized to a membrane subdomain termed PMf, that was clearly resolved from the cell wall by isopyknic density centrifugation and amplified in rapidly dividing Mycobacterium smegmatis. In contrast, the major pool of apolar PIMs and enzymes involved in polar PIM biosynthesis were localized to a denser fraction that contained both plasma membrane and cell wall markers (PM-CW). Based on the resistance of the PIMs to solvent extraction in live but not lysed cells, we propose that polar PIM biosynthesis occurs in the plasma membrane rather than the cell wall component of the PM-CW. Enzymes involved in phosphatidylethanolamine biosynthesis also displayed a highly polarized distribution between the PMf and PM-CW fractions. The PMf was greatly reduced in non-dividing cells, concomitant with a reduction in the synthesis and steady-state levels of PIMs and amino-phospholipids and the redistribution of PMf marker enzymes to non-PM-CW fractions. The formation of the PMf and recruitment of enzymes to this domain may thus play a role in regulating growth-specific changes in the biosynthesis of membrane and cell wall lipids.
Collapse
Affiliation(s)
- Yasu S Morita
- Department of Biochemistry and Molecular Biology, The B1021 Molecular Sciences and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Matsunaga I, Bhatt A, Young DC, Cheng TY, Eyles SJ, Besra GS, Briken V, Porcelli SA, Costello CE, Jacobs WR, Moody DB. Mycobacterium tuberculosis pks12 produces a novel polyketide presented by CD1c to T cells. ACTA ACUST UNITED AC 2005; 200:1559-69. [PMID: 15611286 PMCID: PMC2211992 DOI: 10.1084/jem.20041429] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD1c-mediated T cells are activated by a mycobacterial phospholipid antigen whose carbohydrate structure precisely corresponds to mammalian mannosyl β-1-phosphodolichol (MPD), but contains an unusual lipid moiety. Here, we show that this T cell antigen is a member of a family of branched, alkane lipids that vary in length (C30-34) and are produced by medically important mycobacteria such as M. tuberculosis and M. bovis Bacille-Calmette-Guerin. The alkane moiety distinguished these mycobacterial lipid antigens from mammalian MPDs and was necessary for activation of CD1c-restricted T cells, but could not be accounted for by any known lipid biosynthetic pathway. Metabolic labeling and mass spectrometric analyses suggested a mechanism for elongating lipids using alternating C2 and C3 units, rather than C5 isopentenyl pyrophosphate. Inspection of the M. tuberculosis genome identified one candidate gene, pks12, which was predicted to encode the largest protein in M. tuberculosis, consisting of 12 catalytic domains that correspond to key steps in the proposed pathway. Genetic deletion and complementation showed that Pks12 was necessary for antigen production, but did not affect synthesis of true isoprenols. These studies establish the genetic and enzymatic basis for a previously unknown type of polyketide, designated mycoketide, which contains a lipidic pathogen-associated molecular pattern.
Collapse
Affiliation(s)
- Isamu Matsunaga
- Div. of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, One Jimmy Fund Way, Smith 514A, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gande R, Gibson KJC, Brown AK, Krumbach K, Dover LG, Sahm H, Shioyama S, Oikawa T, Besra GS, Eggeling L. Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem 2004; 279:44847-57. [PMID: 15308633 DOI: 10.1074/jbc.m408648200] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis possess several unique and structurally diverse lipids, including the genus-specific mycolic acids. Although the function of a number of genes involved in fatty acid and mycolic acid biosynthesis is known, information relevant to the initial steps within these biosynthetic pathways is relatively sparse. Interestingly, the genomes of Corynebacterianeae possess a high number of accD genes, whose gene products resemble the beta-subunit of the acetyl-CoA carboxylase of Escherichia coli, providing the activated intermediate for fatty acid synthesis. We present here our studies on four putative accD genes found in C. glutamicum. Although growth of the accD4 mutant remained unchanged, growth of the accD1 mutant was strongly impaired and partially recovered by the addition of exogenous oleic acid. Overexpression of accD1 and accBC, encoding the carboxylase alpha-subunit, resulted in an 8-fold increase in malonyl-CoA formation from acetyl-CoA in cell lysates, providing evidence that accD1 encodes a carboxyltransferase involved in the biosynthesis of malonyl-CoA. Interestingly, fatty acid profiles remained unchanged in both our accD2 and accD3 mutants, but a complete loss of mycolic acids, either as organic extractable trehalose and glucose mycolates or as cell wall-bound mycolates, was observed. These two carboxyltransferases are also retained in all Corynebacterianeae, including Mycobacterium leprae, constituting two distinct groups of orthologs. Furthermore, carboxyl fixation assays, as well as a study of a Cg-pks deletion mutant, led us to conclude that accD2 and accD3 are key to mycolic acid biosynthesis, thus providing a carboxylated intermediate during condensation of the mero-chain and alpha-branch directed by the pks-encoded polyketide synthase. This study illustrates that the high number of accD paralogs have evolved to represent specific variations on the well known basic theme of providing carboxylated intermediates in lipid biosynthesis.
Collapse
Affiliation(s)
- Roland Gande
- Institute for Biotechnology, Research Centre Juelich, D-52425 Juelich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Korres H, Verma NK. Topological analysis of glucosyltransferase GtrV of Shigella flexneri by a dual reporter system and identification of a unique reentrant loop. J Biol Chem 2004; 279:22469-76. [PMID: 15028730 DOI: 10.1074/jbc.m401316200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide, particularly the O-antigen component, is one of many virulence determinants necessary for Shigella flexneri pathogenesis. O-Antigen modification is mediated by glucosyltransferase genes (gtr) encoded by temperate serotype-converting bacteriophages. The gtrV gene encodes the GtrV glucosyltransferase, an integral membrane protein that catalyzes the transfer of a glucosyl residue via an alpha1,3 linkage to rhamnose II of the O-antigen unit. This mediates conversion of S. flexneri serotype Y to serotype 5a. Analysis of the GtrV amino acid sequence using computer prediction programs indicated that GtrV had 9-11 transmembrane segments. The computer prediction models were tested by genetically fusing C-terminal deletions of GtrV to a dual reporter system composed of alkaline phosphatase and beta-galactosidase. Sandwiched GtrV-PhoA/LacZ fusions were also constructed at predetermined positions. The enzyme activities of cells with the GtrV-PhoA/LacZ fusions and the particular location of the fusions in the gtrV indicated that GtrV has nine transmembrane segments and one large N-terminal periplasmic loop with the N and C termini located on the cytoplasmic and periplasmic sides of the membrane, respectively. The existence of a unique reentrant loop was discovered after transmembrane segment IV, a feature not documented in other bacterial glycosyltransferases. Its potential role in mediating serotype conversion in S. flexneri is discussed.
Collapse
Affiliation(s)
- Haralambos Korres
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra ACT 0200, Australia
| | | |
Collapse
|
35
|
Gibson KJC, Eggeling L, Maughan WN, Krumbach K, Gurcha SS, Nigou J, Puzo G, Sahm H, Besra GS. Disruption of Cg-Ppm1, a polyprenyl monophosphomannose synthase, and the generation of lipoglycan-less mutants in Corynebacterium glutamicum. J Biol Chem 2003; 278:40842-50. [PMID: 12904287 DOI: 10.1074/jbc.m307988200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycosyl donor, polyprenyl monophosphomannose (PPM), has been shown to be involved in the biosynthesis of the mycobacterial lipoglycans: lipomannan and lipoarabinomannan. The mycobacterial PPM synthase (Mt-ppm1) catalyzes the transfer of mannose from GDP-mannose to polyprenyl phosphates. Based on sequence homology to Mt-ppm1, we have identified the PPM synthase from Corynebacterium glutamicum. In the present study, we demonstrate that the corynebacterial synthase is composed of two distinct domains; a catalytic domain (Cg-ppm1) and a membrane domain (Cg-ppm2). Through the inactivation of Cg-ppm1, we observed a complex phenotype that included altered cell growth rate and inability to synthesize PPM molecules and lipoglycans. When Cg-ppm2 was deleted, no observable phenotype was noted, indicating the clear organization of the two domains. The complementation of the inactivated Cg-ppm1 strain with the corresponding mycobacterial enzyme (Mt-Ppm1/D2) led to the restoration of a wild type phenotype. The present study illustrates, for the first time, the generation of a lipoglycan-less mutant based on a molecular strategy in a member of the Corynebacterianeae family. Lipoglycans are important immunomodulatory molecules involved in determining the outcome of infection, and so the generation of defined mutants and their subsequent immunological characterization is timely.
Collapse
Affiliation(s)
- Kevin J C Gibson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|