1
|
Szukiewicz D. Molecular Mechanisms for the Vicious Cycle between Insulin Resistance and the Inflammatory Response in Obesity. Int J Mol Sci 2023; 24:9818. [PMID: 37372966 DOI: 10.3390/ijms24129818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The comprehensive anabolic effects of insulin throughout the body, in addition to the control of glycemia, include ensuring lipid homeostasis and anti-inflammatory modulation, especially in adipose tissue (AT). The prevalence of obesity, defined as a body mass index (BMI) ≥ 30 kg/m2, has been increasing worldwide on a pandemic scale with accompanying syndemic health problems, including glucose intolerance, insulin resistance (IR), and diabetes. Impaired tissue sensitivity to insulin or IR paradoxically leads to diseases with an inflammatory component despite hyperinsulinemia. Therefore, an excess of visceral AT in obesity initiates chronic low-grade inflammatory conditions that interfere with insulin signaling via insulin receptors (INSRs). Moreover, in response to IR, hyperglycemia itself stimulates a primarily defensive inflammatory response associated with the subsequent release of numerous inflammatory cytokines and a real threat of organ function deterioration. In this review, all components of this vicious cycle are characterized with particular emphasis on the interplay between insulin signaling and both the innate and adaptive immune responses related to obesity. Increased visceral AT accumulation in obesity should be considered the main environmental factor responsible for the disruption in the epigenetic regulatory mechanisms in the immune system, resulting in autoimmunity and inflammation.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
2
|
Machado-Neto JA, Fenerich BA, Rodrigues Alves APN, Fernandes JC, Scopim-Ribeiro R, Coelho-Silva JL, Traina F. Insulin Substrate Receptor (IRS) proteins in normal and malignant hematopoiesis. Clinics (Sao Paulo) 2018; 73:e566s. [PMID: 30328953 PMCID: PMC6169455 DOI: 10.6061/clinics/2018/e566s] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
The insulin receptor substrate (IRS) proteins are a family of cytoplasmic proteins that integrate and coordinate the transmission of signals from the extracellular to the intracellular environment via transmembrane receptors, thus regulating cell growth, metabolism, survival and proliferation. The PI3K/AKT/mTOR and MAPK signaling pathways are the best-characterized downstream signaling pathways activated by IRS signaling (canonical pathways). However, novel signaling axes involving IRS proteins (noncanonical pathways) have recently been identified in solid tumor and hematologic neoplasm models. Insulin receptor substrate-1 (IRS1) and insulin receptor substrate-2 (IRS2) are the best-characterized IRS proteins in hematologic-related processes. IRS2 binds to important cellular receptors involved in normal hematopoiesis (EPOR, MPL and IGF1R). Moreover, the identification of IRS1/ABL1 and IRS2/JAK2V617F interactions and their functional consequences has opened a new frontier for investigating the roles of the IRS protein family in malignant hematopoiesis. Insulin receptor substrate-4 (IRS4) is absent in normal hematopoietic tissues but may be expressed under abnormal conditions. Moreover, insulin receptor substrate-5 (DOK4) and insulin receptor substrate-6 (DOK5) are linked to lymphocyte regulation. An improved understanding of the signaling pathways mediated by IRS proteins in hematopoiesis-related processes, along with the increased development of agonists and antagonists of these signaling axes, may generate new therapeutic approaches for hematological diseases. The scope of this review is to recapitulate and review the evidence for the functions of IRS proteins in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- João Agostinho Machado-Neto
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, SP, BR
- Departamento de Farmacologia do Instituto de Ciencias Biomedicas da Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Bruna Alves Fenerich
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, SP, BR
| | - Ana Paula Nunes Rodrigues Alves
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, SP, BR
| | - Jaqueline Cristina Fernandes
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, SP, BR
| | - Renata Scopim-Ribeiro
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, SP, BR
| | - Juan Luiz Coelho-Silva
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, SP, BR
| | - Fabiola Traina
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
3
|
Tiku V, Antebi A. Nucleolar Function in Lifespan Regulation. Trends Cell Biol 2018; 28:662-672. [PMID: 29779866 DOI: 10.1016/j.tcb.2018.03.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
Abstract
The nucleolus is a prominent membraneless organelle residing within the nucleus. The nucleolus has been regarded as a housekeeping structure mainly known for its role in ribosomal RNA (rRNA) production and ribosome assembly. However, accumulating evidence has revealed its functions in numerous cellular processes that control organismal physiology, thereby taking the nucleolus much beyond its conventional role in ribosome biogenesis. Perturbations in nucleolar functions have been associated with severe diseases such as cancer and progeria. Recent studies have also uncovered the role of the nucleolus in development and aging. In this review we discuss major nucleolar functions that impact organismal aging.
Collapse
Affiliation(s)
- Varnesh Tiku
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany; Present Address: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany.
| |
Collapse
|
4
|
Keegan AD, Zamorano J, Keselman A, Heller NM. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View. Front Immunol 2018; 9:1037. [PMID: 29868002 PMCID: PMC5962649 DOI: 10.3389/fimmu.2018.01037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this “IL-4-induced phosphorylated substrate” (4PS) was characterized as a member of the insulin receptor substrate (IRS) family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3′ kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.
Collapse
Affiliation(s)
- Achsah D Keegan
- Department of Microbiology and Immunology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States.,Baltimore VA Medical Center, Baltimore, MD, United States
| | - Jose Zamorano
- Unidad Investigacion, Complejo Hospitalario Universitario, Caceres, Spain
| | - Aleksander Keselman
- Department of Anesthesiology and Critical Care Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Molecular and Structural Traits of Insulin Receptor Substrate 1/LC3 Nuclear Structures and Their Role in Autophagy Control and Tumor Cell Survival. Mol Cell Biol 2018; 38:MCB.00608-17. [PMID: 29483302 DOI: 10.1128/mcb.00608-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/21/2018] [Indexed: 11/20/2022] Open
Abstract
Insulin receptor substrate 1 (IRS-1) is a common cytosolic adaptor molecule involved in signal transduction from insulin and insulin-like growth factor I (IGF-I) receptors. IRS-1 can also be found in the nucleus. We report here a new finding of unique IRS-1 nuclear structures, which we observed initially in glioblastoma biopsy specimens and glioblastoma xenografts. These nuclear structures can be reproduced in vitro by the ectopic expression of IRS-1 cDNA cloned in frame with the nuclear localization signal (NLS-IRS-1). In these structures, IRS-1 localizes at the periphery, while the center harbors a key autophagy protein, LC3. These new nuclear structures are highly dynamic, rapidly exchange IRS-1 molecules with the surrounding nucleoplasm, disassemble during mitosis, and require a growth stimulus for their reassembly and maintenance. In tumor cells engineered to express NLS-IRS-1, the IRS-1/LC3 nuclear structures repress autophagy induced by either amino acid starvation or rapamycin treatment. In this process, IRS-1 nuclear structures sequester LC3 inside the nucleus, possibly preventing its cytosolic translocation and the formation of new autophagosomes. This novel mechanism provides a quick and reversible way of inhibiting autophagy, which could counteract autophagy-induced cancer cell death under severe stress, including anticancer therapies.
Collapse
|
6
|
Draheim KM, Huet-Calderwood C, Simon B, Calderwood DA. Nuclear Localization of Integrin Cytoplasmic Domain-associated Protein-1 (ICAP1) Influences β1 Integrin Activation and Recruits Krev/Interaction Trapped-1 (KRIT1) to the Nucleus. J Biol Chem 2016; 292:1884-1898. [PMID: 28003363 DOI: 10.1074/jbc.m116.762393] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/12/2016] [Indexed: 01/15/2023] Open
Abstract
Binding of ICAP1 (integrin cytoplasmic domain-associated protein-1) to the cytoplasmic tails of β1 integrins inhibits integrin activation. ICAP1 also binds to KRIT1 (Krev interaction trapped-1), a protein whose loss of function leads to cerebral cavernous malformation, a cerebrovascular dysplasia occurring in up to 0.5% of the population. We previously showed that KRIT1 functions as a switch for β1 integrin activation by antagonizing ICAP1-mediated inhibition of integrin activation. Here we use overexpression studies, mutagenesis, and flow cytometry to show that ICAP1 contains a functional nuclear localization signal and that nuclear localization impairs the ability of ICAP1 to suppress integrin activation. Moreover, we find that ICAP1 drives the nuclear localization of KRIT1 in a manner dependent upon a direct ICAP1/KRIT1 interaction. Thus, nuclear-cytoplasmic shuttling of ICAP1 influences both integrin activation and KRIT1 localization, presumably impacting nuclear functions of KRIT1.
Collapse
Affiliation(s)
- Kyle M Draheim
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Clotilde Huet-Calderwood
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Bertrand Simon
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - David A Calderwood
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520; the Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
7
|
Ikink GJ, Boer M, Bakker ERM, Hilkens J. IRS4 induces mammary tumorigenesis and confers resistance to HER2-targeted therapy through constitutive PI3K/AKT-pathway hyperactivation. Nat Commun 2016; 7:13567. [PMID: 27876799 PMCID: PMC5122961 DOI: 10.1038/ncomms13567] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/14/2016] [Indexed: 02/06/2023] Open
Abstract
In search of oncogenic drivers and mechanisms affecting therapy resistance in breast cancer, we identified Irs4, a poorly studied member of the insulin receptor substrate (IRS) family, as a mammary oncogene by insertional mutagenesis. Whereas normally silent in the postnatal mammary gland, IRS4 is found to be highly expressed in a subset of breast cancers. We show that Irs4 expression in mammary epithelial cells induces constitutive PI3K/AKT pathway hyperactivation, insulin/IGF1-independent cell proliferation, anchorage-independent growth and in vivo tumorigenesis. The constitutive PI3K/AKT pathway hyperactivation by IRS4 is unique to the IRS family and we identify the lack of a SHP2-binding domain in IRS4 as the molecular basis of this feature. Finally, we show that IRS4 and ERBB2/HER2 synergistically induce tumorigenesis and that IRS4-expression confers resistance to HER2-targeted therapy. Taken together, our findings present the cellular and molecular mechanisms of IRS4-induced tumorigenesis and establish IRS4 as an oncogenic driver and biomarker for therapy resistance in breast cancer. IRS proteins are scaffolds that can activate survival signalling pathways. In this study, the authors identified IRS4 as a potential oncogene in breast cancer that leads to the constitutive activation of PI3K/AKT signalling and thus confers resistance to HER2-targeted therapy.
Collapse
Affiliation(s)
- Gerjon J Ikink
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, CX 1066 Amsterdam, The Netherlands
| | - Mandy Boer
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, CX 1066 Amsterdam, The Netherlands
| | - Elvira R M Bakker
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, CX 1066 Amsterdam, The Netherlands
| | - John Hilkens
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, CX 1066 Amsterdam, The Netherlands
| |
Collapse
|
8
|
Anjali G, Kaur S, Lakra R, Taneja J, Kalsey GS, Nagendra A, Shrivastav TG, Devi MG, Malhotra N, Kriplani A, Singh R. FSH stimulates IRS-2 expression in human granulosa cells through cAMP/SP1, an inoperative FSH action in PCOS patients. Cell Signal 2015; 27:2452-66. [PMID: 26388164 DOI: 10.1016/j.cellsig.2015.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023]
Abstract
Follicle stimulating hormone (FSH) plays a central role in growth and differentiation of ovarian follicles. A plethora of information exists on molecular aspects of FSH responses but little is known about the mechanisms involved in its cross-talk with insulin/IGF-1 pathways implicated in the coordination of energy homeostasis in preovulatory granulosa cells (GCs). In this study, we hypothesized that FSH may regulate IRS-2 expression and thereby maintain the energy balance in GCs. We demonstrate here that FSH specifically increases IRS-2 expression in human and rat GCs. FSH-stimulated IRS-2 expression was inhibited by actinomycin D or cycloheximide. Furthermore, FSH decreases IRS-2 mRNA degradation indicating post-transcriptional stabilization. Herein, we demonstrate a role of cAMP pathway in the activation of IRS-2 expression by FSH. Scan and activity analysis of IRS-2 promoter demonstrated that FSH regulates IRS-2 expression through SP1 binding sites. FSH stimulates SP1 translocation into nucleus and its binding to IRS-2 promoter. These results are corroborated by the fact that siRNA mediated knockdown of IRS-2 decreased the FSH-stimulated PI3K activity, p-Akt levels, GLUT4 translocation and glucose uptake. However, FSH was not able to increase IRS-2 expression in GCs from PCOS women undergoing IVF. Interestingly, IRS-2 mRNA expression was downregulated in GCs from the PCOS rat model. Taken together, our findings establish that FSH induces IRS-2 expression and thereby activates PI3K, Akt and glucose uptake. Crucially, our data confirms a molecular defect in FSH action in PCOS GCs which may cause deceleration of metabolism and follicular growth leading to infertility. These results lend support for a therapeutic potential of IRS-2 in the management of PCOS.
Collapse
Affiliation(s)
- G Anjali
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Surleen Kaur
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Ruchi Lakra
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Jyoti Taneja
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Gaganjot S Kalsey
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Anjali Nagendra
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi 110007, India
| | - T G Shrivastav
- National Institute of Health and Family Welfare, New Delhi 110067, India
| | | | - Neena Malhotra
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Alka Kriplani
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rita Singh
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
9
|
Zhang Q, Guo S, Zhang X, Tang S, Wang L, Han X, Shao W, Cong L, Du Y. Amyloid β oligomer-induced ERK1/2-dependent serine 636/639 phosphorylation of insulin receptor substrate-1 impairs insulin signaling and glycogen storage in human astrocytes. Gene 2015; 561:76-81. [PMID: 25667991 DOI: 10.1016/j.gene.2015.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/25/2014] [Accepted: 02/06/2015] [Indexed: 12/18/2022]
Abstract
AIMS This study is to investigate the effect of amyloid β1-42 oligomers on insulin signaling in astrocytes. METHODS Synthetic Aβ1-42 oligomers were prepared and the oligomeric form of Aβ1-42 was verified by an electron microscope. Normal human astrocytes were cultured in Dulbecco's Modified Eagle Medium. Western blotting was employed to measure the amount of lysate proteins. Immunofluorescence was performed to detect the distribution of phosphorylated insulin receptor substrate-1 and expression of P-GSK3β in astrocytes under confocal microscopy and fluorescent microscopy, respectively. Periodic Acid-Schiff staining was used to detect glycogen, the content of which was measured using glycogen assay. RESULTS Our data showed that Aβ1-42 oligomers inhibited insulin-induced serine phosphorylation of Akt at 473 and GSK3β at serine 9, as well as glycogen storage. However, the levels of phosphorylated GSK3β at tyrosine 216 were significantly increased in the presence of Aβ1-42 oligomers. In addition, the levels of phosphorylated ERK1/2 and insulin receptor substrate-1 at serine 636/639 were significantly increased in response to treatment with Aβ1-42 oligomers. Of note, the responses and inhibitory effects of Aβ1-42 oligomers on insulin signaling were partially reversed by ERK1/2 upstream inhibitor PD98059. CONCLUSIONS Our results demonstrated that Aβ1-42 oligomers impaired insulin signaling and suppressed insulin-induced glycogen storage in human astrocytes, probably due to ERK1/2-dependent serine phosphorylation of insulin receptor substrate-1 at 636/639 induced by Aβ1-42 oligomers.
Collapse
Affiliation(s)
- Qinghua Zhang
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province, PR China
| | - Shougang Guo
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province, PR China
| | - Xiao Zhang
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province, PR China
| | - Shi Tang
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province, PR China
| | - Lu Wang
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province, PR China
| | - Xiaojuan Han
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province, PR China
| | - Wen Shao
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province, PR China
| | - Lin Cong
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province, PR China
| | - Yifeng Du
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province, PR China.
| |
Collapse
|
10
|
Garofalo C, Capristo M, Mancarella C, Reunevi H, Picci P, Scotlandi K. Preclinical Effectiveness of Selective Inhibitor of IRS-1/2 NT157 in Osteosarcoma Cell Lines. Front Endocrinol (Lausanne) 2015; 6:74. [PMID: 26029165 PMCID: PMC4429561 DOI: 10.3389/fendo.2015.00074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/25/2015] [Indexed: 12/27/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and young adults. Several studies have confirmed the involvement of the insulin-like growth factor (IGF) system in the regulation of OS cell proliferation and differentiation as well as in the protection of cells from chemotherapy. Insulin receptor substrate (IRS)-1 is a critical mediator of IGF-1R signaling, and we recently reported that its overexpression in OS cells increases proliferation, migration, and metastasis both in vitro and in vivo. In this study, we evaluated the efficacy of NT157, a selective inhibitor of IRS-1/2, in a panel of OS cells. A strong dose-dependent inhibition of growth was observed in the MG-63, OS-19, and U-2OS OS cell lines, displaying IC50 values at sub-micromolar doses after 72 h of treatment. Exposure to NT157 elicited dose- and time-dependent decreases in IRS-1 levels. Moreover, a protein analysis showed that the degradation of IRS-1 inhibited the activation of principal downstream mediators of the IGF pathway. NT157 significantly affected the cells' migratory ability, as confirmed by a wound-healing assay. The inhibitor induced cytostatic effects, as evidenced by G2/M cell cycle arrest, and did not affect apoptosis. Consequently, NT157 was combined with drugs used to treat OS in order to capitalize on its therapeutic potential. Simultaneous treatments were made in association with chemotherapeutic agents in a fixed ratio for 72 h and cell proliferation was determined by MTT assay. Synergistic or addictive effects with respect to single agents are expressed as the combination index. Significant synergistic effects were obtained with several targeted drugs, such as Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, and NVP-BEZ235, a dual inhibitor of PI-3K/mTOR. Overall, these findings provide evidence for the effectiveness of a selected inhibitor of IRS-1/2 NT157 in OS cells, displaying a promising approach based on the targeting of IRS-1 combined with other therapies for the treatment of this pediatric solid tumor.
Collapse
Affiliation(s)
- Cecilia Garofalo
- Experimental Oncology Laboratory, CRS Development of Biomolecular Therapies, Rizzoli Institute, Bologna, Italy
| | - Mariantonietta Capristo
- Experimental Oncology Laboratory, CRS Development of Biomolecular Therapies, Rizzoli Institute, Bologna, Italy
| | - Caterina Mancarella
- Experimental Oncology Laboratory, CRS Development of Biomolecular Therapies, Rizzoli Institute, Bologna, Italy
| | | | - Piero Picci
- Experimental Oncology Laboratory, CRS Development of Biomolecular Therapies, Rizzoli Institute, Bologna, Italy
| | - Katia Scotlandi
- Experimental Oncology Laboratory, CRS Development of Biomolecular Therapies, Rizzoli Institute, Bologna, Italy
- *Correspondence: Katia Scotlandi, Experimental Oncology Laboratory, CRS Development of Biomolecular Therapies, Rizzoli Institute, Via di Barbiano 1/10, Bologna 40136, Italy,
| |
Collapse
|
11
|
Hakuno F, Fukushima T, Yoneyama Y, Kamei H, Ozoe A, Yoshihara H, Yamanaka D, Shibano T, Sone-Yonezawa M, Yu BC, Chida K, Takahashi SI. The Novel Functions of High-Molecular-Mass Complexes Containing Insulin Receptor Substrates in Mediation and Modulation of Insulin-Like Activities: Emerging Concept of Diverse Functions by IRS-Associated Proteins. Front Endocrinol (Lausanne) 2015; 6:73. [PMID: 26074875 PMCID: PMC4443775 DOI: 10.3389/fendo.2015.00073] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/25/2015] [Indexed: 12/25/2022] Open
Abstract
Insulin-like peptides, such as insulin-like growth factors (IGFs) and insulin, induce a variety of bioactivities, such as growth, differentiation, survival, increased anabolism, and decreased catabolism in many cell types and in vivo. In general, IGFs or insulin bind to IGF-I receptor (IGF-IR) or insulin receptor (IR), activating the receptor tyrosine kinase. Insulin receptor substrates (IRSs) are known to be major substrates of receptor kinases, mediating IGF/insulin signals to direct bioactivities. Recently, we discovered that IRSs form high-molecular-mass complexes (referred to here as IRSomes) even without IGF/insulin stimulation. These complexes contain proteins (referred to here as IRSAPs; IRS-associated proteins), which modulate tyrosine phosphorylation of IRSs by receptor kinases, control IRS stability, and determine intracellular localization of IRSs. In addition, in these complexes, we found not only proteins that are involved in RNA metabolism but also RNAs themselves. Thus, IRSAPs possibly contribute to modulation of IGF/insulin bioactivities. Since it is established that disorder of modulation of insulin-like activities causes various age-related diseases including cancer, we could propose that the IRSome is an important target for treatment of these diseases.
Collapse
Affiliation(s)
- Fumihiko Hakuno
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Fukushima
- Laboratory of Biomedical Chemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yosuke Yoneyama
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Kamei
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsufumi Ozoe
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidehito Yoshihara
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daisuke Yamanaka
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Shibano
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Meri Sone-Yonezawa
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Bu-Chin Yu
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Chida
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Shin-Ichiro Takahashi, Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
| |
Collapse
|
12
|
Salisbury TB, Tomblin JK. Insulin/Insulin-like growth factors in cancer: new roles for the aryl hydrocarbon receptor, tumor resistance mechanisms, and new blocking strategies. Front Endocrinol (Lausanne) 2015; 6:12. [PMID: 25699021 PMCID: PMC4313785 DOI: 10.3389/fendo.2015.00012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/19/2015] [Indexed: 12/29/2022] Open
Abstract
The insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor (IR) are receptor tyrosine kinases that are expressed in cancer cells. The results of different studies indicate that tumor proliferation and survival is dependent on the IGF1R and IR, and that their inhibition leads to reductions in proliferation and increases in cell death. Molecular targeting therapies that have been used in solid tumors include anti-IGF1R antibodies, anti-IGF1/IGF2 antibodies, and small molecule inhibitors that suppress IGF1R and IR kinase activity. New advances in the molecular basis of anti-IGF1R blocking antibodies reveal they are biased agonists and promote the binding of IGF1 to integrin β3 receptors in some cancer cells. Our recent reports indicate that pharmacological aryl hydrocarbon receptor (AHR) ligands inhibit breast cancer cell responses to IGFs, suggesting that targeting AHR may have benefit in cancers whose proliferation and survival are dependent on insulin/IGF signaling. Novel aspects of IGF1R/IR in cancer, such as biased agonism, integrin β3 signaling, AHR, and new therapeutic targeting strategies will be discussed.
Collapse
Affiliation(s)
- Travis B. Salisbury
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
- *Correspondence: Travis B. Salisbury, Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA e-mail:
| | - Justin K. Tomblin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
13
|
Craven CJ. A model to explain specific cellular communications and cellular harmony:- a hypothesis of coupled cells and interactive coupling molecules. Theor Biol Med Model 2014; 11:40. [PMID: 25218581 PMCID: PMC4237941 DOI: 10.1186/1742-4682-11-40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The various cell types and their relative numbers in multicellular organisms are controlled by growth factors and related extracellular molecules which affect genetic expression pathways. However, these substances may have both/either inhibitory and/or stimulatory effects on cell division and cell differentiation depending on the cellular environment. It is not known how cells respond to these substances in such an ambiguous way. Many cellular effects have been investigated and reported using cell culture from cancer cell lines in an effort to define normal cellular behaviour using these abnormal cells.A model is offered to explain the harmony of cellular life in multicellular organisms involving interacting extracellular substances. METHODS A basic model was proposed based on asymmetric cell division and evidence to support the hypothetical model was accumulated from the literature. In particular, relevant evidence was selected for the Insulin-Like Growth Factor system from the published data, especially from certain cell lines, to support the model. The evidence has been selective in an attempt to provide a picture of normal cellular responses, derived from the cell lines. RESULTS The formation of a pair of coupled cells by asymmetric cell division is an integral part of the model as is the interaction of couplet molecules derived from these cells. Each couplet cell will have a receptor to measure the amount of the couplet molecule produced by the other cell; each cell will be receptor-positive or receptor-negative for the respective receptors. The couplet molecules will form a binary complex whose level is also measured by the cell. The hypothesis is heavily supported by selective collection of circumstantial evidence and by some direct evidence. The basic model can be expanded to other cellular interactions. CONCLUSIONS These couplet cells and interacting couplet molecules can be viewed as a mechanism that provides a controlled and balanced division-of-labour between the two progeny cells, and, in turn, their progeny. The presence or absence of a particular receptor for a couplet molecule will define a cell type and the presence or absence of many such receptors will define the cell types of the progeny within cell lineages.
Collapse
Affiliation(s)
- Cyril J Craven
- Queensland University of Technology (QUT), Brisbane, Australia.
| |
Collapse
|
14
|
Ozoe A, Sone M, Fukushima T, Kataoka N, Chida K, Asano T, Hakuno F, Takahashi SI. Insulin receptor substrate-1 associates with small nucleolar RNA which contributes to ribosome biogenesis. Front Endocrinol (Lausanne) 2014; 5:24. [PMID: 24624118 PMCID: PMC3941584 DOI: 10.3389/fendo.2014.00024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/14/2014] [Indexed: 11/29/2022] Open
Abstract
Insulin receptor substrates (IRSs) are well known to play crucial roles in mediating intracellular signals of insulin-like growth factors (IGFs)/insulin. Previously, we showed that IRS-1 forms high molecular mass complexes containing RNAs. To identify RNAs in IRS-1 complexes, we performed ultraviolet (UV) cross-linking and immunoprecipitation analysis using HEK293 cells expressing FLAG-IRS-1 and FLAG-IRS-2. We detected the radioactive signals in the immunoprecipitates of FLAG-IRS-1 proportional to the UV irradiation, but not in the immunoprecipitates of FLAG-IRS-2, suggesting the direct contact of RNAs with IRS-1. RNAs cross-linked to IRS-1 were then amplified by RT-PCR, followed by sequence analysis. We isolated sequence tags attributed to 25 messenger RNAs and 8 non-coding RNAs, including small nucleolar RNAs (snoRNAs). We focused on the interaction of IRS-1 with U96A snoRNA (U96A) and its host Rack1 (receptor for activated C kinase 1) pre-mRNA. We confirmed the interaction of IRS-1 with U96A, and with RACK1 pre-mRNA by immunoprecipitation with IRS-1 followed by Northern blotting or RT-PCR analyses. Mature U96A in IRS-1(-/-) mouse embryonic fibroblasts was quantitatively less than WT. We also found that a part of nuclear IRS-1 is localized in the Cajal body, a nuclear subcompartment where snoRNA mature. The unanticipated function of IRS-1 in snoRNA biogenesis highlights the potential of RNA-associated IRS-1 complex to open a new line of investigation to dissect the novel mechanisms regulating IGFs/insulin-mediated biological events.
Collapse
Affiliation(s)
- Atsufumi Ozoe
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Meri Sone
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Fukushima
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoyuki Kataoka
- Laboratory for Malignancy Control Research, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiro Chida
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoichiro Asano
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Fumihiko Hakuno
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Shin-Ichiro Takahashi, Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan e-mail:
| |
Collapse
|
15
|
Song JX, Lu JH, Liu LF, Chen LL, Durairajan SSK, Yue Z, Zhang HQ, Li M. HMGB1 is involved in autophagy inhibition caused by SNCA/α-synuclein overexpression: a process modulated by the natural autophagy inducer corynoxine B. Autophagy 2013; 10:144-54. [PMID: 24178442 DOI: 10.4161/auto.26751] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SNCA/α-synuclein and its rare mutations are considered as the culprit proteins in Parkinson disease (PD). Wild-type (WT) SNCA has been shown to impair macroautophagy in mammalian cells and in transgenic mice. In this study, we monitored the dynamic changes in autophagy process and confirmed that overexpression of both WT and SNCA(A53T) inhibits autophagy in PC12 cells in a time-dependent manner. Furthermore, we showed that SNCA binds to both cytosolic and nuclear high mobility group box 1 (HMGB1), impairs the cytosolic translocation of HMGB1, blocks HMGB1-BECN1 binding, and strengthens BECN1-BCL2 binding. Deregulation of these molecular events by SNCA overexpression leads to autophagy inhibition. Overexpression of BECN1 restores autophagy and promotes the clearance of SNCA. siRNA knockdown of Hmgb1 inhibits basal autophagy and abolishes the inhibitory effect of SNCA on autophagy while overexpression of HMGB1 restores autophagy. Corynoxine B, a natural autophagy inducer, restores the deficient cytosolic translocation of HMGB1 and autophagy in cells overexpressing SNCA, which may be attributed to its ability to block SNCA-HMGB1 interaction. Based on these findings, we propose that SNCA-induced impairment of autophagy occurs, in part, through HMGB1, which may provide a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Ju-Xian Song
- School of Chinese Medicine; Hong Kong Baptist University; Kowloon Tong; Hong Kong
| | - Jia-Hong Lu
- School of Chinese Medicine; Hong Kong Baptist University; Kowloon Tong; Hong Kong; Departments of Neurology and Neuroscience; Friedman Brain Institute; Icahn School of Medicine at Mount Sinai; New York, NY USA
| | - Liang-Feng Liu
- School of Chinese Medicine; Hong Kong Baptist University; Kowloon Tong; Hong Kong
| | - Lei-Lei Chen
- School of Chinese Medicine; Hong Kong Baptist University; Kowloon Tong; Hong Kong
| | | | - Zhenyu Yue
- Departments of Neurology and Neuroscience; Friedman Brain Institute; Icahn School of Medicine at Mount Sinai; New York, NY USA
| | - Hong-Qi Zhang
- School of Chinese Medicine; Hong Kong Baptist University; Kowloon Tong; Hong Kong
| | - Min Li
- School of Chinese Medicine; Hong Kong Baptist University; Kowloon Tong; Hong Kong
| |
Collapse
|
16
|
Abstract
The family of insulin receptor substrates (IRS) consists of four proteins (IRS-1-IRS-4), which were initially characterized as typical cytosolic adaptor proteins involved in insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) signaling. The first cloned and characterized member of the IRS family, IRS-1, has a predicted molecular weight of 132 kDa, however, as a result of its extensive serine phosphorylation it separates on a SDS gel as a band of approximately 160-185 kDa. In addition to its metabolic and growth-promoting functions, IRS-1 is also suspected to play a role in malignant transformation. The mechanism by which IRS-1 supports tumor growth is not fully understood, and the argument that IRS-1 merely amplifies the signal from the IGF-1R and/or IR requires further investigation. Almost a decade ago, we reported the presence of nuclear IRS-1 in medulloblastoma clinical samples, which express viral oncoprotein, large T-antigen of human polyomavirus JC (JCV T-antigen). This first demonstration of nuclear IRS-1 was confirmed by several other laboratories. Nuclear IRS-1 was also detected by cells expressing the SV40 T-antigen, v-Src, in immortalized fibroblasts stimulated with IGF-I, in hepatocytes, 32D cells, and in an osteosarcoma cell line. More recently, nuclear IRS-1 was detected in breast cancer cells in association with estrogen receptor alpha (ERα), and in JC virus negative medulloblastoma cells expressing estrogen receptor beta (ERβ), further implicating nuclear IRS-1 in cellular transformation. Here, we discuss how nuclear IRS-1 acting on DNA repair fidelity, transcriptional activity, and cell growth can support tumor development and progression.
Collapse
Affiliation(s)
- Krzysztof Reiss
- Neurological Cancer Research, Stanley S. Scott Cancer Center, School of Medicine, LSU Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
17
|
Insulin receptor substrate 1 expression enhances the sensitivity of 32D cells to chemotherapy-induced cell death. Exp Cell Res 2012; 318:1745-58. [PMID: 22652453 DOI: 10.1016/j.yexcr.2012.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/25/2012] [Accepted: 04/29/2012] [Indexed: 01/02/2023]
Abstract
The adapters IRS1 and IRS2 link growth factor receptors to downstream signaling pathways that regulate proliferation and survival. Both suppress factor-withdrawal-induced apoptosis and have been implicated in cancer progression. However, recent studies suggest IRS1 and IRS2 mediate differential functions in cancer pathogenesis. IRS1 promoted breast cancer proliferation, while IRS2 promoted metastasis. The role of IRS1 and IRS2 in controlling cell responses to chemotherapy is unknown. To determine the role of IRS1 and IRS2 in the sensitivity of cells to chemotherapy, we treated 32D cells lacking or expressing IRS proteins with various concentrations of chemotherapeutic agents. We found that expression of IRS1, in contrast to IRS2, enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. When IRS2 was expressed with IRS1, the cells no longer showed enhanced sensitivity. Expression of IRS1 did not alter the expression of pro- and anti-apoptotic proteins; however, 32D-IRS1 cells expressed higher levels of Annexin A2. In 32D-IRS1 cells, IRS1 and Annexin A2 were both located in cytoplasmic and membrane fractions. We also found that IRS1 coprecipitated with Annexin A2, while IRS2 did not. Decreasing Annexin A2 levels reduced 32D-IRS1 cell sensitivity to chemotherapy. These results suggest IRS1 enhances sensitivity to chemotherapy in part through Annexin A2.
Collapse
|
18
|
Tognon CE, Sorensen PHB. Targeting the insulin-like growth factor 1 receptor (IGF1R) signaling pathway for cancer therapy. Expert Opin Ther Targets 2012; 16:33-48. [PMID: 22239439 DOI: 10.1517/14728222.2011.638626] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The IGF system controls growth, differentiation, and development at the cellular, organ and organismal levels. IGF1 receptor (IGF1R) signaling is dysregulated in many cancers. Numerous clinical trials are currently assessing therapies that inhibit either growth factor binding or IGF1R itself. Therapeutic benefit, often in the form of stable disease, has been reported for many different cancer types. AREAS COVERED Canonical IGF signaling and non-canonical pathways involved in carcinogenesis. Three recent insights into IGF1R signaling, namely hybrid receptor formation with insulin receptor (INSR), insulin receptor substrate 1 nuclear translocation, and evidence for IGF1R/INSR as dependence receptors. Different approaches to targeting IGF1R and mechanisms of acquired resistance. Possible mechanisms by which IGF1R signaling supports carcinogenesis and specific examples in different human tumors. EXPERT OPINION Pre-clinical data justifies IGF1R as a target and early clinical trials have shown modest efficacy in selected tumor types. Future work will focus upon assessing the usefulness or disadvantages of simultaneously targeting the IGF1R and INSR, biomarker development to identify potentially responsive patients, and the use of IGF1R inhibitors in combination therapies or as an adjunct to conventional chemotherapy.
Collapse
Affiliation(s)
- Cristina E Tognon
- British Columbia Cancer Research Centre , Department of Molecular Oncology, Vancouver, British Columbia, Canada
| | | |
Collapse
|
19
|
Grierson PM, Lillard K, Behbehani GK, Combs KA, Bhattacharyya S, Acharya S, Groden J. BLM helicase facilitates RNA polymerase I-mediated ribosomal RNA transcription. Hum Mol Genet 2011; 21:1172-83. [PMID: 22106380 DOI: 10.1093/hmg/ddr545] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bloom's syndrome (BS) is an autosomal recessive disorder that is invariably characterized by severe growth retardation and cancer predisposition. The Bloom's syndrome helicase (BLM), mutations of which lead to BS, localizes to promyelocytic leukemia protein bodies and to the nucleolus of the cell, the site of RNA polymerase I-mediated ribosomal RNA (rRNA) transcription. rRNA transcription is fundamental for ribosome biogenesis and therefore protein synthesis, cellular growth and proliferation; its inhibition limits cellular growth and proliferation as well as bodily growth. We report that nucleolar BLM facilitates RNA polymerase I-mediated rRNA transcription. Immunofluorescence studies demonstrate the dependance of BLM nucleolar localization upon ongoing RNA polymerase I-mediated rRNA transcription. In vivo protein co-immunoprecipitation demonstrates that BLM interacts with RPA194, a subunit of RNA polymerase I. (3)H-uridine pulse-chase assays demonstrate that BLM expression is required for efficient rRNA transcription. In vitro helicase assays demonstrate that BLM unwinds GC-rich rDNA-like substrates that form in the nucleolus and normally inhibit progression of the RNA polymerase I transcription complex. These studies suggest that nucleolar BLM modulates rDNA structures in association with RNA polymerase I to facilitate RNA polymerase I-mediated rRNA transcription. Given the intricate relationship between rDNA metabolism and growth, our data may help in understanding the etiology of proportional dwarfism in BS.
Collapse
Affiliation(s)
- Patrick M Grierson
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210-2207, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Bugner V, Aurhammer T, Kühl M. Xenopus laevis insulin receptor substrate IRS-1 is important for eye development. Dev Dyn 2011; 240:1705-15. [DOI: 10.1002/dvdy.22659] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2011] [Indexed: 12/30/2022] Open
|
21
|
Aleem E, Nehrbass D, Klimek F, Mayer D, Bannasch P. Upregulation of the insulin receptor and type I insulin-like growth factor receptor are early events in hepatocarcinogenesis. Toxicol Pathol 2011; 39:524-43. [PMID: 21411721 DOI: 10.1177/0192623310396905] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular mechanisms underlying the development of hepatocellular carcinoma (HCC) are not yet fully understood. Preneoplastic foci of altered hepatocytes regularly precede HCC in various species. The predominant earliest type of foci of altered hepatocytes, the glycogen storage focus (GSF), shows an excess of glycogen (glycogenosis) in the cytoplasm. During progression from GSF to HCC, the stored glycogen is gradually reduced, resulting in complete loss in basophilic HCC. We have previously shown that in N-nitrosomorpholine-induced hepatocarcinogenesis, insulin receptor substrate (IRS-1) is strongly expressed in GSF and reduced during progression to HCC, thus correlating with the glycogen content. In the present study, we observed increased levels of insulin receptor, IGF-I receptor (IGF-IR), IRS-2, and mitogen-activated kinase/extracellular regulated kinase-1 in GSF, following the same pattern of expression as IRS-1. We conclude that the abundance of IRS-1, IRS-2, and mitogen-activated kinase/extracellular regulated kinase-1 coincides with a concerted upregulation of both IR and IGF-IR induced by the hepatocarcinogen. Our data suggest that in early hepatocellular preneoplasia, the upregulation of IR elicits glycogenosis through IRS-1 and/or IRS-2, whereas the increased level of the IGF-IR may lead to the increased cell proliferation previously reported in GSF. Therefore, the concerted upregulation of both IR and IGF-IR may represent initial events in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Eiman Aleem
- German Cancer Research Center, Cell Pathology Division, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
22
|
Boura-Halfon S, Shuster-Meiseles T, Beck A, Petrovich K, Gurevitch D, Ronen D, Zick Y. A novel domain mediates insulin-induced proteasomal degradation of insulin receptor substrate 1 (IRS-1). Mol Endocrinol 2010; 24:2179-92. [PMID: 20843941 PMCID: PMC5417385 DOI: 10.1210/me.2010-0072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 08/16/2010] [Indexed: 11/19/2022] Open
Abstract
Insulin receptor substrate-1 (IRS-1) plays a pivotal role in insulin signaling, therefore its degradation is exquisitely regulated. Here, we show that insulin-stimulated degradation of IRS-1 requires the presence of a highly conserved Ser/Thr-rich domain that we named domain involved in degradation of IRS-1 (DIDI). DIDI (amino acids 386-430 of IRS-1) was identified by comparing the intracellular degradation rate of several truncated forms of IRS-1 transfected into CHO cells. The isolated DIDI domain underwent insulin-stimulated Ser/Thr phosphorylation, suggesting that it serves as a target for IRS-1 kinases. The effects of deletion of DIDI were studied in Fao rat hepatoma and in CHO cells expressing Myc-IRS-1(WT) or Myc-IRS-1(Δ386-430). Deletion of DIDI maintained the ability of IRS-1(Δ386-434) to undergo ubiquitination while rendering it insensitive to insulin-induced proteasomal degradation, which affected IRS-1(WT) (80% at 8 h). Consequently, IRS-1(Δ386-434) mediated insulin signaling (activation of Akt and glycogen synthesis) better than IRS-1(WT). IRS-1(Δ386-434) exhibited a significant greater preference for nuclear localization, compared with IRS-1(WT). Higher nuclear localization was also observed when cells expressing IRS-1(WT) were incubated with the proteasome inhibitor MG-132. The sequence of DIDI is conserved more than 93% across species, from fish to mammals, as opposed to approximately 40% homology of the entire IRS-1. These findings implicate DIDI as a novel, highly conserved domain of IRS-1, which mediates its cellular localization, rate of degradation, and biological activity, with a direct impact on insulin signal transduction.
Collapse
Affiliation(s)
- Sigalit Boura-Halfon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
23
|
Yoon JC, Ng A, Kim BH, Bianco A, Xavier RJ, Elledge SJ. Wnt signaling regulates mitochondrial physiology and insulin sensitivity. Genes Dev 2010; 24:1507-18. [PMID: 20634317 PMCID: PMC2904941 DOI: 10.1101/gad.1924910] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 06/07/2010] [Indexed: 11/24/2022]
Abstract
Mitochondria serve a critical role in physiology and disease. The genetic basis of mitochondrial regulation in mammalian cells has not yet been detailed. We performed a large-scale RNAi screen to systematically identify genes that affect mitochondrial abundance and function. This screen revealed previously unrecognized roles for >150 proteins in mitochondrial regulation. We report that increased Wnt signals are a potent activator of mitochondrial biogenesis and reactive oxygen species (ROS) generation, leading to DNA damage and acceleration of cellular senescence in primary cells. The signaling protein insulin receptor substrate-1 (IRS-1), shown here to be a transcriptional target of Wnt, is induced in this setting. The increased level of IRS-1 drives activation of mitochondrial biogenesis; furthermore, in insulin-responsive cell types, it enhances insulin signaling, raising the possibility that Wnt proteins may be used to modulate glucose homeostasis. Our results identify a key component of the mitochondrial regulatory apparatus with a potentially important link to metabolic and degenerative disorders.
Collapse
Affiliation(s)
- John C. Yoon
- Howard Hughes Medical Institute, Division of Genetics, Brigham and Women's Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Aylwin Ng
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Brian H. Kim
- Thyroid Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Antonio Bianco
- Thyroid Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ramnik J. Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Stephen J. Elledge
- Howard Hughes Medical Institute, Division of Genetics, Brigham and Women's Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
24
|
McMahon M, Ayllón V, Panov KI, O'Connor R. Ribosomal 18 S RNA processing by the IGF-I-responsive WDR3 protein is integrated with p53 function in cancer cell proliferation. J Biol Chem 2010; 285:18309-18. [PMID: 20392698 DOI: 10.1074/jbc.m110.108555] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Insulin-like growth factor-I (IGF-I) signaling is strongly associated with cell growth and regulates the rate of synthesis of the rRNA precursor, the first and the key stage of ribosome biogenesis. In a screen for mediators of IGF-I signaling in cancer, we recently identified several ribosome-related proteins, including NEP1 (nucleolar essential protein 1) and WDR3 (WD repeat 3), whose homologues in yeast function in ribosome processing. The WDR3 gene and its locus on chromosome 1p12-13 have previously been linked with malignancy. Here we show that IGF-I induces expression of WDR3 in transformed cells. WDR3 depletion causes defects in ribosome biogenesis by affecting 18 S rRNA processing and also causes a transient down-regulation of precursor rRNA levels with moderate repression of RNA polymerase I activity. Suppression of WDR3 in cells expressing functional p53 reduced proliferation and arrested cells in the G(1) phase of the cell cycle. This was associated with activation of p53 and sequestration of MDM2 by ribosomal protein L11. Cells lacking functional p53 did not undergo cell cycle arrest upon suppression of WDR3. Overall, the data indicate that WDR3 has an essential function in 40 S ribosomal subunit synthesis and in ribosomal stress signaling to p53-mediated regulation of cell cycle progression in cancer cells.
Collapse
Affiliation(s)
- Mary McMahon
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
25
|
Distinct regulation of insulin receptor substrate-1 and -2 by 90-kDa heat-shock protein in adrenal chromaffin cells. Neurochem Int 2010; 56:42-50. [DOI: 10.1016/j.neuint.2009.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/24/2009] [Accepted: 08/31/2009] [Indexed: 12/16/2022]
|
26
|
Migliaccio I, Wu MF, Gutierrez C, Malorni L, Mohsin SK, Allred DC, Hilsenbeck SG, Osborne CK, Weiss H, Lee AV. Nuclear IRS-1 predicts tamoxifen response in patients with early breast cancer. Breast Cancer Res Treat 2009; 123:651-60. [PMID: 19924529 DOI: 10.1007/s10549-009-0632-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 10/31/2009] [Indexed: 12/18/2022]
Abstract
Insulin receptor substrate-1 (IRS-1) is a cytoplasmic scaffolding protein that is phosphorylated by insulin-like growth factor-I receptor and recruits downstream effectors. Recent evidence suggests that IRS-1 has a nuclear localization and function. Here we investigated whether nuclear and cytoplasmic IRS-1 levels are associated with clinico-pathological characteristics and clinical outcome in breast cancer patients. Tissue microarrays from 1,097 patients with stage I-II breast cancer were stained by immunohistochemistry for IRS-1. Nuclear and cytoplasmic IRS-1 were scored separately according to the Allred score. Nuclear IRS-1 showed a positive association with estrogen receptor (ER) (r = 0.09, P = 0.003) and progesterone receptor (PR) (r = 0.08, P = 0.008) status and a negative correlation with lymph node involvement (r = -0.10, P = 0.001). Cytoplasmic IRS-1 did not correlate with ER or PR but showed a positive correlation with tumor size (r = 0.10, P = 0.001) and S-phase fraction (r = 0.16, P < 0.001). In univariate analysis, tamoxifen-treated patients with tumors showing positive nuclear IRS-1 had a better recurrence-free survival (RFS) (P = 0.009) and overall survival (OS) (P = 0.0007), while no association was shown between cytoplasmic IRS-1 and RFS or OS in the same group of patients. In multivariate analysis of patients receiving tamoxifen, negative nuclear IRS-1 showed a significantly reduced RFS (P = 0.046) and OS (P = 0.018). Combining both PR and nuclear IRS-1, tamoxifen-treated patients with PR+/IRS-1+ tumors had a better RFS (P = 0.0003) and OS (P < 0.0001) when compared with patients with PR-/IRS-1- tumors. In conclusion, nuclear IRS-1 may be a useful marker to predict tamoxifen response in patients with early breast cancer, particularly when assessed in combination with PR.
Collapse
Affiliation(s)
- Ilenia Migliaccio
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, BCM:600, Room N1110, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Longobardi L, Granero-Moltó F, O'Rear L, Myers TJ, Li T, Kregor PJ, Spagnoli A. Subcellular localization of IRS-1 in IGF-I-mediated chondrogenic proliferation, differentiation and hypertrophy of bone marrow mesenchymal stem cells. Growth Factors 2009; 27:309-20. [PMID: 19639489 DOI: 10.1080/08977190903138874] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bone marrow derived mesenchymal stem cells (BM-MSC) can differentiate into chondrocytes. Understanding the mechanisms and growth factors that control the MSC stemness is critical to fully implement their therapeutic use in cartilage diseases. The activated type 1 insulin-like growth factor receptor (IGF-IR), interacting with the insulin receptor substrate-1 (IRS-1), can induce cancer cell proliferation and transformation. In cancer or transformed cells, IRS-1 has been shown to localize in the cytoplasm where it activates the canonical Akt pathway, as well as in the nucleus where it binds to nuclear proteins. We have previously demonstrated that IGF-I has distinct time-dependent effect on primary BM-MSC chondrogenic pellets: initially (2-day culture), IGF-I induces proliferation; subsequently, IGF-I promotes chondrocytic differentiation (7-day culture). In the present study, by using MSC from the BM of IRS-1(- / - ) mice we show that IRS-1 mediates almost 50% of the IGF-I mitogenic response and the MAPK-MEK/ERK signalling accounts for the other 50%. After stimulation with IGF-I, we found that in 2-day old human and mouse derived BM-MSC pellets, IRS-1 (total and phosphorylated) is nuclearly localized and that proliferation prevails over differentiation. The IGF-I mitogenic effect is Akt-independent. In 7-day MSC pellets, IGF-I stimulates the chondrogenic differentiation of MSC into chondrocytes, pre-hypertrophic and hypertrophic chondrocytes and IRS-1 accumulates in the cytoplasm. IGF-I-dependent differentiation is exclusively Akt-dependent. Our data indicate that in the physiologically relevant model of primary cultured MSC, IGF-I induces a temporally regulated nuclear or cytoplasmic localization of IRS-1 that correlate with the transition from proliferation to chondrogenic differentiation.
Collapse
Affiliation(s)
- Lara Longobardi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7039, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
La Rocca G, Badin M, Shi B, Xu SQ, Deangelis T, Sepp-Lorenzinoi L, Baserga R. Mechanism of growth inhibition by MicroRNA 145: the role of the IGF-I receptor signaling pathway. J Cell Physiol 2009; 220:485-91. [PMID: 19391107 DOI: 10.1002/jcp.21796] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
MicroRNA 145 (miR145) has been proposed as a tumor suppressor. It was previously shown that miR145 targets the 3' UTR of the insulin receptor substrate-1 (IRS-1) and dramatically inhibits the growth of colon cancer cells. miR145 also targets the type 1 insulin-like growth factor receptor (IGF-IR). We show here that an IRS-1 lacking its 3' UTR is no longer down-regulated by miR145 and rescues colon cancer cells from miR145-induced inhibition of growth. An IGF-IR resistant to miR145 (again by elimination of its 3' UTR) is not down-regulated by miR145 but fails to rescue colon cancer cells from growth inhibition. These and other results, taken together, indicate that down-regulation of IRS-1 plays a significant role in the tumor suppressor activity of miR145.
Collapse
Affiliation(s)
- Gaspare La Rocca
- Department of Cancer Biology at Thomas Jefferson University, Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Mardilovich K, Pankratz SL, Shaw LM. Expression and function of the insulin receptor substrate proteins in cancer. Cell Commun Signal 2009; 7:14. [PMID: 19534786 PMCID: PMC2709114 DOI: 10.1186/1478-811x-7-14] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 06/17/2009] [Indexed: 12/13/2022] Open
Abstract
The Insulin Receptor Substrate (IRS) proteins are cytoplasmic adaptor proteins that function as essential signaling intermediates downstream of activated cell surface receptors, many of which have been implicated in cancer. The IRS proteins do not contain any intrinsic kinase activity, but rather serve as scaffolds to organize signaling complexes and initiate intracellular signaling pathways. As common intermediates of multiple receptors that can influence tumor progression, the IRS proteins are positioned to play a pivotal role in regulating the response of tumor cells to many different microenvironmental stimuli. Limited studies on IRS expression in human tumors and studies on IRS function in human tumor cell lines and in mouse models have provided clues to the potential function of these adaptor proteins in human cancer. A general theme arises from these studies; IRS-1 and IRS-4 are most often associated with tumor growth and proliferation and IRS-2 is most often associated with tumor motility and invasion. In this review, we discuss the mechanisms by which IRS expression and function are regulated and how the IRS proteins contribute to tumor initiation and progression.
Collapse
Affiliation(s)
- Katerina Mardilovich
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
30
|
Abstract
The type 1 IGF receptor (IGF-IR) is activated by two ligands, IGF-1 and IGF-2, and by insulin at supraphysiological concentrations. It plays a significant role in the growth of normal and abnormal cells, and antibodies against the IGF-IR are now in clinical trials. Targeting of the IGF-IR in cancer cells (by antibodies or other means) can be improved by the appropriate selection of responsive tumors. This review focuses on the optimization of IGF-IR targeting in human cancer.
Collapse
Affiliation(s)
- Renato Baserga
- Thomas Jefferson University, Kimmel Cancer Center, Bluemle Life Sciences Center, Philadelphia, PA 1910, USA.
| |
Collapse
|
31
|
Maures TJ, Chen L, Carter-Su C. Nucleocytoplasmic shuttling of the adapter protein SH2B1beta (SH2-Bbeta) is required for nerve growth factor (NGF)-dependent neurite outgrowth and enhancement of expression of a subset of NGF-responsive genes. Mol Endocrinol 2009; 23:1077-91. [PMID: 19372237 DOI: 10.1210/me.2009-0011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The adapter protein SH2B1 (SH2-B, PSM) is recruited to multiple ligand-activated receptor tyrosine kinases, including the receptors for nerve growth factor (NGF), insulin, and IGF-I as well as the cytokine receptor-associated Janus kinase family kinases. In this study, we examine SH2B1's function in NGF signaling. We show that depleting endogenous SH2B1 using short hairpin RNA against SH2B1 inhibits NGF-dependent neurite outgrowth, but not NGF-mediated phosphorylation of Akt or ERKs 1/2. SH2B1 has been hypothesized to localize and function at the plasma membrane. We identify a nuclear localization signal within SH2B1 and show that it is required for nuclear translocation of SH2B1beta. Mutation of the nuclear localization signal has no effect on NGF-induced activation of TrkA and ERKs 1/2 but prevents SH2B1beta from enhancing NGF-induced neurite outgrowth. Disruption of SH2B1beta nuclear import also prevents SH2B1beta from enhancing NGF-induced transcription of genes important for neuronal differentiation, including those encoding urokinase plasminogen activator receptor, and matrix metalloproteinases 3 and 10. Disruption of SH2B1beta nuclear export by mutation of its nuclear export sequence similarly prevents SH2B1beta enhancement of NGF-induced transcription of those genes. Nuclear translocation of the highly homologous family member SH2B2(APS) was not observed. Together, these data suggest that rather than simply acting as an adapter protein linking signaling proteins to the activated TrkA receptor at the plasma membrane, SH2B1beta must shuttle between the plasma membrane and nucleus to function as a critical component of NGF-induced gene expression and neuronal differentiation.
Collapse
Affiliation(s)
- Travis J Maures
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5622, USA
| | | | | |
Collapse
|
32
|
Urbanska K, Pannizzo P, Lassak A, Gualco E, Surmacz E, Croul S, Del Valle L, Khalili K, Reiss K. Estrogen receptor beta-mediated nuclear interaction between IRS-1 and Rad51 inhibits homologous recombination directed DNA repair in medulloblastoma. J Cell Physiol 2009; 219:392-401. [PMID: 19117011 DOI: 10.1002/jcp.21683] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In medulloblastomas, which are highly malignant cerebellar tumors of the childhood genotoxic treatments such as cisplatin or gamma-irradiation are frequently associated with DNA damage, which often associates with unfaithful DNA repair, selection of new adaptations and possibly tumor recurrences. Therefore, better understanding of molecular mechanisms which control DNA repair fidelity upon DNA damage is a critical task. Here we demonstrate for the first time that estrogen receptor beta (ERbeta) can contribute to the development of genomic instability in medulloblastomas. Specifically, ERbeta was found highly expressed and active in mouse and human medulloblastoma cell lines. Nuclear ERbeta was also present in human medulloblastoma clinical samples. Expression of ERbeta coincided with nuclear translocation of insulin receptor substrate 1 (IRS-1), which was previously reported to interfere with the faithful component of DNA repair when translocated to the nucleus. We demonstrated that ERbeta and IRS-1 bind each other, and the interaction involves C-terminal domain of IRS-1 (aa 931-1233). Following cisplatin-induced DNA damage, nuclear IRS-1 localized at the sites of damaged DNA, and interacted with Rad51--an enzymatic component of homologous recombination directed DNA repair (HRR). In medulloblastoma cells, engineered to express HRR-DNA reporter plasmid, ER antagonist, ICI 182,780, or IRS mutant (931-1233) significantly increased DNA repair fidelity. These data strongly suggest that both molecular and pharmacological interventions are capable of preventing ERbeta-mediated IRS-1 nuclear translocation, which in turn improves DNA repair fidelity and possibly counteracts accumulation of malignant mutations in actively growing medulloblastomas.
Collapse
Affiliation(s)
- Katarzyna Urbanska
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The insulin receptor substrate-1: A biomarker for cancer? Exp Cell Res 2009; 315:727-32. [DOI: 10.1016/j.yexcr.2008.09.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/23/2008] [Accepted: 09/23/2008] [Indexed: 01/13/2023]
|
34
|
Chan BTY, Lee AV. Insulin receptor substrates (IRSs) and breast tumorigenesis. J Mammary Gland Biol Neoplasia 2008; 13:415-22. [PMID: 19030971 PMCID: PMC2819329 DOI: 10.1007/s10911-008-9101-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 11/03/2008] [Indexed: 01/29/2023] Open
Abstract
Insulin receptor substrate (IRS)-1 and IRS-2 are adaptor proteins in the insulin-like growth factor I (IGF-I)/IGF-I receptor (IGF-IR) pathway that mediate cell proliferation, migration, and survival. In addition to their role as scaffolding proteins in the cytoplasm, they are able to translocate into the nucleus and regulate gene transcription. IRS levels are developmentally and hormonally regulated in the normal mammary gland and both are essential for normal mammary gland bud formation and lactation. Both IRS-1 and IRS-2 are transforming oncogenes, and induce transformation and metastasis in vitro and in vivo. In breast cancer IRSs have unique functions, with IRS-1 being mainly involved in cell proliferation and survival, whereas IRS-2 has clear roles in cell migration and metastasis. In this review we will discuss the roles of IRSs in mammary gland development and breast cancer.
Collapse
Affiliation(s)
- Bonita Tak-Yee Chan
- Lester and Sue Smith Breast Center, Department of Medicine and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
35
|
Insulin receptor substrate 1 modulates the transcriptional activity and the stability of androgen receptor in breast cancer cells. Breast Cancer Res Treat 2008; 115:297-306. [DOI: 10.1007/s10549-008-0079-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 05/22/2008] [Indexed: 01/25/2023]
|
36
|
Interaction between simian virus 40 large T antigen and insulin receptor substrate 1 is disrupted by the K1 mutation, resulting in the loss of large T antigen-mediated phosphorylation of Akt. J Virol 2008; 82:4521-6. [PMID: 18305032 DOI: 10.1128/jvi.02365-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The cellular kinase Akt is a key controller of cellular metabolism, growth, and proliferation. Many viruses activate Akt due to its beneficial effects on viral replication. We previously showed that wild-type (WT) simian virus 40 (SV40) large T antigen (TAg) inhibits apoptosis via the activation of PI3K/Akt signaling. Here we show that WT TAg expressed from recombinant adenoviruses in U2OS cells induced the phosphorylation of Akt at both T308 and S473. In contrast, Akt phosphorylation was eliminated by the K1 mutation (E107K) within the retinoblastoma protein (Rb) binding motif of TAg. This suggested that Akt phosphorylation may depend on TAg binding to Rb or one of its family members. However, in Rb-negative SAOS2 cells depleted of p107 and p130 by using small hairpin RNAs (shRNAs), WT TAg still mediated Akt phosphorylation. These results suggested that the K1 mutation affects another TAg function. WT-TAg-mediated phosphorylation of Akt was inhibited by a PI3K inhibitor, suggesting that the effects of TAg originated upstream of PI3K; thus, we examined the requirement for insulin receptor substrate 1 (IRS1), which binds and activates PI3K. Depletion of IRS1 by shRNAs abolished the WT-TAg-mediated phosphorylation of Akt. Immunoprecipitation studies showed that the known interaction between TAg and IRS1 is significantly weakened by the K1 mutation. These data indicate that the K1 mutation disrupts not only Rb binding but also IRS1 binding, contributing to the loss of activation of PI3K/Akt signaling.
Collapse
|
37
|
Sun H, Baserga R. The role of insulin receptor substrate-1 in transformation by v-src. J Cell Physiol 2008; 215:725-32. [PMID: 18064649 DOI: 10.1002/jcp.21352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hongzhi Sun
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
38
|
Sun H, Tu X, Liu M, Baserga R. Dual regulation of upstream binding factor 1 levels by IRS-1 and ERKs in IGF-1-receptor signaling. J Cell Physiol 2007; 212:780-6. [PMID: 17443674 DOI: 10.1002/jcp.21072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Upstream Binding Factor 1 (UBF1) is a nucleolar protein that participates in the regulation of RNA polymerase I activity and ribosomal RNA (rRNA) synthesis. In 32D myeloid cells expressing the type 1 insulin-like growth factor receptor (IGF-IR), the UBF1 protein (but not its mRNA) is down regulated when the cells are shifted from Interleukin-3 (IL-3) to IGF-1. Ectopic expression of insulin receptor substrate-1 (IRS-1) in these cells inhibits the down-regulation of UBF1. We now show that the stability of UBF1 in 32D-derived cells requires also a signal from the extracellular regulated kinases (ERKs). When ERKs signaling is defective, as in cells over-expressing the insulin receptor (InR) or selected mutants of the IGF-1R, UBF1 is down-regulated, even in the presence of IRS-1. The down-regulation is corrected by the expression of an activated Ha-ras, which stimulates ERKs activity. Mutations at threonines 117 and 201 of UBF1, known to be phosphorylated by ERKs, cause its down-regulation. However, when IRS-2, instead of IRS-1, is ectopically expressed in 32D InR cells, ERKs phosphorylation is increased and UBF is stabilized. Taken together, these results indicate that in 32D-derived myeloid cells expressing either the IGF-IR or the InR, UBF1 levels are regulated by signaling from both IRS proteins and ERKs.
Collapse
Affiliation(s)
- Hongzhi Sun
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
39
|
Wu A, Chen J, Baserga R. Nuclear insulin receptor substrate-1 activates promoters of cell cycle progression genes. Oncogene 2007; 27:397-403. [PMID: 17700539 DOI: 10.1038/sj.onc.1210636] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The insulin receptor substrate-1 (IRS-1) is a docking protein of the insulin-like growth factor-1 (IGF-1) receptor and of the insulin receptor. IRS-1 sends a strong mitogenic, anti-apoptotic signal and plays an important role in cell transformation and cancer. IRS-1 translocates to nuclei of cells, where it increases the activity of the rDNA, c-myc and cyclin D1 promoters. We show, by chromatin immunoprecipitation, occupancy by IRS-1 of the same promoters. Both promoter activation and promoter occupancy are IGF-1-dependent. In cells that respond to IGF-1 but in which IRS-1 does not translocate to nuclei, promoter occupancy is absent and promoter activation is absent or much reduced. Transcriptional activation of c-myc and cyclin D1 promoters by nuclear IRS-1 does not occur with a mutant, inactive IRS-1 protein (deletion of the phosphotyrosine-binding domain, PTB) and does not require PI3-kinase activity. Taken together, these results indicate a novel mechanism by which nuclear IRS-1 activates cell cycle genes.
Collapse
Affiliation(s)
- A Wu
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | |
Collapse
|
40
|
Zaidi SK, Young DW, Javed A, Pratap J, Montecino M, van Wijnen A, Lian JB, Stein JL, Stein GS. Nuclear microenvironments in biological control and cancer. Nat Rev Cancer 2007; 7:454-63. [PMID: 17522714 DOI: 10.1038/nrc2149] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleic acids and regulatory proteins are compartmentalized in microenvironments within the nucleus. This subnuclear organization may support convergence and the integration of physiological signals for the combinatorial control of gene expression, DNA replication and repair. Nuclear organization is modified in many cancers. There are cancer-related changes in the composition, organization and assembly of regulatory complexes at intranuclear sites. Mechanistic insights into the temporal and spatial organization of machinery for gene expression within the nucleus, which is compromised in tumours, provide a novel platform for diagnosis and therapy.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- University of Massachusetts Medical School and UMASS Memorial Cancer Center, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu M, Tu X, Ferrari-Amorotti G, Calabretta B, Baserga R. Downregulation of the upstream binding factor1 by glycogen synthase kinase3beta in myeloid cells induced to differentiate. J Cell Biochem 2007; 100:1154-69. [PMID: 17063482 DOI: 10.1002/jcb.21103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The upstream binding factor 1 (UBF1), one of the proteins that regulate the activity of RNA polymerase I, is downregulated in 32D myeloid cells induced to differentiate into granulocytes, either by the type 1 insulin-like growth factor (IGF-1) or the granulocytic colony stimulating factor (G-CSF). Downregulation of UBF1 is largely due to protein degradation, while mRNA levels are not affected. Inhibition of UBF1 degradation by lithium chloride (LiCl)and lactacystin suggest a role of glycogen synthase kinase beta (GSK3beta) in a proteasome-dependent degradation of UBF. GSK3beta phosphorylates in vitro and in vivo the UBF protein, which has five putative motifs for phosphorylation by GSK3beta. Elimination and/or mutations of these motifs stabilize the UBF1 protein even in cells induced to differentiate. Conversely, a stably transfected, constitutively active GSK3beta accelerates the downregulation of UBF1. We show further that activation of the differentiating protein C/EPBalpha in 32D cells transformed by the oncogenic BCR/ABL protein causes downregulation of UBF1. Finally, inhibition of differentiation of myeloid cells by a dominant negative mutant of Stat3 stabilizes the UBF1 protein, while rapamycin-induced differentiation of myeloid cells downregulates UBF1 levels. Taken together, our results indicate that the induction of granulocytic differentiation in 32D murine myeloid cells causes the degradation of UBF1, via GSK3beta and the proteasome pathway.
Collapse
Affiliation(s)
- Mingli Liu
- Kimmel Cancer Center, Thomas Jefferson University, 624 Bluemle, Life Sciences Building, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
42
|
McElroy B, Powell JC, McCarthy JV. The insulin-like growth factor 1 (IGF-1) receptor is a substrate for gamma-secretase-mediated intramembrane proteolysis. Biochem Biophys Res Commun 2007; 358:1136-41. [PMID: 17524361 DOI: 10.1016/j.bbrc.2007.05.062] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 05/11/2007] [Indexed: 12/21/2022]
Abstract
Several type-1 membrane proteins undergo regulated intramembrane proteolysis resulting in the generation of biologically active protein fragments. Presenilin-dependant gamma-secretase activity is central to this event and includes amyloid precursor protein (APP), Notch and ErbB4 as substrates. Here we show that the insulin-like growth factor 1 receptor (IGF-IR) undergoes regulated intramembrane proteolysis. A metalloprotease-dependant ectodomain-shedding event generates a approximately 52 kDa IGF-IR-carboxyl terminal domain (CTD). The IGF-IR-CTD is consequentially a substrate for gamma-secretase cleavage, liberating a approximately 50 kDa intracellular domain (ICD) that can be inhibited by a specific gamma-secretase inhibitor. This study suggests that the IGF-IR is a substrate for gamma-secretase and may mediate a function independent of its role as a receptor tyrosine kinase.
Collapse
Affiliation(s)
- Brian McElroy
- Signal Transduction Laboratory, Biochemistry Department, National University of Ireland, Cork, Ireland
| | | | | |
Collapse
|
43
|
Dalmizrak O, Wu A, Chen J, Sun H, Utama FE, Zambelli D, Tran TH, Rui H, Baserga R. Insulin Receptor Substrate-1 Regulates the Transformed Phenotype of BT-20 Human Mammary Cancer Cells. Cancer Res 2007; 67:2124-30. [PMID: 17332342 DOI: 10.1158/0008-5472.can-06-3954] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Although originating from a human breast cancer, BT-20 cells do not form colonies in soft agar. BT-20 cells do not express insulin receptor substrate-1 (IRS-1), which is known to promote both normal and abnormal growth and to inhibit differentiation. Stable expression of IRS-1 confers to BT-20 cells the ability to form colonies in soft agar. BT-20 cells form tumors in xenografts in mice, but the size of tumors is twice as large when the cells express IRS-1. The increased transformed phenotype is characterized by occupancy of the rDNA and cyclin D1 promoters by IRS-1 and the activation of the cyclin D1, c-myc, and rDNA promoters. In addition, the retinoblastoma protein, which is detectable in the rDNA promoter of quiescent BT-20/IRS-1 cells, is replaced by IRS-1 after insulin-like growth factor-I stimulation. Our results indicate that in BT-20 human mammary cancer cells, expression of IRS-1 activates promoters involved in cell growth and cell proliferation, resulting in a more transformed phenotype. Targeting of IRS-1 could be effective in inhibiting the proliferation of mammary cancer cells. [Cancer Res 2007;67(5):2124–30]
Collapse
Affiliation(s)
- Ozlem Dalmizrak
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sun H, Tu X, Baserga R. A Mechanism for Cell Size Regulation by the Insulin and Insulin-Like Growth Factor-I Receptors. Cancer Res 2006; 66:11106-9. [PMID: 17145851 DOI: 10.1158/0008-5472.can-06-2641] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deletion of the type 1 insulin-like growth factor receptor (IGF-IR) or of the insulin receptor substrate-1 (IRS-1) genes in animals causes a 50% reduction in body size at birth. Decrease in body size is due to both a decreased number of cells and a decreased cell size. Deletion of the insulin receptor (InR) genes results in mice that are normal in size at birth. We have used 32D-derived myeloid cells to study the effect of IGF-IR and InR signaling on cell size. 32D cells expressing the IGF-IR and IRS-1 are almost twice as large as 32D cells expressing the InR and IRS-1. A mechanism for the difference in size is provided by the levels of the upstream binding factor 1 (UBF1), a nucleolar protein that participates in the regulation of RNA polymerase I activity and rRNA synthesis and therefore cell size. When shifted to the respective ligands, UBF1 levels decrease in cells expressing the InR and IRS-1, whereas they remain stable in cells expressing the IGF-IR and IRS-1. The expression of the IGF-IR and IRS-1 is crucial to the stability of UBF1.
Collapse
Affiliation(s)
- Hongzhi Sun
- Department of Cancer Research, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
45
|
Trojanek J, Ho T, Croul S, Wang JY, Chintapalli J, Koptyra M, Giordano A, Khalili K, Reiss K. IRS-1-Rad51 nuclear interaction sensitizes JCV T-antigen positive medulloblastoma cells to genotoxic treatment. Int J Cancer 2006; 119:539-48. [PMID: 16572421 DOI: 10.1002/ijc.21828] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The large T-antigen from human polyomavirus JC (JCV T-antigen) is suspected to play a role in malignant transformation. Previously, we reported that JCV T-antigen requires the presence of a functional insulin-like growth factor I receptor (IGF-IR) for transformation of fibroblasts and for survival of medulloblastoma cell lines; that IGF-IR is phosphorylated in medulloblastoma biopsies and that JCV T-antigen inhibits homologous recombination-directed DNA repair, causing accumulation of mutations. Here we are evaluating whether JCV T-antigen positive and negative mouse medulloblastoma cell lines, which significantly differ in their tumorigenic properties, are also different in their abilities to repair double strand breaks of DNA (DSBs). Our results show that despite much stronger tumorigenic potential, JCV T-antigen positive medulloblastoma cells are more sensitive to genotoxic agents (cisplatin and gamma-irradiation). Subsequent analysis of DNA repair of DSBs indicated that homologous recombination-directed DNA repair (HRR) was selectively attenuated in JCV T-antigen positive medulloblastoma cells. JCV T-antigen did not affect HRR directly. In the presence of JCV T-antigen, insulin receptor substrate 1 (IRS-1) translocated to the nucleus where it co-localized with Rad51, possibly attenuating HRR.
Collapse
Affiliation(s)
- Joanna Trojanek
- Center for Neurovirology, Department of Neuroscience, Temple University, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yakar S, Leroith D, Brodt P. The role of the growth hormone/insulin-like growth factor axis in tumor growth and progression: Lessons from animal models. Cytokine Growth Factor Rev 2005; 16:407-20. [PMID: 15886048 DOI: 10.1016/j.cytogfr.2005.01.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Accepted: 01/20/2005] [Indexed: 02/08/2023]
Abstract
Over the past two decades it has become widely appreciated that a relationship exists between the insulin-like growth factors (IGFs) and cancer. Many cancers have been shown to overexpress the IGF-I receptor and produce the ligands (IGF-I or IGF-II) and some combinations of the six IGF-binding proteins. With the recent demonstration by epidemiological studies that an elevated serum IGF-I level is associated with an increased relative risk of developing a number of epithelial cancers, interest has been sparked in this area of research with the possibility of targeting the IGF-I receptor in cancer treatment protocols. This review highlights many of the most relevant studies in this exciting area of research, focusing in particular on lessons learned from animal models of cancer.
Collapse
Affiliation(s)
- Shoshana Yakar
- Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1758, USA.
| | | | | |
Collapse
|
47
|
DeAngelis T, Chen J, Wu A, Prisco M, Baserga R. Transformation by the simian virus 40 T antigen is regulated by IGF-I receptor and IRS-1 signaling. Oncogene 2005; 25:32-42. [PMID: 16170362 DOI: 10.1038/sj.onc.1209013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previous work has shown that the Simian Virus 40 T antigen (T antigen) cannot transform mouse embryo fibroblasts (MEFs) that do not express the type 1 insulin-like growth factor receptor (IGF-IR). We have now investigated the mechanism(s) by which the transforming activity of T antigen is affected by IGF-IR signaling. We demonstrate that transformation by T antigen of MEFs and several other cell lines requires an insulin receptor substrate-1 (IRS-1) phosphorylated on tyrosines. If IRS-1 is not expressed, or is serine phosphorylated or otherwise inactive, T antigen fails to transform cells in culture. For instance, while T antigen cannot transform 32D myeloid cells (that do not express IRS-1), its transforming activity is restored by the expression of a wild-type IRS-1, but not of an IRS-1 mutated at the PI3K binding sites. The importance of IRS-1 activation of PI3K in T-antigen transformation is supported by the finding that a constitutively activated p110 subunit of PI3K, a target of IRS-1, overcomes the inability of T antigen to transform MEFs with a serine phosphorylated IRS-1. Taken together, these results indicate that the IRS-1/PI3K signaling is one of the mechanisms regulating transformation by the SV40 T antigen. We propose that the requirement for a tyrosyl-phosphorylated IRS-1 provides a mechanism to explain the failure of T antigen to transform MEFs with deleted IGF-IR genes.
Collapse
MESH Headings
- Agar/chemistry
- Animals
- Antigens, Polyomavirus Transforming/chemistry
- Antigens, Polyomavirus Transforming/metabolism
- Antigens, Viral, Tumor/chemistry
- Binding Sites
- Blotting, Western
- Breast Neoplasms/metabolism
- Cell Line
- Cell Line, Transformed
- Cell Survival
- Cell Transformation, Neoplastic
- Cells, Cultured
- Fibroblasts/metabolism
- Gene Deletion
- Insulin Receptor Substrate Proteins
- Mice
- Mutation
- Neurons/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoproteins/metabolism
- Phosphorylation
- Pol1 Transcription Initiation Complex Proteins/metabolism
- RNA/chemistry
- RNA, Ribosomal/chemistry
- Receptor, IGF Type 1/metabolism
- Ribosomes/metabolism
- Serine/chemistry
- Signal Transduction
- Time Factors
- Transfection
- Tyrosine/chemistry
Collapse
Affiliation(s)
- T DeAngelis
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
48
|
Koda M, Sulkowska M, Kanczuga-Koda L, Sulkowski S. Expression of insulin receptor substrate 1 in primary breast cancer and lymph node metastases. J Clin Pathol 2005; 58:645-9. [PMID: 15917419 PMCID: PMC1770676 DOI: 10.1136/jcp.2004.022590] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Insulin receptor substrate 1 (IRS-1) transmits signals from the insulin-like growth factor I receptor (IGF-IR) and insulin receptor (IR) and has been associated with the pathogenesis of cancer. IRS-1 downregulation has been suggested to play a role in breast cancer progression, but no simultaneous assessments of IRS-1 expression in primary breast cancer and metastases have been performed. AIMS To assess IRS-1 expression in primary and metastatic breast cancer. METHODS IRS-1 expression was analysed by means of immunohistochemistry in 109 samples of primary breast cancer and in 42 matched primary and metastatic tumours. In addition, IRS-1 expression was correlated with selected clinicopathological features, including oestrogen receptor alpha (ERalpha) and proliferation marker Ki-67 status. RESULTS Positive cytoplasmic IRS-1 immunostaining was found in 69.7% (76 of 109) and 76.2% (32 of 42) of the primary and metastatic tumours, respectively. Both IRS-1 positive and IRS-1 negative primary tumours produced IRS-1 positive and IRS-1 negative metastases. IRS-1 expression in primary tumours correlated with poorly differentiated (G3) breast cancer (p < 0.005) and with lymph node involvement (p <0.05). In the subgroup of ERalpha positive primary tumours, IRS-1 expression positively correlated with Ki-67 (p < 0.02, r = 0.351), but in the subgroup of ERalpha negative primary tumours there was a negative correlation (p < 0.03, r = -0.509). IRS-1 expression in lymph node metastases correlated with neither ERalpha nor Ki-67. CONCLUSIONS IRS-1 might be involved in breast cancer progression. Knowledge about differences between primary and metastatic tumours might help to understand mechanisms of breast cancer progression and lead to the development of more effective anticancer drugs.
Collapse
Affiliation(s)
- M Koda
- Department of Clinical Pathology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | | | | | | |
Collapse
|
49
|
Abstract
This review examines the rationale for targeting the insulin-like growth factor (IGF)-I receptor in the therapy of human tumours and their metastases. The rationale is based on two crucial findings: 1) in experimental animals, normal cells are only partially affected by the deletion of the IGF-I receptor, whereas tumour cells undergo apoptosis when the IGF-I receptor is downregulated; and 2) cells with a deleted IGF-I receptor are refractory to transformation by viral and cellular oncogenes. This review focuses on the mechanisms underlying the experimental findings, and discusses the possibility of extrapolating the results obtained in animals to the cure of human tumours.
Collapse
Affiliation(s)
- Renato Baserga
- Thomas Jefferson University, Kimmel Cancer Center, 233 S. 10th Street, 624 BLSB, Philadelphia, PA 19107, USA.
| |
Collapse
|
50
|
Chen J, Wu A, Sun H, Drakas R, Garofalo C, Cascio S, Surmacz E, Baserga R. Functional significance of type 1 insulin-like growth factor-mediated nuclear translocation of the insulin receptor substrate-1 and beta-catenin. J Biol Chem 2005; 280:29912-20. [PMID: 15967802 DOI: 10.1074/jbc.m504516200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work has shown that the transcriptional regulator beta-catenin can translocate to the nuclei when cells are stimulated with the type 1 insulin-like growth factor (IGF-1). We show by immunocoprecipitation and by confocal microscopy that beta-catenin binds to and co-localizes with the insulin receptor substrate-1 (IRS-1), a docking protein for both the insulin and the IGF-1 receptors. IRS-1 is required for IGF-1-mediated nuclear translocation of beta-catenin, resulting in the activation of the beta-catenin target genes. IGF-1-mediated nuclear translocation of beta-catenin is facilitated by the nuclear translocation of IRS-1. Both IRS-1 and beta-catenin are recruited to the cyclin D1 promoter, an established target for beta-catenin, but only IRS-1 is recruited to the ribosomal DNA (rDNA) promoter. UBF proteins (known to interact with both IRS-1 and beta-catenin) are also detectable in the cyclin D1 and rDNA promoters. These results indicate that IRS-1 (activated by the IGF-1 receptor) is one of several proteins that regulate the subcellular localization and activity of beta-catenin. The ability of IRS-1 to localize to both RNA polymerase II (with beta-catenin) and RNA polymerase I-regulated promoters suggest an explanation for the effect of IRS-1 on both cell growth in size and cell proliferation. This possibility is supported by the demonstration that enforced nuclear localization of IRS-1 causes nuclear translocation of beta-catenin and transformation of normal mouse embryo fibroblasts (colony formation in soft agar).
Collapse
Affiliation(s)
- Jia Chen
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|