1
|
Zhang GL, Porter MJ, Awol AK, Orsburn BC, Canner SW, Gray JJ, O’Meally RN, Cole RN, Schnaar RL. The Human Ganglioside Interactome in Live Cells Revealed Using Clickable Photoaffinity Ganglioside Probes. J Am Chem Soc 2024; 146:17801-17816. [PMID: 38887845 PMCID: PMC11650378 DOI: 10.1021/jacs.4c03196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Gangliosides, sialic acid bearing glycosphingolipids, are components of the outer leaflet of plasma membranes of all vertebrate cells. They contribute to cell regulation by interacting with proteins in their own membranes (cis) or their extracellular milieu (trans). As amphipathic membrane constituents, gangliosides present challenges for identifying their ganglioside protein interactome. To meet these challenges, we synthesized bifunctional clickable photoaffinity gangliosides, delivered them to plasma membranes of cultured cells, then captured and identified their interactomes using proteomic mass spectrometry. Installing probes on ganglioside lipid and glycan moieties, we captured cis and trans ganglioside-protein interactions. Ganglioside interactomes varied with the ganglioside structure, cell type, and site of the probe (lipid or glycan). Gene ontology revealed that gangliosides engage with transmembrane transporters and cell adhesion proteins including integrins, cadherins, and laminins. The approach developed is applicable to other gangliosides and cell types, promising to provide insights into molecular and cellular regulation by gangliosides.
Collapse
Affiliation(s)
- Gao-Lan Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Mitchell J. Porter
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Abduselam K. Awol
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Benjamin C. Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Samuel W. Canner
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Gray
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Robert N. O’Meally
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Robert N. Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Ronald L. Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
2
|
Bhowmick S, Biswas T, Ahmed M, Roy D, Mondal S. Caveolin-1 and lipids: Association and their dualism in oncogenic regulation. Biochim Biophys Acta Rev Cancer 2023; 1878:189002. [PMID: 37848094 DOI: 10.1016/j.bbcan.2023.189002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Caveolin-1 (Cav-1) is a structural protein of caveolae that functions as a molecular organizer for different cellular functions including endocytosis and cellular signaling. Cancer cells take advantage of the physical position of Cav-1, as it can communicate with extracellular matrix, help to organize growth factor receptors, redistribute cholesterol and glycosphingolipids, and finally transduce signals within the cells for oncogenesis. Recent studies emphasize the exceeding involvement of Cav-1 with different lipid bodies and in altering the metabolism, especially lipid metabolism. However, the association of Cav-1 with different lipid bodies like lipid rafts, lipid droplets, cholesterols, sphingolipids, and fatty acids is remarkably dynamic. The lipid-Cav-1 alliance plays a dual role in carcinogenesis. Both cancer progression and regression are modified and affected by the type of lipid molecule's association with Cav-1. Accordingly, this Cav-1-lipid cooperation exemplifies a cancer-type-specific treatment strategy for a better prognosis of the disease. In this review, we first present Cav-1 as an oncogenic molecule and its communication via lipid raft. We discussed the involvement of Cav-1 with lipid droplets, Cholesterol, sphingolipids, gangliosides, and ceramides. Further, we describe the Cav-1-mediated altered Fatty acid metabolism in cancer and the strategic therapeutic approaches toward Cav-1 targeting.
Collapse
Affiliation(s)
- Sramana Bhowmick
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Tannishtha Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Mehnaz Ahmed
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Debarshi Roy
- Department of Biological Sciences, Alcorn State University, Lorman, MS 39096, USA
| | - Susmita Mondal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
3
|
Iwabuchi K, Prinetti A. Afterword (Editorial). Glycoconj J 2023; 40:119-122. [PMID: 36322334 DOI: 10.1007/s10719-022-10090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka Urayasu-shi, Chiba, 279-0021, Japan.
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, 279-0023, Japan.
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| |
Collapse
|
4
|
Abstract
Glycosphingolipids are amphiphilic plasma membrane components formed by a glycan linked to a specific lipid moiety. In this chapter we report on these compounds, on their role played in our cells to maintain the correct cell biology.In detail, we report on their structure, on their metabolic processes, on their interaction with proteins and from this, their property to modulate positively in health and negatively in disease, the cell signaling and cell biology.
Collapse
|
5
|
Bedia C, Badia M, Muixí L, Levade T, Tauler R, Sierra A. GM2-GM3 gangliosides ratio is dependent on GRP94 through down-regulation of GM2-AP cofactor in brain metastasis cells. Sci Rep 2019; 9:14241. [PMID: 31578452 PMCID: PMC6775165 DOI: 10.1038/s41598-019-50761-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/13/2019] [Indexed: 01/09/2023] Open
Abstract
GRP94 is an ATP-dependent chaperone able to regulate pro-oncogenic signaling pathways. Previous studies have shown a critical role of GRP94 in brain metastasis (BrM) pathogenesis and progression. In this work, an untargeted lipidomic analysis revealed that some lipid species were altered in GRP94-deficient cells, specially GM2 and GM3 gangliosides. The catalytic pathway of GM2 is affected by the low enzymatic activity of β-Hexosaminidase (HexA), responsible for the hydrolysis of GM2 to GM3. Moreover, a deficiency of the GM2-activator protein (GM2-AP), the cofactor of HexA, is observed without alteration of gene expression, indicating a post-transcriptional alteration of GM2-AP in the GRP94-ablated cells. One plausible explanation of these observations is that GM2-AP is a client of GRP94, resulting in defective GM2 catabolic processing and lysosomal accumulation of GM2 in GRP94-ablated cells. Overall, given the role of gangliosides in cell surface dynamics and signaling, their imbalance might be linked to modifications of cell behaviour acquired in BrM progression. This work indicates that GM2-AP could be an important factor in ganglioside balance maintenance. These findings highlight the relevance of GM3 and GM2 gangliosides in BrM and reveal GM2-AP as a promising diagnosis and therapeutic target in BrM research.
Collapse
Affiliation(s)
- Carmen Bedia
- Laboratory of Molecular and Translational Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS, Centre de Recerca Biomèdica CELLEX, Barcelona, E-08036, Spain.
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| | - Miriam Badia
- Laboratory of Molecular and Translational Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS, Centre de Recerca Biomèdica CELLEX, Barcelona, E-08036, Spain
| | - Laia Muixí
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, E-08908, Spain
| | - Thierry Levade
- INSERM UMR 1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), 31037, Toulouse, France
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Angels Sierra
- Laboratory of Molecular and Translational Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS, Centre de Recerca Biomèdica CELLEX, Barcelona, E-08036, Spain
- Centre d'Estudis Sanitaris i Socials-CESS, University of Vic - Central University of Catalonia (UVic-UCC), Vic, E-08500, Spain
| |
Collapse
|
6
|
Stöckmann D, Spannbrucker T, Ale-Agha N, Jakobs P, Goy C, Dyballa-Rukes N, Hornstein T, Kümper A, Kraegeloh A, Haendeler J, Unfried K. Non-Canonical Activation of the Epidermal Growth Factor Receptor by Carbon Nanoparticles. NANOMATERIALS 2018; 8:nano8040267. [PMID: 29690640 PMCID: PMC5923597 DOI: 10.3390/nano8040267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 11/22/2022]
Abstract
The epidermal growth factor receptor (EGFR) is an abundant membrane protein, which is essential for regulating many cellular processes including cell proliferation. In our earlier studies, we observed an activation of the EGFR and subsequent signaling events after the exposure of epithelial cells to carbon nanoparticles. In the current study, we describe molecular mechanisms that allow for discriminating carbon nanoparticle-specific from ligand-dependent receptor activation. Caveolin-1 is a key player that co-localizes with the EGFR upon receptor activation by carbon nanoparticles. This specific process mediated by nanoparticle-induced reactive oxygen species and the accumulation of ceramides in the plasma membrane is not triggered when cells are exposed to non-nano carbon particles or the physiological ligand EGF. The role of caveolae formation was demonstrated by the induction of higher order structures of caveolin-1 and by the inhibition of caveolae formation. Using an in vivo model with genetically modified mice lacking caveolin-1, it was possible to demonstrate that carbon nanoparticles in vivo trigger EGFR downstream signaling cascades via caveolin-1. The identified molecular mechanisms are, therefore, of toxicological relevance for inhaled nanoparticles. However, nanoparticles that are intentionally applied to humans might cause side effects depending on this phenomenon.
Collapse
Affiliation(s)
- Daniel Stöckmann
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Tim Spannbrucker
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Niloofar Ale-Agha
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Philipp Jakobs
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Christine Goy
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Nadine Dyballa-Rukes
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Tamara Hornstein
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Alexander Kümper
- INM-Leibniz-Institut für Neue Materialien, Campus D2 2, 66123 Saarbrücken, Germany.
| | - Annette Kraegeloh
- INM-Leibniz-Institut für Neue Materialien, Campus D2 2, 66123 Saarbrücken, Germany.
| | - Judith Haendeler
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
- Medizinische Fakultät, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Klaus Unfried
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| |
Collapse
|
7
|
Sonnino S, Chiricozzi E, Grassi S, Mauri L, Prioni S, Prinetti A. Gangliosides in Membrane Organization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:83-120. [PMID: 29747825 DOI: 10.1016/bs.pmbts.2017.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the structure of GM1 was elucidated 55years ago, researchers have been attracted by the sialylated glycans of gangliosides. Gangliosides head groups, protruding toward the extracellular space, significantly contribute to the cell glycocalyx; and in certain cells, such as neurons, are major determinants of the features of the cell surface. Expression of glycosyltransferases involved in the de novo biosynthesis of gangliosides is tightly regulated along cell differentiation and activation, and is regarded as the main metabolic mechanism responsible for the acquisition of cell-specific ganglioside patterns. The resulting sialooligosaccharides are characterized by a high degree of geometrical complexity and by highly dynamic properties, which seem to be functional for complex interactions with other molecules sitting on the same cellular membrane (cis-interactions) or soluble molecules present in the extracellular environment, or molecules associated with the surface of other cells (trans-interactions). There is no doubt that the multifaceted biological functions of gangliosides are largely dependent on oligosaccharide-mediated molecular interactions. However, gangliosides are amphipathic membrane lipids, and their chemicophysical, aggregational, and, consequently, biological properties are dictated by the properties of the monomers as a whole, which are not merely dependent on the structures of their polar head groups. In this chapter, we would like to focus on the peculiar chemicophysical features of gangliosides (in particular, those of the nervous system), that represent an important driving force determining the organization and properties of cellular membranes, and to emphasize the causal connections between altered ganglioside-dependent membrane organization and relevant pathological conditions.
Collapse
|
8
|
Biological and Pathological Roles of Ganglioside Sialidases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:121-150. [DOI: 10.1016/bs.pmbts.2017.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Caveolin-1: An Oxidative Stress-Related Target for Cancer Prevention. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7454031. [PMID: 28546853 PMCID: PMC5436035 DOI: 10.1155/2017/7454031] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 01/19/2023]
Abstract
Aberrant oxidative metabolism is one of the hallmarks of cancer. Reactive species overproduction could promote carcinogenesis via inducing genetic mutations and activating oncogenic pathways, and thus, antioxidant therapy was considered as an important strategy for cancer prevention and treatment. Caveolin-1 (Cav-1), a constituent protein of caveolae, has been shown to mediate tumorigenesis and progression through oxidative stress modulation recently. Reactive species could modulate the expression, degradation, posttranslational modifications, and membrane trafficking of Cav-1, while Cav-1-targeted treatments could scavenge the reactive species. More importantly, emerging evidences have indicated that multiple antioxidants could exert antitumor activities in cancer cells and protective activities in normal cells by modulating the Cav-1 pathway. Altogether, these findings indicate that Cav-1 may be a promising oxidative stress-related target for cancer antioxidant prevention. Elucidating the underlying interaction mechanisms between oxidative stress and Cav-1 is helpful for enhancing the preventive effects of antioxidants on cancer, for improving clinical outcomes of antioxidant-related therapeutics in cancer patients, and for developing Cav-1 targeted drugs. Herein, we summarize the available evidence of the roles of Cav-1 and oxidative stress in tumorigenesis and development and shed novel light on designing strategies for cancer prevention or treatment by utilizing the interaction mode between Cav-1 and oxidative stress.
Collapse
|
10
|
Dam DHM, Wang XQ, Sheu S, Vijay M, Shipp D, Miller L, Paller AS. Ganglioside GM3 Mediates Glucose-Induced Suppression of IGF-1 Receptor-Rac1 Activation to Inhibit Keratinocyte Motility. J Invest Dermatol 2016; 137:440-448. [PMID: 27729281 DOI: 10.1016/j.jid.2016.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/26/2022]
Abstract
Activation of insulin-like growth factor-1 (IGF-1) receptor (IGF1R) signaling induces keratinocyte migration, but little is known about its regulation, including in diabetic wounds. GM3, a lipid raft ganglioside synthesized by GM3 synthase (GM3S), regulates receptor signaling. In diabetic mice, knockout or topically applied nanoconstruct-mediated knockdown of GM3S promotes wound edge IGF1R phosphorylation and re-epithelialization. Through modulating GM3 expression, we explored the role of GM3 in regulating human keratinocyte IGF1R signaling. Increases in GM3 and GM3S expression, including by exposure to high glucose, inhibit keratinocyte migration and IGF-1-induced chemotaxis in association with inhibition of IGF1R phosphorylation, suppression of Rac1 signaling, and activation of RhoA signaling. In contrast, GM3 depletion accelerates cell migration; increases cell velocity, displacement, and persistence; and activates IGF1R-Rac1 signaling. These data implicate GM3 in mediating glucose-induced suppression of IGF1R-Rac1 signaling. Furthermore, our findings provide evidence of a pivotal role for GM3-induced insulin resistance in impairing keratinocyte migration and reinforce the previously published studies in diabetic mice supporting GM3-depleting strategies as an approach for accelerating the healing of human diabetic wounds.
Collapse
Affiliation(s)
- Duncan Hieu M Dam
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xiao-Qi Wang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sarah Sheu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mahima Vijay
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Desmond Shipp
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luke Miller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
11
|
Herzer S, Meldner S, Rehder K, Gröne HJ, Nordström V. Lipid microdomain modification sustains neuronal viability in models of Alzheimer's disease. Acta Neuropathol Commun 2016; 4:103. [PMID: 27639375 PMCID: PMC5027102 DOI: 10.1186/s40478-016-0354-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 01/17/2023] Open
Abstract
Decreased neuronal insulin receptor (IR) signaling in Alzheimer’s disease is suggested to contribute to synaptic loss and neurodegeneration. This work shows that alteration of membrane microdomains increases IR levels and signaling, as well as neuronal viability in AD models in vitro and in vivo. Neuronal membrane microdomains are highly enriched in gangliosides. We found that inhibition of glucosylceramide synthase (GCS), the key enzyme of ganglioside biosynthesis, increases viability of cortical neurons in 5xFAD mice, as well as in cultured neurons exposed to oligomeric amyloid-β-derived diffusible ligands (ADDLs). We furthermore demonstrate a molecular mechanism explaining how gangliosides mediate ADDL-related toxic effects on IR of murine neurons. GCS inhibition increases the levels of functional dendritic IR on the neuronal surface by decreasing caveolin-1-mediated IR internalization. Consequently, IR signaling is increased in neurons exposed to ADDL stress. Thus, we propose that GCS inhibition constitutes a potential target for protecting neurons from ADDL-mediated neurotoxicity and insulin resistance in Alzheimer’s disease.
Collapse
|
12
|
Ganglioside GM3 as a gatekeeper of obesity-associated insulin resistance: Evidence and mechanisms. FEBS Lett 2015; 589:3221-7. [PMID: 26434718 DOI: 10.1016/j.febslet.2015.09.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/01/2015] [Accepted: 09/20/2015] [Indexed: 12/29/2022]
Abstract
Gangliosides constitute a large family of sialic acid-containing glycosphingolipids which play a key regulatory role in a diverse array of cellular processes, including receptor-associated signalling. Accordingly, the aberrant production of the ganglioside GM3 has been linked to pathophysiological changes associated with obesity, which in turn can lead to metabolic disorders such as insulin resistance and type 2 diabetes mellitus. This review examines the role of GM3 in mediating obesity-induced perturbations in metabolic function, including impaired insulin action. By doing so, we highlight the potential use of therapies targeting GM3 biosynthesis in order to counteract obesity-related metabolic disorders.
Collapse
|
13
|
Yamamoto K, Takahashi K, Shiozaki K, Yamaguchi K, Moriya S, Hosono M, Shima H, Miyagi T. Potentiation of epidermal growth factor-mediated oncogenic transformation by sialidase NEU3 leading to Src activation. PLoS One 2015; 10:e0120578. [PMID: 25803810 PMCID: PMC4372364 DOI: 10.1371/journal.pone.0120578] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/24/2015] [Indexed: 11/18/2022] Open
Abstract
We previously demonstrated that sialidase NEU3, a key glycosidase for ganglioside degradation, is up-regulated in various human cancers, leading to increased cell invasion, motility and survival of cancer cells possibly through activation of EGF signaling. Its up-regulation is also important for promotion of the stage of colorectal carcinogenesis in vivo in human NEU3 transgenic mice treated with azoxymethane for the induction of aberrant crypt foci in the colon mucosa, accompanied by enhanced phosphorylation of EGF receptor (EGFR). To address whether the activation of EGF signaling by the sialidase is associated with oncogenic transformation, we here analyzed the effects of overexpression of NEU3 and EGFR in NIH-3T3 cells. When NEU3 was stably transfected with or without EGFR, it was associated with significant increases in clonogenic growth, clonogenicity on soft agar and in vivo tumor growth in nude mice either with or without the receptor overexpression in the presence of EGF, compared with the levels in their vector controls. Despite the fact that the endogenous level of EGFR is known to be extremely low in these cells, NEU3 significantly enhanced the phosphorylation of Akt and ERK, as well as that of the receptor. The NEU3-mediated activation was largely abrogated by the EGFR inhibitor AG1478 or PD153035, but significant clonogenic growth still remained. NEU3 was then found to activate Src kinase, and the clonogenicity was completely suppressed by an Src inhibitor, PP2. The activity-null mutants failed to activate Src and EGFR, indicating that ganglioside modulation by NEU3 may be necessary for the activation. NEU3 and Src were co-immunoprecipitated with EGFR in NEU3- and EGFR- transfected cells. These findings identify NEU3 as an essential participant in tumorigenesis through the EGFR/Src signaling pathway and a potential target for inhibiting EGFR-mediated tumor progression.
Collapse
Affiliation(s)
- Koji Yamamoto
- Departments of Cancar Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
- Division of Cancer Molecular Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kohta Takahashi
- Departments of Cancar Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Kazuhiro Shiozaki
- Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
| | - Kazunori Yamaguchi
- Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Setsuko Moriya
- Departments of Cancar Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Masahiro Hosono
- Departments of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Hiroshi Shima
- Division of Cancer Molecular Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Taeko Miyagi
- Departments of Cancar Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| |
Collapse
|
14
|
Abstract
Membranes protect cells from the surrounding environment but also provide a means for the optimization of processes such as metabolism, signalling, or mitogenesis. Membrane structure and function is determined by its molecular composition. How lipid species define membrane properties is discussed in this introductory chapter.
Collapse
Affiliation(s)
- Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, The Academy of Sciences of the Czech Republic, Dolejškova 2155/3, 182 23, Prague 8, Czech Republic,
| |
Collapse
|
15
|
Toume M, Tani M. Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeastSaccharomyces cerevisiae. FEMS Microbiol Lett 2014; 358:64-71. [DOI: 10.1111/1574-6968.12535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Moeko Toume
- Department of Chemistry; Faculty of Sciences; Kyushu University; Higashi-ku Fukuoka Japan
| | - Motohiro Tani
- Department of Chemistry; Faculty of Sciences; Kyushu University; Higashi-ku Fukuoka Japan
| |
Collapse
|
16
|
Ariotti N, Fernández-Rojo MA, Zhou Y, Hill MM, Rodkey TL, Inder KL, Tanner LB, Wenk MR, Hancock JF, Parton RG. Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. ACTA ACUST UNITED AC 2014; 204:777-92. [PMID: 24567358 PMCID: PMC3941050 DOI: 10.1083/jcb.201307055] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Caveolae transduce mechanical stress into plasma membrane lipid alterations that disrupt Ras organization in an isoform-specific manner and modulate downstream signal transduction. The molecular mechanisms whereby caveolae exert control over cellular signaling have to date remained elusive. We have therefore explored the role caveolae play in modulating Ras signaling. Lipidomic and gene array analyses revealed that caveolin-1 (CAV1) deficiency results in altered cellular lipid composition, and plasma membrane (PM) phosphatidylserine distribution. These changes correlated with increased K-Ras expression and extensive isoform-specific perturbation of Ras spatial organization: in CAV1-deficient cells K-RasG12V nanoclustering and MAPK activation were enhanced, whereas GTP-dependent lateral segregation of H-Ras was abolished resulting in compromised signal output from H-RasG12V nanoclusters. These changes in Ras nanoclustering were phenocopied by the down-regulation of Cavin1, another crucial caveolar structural component, and by acute loss of caveolae in response to increased osmotic pressure. Thus, we postulate that caveolae remotely regulate Ras nanoclustering and signal transduction by controlling PM organization. Similarly, caveolae transduce mechanical stress into PM lipid alterations that, in turn, modulate Ras PM organization.
Collapse
Affiliation(s)
- Nicholas Ariotti
- The University of Queensland, Institute for Molecular Bioscience, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ganglioside GM3 depletion reverses impaired wound healing in diabetic mice by activating IGF-1 and insulin receptors. J Invest Dermatol 2013; 134:1446-1455. [PMID: 24326453 PMCID: PMC3989402 DOI: 10.1038/jid.2013.532] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 11/15/2013] [Accepted: 11/22/2013] [Indexed: 01/13/2023]
Abstract
Background Ganglioside GM3 mediates adipocyte insulin resistance, but the role of GM3 in diabetic wound healing, a major cause of morbidity, is unclear. Purpose Determine whether GM3 depletion promotes diabetic wound healing and directly activates keratinocyte insulin pathway signaling. Results GM3 synthase (GM3S) expression is increased in human diabetic foot skin, ob/ob and diet-induced obese diabetic mouse skin, and mouse keratinocytes exposed to increased glucose. GM3S knockout in diet-induced obese mice prevents the diabetic wound healing defect. Keratinocyte proliferation, migration, and activation of insulin receptor (IR) and insulin growth factor-1 receptor (IGF-1R) are suppressed by excess glucose in wild type cells, but increased in GM3S −/− keratinocytes with supplemental glucose. Co-immunoprecipitation of IR, IR substrate-1 (IRS-1), and IGF-1R, and increased IRS-1 and Akt phosphorylation accompany receptor activation. GM3 supplementation or inhibition of IGF-1R or PI3K reverses the increased migration of GM3S−/− keratinocytes, whereas IR knockdown only partially suppresses migration. Conclusions Cutaneous GM3 accumulation may participate in the impaired wound healing of diet-induced diabetes by suppressing keratinocyte insulin/IGF-1 axis signaling. Strategies to deplete GM3S/GM3 may improve diabetic wound healing.
Collapse
|
18
|
D'Angelo G, Capasso S, Sticco L, Russo D. Glycosphingolipids: synthesis and functions. FEBS J 2013; 280:6338-53. [PMID: 24165035 DOI: 10.1111/febs.12559] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
Glycosphingolipids (GSLs) comprise a heterogeneous group of membrane lipids formed by a ceramide backbone covalently linked to a glycan moiety. Hundreds of different glycans can be linked to tens of different ceramide molecules, giving rise to an astonishing variety of structurally different compounds, each of which has the potential for a specific biological function. GSLs have been suggested to modulate membrane-protein function and to contribute to cell-cell communication. Although GSLs are dispensable for cellular life, they are indeed collectively required for the development of multicellular organisms, and are thus considered to be key molecules in 'cell sociology'. Consequently, the GSL make-up of individual cells is highly dynamic and is strictly linked to the cellular developmental and environmental state. In the present review, we discuss some of the available knowledge, open questions and future perspectives relating to the study of GSL biology.
Collapse
Affiliation(s)
- Giovanni D'Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | | | | | | |
Collapse
|
19
|
Yan Q, Bach DQ, Gatla N, Sun P, Liu JW, Lu JY, Paller AS, Wang XQ. Deacetylated GM3 promotes uPAR-associated membrane molecular complex to activate p38 MAPK in metastatic melanoma. Mol Cancer Res 2013; 11:665-75. [PMID: 23525268 DOI: 10.1158/1541-7786.mcr-12-0270-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
GM3, the simplest ganglioside, regulates cell proliferation, migration, and invasion by influencing cell signaling at the membrane level. Although the classic N-acetylated form of GM3 (NeuAcLacCer) is commonly expressed and has been well studied, deacetylated GM3 (NeuNH2LacCer, d-GM3) has been poorly investigated, despite its presence in metastatic tumors but not in noninvasive melanomas or benign nevi. We have recently found that d-GM3 stimulates cell migration and invasion by activating urokinase plasminogen activator receptor (uPAR) signaling to augment matrix metalloproteinase-2 (MMP-2) function. However, the mechanisms by which d-GM3/uPAR increase MMP-2 expression and activation are not clear. By modifying the expression of d-GM3 genetically and biochemically, we found that decreasing d-GM3 expression inhibits, whereas overexpressing d-GM3 stimulates, p38 mitogen-activated protein kinase (MAPK) activity to influence MMP-2 expression and activation. p38 MAPK (p38) activation requires the formation of a membrane complex that contains uPAR, caveolin-1, and integrin α5β1 in membrane lipid rafts. In addition, knocking down or inhibiting focal adhesion kinase (FAK), phosphoinositide 3-kinase (PI3K), or Src kinase significantly reduces d-GM3-induced p38 phosphorylation and activation. Taken together, these results suggest that d-GM3 enhances the metastatic phenotype by activating p38 signaling through uPAR/integrin signaling with FAK, PI3K, and Src kinase as intermediates. Elucidation of the mechanisms by which d-GM3, a newly discovered, potential biomarker of metastatic melanomas, promotes cell metastasis will help us to understand the function of d-GM3 in metastatic melanomas and may lead to novel GM3-based cancer therapies.
Collapse
Affiliation(s)
- Qiu Yan
- Department of Dermatology and Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Jennemann R, Gröne HJ. Cell-specific in vivo functions of glycosphingolipids: lessons from genetic deletions of enzymes involved in glycosphingolipid synthesis. Prog Lipid Res 2013; 52:231-48. [PMID: 23473748 DOI: 10.1016/j.plipres.2013.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 11/16/2022]
Abstract
Glycosphingolipids (GSLs) are believed to be involved in many cellular events including trafficking, signaling and cellular interactions. Over the past decade considerable progress was made elucidating the function of GSLs by generating and exploring animal models with GSL-deficiency. Initial studies focused on exploring the role of complex sialic acid containing GSLs (gangliosides) in neuronal tissue. Although complex gangliosides were absent, surprisingly, the phenotype observed was rather mild. In subsequent studies, several mouse models with combinations of gene-deletions encoding GSL-synthesizing enzymes were developed. The results indicated that reduction of GSL-complexity correlated with severity of phenotypes. However, in these mice, accumulation of precursor GSLs or neobiosynthesized GSL-series seemed to partly compensate the loss of GSLs. Thus, UDP-glucose:ceramide glucosyltransferase (Ugcg), catalyzing the basic step of the glucosylceramide-based GSL-biosynthesis, was genetically disrupted. A total systemic deletion of Ugcg caused early embryonic lethality. Therefore, Ugcg was eliminated in a cell-specific manner using the cre/loxP-system. New insights into the cellular function of GSLs were gained. It was demonstrated that neurons require GSLs for differentiation and maintenance. In keratinocytes, preservation of the skin barrier depends on GSL synthesis and in enterocytes of the small intestine GSLs are involved in endocytosis and vesicular transport.
Collapse
Affiliation(s)
- Richard Jennemann
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | |
Collapse
|
21
|
Ganglioside GM3 participates in the TGF-β1-induced epithelial-mesenchymal transition of human lens epithelial cells. Biochem J 2013; 449:241-51. [PMID: 23050851 DOI: 10.1042/bj20120189] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TGF-β (transforming growth factor-β)-induced EMT (epithelial-mesenchymal transition) induces the proliferation and migration of the HLE (human lens epithelial) cells. Ganglioside GM3, simple sialic-acid-containing glycosphingolipids on mammalian cell membranes, regulates various pathological phenomena such as insulin resistance and tumour progression. However, the relationship between ganglioside GM3 and TGF-β-induced EMT in the HLE B-3 cells is poorly understood. In the present study we demonstrated that ganglioside GM3 was involved in TGF-β1-induced EMT in HLE B-3 cells. Our results indicated that the expression of ganglioside GM3 and GM3 synthase mRNA were significantly increased in TGF-β1-induced HLE B-3 cells. Reporter gene analysis also demonstrated that transcriptional activation of the GM3 synthase gene was regulated by Sp1 (specificity protein 1) in HLE B-3 cells upon TGF-β1 stimulation. Interestingly, the inhibition of ganglioside GM3 expression by d-PDMP [d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol] and GM3 synthase shRNA (short hairpin RNA) resulted significantly in the suppression of cell migration and EMT-related signalling in HLE B-3 cells stimulated by TGF-β. Furthermore, exogenous treatment of ganglioside GM3 rescued the expression of EMT molecules and cell migration suppressed by the depletion of ganglioside GM3 in TGF-β1-induced HLE B-3 cells. We also found that ganglioside GM3 interacted with TGFβRs (TGF-β receptors) in TGF-β1-induced HLE B-3 cells. Taken together, these results suggest that ganglioside GM3 induced by TGF-β1 regulates EMT by potential interaction with TGFβRs.
Collapse
|
22
|
Hayashi N, Chiba H, Kuronuma K, Go S, Hasegawa Y, Takahashi M, Gasa S, Watanabe A, Hasegawa T, Kuroki Y, Inokuchi J, Takahashi H. Detection of N-glycolyated gangliosides in non-small-cell lung cancer using GMR8 monoclonal antibody. Cancer Sci 2012; 104:43-7. [PMID: 23004020 DOI: 10.1111/cas.12027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 09/05/2012] [Accepted: 09/13/2012] [Indexed: 12/21/2022] Open
Abstract
Gangliosides are glycosphingolipids found on the cell surface. They act as recognition molecules or signal modulators and regulate cell proliferation and differentiation. N-glycolylneuraminic acid (NeuGc)-containing gangliosides have been detected in some neoplasms in humans, although they are usually absent in normal human tissues. Our aim was to evaluate the presence of NeuGc-containing gangliosides including GM3 (NeuGc) and assess their relationship with the prognosis of non-small-cell lung cancer (NSCLC). NeuGc-containing ganglioside expression in NSCLC tissues was analyzed immunohistochemically using the mouse monoclonal antibody GMR8, which is specific for gangliosides with NeuGc alpha 2,3Gal-terminal structures. On the basis of NeuGc-containing ganglioside expression, we performed survival analysis. We also investigated the differences in the effects of GM3 (N-acetylneuraminic acid [NeuAc]) and GM3 (NeuGc) on inhibition of epidermal growth factor receptor (EGFR) tyrosine kinase in A431 cells. As a result, the presence of NeuGc-containing gangliosides was evident in 86 of 93 (93.5%) NSCLC samples. The NSCLC patients with high NeuGc-containing ganglioside expression had a low overall survival rate and a significantly low progression-free survival rate. In the in vitro study, the inhibitory effect of GM3 on EGFR tyrosine kinase in A431 cells after exposure to GM3 (NeuGc) was lower than that after exposure to GM3 (NeuAc). In conclusion, NeuGc-containing gangliosides including GM3 (NeuGc) are widely expressed in NSCLC, and NeuGc-containing ganglioside expression is associated with patient survival. The difference in the effects of GM3 (NeuGc) and GM3 (NeuAc) on the inhibition of EGFR tyrosine kinase might contribute to improvement in the prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Nobuyoshi Hayashi
- Third Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
CHEN YIXIN, CHEN XIAOWEN, LI CHANGGANG, YUE LIJIE, MAI HUIRONG, WEN FEIQIU. Effect of tumor gangliosides on tyrosine phosphorylation of p125FAK in platelet adhesion to collagen. Oncol Rep 2012; 29:343-8. [DOI: 10.3892/or.2012.2092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/28/2012] [Indexed: 11/05/2022] Open
|
24
|
Abstract
Caveolins (Cavs) are integrated plasma membrane proteins that are complex signaling regulators with numerous partners and whose activity is highly dependent on cellular context. Cavs are both positive and negative regulators of cell signaling in and/or out of caveolae, invaginated lipid raft domains whose formation is caveolin expression dependent. Caveolins and rafts have been implicated in membrane compartmentalization; proteins and lipids accumulate in these membrane microdomains where they transmit fast, amplified and specific signaling cascades. The concept of plasma membrane organization within functional rafts is still in exploration and sometimes questioned. In this chapter, we discuss the opposing functions of caveolin in cell signaling regulation focusing on the role of caveolin both as a promoter and inhibitor of different signaling pathways and on the impact of membrane domain localization on caveolin functionality in cell proliferation, survival, apoptosis and migration.
Collapse
|
25
|
Miyagi T, Yamaguchi K. Mammalian sialidases: physiological and pathological roles in cellular functions. Glycobiology 2012; 22:880-96. [PMID: 22377912 DOI: 10.1093/glycob/cws057] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sialic acids are terminal acidic monosaccharides, which influence the chemical and biological features of glycoconjugates. Their removal catalyzed by a sialidase modulates various biological processes through change in conformation and creation or loss of binding sites of functional molecules. Sialidases exist widely in vertebrates and also in a variety of microorganisms. Recent research on mammalian sialidases has provided evidence for great importance of these enzymes in various cellular functions, including lysosomal catabolism, whereas microbial sialidases appear to play roles limited to nutrition and pathogenesis. Four types of mammalian sialidases have been identified and characterized to date, designated as NEU1, NEU2, NEU3 and NEU4. They are encoded by different genes and differ in major subcellular localization and enzymatic properties including substrate specificity, and each has been found to play a unique role depending on its particular properties. This review is an attempt to concisely summarize current knowledge concerning mammalian sialidases, with a special focus on their properties and physiological and pathological roles in cellular functions.
Collapse
Affiliation(s)
- Taeko Miyagi
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan.
| | | |
Collapse
|
26
|
Sonnino S, Prioni S, Chigorno V, Prinetti A. Interactions Between Caveolin-1 and Sphingolipids, and Their Functional Relevance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:97-115. [DOI: 10.1007/978-1-4614-3381-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Abstract
The human epidermal growth factor receptor (EGFR) is a key representative of tyrosine kinase receptors, ubiquitous actors in cell signaling, proliferation, differentiation, and migration. Although the receptor is well-studied, a central issue remains: How does the compositional diversity and functional diversity of the surrounding membrane modulate receptor function? Reconstituting human EGFR into proteoliposomes of well-defined and controlled lipid compositions represents a minimal synthetic approach to systematically address this question. We show that lipid composition has little effect on ligand-binding properties of the EGFR but rather exerts a profound regulatory effect on kinase domain activation. Here, the ganglioside GM3 but not other related lipids strongly inhibited the autophosphorylation of the EGFR kinase domain. This inhibitory action of GM3 was only seen in liposomes compositionally poised to phase separate into coexisting liquid domains. The inhibition by GM3 was released by either removing the neuraminic acid of the GM3 headgroup or by mutating a membrane proximal lysine of EGFR (K642G). Our results demonstrate that GM3 exhibits the potential to regulate the allosteric structural transition from inactive to a signaling EGFR dimer, by preventing the autophosphorylation of the intracellular kinase domain in response to ligand binding.
Collapse
|
28
|
Prinetti A, Prioni S, Loberto N, Aureli M, Nocco V, Illuzzi G, Mauri L, Valsecchi M, Chigorno V, Sonnino S. Aberrant glycosphingolipid expression and membrane organization in tumor cells: consequences on tumor-host interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:643-67. [PMID: 21618134 DOI: 10.1007/978-1-4419-7877-6_34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alessandro Prinetti
- Department of Medical Chemistry, Biochemistry and Biotechnology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Fratelli Cervi 93, 20090 Segrate, Milano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Integrin alpha1beta1 regulates epidermal growth factor receptor activation by controlling peroxisome proliferator-activated receptor gamma-dependent caveolin-1 expression. Mol Cell Biol 2010; 30:3048-58. [PMID: 20368353 DOI: 10.1128/mcb.00892-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Integrin alpha1beta1 negatively regulates the generation of profibrotic reactive oxygen species (ROS) by inhibiting epidermal growth factor receptor (EGFR) activation; however, the mechanism by which it does this is unknown. In this study, we show that caveolin-1 (Cav-1), a scaffolding protein that binds integrins and controls growth factor receptor signaling, participates in integrin alpha1beta1-mediated EGFR activation. Integrin alpha1-null mesangial cells (MCs) have reduced Cav-1 levels, and reexpression of the integrin alpha1 subunit increases Cav-1 levels, decreases EGFR activation, and reduces ROS production. Downregulation of Cav-1 in wild-type MCs increases EGFR phosphorylation and ROS synthesis, while overexpression of Cav-1 in the integrin alpha1-null MCs decreases EGFR-mediated ROS production. We further show that integrin alpha1-null MCs have increased levels of activated extracellular signal-regulated kinase (ERK), which leads to reduced activation of peroxisome proliferator-activated receptor gamma (PPARgamma), a transcription factor that positively regulates Cav-1 expression. Moreover, activation of PPARgamma or inhibition of ERK increases Cav-1 levels in the integrin alpha1-null MCs. Finally, we show that glomeruli of integrin alpha1-null mice have reduced levels of Cav-1 and activated PPARgamma but increased levels of phosphorylated EGFR both at baseline and following injury. Thus, integrin alpha1beta1 negatively regulates EGFR activation by positively controlling Cav-1 levels, and the ERK/PPARgamma axis plays a key role in regulating integrin alpha1beta1-dependent Cav-1 expression and consequent EGFR-mediated ROS production.
Collapse
|
30
|
Sonnino S, Prinetti A. Gangliosides as regulators of cell membrane organization and functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:165-84. [PMID: 20919654 DOI: 10.1007/978-1-4419-6741-1_12] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gangliosides, characteristic complex lipids present in the external layer of plasma membranes, deeply influence the organization of the membrane as a whole and the function of specific membrane associated proteins due to lipid-lipid and lipid-protein lateral interaction. Here we discuss the basis for the membrane-organizing potential of gangliosides, examples of ganglioside-regulated membrane protein complexes and the mechanisms for the regulation of ganglioside membrane composition.
Collapse
Affiliation(s)
- Sandro Sonnino
- Center of Excellence on Neurodegenerative Diseases, Department of Medical Chemistry, University of Milan, Segrate, Italy
| | | |
Collapse
|
31
|
Fine tuning of cell functions through remodeling of glycosphingolipids by plasma membrane-associated glycohydrolases. FEBS Lett 2009; 584:1914-22. [DOI: 10.1016/j.febslet.2009.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/05/2009] [Accepted: 11/07/2009] [Indexed: 12/19/2022]
|
32
|
Prinetti A, Aureli M, Illuzzi G, Prioni S, Nocco V, Scandroglio F, Gagliano N, Tredici G, Rodriguez-Menendez V, Chigorno V, Sonnino S. GM3 synthase overexpression results in reduced cell motility and in caveolin-1 upregulation in human ovarian carcinoma cells. Glycobiology 2009; 20:62-77. [PMID: 19759399 DOI: 10.1093/glycob/cwp143] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this paper, we describe the effects of the expression of GM3 synthase at high levels in human ovarian carcinoma cells. Overexpression of GM3 synthase in A2780 cells consistently resulted in elevated ganglioside (GM3, GM2 and GD1a) levels. GM3 synthase overexpressing cells had a growth rate similar to wild-type cells, but showed a strongly reduced in vitro cell motility accompanied by reduced levels of the epithelial-mesenchymal transition marker alpha smooth muscle actin. A similar reduction in cell motility was observed upon treatment with exogenous GM3, GM2, and GM1, but not with GD1a. A photolabeling experiment using radioactive and photoactivable GM3 highlighted several proteins directly interacting with GM3. Among those, caveolin-1 was identified as a GM3-interacting protein in GM3 synthase overexpressing cells. Remarkably, caveolin-1 was markedly upregulated in GM3 synthase overexpressing cells. In addition, the motility of low GM3 synthase expressing cells was also reduced in the presence of a Src kinase inhibitor; on the other hand, higher levels of the inactive form of c-Src were detected in GM3 synthase overexpressing cells, associated with a ganglioside- and caveolin-rich detergent insoluble fraction.
Collapse
Affiliation(s)
- Alessandro Prinetti
- Department of Medical Chemistry, Biochemistry and Biotechnology, Center of Excellence on Neurodegenerative Diseases, Biochemistry and Biotechnology, University of Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sonnino S, Prinetti A. Sphingolipids and membrane environments for caveolin. FEBS Lett 2009; 583:597-606. [DOI: 10.1016/j.febslet.2009.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 01/22/2023]
|
34
|
Kawashima N, Yoon SJ, Itoh K, Nakayama KI. Tyrosine kinase activity of epidermal growth factor receptor is regulated by GM3 binding through carbohydrate to carbohydrate interactions. J Biol Chem 2009; 284:6147-55. [PMID: 19124464 DOI: 10.1074/jbc.m808171200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epidermal growth factor receptor (EGFR), an N-glycosylated transmembrane protein with an intracellular kinase domain, undergoes dimerization by ligand binding resulting in activation of the kinase domain and phosphorylation. Ganglioside GM3 containing sialyllactose inhibits the tyrosine kinase activity of EGFR through carbohydrate to carbohydrate interactions (CCI) between N-glycans with GlcNAc termini on EGFR and oligosaccharides on GM3. In this study, we provide further evidence for CCI between EGFR and GM3. (i) In vitro and in situ, the inhibitory effect of GM3 on EGFR tyrosine kinase was much higher in A431 cells upon exposure of the GlcNAc termini of the N-glycans to glycosidase treatment (neuraminidase and beta-galactosidase) than in untreated A431 cells. Furthermore, the GM3-mediated inhibition was abrogated by co-incubation with N-glycan containing terminal GlcNAc. (ii) In situ, inhibition of EGFR phosphorylation by GM3 was not observed in alpha-mannosidase IB (ManIB)-knocked down A431 cells that accumulate high mannose-type N-glycans. (iii) EGFR binding to GM3 was enhanced in glycosidase-treated cells that accumulated GlcNAc termini, whereas GM3 did not bind to EGFR from ManIB-knocked down cells that accumulated high mannose-type N-glycans. These results indicate that GM3-mediated inhibition of EGFR phosphorylation is caused by interaction of GM3 with GlcNAc-terminated N-glycan on EGFR.
Collapse
Affiliation(s)
- Nagako Kawashima
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | | | | | | |
Collapse
|
35
|
Prinetti A, Loberto N, Chigorno V, Sonnino S. Glycosphingolipid behaviour in complex membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:184-93. [DOI: 10.1016/j.bbamem.2008.09.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 12/12/2022]
|
36
|
Anastasia L, Papini N, Colazzo F, Palazzolo G, Tringali C, Dileo L, Piccoli M, Conforti E, Sitzia C, Monti E, Sampaolesi M, Tettamanti G, Venerando B. NEU3 sialidase strictly modulates GM3 levels in skeletal myoblasts C2C12 thus favoring their differentiation and protecting them from apoptosis. J Biol Chem 2008; 283:36265-71. [PMID: 18945680 DOI: 10.1074/jbc.m805755200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Membrane-bound sialidase NEU3, often referred to as the "ganglioside sialidase," has a critical regulatory function on the sialoglycosphingolipid pattern of the cell membrane, with an anti-apoptotic function, especially in cancer cells. Although other sialidases have been shown to be involved in skeletal muscle differentiation, the role of NEU3 had yet to be disclosed. Herein we report that NEU3 plays a key role in skeletal muscle differentiation by strictly modulating the ganglioside content of adjacent cells, with special regard to GM3. Induced down-regulation of NEU3 in murine C2C12 myoblasts, even when partial, totally inhibits their capability to differentiate by increasing the GM3 level above a critical point, which causes epidermal growth factor receptor inhibition (and ultimately its down-regulation) and an higher responsiveness of myoblasts to the apoptotic stimuli.
Collapse
Affiliation(s)
- Luigi Anastasia
- Department of Medical Chemistry, Biochemistry, and Biotechnology, University of Milan, 20090 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Goetz JG, Lajoie P, Wiseman SM, Nabi IR. Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev 2008; 27:715-35. [DOI: 10.1007/s10555-008-9160-9] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Inokuchi JI, Kabayama K. Modulation of Growth Factor Receptors in Membrane Microdomains. TRENDS GLYCOSCI GLYC 2008. [DOI: 10.4052/tigg.20.353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Wang XQ, Yan Q, Sun P, Liu JW, Go L, McDaniel SM, Paller AS. Suppression of epidermal growth factor receptor signaling by protein kinase C-alpha activation requires CD82, caveolin-1, and ganglioside. Cancer Res 2007; 67:9986-95. [PMID: 17942932 DOI: 10.1158/0008-5472.can-07-1300] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activation of protein kinase C (PKC)-alpha decreases normal and neoplastic cell proliferation by inhibiting epidermal growth factor receptor (EGFR)-related signaling. The molecular interactions upstream to PKC-alpha that influence its suppression of EGFR, however, are poorly understood. We have found that caveolin-1, tetraspanin CD82, and ganglioside GM3 enable the association of EGFR with PKC-alpha, ultimately leading to inhibition of EGFR signaling. GM3- and CD82-induced inhibition of EGFR signaling requires PKC-alpha translocation and serine/threonine phosphorylation, which eventually triggers EGFR Thr654 phosphorylation and receptor internalization. Within this ordered complex of signaling molecules, the ability of CD82 to associate with PKC-alpha requires the presence of caveolin-1, whereas the interaction of caveolin-1 or PKC-alpha with EGFR requires the presence of CD82 and ganglioside GM3. Disruption of the membrane with methyl-beta-cyclodextrin dissociates the EGFR/GM3/caveolin-1/CD82/PKC-alpha complex and prevents the inhibitory effect of PKC-alpha on EGFR phosphorylation, suggesting that caveolin-1, CD82, and ganglioside interact with EGFR and PKC-alpha within intact cholesterol-enriched membrane microdomains. Given the role of these membrane molecules in suppressing EGFR signaling, up-regulation of GM3, caveolin-1, and CD82 function may be an effective adjunctive therapy for treating epithelial cell malignancies.
Collapse
Affiliation(s)
- Xiao-qi Wang
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA, and Department of Biochemistry, The First Affiliated Hospital, Dalian, Liaoning, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Wang L, Takaku S, Wang P, Hu D, Hyuga S, Sato T, Yamagata S, Yamagata T. Ganglioside GD1a regulation of caveolin-1 and Stim1 expression in mouse FBJ cells: augmented expression of caveolin-1 and Stim1 in cells with increased GD1a content. Glycoconj J 2007; 23:303-15. [PMID: 16897174 DOI: 10.1007/s10719-006-5742-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 10/24/2005] [Accepted: 10/27/2005] [Indexed: 01/26/2023]
Abstract
GD1a was previously shown responsible for regulating cell motility, cellular adhesiveness to vitronectin, phosphorylation of c-Met and metastatic ability of mouse FBJ osteosarcoma cells. To determine the particular molecules regulated by GD1a, FBJ cells were assessed for tumor-related gene expression by semi-quantitative RT-PCR. Caveolin-1 and stromal interaction molecule 1 (Stim1) expression in FBJ-S1 cells, rich in GD1a, were found to be 6 and 4 times as much, respectively, than in FBJ-LL cells devoid of GD1a. Enhanced production of caveolin-1 in protein was confirmed by Western blotting. A low-metastatic FBJ-LL cell variant, having high GD1a expression through beta1-4GalNAcT-1 (GM2/GD2 synthase) cDNA transfection (Hyuga S, et al, Int J Cancer 83: 685-91, 1999), showed enhanced production of caveolin-1 and Stim1 in mRNA and protein, compared to mock-transfectant M5. Incubation of FBJ-M5 cells with exogenous GD1a augmented the expression of caveolin-1 in mRNA and protein and Stim1 in mRNA as well. Treatment of FBJ-S1 with fumonisin B1, an inhibitor of N-acylsphinganine synthesis, for 15 days caused the complete depletion of gangliosides and suppressed the expression of caveolin-1 and Stim1. St3gal5 siRNA transfected cells showed decreased expression of caveolin-1 and Stim1 mRNA, as well as St3gal5 mRNA. These findings clearly indicate ganglioside GD1a to be involved in the regulation of the transformation suppressor genes, caveolin-1 and Stim1. Moreover, treatment with GD1a of mouse melanoma B16 cells and human hepatoma HepG2 cells brought about elevated expression of caveolin-1 and Stim1.
Collapse
Affiliation(s)
- Li Wang
- Laboratory of Tumor Biology and Glycobiology, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Noguchi M, Suzuki T, Kabayama K, Takahashi H, Chiba H, Shiratori M, Abe S, Watanabe A, Satoh M, Hasegawa T, Tagami S, Ishii A, Saitoh M, Kaneko M, Iseki K, Igarashi Y, Inokuchi JI. GM3 synthase gene is a novel biomarker for histological classification and drug sensitivity against epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Cancer Sci 2007; 98:1625-32. [PMID: 17711504 PMCID: PMC11159742 DOI: 10.1111/j.1349-7006.2007.00578.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Expression of gangliosides and alterations in their composition have been observed during cell proliferation and differentiation and in certain cell cycle phases, brain development and cancer malignancy. To investigate the characteristics of GM3 synthase, SAT-I mRNA and ganglioside GM3 expression levels in lung cancer, we examined the expression levels of SAT-I mRNA as well as GM3 in 40 tumor tissues surgically removed from non-small cell lung cancer patients. Adenocarcinoma tissues expressed SAT-I mRNA levels that were significantly higher than those of squamous and other carcinomas (P < 0.0001). Moreover, the SAT-I mRNA levels were high in the bronchioalveolar carcinoma subtype and low in the solid and mucin subtypes of adenocarcinomas (P = 0.049, 0.049 and 0.013, respectively). To clarify the relationship between SAT-I mRNA and epidermal growth factor receptor (EGFR)-tyrosine kinase (TK) inhibitor sensitivity, we carried out drug sensitivity tests for the EGFR-TK inhibitors gefitinib and AG1478 using eight adenocarcinoma cell lines expressing no EGFR mutations. The IC(50) values for gefitinib and AG1478 decreased dramatically with increasing SAT-I mRNA levels (R(2) = 0.81 and 0.59, respectively), representing a wide range of drug sensitivities among adenocarcinoma cell lines. To explore a possible mechanism of how GM3 could enhance the sensitivity to EGFR-TK inhibitors, the SAT-I gene was introduced stably into a GM3-negative clone of murine 3LL lung cancer cells to produce GM3-reconstituted clones. We found an increase in EGFR protein levels and gefitinib sensitivity in GM3-reconstituted cells, suggesting the involvement of GM3 in the turnover of EGFR protein. Therefore, it is highly expected that, by measuring the expression levels of SAT-I mRNA in lung biopsy samples from non-small cell lung cancer patients, enhanced pathological identification and individualized chemotherapeutic strategies can be established for the appropriate use of EGFR-TK inhibitors.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/enzymology
- Adenocarcinoma/pathology
- Adult
- Aged
- Aged, 80 and over
- Animals
- Carcinoma, Large Cell/drug therapy
- Carcinoma, Large Cell/enzymology
- Carcinoma, Large Cell/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/enzymology
- Carcinoma, Non-Small-Cell Lung/pathology
- Drug Resistance, Neoplasm
- ErbB Receptors/antagonists & inhibitors
- G(M3) Ganglioside/metabolism
- Gefitinib
- Humans
- Immunoblotting
- Immunoprecipitation
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/pathology
- Mice
- Middle Aged
- Protein Kinase Inhibitors/therapeutic use
- Quinazolines/therapeutic use
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sialyltransferases/genetics
- Sialyltransferases/metabolism
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/enzymology
Collapse
Affiliation(s)
- Mariko Noguchi
- Department of Biomembrane and Biofunctional Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Prinetti A, Prioni S, Loberto N, Aureli M, Chigorno V, Sonnino S. Regulation of tumor phenotypes by caveolin-1 and sphingolipid-controlled membrane signaling complexes. Biochim Biophys Acta Gen Subj 2007; 1780:585-96. [PMID: 17889439 DOI: 10.1016/j.bbagen.2007.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 07/26/2007] [Accepted: 08/02/2007] [Indexed: 12/11/2022]
Abstract
Aberrant (glyco)sphingolipid expression deeply affects several properties of tumor cells that are involved in tumor progression and metastasis formation: cell adhesion (to the extracellular matrix or to the endothelium of blood vessels), motility, recognition and invasion of host tissues. In particular, (glyco)sphingolipids might contribute to the modulation of integrin-dependent interactions of tumor cells (determining their adhesion, motility and invasiveness) with the extracellular matrix as well as with host cells present in the stromal compartment of the tumor. A model based on solid experimental evidence has been proposed: (glyco)sphingolipids at the cell surface interact with plasma membrane receptors (e.g., integrin receptors and growth factor receptors) and adapter molecules (including tetraspanins) forming signaling complexes that are able to influence the activity of signal transduction molecules oriented at the cytosolic surface of the plasma membrane (mainly the Src kinases pathway members). The function of these signaling complexes appears to be strictly dependent on their (glyco)sphingolipid composition, and likely on specific sphingolipid-protein interactions. From this point of view, particularly intriguing is the connection between (glyco)sphingolipids and caveolin-1, a membrane protein that plays multiple roles as a suppressor of tumor growth and metastasis in ovarian, breast and colon human carcinomas.
Collapse
Affiliation(s)
- Alessandro Prinetti
- Center of Excellence on Neurodegenerative Diseases, Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, 20090 Segrate, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Atshaves BP, Jefferson JR, McIntosh AL, Gallegos A, McCann BM, Landrock KK, Kier AB, Schroeder F. Effect of sterol carrier protein-2 expression on sphingolipid distribution in plasma membrane lipid rafts/caveolae. Lipids 2007; 42:871-84. [PMID: 17680294 DOI: 10.1007/s11745-007-3091-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 06/24/2007] [Indexed: 12/16/2022]
Abstract
Although sphingolipids are highly important signaling molecules enriched in lipid rafts/caveolae, relatively little is known regarding factors such as sphingolipid binding proteins that may regulate the distribution of sphingolipids to lipid rafts/caveolae of living cells. Since early work demonstrated that sterol carrier protein-2 (SCP-2) enhanced glycosphingolipid transfer from membranes in vitro, the effect of SCP-2 expression on sphingolipid distribution to lipid rafts/caveolae in living cells was examined. Using a non-detergent affinity chromatography method to isolate lipid rafts/caveolae and non-rafts from purified L-cell plasma membranes, it was shown that lipid rafts/caveolae were highly enriched in multiple sphingolipid species including ceramides, acidic glycosphingolipids (ganglioside GM1); neutral glycosphingolipids (monohexosides, dihexosides, globosides), and sphingomyelin as compared to non-raft domains. SCP-2 overexpression further enriched the content of total sphingolipids and select sphingolipid species in the lipid rafts/caveolae domains. Analysis of fluorescence binding and displacement data revealed that purified human recombinant SCP-2 exhibited high binding affinity (nanomolar range) for all sphingolipid classes tested. The binding affinity decreased in the following order: ceramides > acidic glycosphingolipid (ganglioside GM1) > neutral glycosphingolipid (monohexosides, hexosides, globosides) > sphingomyelin. Enrichment of individual sphingolipid classes to lipid rafts/caveolae versus non-rafts in SCP-2 expressing plasma membranes followed closely with those classes most strongly bound to SCP-2 (ceramides, GM1 > the neutral glycosphingolipids (monohexosides, dihexosides, and globosides) > sphingomyelin). Taken together these data suggested that SCP-2 acts to selectively regulate sphingolipid distribution to lipid rafts/caveolae in living cells.
Collapse
Affiliation(s)
- Barbara P Atshaves
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Schroeder F, Atshaves BP, McIntosh AL, Gallegos AM, Storey SM, Parr RD, Jefferson JR, Ball JM, Kier AB. Sterol carrier protein-2: new roles in regulating lipid rafts and signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:700-18. [PMID: 17543577 PMCID: PMC1989133 DOI: 10.1016/j.bbalip.2007.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/28/2007] [Accepted: 04/03/2007] [Indexed: 12/31/2022]
Abstract
Sterol carrier protein-2 (SCP-2) was independently discovered as a soluble protein that binds and transfers cholesterol as well as phospholipids (nonspecific lipid transfer protein, nsLTP) in vitro. Physiological functions of this protein are only now beginning to be resolved. The gene encoding SCP-2 also encodes sterol carrier protein-x (SCP-x) arising from an alternate transcription site. In vitro and in vivo SCP-x serves as a peroxisomal 3-ketoacyl-CoA thiolase in oxidation of branched-chain lipids (cholesterol to form bile acids; branched-chain fatty acid for detoxification). While peroxisomal SCP-2 facilitates branched-chain lipid oxidation, the role(s) of extraperoxisomal (up to 50% of total) are less clear. Studies using transfected fibroblasts overexpressing SCP-2 and hepatocytes from SCP-2/SCP-x gene-ablated mice reveal that SCP-2 selectively remodels the lipid composition, structure, and function of lipid rafts/caveolae. Studies of purified SCP-2 and in cells show that SCP-2 has high affinity for and selectively transfers many lipid species involved in intracellular signaling: fatty acids, fatty acyl CoAs, lysophosphatidic acid, phosphatidylinositols, and sphingolipids (sphingomyelin, ceramide, mono-di-and multi-hexosylceramides, gangliosides). SCP-2 selectively redistributes these signaling lipids between lipid rafts/caveolae and intracellular sites. These findings suggest SCP-2 serves not only in cholesterol and phospholipid transfer, but also in regulating multiple lipid signaling pathways in lipid raft/caveolae microdomains of the plasma membrane.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Membrane microdomains (lipid rafts) are now recognized as critical for proper compartmentalization of insulin signaling, but their role in the pathogenesis of insulin resistance has not been investigated. Detergent-resistant membrane microdomains (DRMs), isolated in the low density fractions, are highly enriched in cholesterol, glycosphingolipids and various signaling molecules. TNFalpha induces insulin resistance in type 2 diabetes, but its mechanism of action is not fully understood. We have found a selective increase in the acidic glycosphingolipid ganglioside GM3 in 3T3-L1 adipocytes treated with TNFalpha, suggesting a specific function for GM3. We were able to extend these in vitro observations to living animals using obese Zucker fa/fa rats and ob/ob mice, in which the GM3 synthase mRNA levels in the white adipose tissues are significantly higher than in their lean controls. In the DRMs from TNFalpha-treated 3T3-L1 adipocytes, GM3 levels were doubled, compared to results in normal adipocytes. Additionally, insulin receptor (IR) accumulations in the DRMs were diminished, while caveolin and flotillin levels were unchanged. GM3 depletion was able to counteract the TNFalpha-induced inhibition of IR accumulation into DRMs. Together, these findings provide compelling evidence that in insulin resistance the insulin metabolic signaling defect can be attributed to a loss of IRs in the microdomains due to an accumulation of GM3.
Collapse
Affiliation(s)
- Jin-ichi Inokuchi
- Division of Glycopathology and CREST, Japan Science and Technology Agency, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan.
| |
Collapse
|
46
|
Abstract
Membrane microdomains (lipid rafts) are now recognized as critical for proper compartmentalization of insulin signaling, but their role in the pathogenesis of insulin resistance has not been investigated. Detergent-resistant membrane microdomains (DRMs), isolated in the low density fractions, are highly enriched in cholesterol, glycosphingolipids and various signaling molecules. TNFalpha induces insulin resistance in type 2 diabetes, but its mechanism of action is not fully understood. We have found a selective increase in the acidic glycosphingolipid ganglioside GM3 in 3T3-L1 adipocytes treated with TNFalpha, suggesting a specific function for GM3. We were able to extend these in vitro observations to living animals using obese Zucker fa/fa rats and ob/ob mice, in which the GM3 synthase mRNA levels in the white adipose tissues are significantly higher than in their lean controls. In the DRMs from TNFalpha-treated 3T3-L1 adipocytes, GM3 levels were doubled, compared to results in normal adipocytes. Additionally, insulin receptor (IR) accumulations in the DRMs were diminished, while caveolin and flotillin levels were unchanged. GM3 depletion was able to counteract the TNFalpha-induced inhibition of IR accumulation into DRMs. Together, these findings provide compelling evidence that in insulin resistance the insulin metabolic signaling defect can be attributed to a loss of IRs in the microdomains due to an accumulation of GM3.
Collapse
Affiliation(s)
- Jin-ichi Inokuchi
- Department of Biomembrane and Biofunctional Chemistry and CREST, Japan Science and Technology Agency, Graduate School of Pharmaceutical Sciences, Hokkaido University, Japan.
| |
Collapse
|
47
|
Omran OM, Saqr HE, Yates AJ. Molecular Mechanisms of GD3-Induced Apoptosis in U-1242 MG Glioma Cells. Neurochem Res 2006; 31:1171-80. [PMID: 17043769 DOI: 10.1007/s11064-006-9147-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 08/24/2006] [Indexed: 11/28/2022]
Abstract
An increasing amount of evidence indicates that the disialoganglioside GD3 is involved in apoptosis in many cell lines. Our previous studies demonstrated that endogenous GD3 expression induced apoptosis in U-1242 MG glioma cells transfected with the GD3 synthase gene (U1242MG-GD3 cells). In this paper, we present further investigations on the molecular mechanisms of GD3-induced apoptosis in this cell line. We found that endogenously synthesized GD3 localizes to the caveolae of this cell line, where it promotes the localization of death receptor 5 (DR5), tumor necrosis factor receptor-1 (TNF-R1), and Fas (Apo-1) to the caveolae. In addition, caspase-8 was translocated to the caveolar fraction and cleaved; the cleaved proteins were then re-located into the high density fractions. However, GD3 had no effect on the distribution of the adapter protein Fas-associated death domain (FADD). We conclude that GD3 functions as a regulatory molecule early in the extrinsic apoptosis pathway.
Collapse
Affiliation(s)
- O M Omran
- Department of Pathology, The Ohio State University, 4170 Graves Hall, 333 W 10Th Ave, Columbus, OH 43210, USA
| | | | | |
Collapse
|
48
|
Inokuchi JI. Membrane microdomain malfunction and insulin resistance in type 2 diabetes. Colloids Surf A Physicochem Eng Asp 2006. [DOI: 10.1016/j.colsurfa.2005.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Wang XQ, Sun P, Go L, Koti V, Fliman M, Paller AS. Ganglioside GM3 promotes carcinoma cell proliferation via urokinase plasminogen activator-induced extracellular signal-regulated kinase-independent p70S6 kinase signaling. J Invest Dermatol 2006; 126:2687-96. [PMID: 16826166 DOI: 10.1038/sj.jid.5700469] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overexpression of NeuAcalpha2-3Galbeta1-4Glcbeta1-Cer (GM3), a major ganglioside of cutaneous tumor cell membranes, inhibits ligand-dependent and ligand-independent activation of the epidermal growth factor (EGF) receptor in normal and neoplastic epithelial cells. This leads to the suppression of Ras/extracellular signal-regulated kinase (ERK) activation and, in the presence of EGF or fibronectin, inhibits cell proliferation. However, some tumor cells show increased levels of GM3, and vaccines that target GM3 can inhibit the growth of neoplastic cells in vivo, especially melanomas. We report that in the presence of urokinase plasminogen activator (uPA), overexpression of GM3 paradoxically increases the proliferation of carcinoma cells by augmenting ERK-independent p70S6 kinase activation. Functional blockade of uPA receptor (uPAR) or inhibition of p70S6 kinase, but not inhibition of Ras/ERK signaling, suppresses this GM3-induced stimulation of cell proliferation. The ERK-independent activation of p70S6 kinase involves phosphorylation at threonine-389, threonine-421/serine-424, and serine-411 sites with intermediate phosphatidylinositol 3 kinase and protein kinase C-zeta activation. These studies implicate gangliosides as enhancers of uPAR-related signaling and suggest that the response to GM3 depends on the local concentration of uPA. Therapeutic modalities that target or supplement gangliosides may require concomitant treatment that suppresses EGFR or uPAR signaling, respectively, to control neoplastic cell proliferation.
Collapse
Affiliation(s)
- Xiao-Qi Wang
- Department of Dermatology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
50
|
Zhang Q, Furukawa K, Chen HH, Sakakibara T, Urano T, Furukawa K. Metastatic Potential of Mouse Lewis Lung Cancer Cells Is Regulated via Ganglioside GM1 by Modulating the Matrix Metalloprotease-9 Localization in Lipid Rafts. J Biol Chem 2006; 281:18145-55. [PMID: 16636068 DOI: 10.1074/jbc.m512566200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To analyze mechanisms for cancer metastasis, we established high metastatic sublines from mouse Lewis lung cancer (P29) by repeated injection. Sublines established from the two subclones H7 and C4 commonly exhibited increased proliferation and invasion activity and reduced expression of ganglioside GM1, although they showed different preferences in their target organs of metastasis. The high metastatic sublines secreted higher levels of activated matrix metalloprotease (MMP)-9 as well as pro-MMP-9 in the culture medium than the parent lines. Furthermore, they contained MMP-9 at the glycolipid-enriched microdomain (GEM)/rafts fractionated by the sucrose density gradient ultracentrifugation of Triton X-100 extracts, whereas the parent cells showed faint bands at the fraction. When high metastatic sublines were treated with methyl-beta-cyclodextrin, their invasion activities were dramatically suppressed, and the MMP-9 secretion was also suppressed. All these results indicated that GEM/rafts play crucial roles in the increased invasion and high metastatic potential. To clarify the implication of reduced GM1 expression, low GM1-expressing cell lines were established using an RNA interference-expression vector of the GM1 synthase. Low GM1-expressing cell lines showed increased proliferation and invasion, enrichment in the GEM/rafts, and increased secretion of MMP-9. Among adhesion molecules, only integrin beta1 was detected in GEM/rafts with stronger intensity in high metastatic lines and low GM1-expressing cells. Taken together, integrins seemed to be enriched in the GEM/rafts by reduced GM1 levels, and subsequently MMP-9 was recruited to the GEM/rafts, resulting in its efficient secretion and activation, and eventually in the increased invasion and metastatic potentials.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | | | | | | | | | | |
Collapse
|