1
|
Ravi Kiran AVVV, Kusuma Kumari G, Krishnamurthy PT, Khaydarov RR. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater Sci 2021; 9:7667-7704. [PMID: 34673853 DOI: 10.1039/d1bm01127h] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over recent years, advancements in nanomedicine have allowed new approaches to diagnose and treat tumors. Nano drug delivery systems exploit the enhanced permeability and retention (EPR) effect and enter the tumor tissue's interstitial space. However, tumor barriers play a crucial role, and cause inefficient EPR or the homing effect. Mounting evidence supports the hypothesis that the components of the tumor microenvironment, such as the extracellular matrix, and cellular and physiological components collectively or cooperatively hinder entry and distribution of drugs, and therefore, limit the theragnostic applications of cancer nanomedicine. This abnormal tumor microenvironment plays a pivotal role in cancer nanomedicine and was recently recognized as a promising target for improving nano-drug delivery and their therapeutic outcomes. Strategies like passive or active targeting, stimuli-triggered nanocarriers, and the modulation of immune components have shown promising results in achieving anticancer efficacy. The present review focuses on the tumor microenvironment and nanoparticle-based strategies (polymeric, inorganic and organic nanoparticles) for intruding the tumor barrier and improving therapeutic effects.
Collapse
Affiliation(s)
- Ammu V V V Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Garikapati Kusuma Kumari
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Renat R Khaydarov
- Institute of Nuclear Physics, Uzbekistan Academy of Sciences, Tashkent, 100047, Uzbekistan.
| |
Collapse
|
2
|
Secretoglobin 3A2 eliminates human cancer cells through pyroptosis. Cell Death Discov 2021; 7:12. [PMID: 33452234 PMCID: PMC7810848 DOI: 10.1038/s41420-020-00385-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 11/09/2022] Open
Abstract
Non-canonical inflammasome activation that recognizes intracellular lipopolysaccharide (LPS) causes pyroptosis, the inflammatory death of innate immune cells. The role of pyroptosis in innate immune cells is to rapidly eliminate pathogen-infected cells and limit the replication niche in the host body. Whether this rapid cell elimination process of pyroptosis plays a role in elimination of cancer cells is largely unknown. Our earlier study demonstrated that a multi-functional secreted protein, secretoglobin (SCGB) 3A2, chaperones LPS to cytosol, and activates caspase-11 and the non-canonical inflammasome pathway, leading to pyroptosis. Here we show that SCGB3A2 exhibits marked anti-cancer activity against 5 out of 11 of human non-small cell lung cancer cell lines in mouse xenographs, while no effect was observed in 6 of 6 small cell lung cancer cell lines examined. All SCGB3A2-LPS-sensitive cells express syndecan 1 (SDC1), a SCGB3A2 cell surface receptor, and caspase-4 (CASP4), a critical component of the non-canonical inflammasome pathway. Two epithelial-derived colon cancer cell lines expressing SDC1 and CASP4 were also susceptible to SCGB3A2-LPS treatment. TCGA analysis revealed that lung adenocarcinoma patients with higher SCGB3A2 mRNA levels exhibited better survival. These data suggest that SCGB3A2 uses the machinery of pyroptosis for the elimination of human cancer cells via the non-canonical inflammasome pathway, and that SCGB3A2 may serve as a novel therapeutic to treat cancer, perhaps in combination with immuno and/or targeted therapies.
Collapse
|
3
|
Wang H, Lin P. Flow Cytometric Immunophenotypic Analysis in the Diagnosis and Prognostication of Plasma Cell Neoplasms. CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 96:338-350. [DOI: 10.1002/cyto.b.21844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Hao‐Wei Wang
- Flow Cytometry and Hematopathology Section, Laboratory of PathologyCCR, NCI, NIH Bethesda Maryland 20892
| | - Pei Lin
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas 77030
| |
Collapse
|
4
|
Yokoyama S, Cai Y, Murata M, Tomita T, Yoneda M, Xu L, Pilon AL, Cachau RE, Kimura S. A novel pathway of LPS uptake through syndecan-1 leading to pyroptotic cell death. eLife 2018; 7:e37854. [PMID: 30526845 PMCID: PMC6286126 DOI: 10.7554/elife.37854] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/08/2018] [Indexed: 01/15/2023] Open
Abstract
Intracellular lipopolysaccharide (LPS) triggers the non-canonical inflammasome pathway, resulting in pyroptosis of innate immune cells. In addition to its well-known proinflammatory role, LPS can directly cause regression of some tumors, although the underlying mechanism has remained unknown. Here we show that secretoglobin(SCGB)3A2, a small protein predominantly secreted in airways, chaperones LPS to the cytosol through the cell surface receptor syndecan-1; this leads to pyroptotic cell death driven by caspase-11. SCGB3A2 and LPS co-treatment significantly induced pyroptosis of macrophage RAW264.7 cells and decreased cancer cell proliferation in vitro, while SCGB3A2 treatment resulted in reduced progression of xenograft tumors in mice. These data suggest a conserved function for SCGB3A2 in the innate immune system and cancer cells. These findings demonstrate a critical role for SCGB3A2 as an LPS delivery vehicle; they reveal one mechanism whereby LPS enters innate immune cells leading to pyroptosis, and they clarify the direct effect of LPS on cancer cells.
Collapse
MESH Headings
- Animals
- Biological Transport
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/mortality
- Caspases/genetics
- Caspases/immunology
- Caspases, Initiator
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Humans
- Immunity, Innate
- Lipopolysaccharides/pharmacology
- Lymphatic Metastasis
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/mortality
- Mice
- Mice, Transgenic
- Protein Array Analysis
- Pyroptosis/drug effects
- Pyroptosis/genetics
- Pyroptosis/immunology
- RAW 264.7 Cells
- RNA, Small Interfering/genetics
- RNA, Small Interfering/immunology
- Secretoglobins/antagonists & inhibitors
- Secretoglobins/genetics
- Secretoglobins/immunology
- Signal Transduction
- Survival Analysis
- Syndecan-1/antagonists & inhibitors
- Syndecan-1/genetics
- Syndecan-1/immunology
- Toll-Like Receptor 4/antagonists & inhibitors
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shigetoshi Yokoyama
- Laboratory of MetabolismNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Yan Cai
- Laboratory of MetabolismNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Miyuki Murata
- Laboratory of MetabolismNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Takeshi Tomita
- Laboratory of MetabolismNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Mitsuhiro Yoneda
- Laboratory of MetabolismNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Lei Xu
- Laboratory of MetabolismNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| | | | - Raul E Cachau
- Advanced Biomedical Computing CenterFrederick National Laboratory for Cancer Research, Leidos Biomedical Inc.FrederickUnited States
| | - Shioko Kimura
- Laboratory of MetabolismNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
5
|
Soh KT, Tario JD, Wallace PK. Diagnosis of Plasma Cell Dyscrasias and Monitoring of Minimal Residual Disease by Multiparametric Flow Cytometry. Clin Lab Med 2018; 37:821-853. [PMID: 29128071 DOI: 10.1016/j.cll.2017.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plasma cell dyscrasia (PCD) is a heterogeneous disease that has seen a tremendous change in outcomes due to improved therapies. Over the past few decades, multiparametric flow cytometry has played an important role in the detection and monitoring of PCDs. Flow cytometry is a high-sensitivity assay for early detection of minimal residual disease (MRD) that correlates well with progression-free survival and overall survival. Before flow cytometry can be effectively implemented in the clinical setting, sample preparation, panel configuration, analysis, and gating strategies must be optimized to ensure accurate results. Current consensus methods and reporting guidelines for MRD testing are discussed.
Collapse
Affiliation(s)
- Kah Teong Soh
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Joseph D Tario
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Paul K Wallace
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
6
|
Droho S, Keener ME, Mueller NH. Heparan sulfate mediates cell uptake of αB-crystallin fused to the glycoprotein C cell penetration peptide. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:598-604. [PMID: 29408057 DOI: 10.1016/j.bbamcr.2018.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Steven Droho
- Department of Ophthalmology, University of Colorado Denver School of Medicine, Aurora, CO, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Mitchell E Keener
- Department of Ophthalmology, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Niklaus H Mueller
- Department of Ophthalmology, University of Colorado Denver School of Medicine, Aurora, CO, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Denver School of Medicine, Aurora, CO, USA.
| |
Collapse
|
7
|
Sugar T, Wassenhove-McCarthy DJ, Orr AW, Green J, van Kuppevelt TH, McCarthy KJ. N-sulfation of heparan sulfate is critical for syndecan-4-mediated podocyte cell-matrix interactions. Am J Physiol Renal Physiol 2016; 310:F1123-35. [PMID: 26936875 PMCID: PMC5002056 DOI: 10.1152/ajprenal.00603.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/26/2016] [Indexed: 12/23/2022] Open
Abstract
Previous research has shown that podocytes unable to assemble heparan sulfate on cell surface proteoglycan core proteins have compromised cell-matrix interactions. This report further explores the role of N-sulfation of intact heparan chains in podocyte-matrix interactions. For the purposes of this study, a murine model in which the enzyme N-deacetylase/N-sulfotransferase 1 (NDST1) was specifically deleted in podocytes and immortalized podocyte cell lines lacking NDST1 were developed and used to explore the effects of such a mutation on podocyte behavior in vitro. NDST1 is a bifunctional enzyme, ultimately responsible for N-sulfation of heparan glycosaminoglycans produced by cells. Immunostaining of glomeruli from mice whose podocytes were null for Ndst1 (Ndst1(-/-)) showed a disrupted pattern of localization for the cell surface proteoglycan, syndecan-4, and for α-actinin-4 compared with controls. The pattern of immunostaining for synaptopodin and nephrin did not show as significant alterations. In vitro studies showed that Ndst1(-/-) podocytes attached, spread, and migrated less efficiently than Ndst1(+/+) podocytes. Immunostaining in vitro for several markers for molecules involved in cell-matrix interactions showed that Ndst1(-/-) cells had decreased clustering of syndecan-4 and decreased recruitment of protein kinase-Cα, α-actinin-4, vinculin, and phospho-focal adhesion kinase to focal adhesions. Total intracellular phospho-focal adhesion kinase was decreased in Ndst1(-/-) compared with Ndst1(+/+) cells. A significant decrease in the abundance of activated integrin α5β1 on the cell surface of Ndst1(-/-) cells compared with Ndst1(+/+) cells was observed. These results serve to highlight the critical role of heparan sulfate N-sulfation in facilitating normal podocyte-matrix interactions.
Collapse
Affiliation(s)
- Terrel Sugar
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, Shreveport, Louisiana
| | | | - A Wayne Orr
- Department of Pathology, LSU Health Sciences Center, Shreveport, Louisiana; and
| | - Jonette Green
- Department of Pathology, LSU Health Sciences Center, Shreveport, Louisiana; and
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Kevin J McCarthy
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, Shreveport, Louisiana; Department of Pathology, LSU Health Sciences Center, Shreveport, Louisiana; and
| |
Collapse
|
8
|
Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins. Oncogenesis 2016; 5:e202. [PMID: 26926788 PMCID: PMC5154350 DOI: 10.1038/oncsis.2016.5] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/15/2016] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
Multiple myeloma arises when malignant plasma cells invade and form multiple tumors in the bone marrow. High levels of heparanase (HPSE) correlate with poor prognosis in myeloma patients. A likely target of the enzyme is the heparan sulfate (HS) proteoglycan syndecan-1 (Sdc1, CD138), which is highly expressed on myeloma cells and contributes to poor prognosis in this disease. We find that HPSE promotes an invasive phenotype mediated by the very late antigen-4 (VLA-4, or α4β1 integrin) in myeloma cells plated on either fibronectin (FN) or vascular endothelial cell adhesion molecule-1 (VCAM-1), ligands that are prevalent in the bone marrow. The phenotype depends on vascular endothelial cell growth factor receptor-2 (VEGFR2), which is aberrantly expressed in myeloma, and is characterized by a highly protrusive lamellipodium and cell invasion. HPSE-mediated trimming of the HS on Sdc1 and subsequent matrix metalloproteinase-9-mediated shedding of the syndecan exposes a juxtamembrane site in Sdc1 that binds VEGFR2 and VLA-4, thereby coupling VEGFR2 to the integrin. Shed Sdc1 can be mimicked by recombinant Sdc1 ectodomain or by a peptide based on its binding motif, which causes VLA-4 to re-orient from the lagging edge (uropod) to the leading edge of migrating cells, couple with and activate VEGFR2. Peptides (called 'synstatins') containing only the VLA-4 or VEGFR2 binding sites competitively inhibit invasion, as they block coupling of the receptors. This mechanism is also utilized by vascular endothelial cells, in which it is also activated by HPSE, during endothelial cell tube formation. Collectively, our findings reveal for the first time the mechanism through which HPSE modulates Sdc1 function to promote both tumor cell invasion and angiogenesis, thereby driving multiple myeloma progression. The inhibitory synstatins, or inhibitors of HPSE enzyme activity, are likely to show promise as therapeutics against myeloma extravasation and spread.
Collapse
|
9
|
Flores-Montero J, de Tute R, Paiva B, Perez JJ, Böttcher S, Wind H, Sanoja L, Puig N, Lecrevisse Q, Vidriales MB, van Dongen JJM, Orfao A. Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications for MRD detection in multiple myeloma. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 90:61-72. [PMID: 26100534 DOI: 10.1002/cyto.b.21265] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/25/2015] [Accepted: 06/17/2015] [Indexed: 01/04/2023]
Abstract
In recent years, several studies on large series of multiple myeloma (MM) patients have demonstrated the clinical utility of flow cytometry monitoring of minimal residual disease (flow-MRD) in bone marrow (BM), for improved assessment of response to therapy and prognostication. However, disturbing levels of variability exist regarding the specific protocols and antibody panels used in individual laboratories. Overall, consensus exists about the utility of combined assessment of CD38 and CD138 for the identification of BM plasma cells (PC); in contrast, more heterogeneous lists of markers are used to further distinguish between normal/reactive PCs and myeloma PCs in the MRD settings. Among the later markers, CD19, CD45, CD27, and CD81, together with CD56, CD117, CD200, and CD307, have emerged as particularly informative; however, no single marker provides enough specificity for clear discrimination between clonal PCs and normal PCs. Accordingly, multivariate analyses of single PCs from large series of normal/reactive vs. myeloma BM samples have shown that combined assessment of CD138 and CD38, together with CD45, CD19, CD56, CD27, CD81, and CD117 would be ideally suited for MRD monitoring in virtually every MM patient. However, the specific antibody clones, fluorochrome conjugates and sources of the individual markers determines its optimal (vs. suboptimal or poor) performance in an eight-color staining. Assessment of clonality, via additional cytoplasmic immunoglobulin (CyIg) κ vs. CyIgλ evaluation, may contribute to further establish the normal/reactive vs. clonal nature of small suspicious PC populations at high sensitivity levels, provided that enough cells are evaluated.
Collapse
Affiliation(s)
- Juan Flores-Montero
- Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio de Citometría y Departamento de Medicina-NUCLEUS, Universidad de Salamanca (Salamanca), Spain
| | - Ruth de Tute
- Haematological Malignancy Diagnostic Service, St James Institute of Oncology, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Bruno Paiva
- Clínica Universidad de Navarra, Centro de Investigaciones Médicas Aplicadas (CIMA), Pamplona, Spain
| | - José Juan Perez
- Department of Hematology, Hospital Universitario de Salamanca, Instituto Biosanitario de Salamanca (IBSAL), Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Salamanca, Spain
| | - Sebastian Böttcher
- Second Department of Medicine, University Hospital of Schleswig Holstein, Campus Kiel (UNIKIEL), Kiel, Germany
| | - Henk Wind
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam (Erasmus MC), Rotterdam, The Netherlands
| | - Luzalba Sanoja
- Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio de Citometría y Departamento de Medicina-NUCLEUS, Universidad de Salamanca (Salamanca), Spain
| | - Noemí Puig
- Department of Hematology, Hospital Universitario de Salamanca, Instituto Biosanitario de Salamanca (IBSAL), Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Salamanca, Spain
| | - Quentin Lecrevisse
- Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio de Citometría y Departamento de Medicina-NUCLEUS, Universidad de Salamanca (Salamanca), Spain
| | - María Belén Vidriales
- Department of Hematology, Hospital Universitario de Salamanca, Instituto Biosanitario de Salamanca (IBSAL), Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Salamanca, Spain
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam (Erasmus MC), Rotterdam, The Netherlands
| | - Alberto Orfao
- Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio de Citometría y Departamento de Medicina-NUCLEUS, Universidad de Salamanca (Salamanca), Spain
| |
Collapse
|
10
|
Abstract
Most single animal cells have an internal vector that determines where recycling membrane is added to the cell's surface. Because of the specific molecular composition of this added membrane, a dynamic asymmetry is formed on the surface of the cell. The consequences of this dynamic asymmetry are discussed, together with what they imply for how cells move. The polarity of a single-celled embryo, such as that of the nematode Caenorhabditis elegans, is explored in a similar framework.
Collapse
Affiliation(s)
- Mark S Bretscher
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| |
Collapse
|
11
|
Ramani VC, Purushothaman A, Stewart MD, Thompson CA, Vlodavsky I, Au JLS, Sanderson RD. The heparanase/syndecan-1 axis in cancer: mechanisms and therapies. FEBS J 2013; 280:2294-306. [PMID: 23374281 DOI: 10.1111/febs.12168] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/21/2022]
Abstract
Heparanase is an endoglucuronidase that cleaves heparan sulfate chains of proteoglycans. In many malignancies, high heparanase expression and activity correlate with an aggressive tumour phenotype. A major consequence of heparanase action in cancer is a robust up-regulation of growth factor expression and increased shedding of syndecan-1 (a transmembrane heparan sulfate proteoglycan). Substantial evidence indicates that heparanase and syndecan-1 work together to drive growth factor signalling and regulate cell behaviours that enhance tumour growth, dissemination, angiogenesis and osteolysis. Preclinical and clinical studies have demonstrated that therapies targeting the heparanase/syndecan-1 axis hold promise for blocking the aggressive behaviour of cancer.
Collapse
Affiliation(s)
- Vishnu C Ramani
- Department of Pathology, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Wu YJ, Leong GSX, Bao ZM, Yip GW. Organization of the neuroepithelial actin cytoskeleton is regulated by heparan sulfation during neurulation. Neurosci Lett 2012; 533:77-80. [PMID: 23142718 DOI: 10.1016/j.neulet.2012.10.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/22/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
Abstract
Heparan sulfate and cytoskeletal actin microfilaments have both been shown to be important regulators of neural tube closure during embryonic development. To determine the functional relationship of these two molecules in formation of the spinal neural tube, we cultured ARC mouse embryos at embryonic day E8.5 in the presence of chlorate, a competitive inhibitor of glycosaminoglycan sulfation, and examined the effects on organization of actin microfilaments in the neuroepithelium. Compared against embryos cultured under control conditions, chlorate-treated embryos had shortened posterior neuropore, a loss of median hinge point formation and increased bending at the paired dorsolateral hinge points. Furthermore, apical organization of actin microfilaments in the neuroepithelial cells was absent, and this was associated with convex bending of the neuroepithelium. The results suggest that heparan sulfate is an important determinant of cytoskeletal actin organization during spinal neurulation, and that its biological action is dependent on sulfation of the heparan molecule.
Collapse
Affiliation(s)
- Ya-Jun Wu
- Division of Life Science and Technology, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | | | | | | |
Collapse
|
13
|
Altemeier WA, Schlesinger SY, Buell CA, Brauer R, Rapraeger AC, Parks WC, Chen P. Transmembrane and extracellular domains of syndecan-1 have distinct functions in regulating lung epithelial migration and adhesion. J Biol Chem 2012; 287:34927-34935. [PMID: 22936802 DOI: 10.1074/jbc.m112.376814] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syndecan-1 is a cell surface proteoglycan that can organize co-receptors into a multimeric complex to transduce intracellular signals. The syndecan-1 core protein has multiple domains that confer distinct cell- and tissue-specific functions. Indeed, the extracellular, transmembrane, and cytoplasmic domains have all been found to regulate specific cellular processes. Our previous work demonstrated that syndecan-1 controls lung epithelial migration and adhesion. Here, we identified the necessary domains of the syndecan-1 core protein that modulate its function in lung epithelial repair. We found that the syndecan-1 transmembrane domain has a regulatory function in controlling focal adhesion disassembly, which in turn controls cell migration speed. In contrast, the extracellular domain facilitates cell adhesion through affinity modulation of α(2)β(1) integrin. These findings highlight the fact that syndecan-1 is a multidimensional cell surface receptor that has several regulatory domains to control various biological processes. In particular, the lung epithelium requires the syndecan-1 transmembrane domain to govern cell migration and is independent from its ability to control cell adhesion via the extracellular domain.
Collapse
Affiliation(s)
- William A Altemeier
- Division of Pulmonary and Critical Care Medicine, Center for Lung Biology, University of Washington, Seattle, Washington 98109-4752
| | - Saundra Y Schlesinger
- Division of Pulmonary and Critical Care Medicine, Center for Lung Biology, University of Washington, Seattle, Washington 98109-4752
| | - Catherine A Buell
- Division of Pulmonary and Critical Care Medicine, Center for Lung Biology, University of Washington, Seattle, Washington 98109-4752
| | - Rena Brauer
- Division of Pulmonary and Critical Care Medicine, Center for Lung Biology, University of Washington, Seattle, Washington 98109-4752
| | - Alan C Rapraeger
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - William C Parks
- Division of Pulmonary and Critical Care Medicine, Center for Lung Biology, University of Washington, Seattle, Washington 98109-4752
| | - Peter Chen
- Division of Pulmonary and Critical Care Medicine, Center for Lung Biology, University of Washington, Seattle, Washington 98109-4752.
| |
Collapse
|
14
|
Podyma-Inoue KA, Hara-Yokoyama M, Shinomura T, Kimura T, Yanagishita M. Syndecans reside in sphingomyelin-enriched low-density fractions of the plasma membrane isolated from a parathyroid cell line. PLoS One 2012; 7:e32351. [PMID: 22396758 PMCID: PMC3291576 DOI: 10.1371/journal.pone.0032351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 01/27/2012] [Indexed: 01/15/2023] Open
Abstract
Background Heparan sulfate proteoglycans (HSPGs) are one of the basic constituents of plasma membranes. Specific molecular interactions between HSPGs and a number of extracellular ligands have been reported. Mechanisms involved in controlling the localization and abundance of HSPG on specific domains on the cell surface, such as membrane rafts, could play important regulatory roles in signal transduction. Methodology/Principal Findings Using metabolic radiolabeling and sucrose-density gradient ultracentrifugation techniques, we identified [35S]sulfate-labeled macromolecules associated with detergent-resistant membranes (DRMs) isolated from a rat parathyroid cell line. DRM fractions showed high specific radioactivity ([35S]sulfate/mg protein), implying the specific recruitment of HSPGs to the membrane rafts. Identity of DRM-associated [35S]sulfate-labeled molecules as HSPGs was confirmed by Western blotting with antibodies that recognize heparan sulfate (HS)-derived epitope. Analyses of core proteins by SDS-PAGE revealed bands with an apparent MW of syndecan-4 (30–33 kDa) and syndecan-1 (70 kDa) suggesting the presence of rafts with various HSPG species. DRM fractions enriched with HSPGs were characterized by high sphingomyelin content and found to only partially overlap with the fractions enriched in ganglioside GM1. HSPGs could be also detected in DRMs even after prior treatment of cells with heparitinase. Conclusions/Significance Both syndecan-1 and syndecan-4 have been found to specifically associate with membrane rafts and their association seemed independent of intact HS chains. Membrane rafts in which HSPGs reside were also enriched with sphingomyelin, suggesting their possible involvement in FGF signaling. Further studies, involving proteomic characterization of membrane domains containing HSPGs might improve our knowledge on the nature of HSPG-ligand interactions and their role in different signaling platforms.
Collapse
Affiliation(s)
- Katarzyna A Podyma-Inoue
- Section of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
15
|
Gutiérrez J, Brandan E. A novel mechanism of sequestering fibroblast growth factor 2 by glypican in lipid rafts, allowing skeletal muscle differentiation. Mol Cell Biol 2010; 30:1634-49. [PMID: 20100867 PMCID: PMC2838066 DOI: 10.1128/mcb.01164-09] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 09/25/2009] [Accepted: 01/14/2010] [Indexed: 12/14/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are critical modulators of growth factor activities. Skeletal muscle differentiation is strongly inhibited by fibroblast growth factor 2 (FGF-2). We have shown that HSPGs present at the plasma membrane are expressed in myoblasts and are downregulated during muscle differentiation. An exception is glypican-1, which is present throughout the myogenic process. Myoblasts that do not express glypican-1 exhibit defective differentiation, with an increase in the receptor binding of FGF-2, concomitant with increased signaling. Glypican-1-deficient myoblasts show decreased expression of myogenin, the master gene that controls myogenesis, myosin, and the myoblast fusion index. Reversion of these defects was induced by expression of rat glypican-1. Glypican-1 is the only HSPG localized in lipid raft domains in myoblasts, resulting in the sequestration of FGF-2 away from FGF-2 receptors (FGFRs) located in nonraft domains. A chimeric glypican-1, containing syndecan-1 transmembrane and cytoplasmic domains, is located in nonraft domains interacting with FGFR-IV- and enhanced FGF-2-dependent signaling. Thus, glypican-1 acts as a positive regulator of muscle differentiation by sequestering FGF-2 in lipid rafts and preventing its binding and dependent signaling.
Collapse
Affiliation(s)
- Jaime Gutiérrez
- Centro de Regulación Celular y Patología (CRCP), Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, MIFAB, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Brandan
- Centro de Regulación Celular y Patología (CRCP), Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, MIFAB, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Mythreye K, Blobe GC. Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion. Cell Signal 2009; 21:1548-58. [PMID: 19427900 PMCID: PMC2735586 DOI: 10.1016/j.cellsig.2009.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 05/04/2009] [Indexed: 12/17/2022]
Abstract
Signaling co-receptors are diverse, multifunctional components of most major signaling pathways, with roles in mediating and regulating signaling in both physiological and pathophysiological circumstances. Many of these signaling co-receptors, including CD44, glypicans, neuropilins, syndecans and TssRIII/betaglycan are also proteoglycans. Like other co-receptors, these proteoglycan signaling co-receptors can bind multiple ligands, promoting the formation of receptor signaling complexes and regulating signaling at the cell surface. The proteoglycan signaling co-receptors can also function as structural molecules to regulate adhesion, cell migration, morphogenesis and differentiation. Through a balance of these signaling and structural roles, proteoglycan signaling co-receptors can have either tumor promoting or tumor suppressing functions. Defining the role and mechanism of action of these proteoglycan signaling co-receptors should enable more effective targeting of these co-receptors and their respective pathways for the treatment of human disease.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center, Durham NC 27708
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham NC 27708
| |
Collapse
|
17
|
|
18
|
Zong F, Fthenou E, Castro J, Péterfia B, Kovalszky I, Szilák L, Tzanakakis G, Dobra K. Effect of syndecan-1 overexpression on mesenchymal tumour cell proliferation with focus on different functional domains. Cell Prolif 2009; 43:29-40. [PMID: 19840029 DOI: 10.1111/j.1365-2184.2009.00651.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Syndecan-1 is a transmembrane proteoglycan involved in various biological processes. Its extracellular, transmembrane and cytoplasmic domains may all participate in signal transduction. The aim of this study was to investigate the biological roles of these domains of syndecan-1. MATERIALS AND METHODS We transfected cells of two mesenchymal tumour cell lines with a full-length syndecan-1 construct and three truncated variants, namely 78 construct lacking the EC domain with exception of DRKE sequence; 77 construct lacking extracellular the whole domain and RMKKK corresponding to a short cytoplasmic motif. Subcellular distribution was revealed using confocal laser microscopy. Overexpression of the constructs was verified using real-time RT-PCR and by FACS analysis and effects of syndecan-1 on cell behaviour were explored. Cell cycle analysis allowed for dissection of mechanisms regulating cell proliferation. RESULTS Overexpression of syndecan-1 influenced expression profile of the other syndecan members, and decreased tumour cell proliferation significantly by two mechanisms, as follows: increased length of G0/G1 phase was the most evident change in RMKKK and 77 transfectants, whereas prolonged S phase was more obvious in full-length transfectants. Overexpression of syndecan-1 changed the tumour cell morphology in an epithelioid direction. CONCLUSIONS Both full-length and truncated syndecan-1 inhibited proliferation of the mesenchymal tumour cells, providing new insights into the importance for cancer growth of different functional domains of this proteoglycan.
Collapse
Affiliation(s)
- F Zong
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Reiland J, Kempf D, Roy M, Denkins Y, Marchetti D. FGF2 binding, signaling, and angiogenesis are modulated by heparanase in metastatic melanoma cells. Neoplasia 2006; 8:596-606. [PMID: 16867222 PMCID: PMC1601937 DOI: 10.1593/neo.06244] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heparanase (HPSE) and fibroblast growth factor-2 (FGF2) are critical regulators of melanoma angiogenesis and metastasis. Elevated HPSE expression contributes to melanoma progression; however, further augmentation of HPSE presence can inhibit tumorigenicity. HPSE enzymatically cleaves heparan sulfate glycosaminoglycan chains (HS) from proteoglycans. HS act as both low-affinity FGF2 receptors and coreceptors in the formation of high-affinity FGF2 receptors. We have investigated HPSE's ability to modulate FGF2 activity through HS remodeling. Extensive HPSE degradation of human metastatic melanoma cells (70W) inhibited FGF2 binding. Unexpectedly, treatment of 70W cells with low HPSE concentrations enhanced FGF2 binding. In addition, HPSE-unexposed cells did not phosphorylate extracellular signal-related kinase (ERK) or focal adhesion kinase (FAK) in response to FGF2. Conversely, in cells treated with HPSE, FGF2 stimulated ERK and FAK phosphorylation. Secondly, the presence of soluble HPSE-degraded HS enhanced FGF2 binding and ERK phosphorylation at low HS concentrations. Higher concentrations of soluble HS inhibited FGF2 binding, but FGF2 signaling through ERK remained enhanced. Soluble HS were unable to support FGF2-stimulated FAK phosphorylation irrespective of HPSE treatment. Finally, cell exposure to HPSE or to HPSE-degraded HS modulated FGF2-induced angiogenesis in melanoma. In conclusion, these effects suggest relevant mechanisms for the HPSE modulation of melanoma growth factor responsiveness and tumorigenicity.
Collapse
Affiliation(s)
- Jane Reiland
- Department of Comparative Biomedical Sciences-SVM, Louisiana State University-Baton Rouge, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
20
|
Theocharis AD, Seidel C, Borset M, Dobra K, Baykov V, Labropoulou V, Kanakis I, Dalas E, Karamanos NK, Sundan A, Hjerpe A. Serglycin constitutively secreted by myeloma plasma cells is a potent inhibitor of bone mineralization in vitro. J Biol Chem 2006; 281:35116-28. [PMID: 16870619 DOI: 10.1074/jbc.m601061200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although the biological significance of proteoglycans (PGs) has previously been highlighted in multiple myeloma (MM), little is known about serglycin, which is a hematopoietic cell granule PG. In this study, we describe the expression and highly constitutive secretion of serglycin in several MM cell lines. Serglycin messenger RNA was detected in six MM cell lines. PGs were purified from conditioned medium of four MM cell lines, and serglycin substituted with 4-sulfated chondroitin sulfate was identified as the predominant PG. Flow cytometry and confocal microscopy showed that serglycin was also present intracellularly and on the cell surface, and attachment to the cell surface was at least in part dependent on intact glycosaminoglycan side chains. Immunohistochemical staining of bone marrow biopsies showed the presence of serglycin both in benign and malignant plasma cells. Immunoblotting in bone marrow aspirates from a limited number of patients with newly diagnosed MM revealed highly increased levels of serglycin in 30% of the cases. Serglycin isolated from myeloma plasma cells was found to influence the bone mineralization process through inhibition of the crystal growth rate of hydroxyapatite. This rate reduction was attributed to adsorption and further blocking of the active growth sites on the crystal surface. The apparent order of the crystallization reaction was found to be n=2, suggesting a surface diffusion-controlled spiral growth mechanism. Our findings suggest that serglycin release is a constitutive process, which may be of fundamental biological importance in the study of MM.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, F-46 Huddinge University Hospital, SE-14186 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Beiting DP, Park PW, Appleton JA. Synthesis of syndecan-1 by skeletal muscle cells is an early response to infection with Trichinella spiralis but is not essential for nurse cell development. Infect Immun 2006; 74:1941-3. [PMID: 16495570 PMCID: PMC1418630 DOI: 10.1128/iai.74.3.1941-1943.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trichinella spiralis creates a unique intracellular habitat in striated muscle. We report that a proteoglycan, syndecan-1, is induced early in infection yet is not essential for habitat development and exerts a modest influence on the immune response. This report is the first to address the requirement for a specific muscle protein in trichinellosis by using mice deficient in the relevant gene.
Collapse
Affiliation(s)
- Daniel P Beiting
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
22
|
Langford JK, Yang Y, Kieber-Emmons T, Sanderson RD. Identification of an invasion regulatory domain within the core protein of syndecan-1. J Biol Chem 2004; 280:3467-73. [PMID: 15563454 DOI: 10.1074/jbc.m412451200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among the four members of the syndecan family there exists a high level of divergence in the ectodomain core protein sequence. This has led to speculation that these core proteins bear important functional domains. However, there is little information regarding these functions, and thus far, the biological activity of syndecans has been attributed largely to their heparan sulfate chains. We have previously demonstrated that cell surface syndecan-1 inhibits invasion of tumor cells into three-dimensional gels composed of type I collagen. Inhibition of invasion is dependent on the syndecan heparan sulfate chains, but a role for the syndecan-1 ectodomain core protein was also indicated. To more closely examine this possibility and to map the regions of the ectodomain essential for syndecan-1-mediated inhibition of invasion, a panel of syndecan-1 mutational constructs was generated, and each construct was transfected individually into myeloma tumor cells. The anti-invasive effect of syndecan-1 is dramatically reduced by deletion of an ectodomain region close to the plasma membrane. Further mutational analysis identified a stretch of 5 hydrophobic amino acids, AVAAV (amino acids 222-226), critical for syndecan-1-mediated inhibition of cell invasion. This invasion regulatory domain is 26 amino acids from the start of the transmembrane domain. Importantly, this domain is functionally specific because its mutation does not affect syndecan-1-mediated cell binding to collagen, syndecan-1-mediated cell spreading, or targeting of syndecan-1 to specific cell surface domains. This invasion regulatory domain may play an important role in inhibiting tumor cell invasion, thus explaining the observed loss of syndecan-1 in some highly invasive cancers.
Collapse
Affiliation(s)
- J Kevin Langford
- Department of Pathology, Arkansas Cancer Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | |
Collapse
|
23
|
Reiland J, Sanderson RD, Waguespack M, Barker SA, Long R, Carson DD, Marchetti D. Heparanase Degrades Syndecan-1 and Perlecan Heparan Sulfate. J Biol Chem 2004; 279:8047-55. [PMID: 14630925 DOI: 10.1074/jbc.m304872200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparanase (HPSE-1) is involved in the degradation of both cell-surface and extracellular matrix (ECM) heparan sulfate (HS) in normal and neoplastic tissues. Degradation of heparan sulfate proteoglycans (HSPG) in mammalian cells is dependent upon the enzymatic activity of HPSE-1, an endo-beta-d-glucuronidase, which cleaves HS using a specific endoglycosidic hydrolysis rather than an eliminase type of action. Elevated HPSE-1 levels are associated with metastatic cancers, directly implicating HPSE-1 in tumor progression. The mechanism of HPSE-1 action to promote tumor progression may involve multiple substrates because HS is present on both cell-surface and ECM proteoglycans. However, the specific targets of HPSE-1 action are not known. Of particular interest is the relationship between HPSE-1 and HSPG, known for their involvement in tumor progression. Syndecan-1, an HSPG, is ubiquitously expressed at the cell surface, and its role in cancer progression may depend upon its degradation. Conversely, another HSPG, perlecan, is an important component of basement membranes and ECM, which can promote invasive behavior. Down-regulation of perlecan expression suppresses the invasive behavior of neoplastic cells in vitro and inhibits tumor growth and angiogenesis in vivo. In this work we demonstrate the following. 1) HPSE-1 cleaves HS present on the cell surface of metastatic melanoma cells. 2) HPSE-1 specifically degrades HS chains of purified syndecan-1 or perlecan HS. 3) Syndecan-1 does not directly inhibit HPSE-1 enzymatic activity. 4) The presence of exogenous syndecan-1 inhibits HPSE-1-mediated invasive behavior of melanoma cells by in vitro chemoinvasion assays. 5) Inhibition of HPSE-1-induced invasion requires syndecan-1 HS chains. These results demonstrate that cell-surface syndecan-1 and ECM perlecan are degradative targets of HPSE-1, and syndecan-1 regulates HPSE-1 biological activity. This suggest that expression of syndecan-1 on the melanoma cell surface and its degradation by HPSE-1 are important determinants in the control of tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Jane Reiland
- Department of Comparative Biomedical Sciences-SVM, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Couchman JR. Syndecans: proteoglycan regulators of cell-surface microdomains? Nat Rev Mol Cell Biol 2004; 4:926-37. [PMID: 14685171 DOI: 10.1038/nrm1257] [Citation(s) in RCA: 329] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- John R Couchman
- Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|