1
|
Cissé OH, Ma L, Kovacs JA. Retracing the evolution of Pneumocystis species, with a focus on the human pathogen Pneumocystis jirovecii. Microbiol Mol Biol Rev 2024; 88:e0020222. [PMID: 38587383 PMCID: PMC11332345 DOI: 10.1128/mmbr.00202-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
SUMMARYEvery human being is presumed to be infected by the fungus Pneumocystis jirovecii at least once in his or her lifetime. This fungus belongs to a large group of species that appear to exclusively infect mammals, with P. jirovecii being the only one known to cause disease in humans. The mystery of P. jirovecii origin and speciation is just beginning to unravel. Here, we provide a review of the major steps of P. jirovecii evolution. The Pneumocystis genus likely originated from soil or plant-associated organisms during the period of Cretaceous ~165 million years ago and successfully shifted to mammals. The transition coincided with a substantial loss of genes, many of which are related to the synthesis of nutrients that can be scavenged from hosts or cell wall components that could be targeted by the mammalian immune system. Following the transition, the Pneumocystis genus cospeciated with mammals. Each species specialized at infecting its own host. Host specialization is presumably built at least partially upon surface glycoproteins, whose protogene was acquired prior to the genus formation. P. jirovecii appeared at ~65 million years ago, overlapping with the emergence of the first primates. P. jirovecii and its sister species P. macacae, which infects macaques nowadays, may have had overlapping host ranges in the distant past. Clues from molecular clocks suggest that P. jirovecii did not cospeciate with humans. Molecular evidence suggests that Pneumocystis speciation involved chromosomal rearrangements and the mounting of genetic barriers that inhibit gene flow among species.
Collapse
Affiliation(s)
- Ousmane H. Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
3
|
Sonnberger J, Kasper L, Lange T, Brunke S, Hube B. "We've got to get out"-Strategies of human pathogenic fungi to escape from phagocytes. Mol Microbiol 2024; 121:341-358. [PMID: 37800630 DOI: 10.1111/mmi.15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023]
Abstract
Human fungal pathogens are a deadly and underappreciated risk to global health that most severely affect immunocompromised individuals. A virulence attribute shared by some of the most clinically relevant fungal species is their ability to survive inside macrophages and escape from these immune cells. In this review, we discuss the mechanisms behind intracellular survival and elaborate how escape is mediated by lytic and non-lytic pathways as well as strategies to induce programmed host cell death. We also discuss persistence as an alternative to rapid host cell exit. In the end, we address the consequences of fungal escape for the host immune response and provide future perspectives for research and development of targeted therapies.
Collapse
Affiliation(s)
- Johannes Sonnberger
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
4
|
Miao Y, Ding T, Liu Y, Zhou X, Du J. The Yeast and Hypha Phases of Candida krusei Induce the Apoptosis of Bovine Mammary Epithelial Cells via Distinct Signaling Pathways. Animals (Basel) 2023; 13:3222. [PMID: 37893947 PMCID: PMC10603689 DOI: 10.3390/ani13203222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Infection with Candida spp. is a significant cause of bovine mastitis globally. We previously found that C. krusei was the main pathogen causing mycotic mastitis in dairy cows in Yinchuan, Ningxia, China. However, whether the infection of this pathogen could induce apoptosis in BMECs remained unclear. In this report, we explored the apoptosis and underlying mechanism of BMECs induced by C. krusei yeast and hypha phases using a pathogen/host cell co-culture model. Our results revealed that both the yeast and hypha phases of C. krusei could induce BMEC apoptosis; however, the yeast phase induced more cell apoptosis than the hypha phase, as assessed via electronic microscopy and flow cytometry assays. This finding was further corroborated via the measurement of the mitochondrial membrane potential (MMP) and the TUNEL test. Infection by both the yeast and hypha phases of C. krusei greatly induced the expression of proteins associated with cell death pathways and important components of toll-like receptor (TLR) signaling, including TLR2 and TLR4 receptors, as determined via a Western blotting assay. BMECs mainly underwent apoptosis after infection by the C. krusei yeast phase through a mitochondrial pathway. Meanwhile, BMEC apoptosis induced by the C. krusei hypha phase was regulated by a death ligand/receptor pathway. In addition, C. krusei-induced BMEC apoptosis was regulated by both the TLR2/ERK and JNK/ERK signaling pathways. These data suggest that the yeast phase and hypha phase of C. krusei induce BMEC apoptosis through distinct cell signaling pathways. This study represents a unique perspective on the molecular processes underlying BMEC apoptosis in response to C. krusei infection.
Collapse
Affiliation(s)
- Yuhang Miao
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Tao Ding
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Yang Liu
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Xuezhang Zhou
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Jun Du
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
5
|
Kaczmarek A, Wrońska AK, Boguś MI. The Changes in Mitochondrial Morphology and Physiology Accompanying Apoptosis in Galleria mellonella (Lepidoptera) Immunocompetent Cells during Conidiobolus coronatus (Entomophthorales) Infection. Int J Mol Sci 2023; 24:10169. [PMID: 37373316 PMCID: PMC10299656 DOI: 10.3390/ijms241210169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, their role in insects is not fully understood; thus, more indepth studies of insect cell apoptosis are necessary. The present study investigates mitochondrial involvement during Conidiobolus coronatus-induced apoptosis in Galleria mellonella hemocytes. Previous research has shown that fungal infection could induce apoptosis in insect hemocytes. Our findings indicate that mitochondria undergo several morphological and physiological changes during fungal infection, e.g., loss of mitochondrial membrane potential, megachannel formation, disturbances in intracellular respiration, increased nonrespiratory oxygen consumption in mitochondria, decreased ATP-coupled oxygen consumption and increased non-ATP-coupled oxygen consumption, decreased extracellular and intracellular oxygen consumption, and increased extracellular pH. Our findings confirm that G. mellonella immunocompetent cells demonstrate Ca2+ overload in mitochondria, translocation of cytochrome c-like protein from mitochondrial to cytosol fraction, and higher activation of caspase-9-like protein after C. coronatus infection. Most importantly, several of the changes observed in insect mitochondria are similar to those accompanying apoptosis in mammalian cells, suggesting that the process is evolutionarily conserved.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Science, Wilcza 64, 00-679 Warsaw, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-875 Warsaw, Poland
| | - Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Science, Wilcza 64, 00-679 Warsaw, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-875 Warsaw, Poland
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Science, Wilcza 64, 00-679 Warsaw, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-875 Warsaw, Poland
- Biomibo, 04-872 Warsaw, Poland
| |
Collapse
|
6
|
Wu H, Wang L, Wang W, Shao Z, Jia X, Xiao H, Chen J. The secretory Candida effector Sce1 licenses fungal virulence by masking the immunogenic β-1,3-glucan and promoting apoptosis of the host cells. MLIFE 2023; 2:159-177. [PMID: 38817625 PMCID: PMC10989805 DOI: 10.1002/mlf2.12066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2024]
Abstract
Candida albicans deploys a variety of mechanisms such as morphological switch and elicitor release to promote virulence. However, the intricate interactions between the fungus and the host remain poorly understood, and a comprehensive inventory of fungal virulence factors has yet to be established. In this study, we identified a C. albicans secretory effector protein Sce1, whose induction and secretion are associated with vagina-simulative conditions and chlamydospore formation. Sequence alignment showed that Sce1 belongs to a Pir family in C. albicans, which is conserved across several fungi and primarily characterized as a β-glucan binding protein in the Saccharomyces cerevisiae. Mechanically, Sce1 is primarily localized to the cell wall in a cleaved form as an alkali-labile β-1,3-glucan binding protein and plays a role in masking β-glucan in acidic environments and chlamydospores, a feature that might underline C. albicans' ability to evade host immunity. Further, a cleaved short form of Sce1 protein could be released into extracellular compartments and presented in bone marrow-derived macrophages infected with chlamydospores. This cleaved short form of Sce1 also demonstrated a unique ability to trigger the caspases-8/9-dependent apoptosis in various host cells. Correspondingly, genetic deletion of SCE1 led to dampened vaginal colonization of C. albicans and diminished fungal virulence during systemic infection. The discovery of Sce1 as a versatile virulence effector that executes at various compartments sheds light on the fungus-host interactions and C. albicans pathogenesis.
Collapse
Affiliation(s)
- Hongyu Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Li Wang
- The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Wenjuan Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Zhugui Shao
- The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical SciencesShandong UniversityJinanChina
| | - Xin‐Ming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Hui Xiao
- The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
7
|
Leroy J, Lecointe K, Coulon P, Sendid B, Robert R, Poulain D. Antibodies as Models and Tools to Decipher Candida albicans Pathogenic Development: Review about a Unique Monoclonal Antibody Reacting with Immunomodulatory Adhesins. J Fungi (Basel) 2023; 9:636. [PMID: 37367572 DOI: 10.3390/jof9060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Candidiasis, caused mainly by Candida albicans, a natural commensal of the human digestive tract and vagina, is the most common opportunistic fungal infection at the mucosal and systemic levels. Its high morbi-mortality rates have led to considerable research to identify the molecular mechanisms associated with the switch to pathogenic development and to diagnose this process as accurately as possible. Since the 1980s, the advent of monoclonal antibody (mAb) technology has led to significant progress in both interrelated fields. This linear review, intended to be didactic, was prompted by considering how, over several decades, a single mAb designated 5B2 contributed to the elucidation of the molecular mechanisms of pathogenesis based on β-1,2-linked oligomannoside expression in Candida species. These contributions starting from the structural identification of the minimal epitope as a di-mannoside from the β-1,2 series consisted then in the demonstration that it was shared by a large number of cell wall proteins differently anchored in the cell wall and the discovery of a cell wall glycoplipid shed by the yeast in contact of host cells, the phospholipomannan. Cytological analysis revealed an overall highly complex epitope expression at the cell surface concerning all growth phases and a patchy distribution resulting from the merging of cytoplasmic vesicles to plasmalema and further secretion through cell wall channels. On the host side, the mAb 5B2 led to identification of Galectin-3 as the human receptor dedicated to β-mannosides and signal transduction pathways leading to cytokine secretion directing host immune responses. Clinical applications concerned in vivo imaging of Candida infectious foci, direct examination of clinical samples and detection of circulating serum antigens that complement the Platelia Ag test for an increased sensitivity of diagnosis. Finally, the most interesting character of mAb 5B2 is probably its ability to reveal C. albicans pathogenic behaviour in reacting specifically with vaginal secretions from women infected versus colonized by this species as well as to display higher reactivity with strains isolated in pathogenic circumstances or even linked to an unfavourable prognosis for systemic candidiasis. Together with a detailed referenced description of these studies, the review provides a complementary reading frame by listing the wide range of technologies involving mAb 5B2 over time, evidencing a practical robustness and versatility unique so far in the Candida field. Finally, the basic and clinical perspectives opened up by these studies are briefly discussed with regard to prospects for future applications of mAb 5B2 in current research challenges.
Collapse
Affiliation(s)
- Jordan Leroy
- CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, F-59000 Lille, France
- INSERM U1285, University of Lille, F-59000 Lille, France
- CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Karine Lecointe
- CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, F-59000 Lille, France
- INSERM U1285, University of Lille, F-59000 Lille, France
| | - Pauline Coulon
- CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Boualem Sendid
- CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, F-59000 Lille, France
- INSERM U1285, University of Lille, F-59000 Lille, France
- CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Raymond Robert
- Kalidiv ZA, La Garde Bâtiment 1 B, Allée du 9 Novembre 1989, F-49240 Avrillé, France
| | - Daniel Poulain
- CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, F-59000 Lille, France
- INSERM U1285, University of Lille, F-59000 Lille, France
| |
Collapse
|
8
|
Lange T, Kasper L, Gresnigt MS, Brunke S, Hube B. "Under Pressure" - How fungi evade, exploit, and modulate cells of the innate immune system. Semin Immunol 2023; 66:101738. [PMID: 36878023 PMCID: PMC10109127 DOI: 10.1016/j.smim.2023.101738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 03/06/2023]
Abstract
The human immune system uses an arsenal of effector mechanisms to prevent and counteract infections. Yet, some fungal species are extremely successful as human pathogens, which can be attributed to a wide variety of strategies by which these fungi evade, exploit, and modulate the immune system. These fungal pathogens normally are either harmless commensals or environmental fungi. In this review we discuss how commensalism, but also life in an environmental niche without human contact, can drive the evolution of diverse and specialized immune evasion mechanisms. Correspondingly, we discuss the mechanisms contributing to the ability of these fungi to cause superficial to life-threatening infections.
Collapse
Affiliation(s)
- Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
9
|
Ma Y, Deng W, Zhang K, Song Y, Zhang L, Shao J, Liu X, Wan Z, Wang X, Li R. Dual RNA-Sequencing and Liquid Chromatography-Mass Spectrometry Unveil Specific Insights on the Pathogenicity of Trichophyton mentagrophytes Complex. J Invest Dermatol 2023; 143:470-479.e6. [PMID: 38295003 DOI: 10.1016/j.jid.2022.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022]
Abstract
Trichophyton mentagrophytes is increasingly considered to be a public health hazard because it causes the most severe manifestations of dermatophytosis. In this study, we performed a series of studies to determine the pathogenicity of the T. mentagrophytes complex. We show that the T. mentagrophytes complex interacts with keratinocytes through pattern-recognition receptors‒MAPK/noncanonical NF-κB pathways and that the hyphal form of T. mentagrophytes is responsible for the increased inflammatory responses in keratinocytes. Moreover, SN-38 is likely a toxin of T. mentagrophytes that induces apoptosis in keratinocytes both in vivo and in vitro. Our results explain the severe pathogenicity and destructiveness of T. mentagrophytes observed in the clinic and pave the way for designing novel toxin-directed therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Yubo Ma
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Research Center for Medical Mycology, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Weiwei Deng
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Research Center for Medical Mycology, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Kai Zhang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Research Center for Medical Mycology, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Research Center for Medical Mycology, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Lu Zhang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Research Center for Medical Mycology, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Jin Shao
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Research Center for Medical Mycology, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xiao Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Research Center for Medical Mycology, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Zhe Wan
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Research Center for Medical Mycology, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xiaowen Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Research Center for Medical Mycology, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Research Center for Medical Mycology, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China.
| |
Collapse
|
10
|
Zhao S, Shang A, Guo M, Shen L, Han Y, Huang X. The advances in the regulation of immune microenvironment by Candida albicans and macrophage cross-talk. Front Microbiol 2022; 13:1029966. [PMID: 36466634 PMCID: PMC9717684 DOI: 10.3389/fmicb.2022.1029966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/07/2022] [Indexed: 04/04/2024] Open
Abstract
Candida albicans (C. albicans) is the most common causative agent of invasive fungal infections in hospitals. The body defends against and eliminates C. albicans infection by various mechanisms of immune response, and the latter mechanism of immune evasion is a major challenge in the clinical management of C. albicans infection. The role of macrophages in combating C. albicans infection has only recently been recognized, but the mechanisms remain to be elucidated. This review focuses on the interaction between C. albicans and macrophages (macrophages), which causes the body to generate an immune response or C. albicans immune escape, and then regulates the body's immune microenvironment, to explore the effect of C. albicans virulence resistance vs. macrophage killing and clarify the role and mechanism of C. albicans pathogenesis. In general, a thorough understanding of the molecular principles driving antifungal drug resistance is essential for the development of innovative treatments that can counteract both existing and emerging fungal threats.
Collapse
Affiliation(s)
- Shuo Zhao
- Department of Dermatology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Anquan Shang
- Department of Laboratory Medicine, The Second People’s Hospital of Lianyungang, Lianyungang, China
| | - Mengchen Guo
- Department of Dermatology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Liangliang Shen
- Department of Dermatology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Yu Han
- Department of Dermatology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Xin Huang
- Department of Dermatology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Pathogenesis of Fungal Infections in the Central Nervous System: Host and Pathogen Factors in Neurotropism. CURRENT FUNGAL INFECTION REPORTS 2022. [DOI: 10.1007/s12281-022-00444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Blagojevic M, Camilli G, Maxson M, Hube B, Moyes DL, Richardson JP, Naglik JR. Candidalysin triggers epithelial cellular stresses that induce necrotic death. Cell Microbiol 2021; 23:e13371. [PMID: 34085369 DOI: 10.1111/cmi.13371] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022]
Abstract
Candida albicans is a common opportunistic fungal pathogen that causes a wide range of infections from superficial mucosal to hematogenously disseminated candidiasis. The hyphal form plays an important role in the pathogenic process by invading epithelial cells and causing tissue damage. Notably, the secretion of the hyphal toxin candidalysin is essential for both epithelial cell damage and activation of mucosal immune responses. However, the mechanism of candidalysin-induced cell death remains unclear. Here, we examined the induction of cell death by candidalysin in oral epithelial cells. Fluorescent imaging using healthy/apoptotic/necrotic cell markers revealed that candidalysin causes a rapid and marked increase in the population of necrotic rather than apoptotic cells in a concentration dependent manner. Activation of a necrosis-like pathway was confirmed since C. albicans and candidalysin failed to activate caspase-8 and -3, or the cleavage of poly (ADP-ribose) polymerase. Furthermore, oral epithelial cells treated with candidalysin showed rapid production of reactive oxygen species, disruption of mitochondria activity and mitochondrial membrane potential, ATP depletion and cytochrome c release. Collectively, these data demonstrate that oral epithelial cells respond to the secreted fungal toxin candidalysin by triggering numerous cellular stress responses that induce necrotic death. TAKE AWAYS: Candidalysin secreted from Candida albicans causes epithelial cell stress. Candidalysin induces calcium influx and oxidative stress in host cells. Candidalysin induces mitochondrial dysfunction, ATP depletion and epithelial necrosis. The toxicity of candidalysin is mediated from the epithelial cell surface.
Collapse
Affiliation(s)
- Mariana Blagojevic
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Giorgio Camilli
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Michelle Maxson
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany.,Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
13
|
Williams TJ, Gonzales-Huerta LE, Armstrong-James D. Fungal-Induced Programmed Cell Death. J Fungi (Basel) 2021; 7:jof7030231. [PMID: 33804601 PMCID: PMC8003624 DOI: 10.3390/jof7030231] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/01/2023] Open
Abstract
Fungal infections are a cause of morbidity in humans, and despite the availability of a range of antifungal treatments, the mortality rate remains unacceptably high. Although our knowledge of the interactions between pathogenic fungi and the host continues to grow, further research is still required to fully understand the mechanism underpinning fungal pathogenicity, which may provide new insights for the treatment of fungal disease. There is great interest regarding how microbes induce programmed cell death and what this means in terms of the immune response and resolution of infection as well as microbe-specific mechanisms that influence cell death pathways to aid in their survival and continued infection. Here, we discuss how programmed cell death is induced by fungi that commonly cause opportunistic infections, including Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans, the role of programmed cell death in fungal immunity, and how fungi manipulate these pathways.
Collapse
|
14
|
Camilli G, Blagojevic M, Naglik JR, Richardson JP. Programmed Cell Death: Central Player in Fungal Infections. Trends Cell Biol 2020; 31:179-196. [PMID: 33293167 DOI: 10.1016/j.tcb.2020.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022]
Abstract
Fungal diseases contribute significantly to morbidity and mortality in humans. Although recent research has improved our understanding of the complex and dynamic interplay that occurs between pathogenic fungi and the human host, much remains to be elucidated concerning the molecular mechanisms that drive fungal pathogenicity and host responses to fungal infections. In recent times, there has been a significant increase in studies investigating the immunological functions of microbial-induced host cell death. In addition, pathogens use many strategies to manipulate host cell death pathways to facilitate their survival and dissemination. This review will focus on the mechanisms of host programmed cell death that occur during opportunistic fungal infections, and explore how cell death pathways may affect immunity towards pathogenic fungi.
Collapse
Affiliation(s)
- Giorgio Camilli
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK.
| | - Mariana Blagojevic
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| |
Collapse
|
15
|
Characterization of the 6-O-acetylated lipoglucuronomannogalactan a novel Cryptococcus neoformans cell wall polysaccharide. Carbohydr Res 2019; 475:1-10. [PMID: 30742969 DOI: 10.1016/j.carres.2019.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
Abstract
Glucuronoxylomannogalactans (GXMGals) are characteristic capsular polysaccharides produced by the opportunistic fungus C. neoformans, which are implicated in cryptococcal virulence, via impairment of the host immune response. We determined for the first time the structure of a lipoglucuronomannogalactan (LGMGal), isolated from the surface of a mutant C. neoformans carrying a deletion in the UDP-GlcA decarboxylase gene. Monosaccharide composition and methylation analyses, as well as nuclear magnetic resonance spectroscopy were employed in discerning the structure. Our results show that the polysaccharide structure of the LGMGal differs from GXMGal by the absence of xylose and 2-O-acetylated mannose residues. LGMGal consists of a galactan main chain -[-6-α-Gal-]-, where every second Gal residue is substituted at O-3 with an oligosaccharide α-Man6OAc-3-α-Man-4-(β-GlcA-3)-β-Gal-; components in italic being non-stoichiometric. The substitution rate of β-Galp units by GlcpA is 35%. Additionally, we determined that the glycolipid anchor of the LGMGal is based on an myo-inositol phosphoceramide composed of C18-phytosphingosine and monohydroxylated lignoceric acid (2OHC24:0 fatty acid).
Collapse
|
16
|
Pérez-Arques C, Navarro-Mendoza MI, Murcia L, Lax C, Martínez-García P, Heitman J, Nicolás FE, Garre V. Mucor circinelloides Thrives inside the Phagosome through an Atf-Mediated Germination Pathway. mBio 2019; 10:e02765-18. [PMID: 30723131 PMCID: PMC6428757 DOI: 10.1128/mbio.02765-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 11/20/2022] Open
Abstract
Mucormycosis is an emerging fungal infection that is often lethal due to the ineffectiveness of current therapies. Here, we have studied the first stage of this infection-the germination of Mucor circinelloides spores inside phagocytic cells-from an integrated transcriptomic and functional perspective. A relevant fungal gene network is remodeled in response to phagocytosis, being enriched in crucial functions to survive and germinate inside the phagosome, such as nutritional adaptation and response to oxidative stress. Correspondingly, the phagocytic cells induced a specific proinflammatory and apoptotic response to the pathogenic strain. Deletion of fungal genes encoding putative transcription factors (atf1, atf2, and gcn4), extracellular proteins (chi1 and pps1), and an aquaporin (aqp1) revealed that these genes perform important roles in survival following phagocytosis, germination inside the phagosome, and virulence in mice. atf1 and atf2 play a major role in these pathogenic processes, since their mutants showed the strongest phenotypes and both genes control a complex gene network of secondarily regulated genes, including chi1 and aqp1 These new insights into the initial phase of mucormycosis define genetic regulators and molecular processes that could serve as pharmacological targets.IMPORTANCE Mucorales are a group of ancient saprophytic fungi that cause neglected infectious diseases collectively known as mucormycoses. The molecular processes underlying the establishment and progression of this disease are largely unknown. Our work presents a transcriptomic study to unveil the Mucor circinelloides genetic network triggered in fungal spores in response to phagocytosis by macrophages and the transcriptional response of the host cells. Functional characterization of differentially expressed fungal genes revealed three transcription factors and three extracellular proteins essential for the fungus to survive and germinate inside the phagosome and to cause disease in mice. Two of the transcription factors, highly similar to activating transcription factors (ATFs), coordinate a complex secondary gene response involved in pathogenesis. The significance of our research is in characterizing the initial stages that lead to evasion of the host innate immune response and, in consequence, the dissemination of the infection. This genetic study offers possible targets for novel antifungal drugs against these opportunistic human pathogens.
Collapse
Affiliation(s)
- Carlos Pérez-Arques
- Departamento de Genética y Microbiología, Universidad de Murcia, Murcia, Spain
| | | | - Laura Murcia
- Departamento de Genética y Microbiología, Universidad de Murcia, Murcia, Spain
| | - Carlos Lax
- Departamento de Genética y Microbiología, Universidad de Murcia, Murcia, Spain
| | | | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Francisco E Nicolás
- Departamento de Genética y Microbiología, Universidad de Murcia, Murcia, Spain
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
17
|
Shibasaki S, Karasaki M, Aoki W, Ueda M. Molecular and Physiological Study of Candida albicans by Quantitative Proteome Analysis. Proteomes 2018; 6:proteomes6030034. [PMID: 30231513 PMCID: PMC6160938 DOI: 10.3390/proteomes6030034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is one of the major pathogens that cause the serious infectious condition known as candidiasis. C. albicans was investigated by proteome analysis to systematically examine its virulence factors and to promote the development of novel pharmaceuticals against candidiasis. Here, we review quantitative time-course proteomics data related to C. albicans adaptation to fetal bovine serum, which were obtained using a nano-liquid chromatography/tandem mass spectrometry system equipped with a long monolithic silica capillary column. It was revealed that C. albicans induced proteins involved in iron acquisition, detoxification of oxidative species, energy production, and pleiotropic stress tolerance. Native interactions of C. albicans with macrophages were also investigated with the same proteome-analysis system. Simultaneous analysis of C. albicans and macrophages without isolating individual living cells revealed an attractive strategy for studying the survival of C. albicans. Although those data were obtained by performing proteome analyses, the molecular physiology of C. albicans is discussed and trials related to pharmaceutical applications are also examined.
Collapse
Affiliation(s)
- Seiji Shibasaki
- General Education Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan.
| | - Miki Karasaki
- General Education Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan.
| | - Wataru Aoki
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
18
|
Marcos CM, de Oliveira HC, de Melo WDCMA, da Silva JDF, Assato PA, Scorzoni L, Rossi SA, de Paula E Silva ACA, Mendes-Giannini MJS, Fusco-Almeida AM. Anti-Immune Strategies of Pathogenic Fungi. Front Cell Infect Microbiol 2016; 6:142. [PMID: 27896220 PMCID: PMC5108756 DOI: 10.3389/fcimb.2016.00142] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/13/2016] [Indexed: 12/24/2022] Open
Abstract
Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi.
Collapse
Affiliation(s)
- Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Wanessa de Cássia M Antunes de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Julhiany de Fátima da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Suélen A Rossi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| |
Collapse
|
19
|
Moyes DL, Richardson JP, Naglik JR. Candida albicans-epithelial interactions and pathogenicity mechanisms: scratching the surface. Virulence 2016; 6:338-46. [PMID: 25714110 PMCID: PMC4601190 DOI: 10.1080/21505594.2015.1012981] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Until recently, epithelial cells have been a largely ignored component of host responses to microbes. However, this has been largely overturned over the last decade as an ever increasing number of studies have highlighted the key role that these cells play in many of our interactions with our microbiota and pathogens. Interactions of these cells with Candida albicans have been shown to be critical not just in host responses, but also in fungal cell responses, regulating fungal morphology and gene expression profile. In this review, we will explore the interactions between C. albicans and epithelial cells, and discuss how these interactions affect our relationship with this fungus.
Collapse
Affiliation(s)
- David L Moyes
- a Mucosal & Salivary Biology Division ; King's College London Dental Institute; King's College London ; London , UK
| | | | | |
Collapse
|
20
|
Höfs S, Mogavero S, Hube B. Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota. J Microbiol 2016; 54:149-69. [DOI: 10.1007/s12275-016-5514-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/03/2015] [Accepted: 11/07/2015] [Indexed: 12/20/2022]
|
21
|
Initiation of phospholipomannan β-1,2 mannosylation involves Bmts with redundant activity, influences its cell wall location and regulates β-glucans homeostasis but is dispensable for Candida albicans systemic infection. Biochimie 2016; 120:96-104. [PMID: 26427558 PMCID: PMC7614791 DOI: 10.1016/j.biochi.2015.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/25/2015] [Indexed: 11/20/2022]
Abstract
Pathogenic and non-pathogenic fungi synthesize glycosphingolipids, which have a crucial role in growth and viability. Glycosphingolipids also contribute to fungal-associated pathogenesis. The opportunistic yeast pathogen Candida albicans synthesizes phospholipomannan (PLM), which is a glycosphingolipid of the mannosylinositol phosphorylceramide family. Through its lipid and glycan moieties, PLM contributes to the initial recognition of the yeast, causing immune system disorder and persistent fungal disease through activation of host signaling pathways. The lipid moiety of PLM activates the deregulation signaling pathway involved in yeast phagocytosis whereas its glycan moiety, composed of β-1,2 mannosides (β-Mans), participates to inflammatory processes through a mechanism involving Galectin-3. Biosynthesis of PLM β-Mans involves two β-1,2 mannosyltransferases (Bmts) that initiate (Bmt5) and elongate (Bmt6) the glycan chains. After generation of double bmtsΔ mutants, we show that Bmt5 has redundant activity with Bmt2, which can replace Bmt5 in bmt5Δ mutant. We also report that PLM is located in the inner layer of the yeast cell wall. PLM seems to be not essential for systemic infection of the yeast. However, defect of PLM β-mannosylation increases resistance of C. albicans to inhibitors of β-glucans and chitin synthesis, highlighting a role of PLM in cell wall homeostasis.
Collapse
|
22
|
Kitahara N, Morisaka H, Aoki W, Takeda Y, Shibasaki S, Kuroda K, Ueda M. Description of the interaction between Candida albicans and macrophages by mixed and quantitative proteome analysis without isolation. AMB Express 2015; 5:127. [PMID: 26179440 PMCID: PMC4503712 DOI: 10.1186/s13568-015-0127-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/25/2015] [Indexed: 11/21/2022] Open
Abstract
Candida albicans is an opportunistic pathogen that causes fatal diseases in immunocompromised hosts. Host resistance against C. albicans relies on ingestion of the pathogen by macrophages. Analysis of the escaping behavior of C. albicans from macrophages is required to understand the onset of systemic candidiasis. In this study, native interactions of C. albicans with macrophages were investigated by proteome analysis using high efficiency of long monolithic silica capillary column. Using this system, we developed a method of “mixed and quantitative proteome analysis” in which C. albicans and macrophages were simultaneously analyzed by nanoLC–MS/MS without the need to isolate the two individual living cells. Two hundred twenty-seven proteins from C. albicans and five proteins from macrophages were identified as candidate interaction-specific molecules. C. albicans seemed to produce glucose through a β-oxidation pathway, a glyoxylate cycle, and gluconeogenesis for escape from macrophages. Up-regulation of stress-related and candidate pathogenic proteins in C. albicans indicated how C. albicans endured the harsh environment inside the macrophages. Down-regulation of apoptosis-associated protein NOA1- and chaperone HSPA1A-syntheses in macrophage indicated that C. albicans was able to escape from macrophages in part by suppressing the production of these macrophage proteins.
Collapse
|
23
|
Fradin C, Bernardes ES, Jouault T. Candida albicans phospholipomannan: a sweet spot for controlling host response/inflammation. Semin Immunopathol 2014; 37:123-30. [DOI: 10.1007/s00281-014-0461-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/04/2014] [Indexed: 12/16/2022]
|
24
|
Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells. Int J Med Microbiol 2014; 304:626-36. [DOI: 10.1016/j.ijmm.2014.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/31/2014] [Accepted: 04/21/2014] [Indexed: 12/18/2022] Open
|
25
|
Affiliation(s)
- Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
26
|
|
27
|
Abstract
The fungal pathogen Candida albicans causes macrophage death and escapes, but the molecular mechanisms remained unknown. Here we used live-cell imaging to monitor the interaction of C. albicans with macrophages and show that C. albicans kills macrophages in two temporally and mechanistically distinct phases. Early upon phagocytosis, C. albicans triggers pyroptosis, a proinflammatory macrophage death. Pyroptosis is controlled by the developmental yeast-to-hypha transition of Candida. When pyroptosis is inactivated, wild-type C. albicans hyphae cause significantly less macrophage killing for up to 8 h postphagocytosis. After the first 8 h, a second macrophage-killing phase is initiated. This second phase depends on robust hyphal formation but is mechanistically distinct from pyroptosis. The transcriptional regulator Mediator is necessary for morphogenesis of C. albicans in macrophages and the establishment of the wild-type surface architecture of hyphae that together mediate activation of macrophage cell death. Our data suggest that the defects of the Mediator mutants in causing macrophage death are caused, at least in part, by reduced activation of pyroptosis. A Mediator mutant that forms hyphae of apparently wild-type morphology but is defective in triggering early macrophage death shows a breakdown of cell surface architecture and reduced exposed 1,3 β-glucan in hyphae. Our report shows how Candida uses host and pathogen pathways for macrophage killing. The current model of mechanical piercing of macrophages by C. albicans hyphae should be revised to include activation of pyroptosis by hyphae as an important mechanism mediating macrophage cell death upon C. albicans infection. Upon phagocytosis by macrophages, Candida albicans can transition to the hyphal form, which causes macrophage death and enables fungal escape. The current model is that the highly polarized growth of hyphae results in macrophage piercing. This model is challenged by recent reports of C. albicans mutants that form hyphae of wild-type morphology but are defective in killing macrophages. We show that C. albicans causes macrophage cell death by at least two mechanisms. Phase 1 killing (first 6 to 8 h) depends on the activation of the pyroptotic programmed host cell death by fungal hyphae. Phase 2 (up to 24 h) is rapid and depends on robust hyphal formation but is independent of pyroptosis. Our data provide a new model for how the interplay between fungal morphogenesis and activation of a host cell death pathway mediates macrophage killing by C. albicans hyphae.
Collapse
|
28
|
Essential functional modules for pathogenic and defensive mechanisms in Candida albicans infections. BIOMED RESEARCH INTERNATIONAL 2014; 2014:136130. [PMID: 24757665 PMCID: PMC3976935 DOI: 10.1155/2014/136130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/10/2014] [Indexed: 12/24/2022]
Abstract
The clinical and biological significance of the study of fungal pathogen Candida albicans (C. albicans) has markedly increased. However, the explicit pathogenic and invasive mechanisms of such host-pathogen interactions have not yet been fully elucidated. Therefore, the essential functional modules involved in C. albicans-zebrafish interactions were investigated in this study. Adopting a systems biology approach, the early-stage and late-stage protein-protein interaction (PPI) networks for both C. albicans and zebrafish were constructed. By comparing PPI networks at the early and late stages of the infection process, several critical functional modules were identified in both pathogenic and defensive mechanisms. Functional modules in C. albicans, like those involved in hyphal morphogenesis, ion and small molecule transport, protein secretion, and shifts in carbon utilization, were seen to play important roles in pathogen invasion and damage caused to host cells. Moreover, the functional modules in zebrafish, such as those involved in immune response, apoptosis mechanisms, ion transport, protein secretion, and hemostasis-related processes, were found to be significant as defensive mechanisms during C. albicans infection. The essential functional modules thus determined could provide insights into the molecular mechanisms of host-pathogen interactions during the infection process and thereby devise potential therapeutic strategies to treat C. albicans infection.
Collapse
|
29
|
Deficient beta-mannosylation of Candida albicans phospholipomannan affects the proinflammatory response in macrophages. PLoS One 2013; 8:e84771. [PMID: 24367694 PMCID: PMC3868656 DOI: 10.1371/journal.pone.0084771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/19/2013] [Indexed: 01/28/2023] Open
Abstract
Candida albicans produces a complex glycosphingolipid called phospholipomannan (PLM), which is present on the cell-wall surface of yeast and shed upon contact with host cells. The glycan moiety of PLM is composed of β-mannosides with degrees of polymerization up to 19 in C. albicans serotype A. PLM from serotype B strains displays a twofold decrease in the length of the glycan chains. In this study we compared the proinflammatory activities of PLMs purified from C. albicans serotype A and serotype B strains and from a bmt6Δ mutant of C. albicans, whose PLM is composed of short truncated oligomannosidic chain. We found that PLMs activate caspase-1 in murine macrophage cell line J774 independent of the glycan chain length although IL-1β secretion is more intense with long glycan chain. None of the tested PLMs stimulate ROS production, indicating that caspase-1 activation may occur through a ROS-independent pathway. On the other hand, only long-chain oligomannosides present on PLM from serotype A strain (PLM-A) are able to induce TNF-α production in macrophages, a property that is not affect by blocking endocytosis through latrunculin A treatment. Finally, we demonstrate that soluble and not cell surface-bound galectin-3, is able to potentiate PLM-A-induced TNF-α production in macrophages. PLMs from C. albicans serotype B and from bmt6∆ mutant are not able to induce TNF-α production and galectin-3 pretreatment does not interfere with this result. In conclusion, we show here that PLMs are able to evoke a proinflammatory state in macrophage, which is in part dependent on their glycosylation status. Long-glycan chains favor interaction with soluble galectin-3 and help amplify inflammatory response.
Collapse
|
30
|
Reales-Calderón JA, Sylvester M, Strijbis K, Jensen ON, Nombela C, Molero G, Gil C. Candida albicans induces pro-inflammatory and anti-apoptotic signals in macrophages as revealed by quantitative proteomics and phosphoproteomics. J Proteomics 2013; 91:106-35. [DOI: 10.1016/j.jprot.2013.06.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/16/2013] [Indexed: 12/11/2022]
|
31
|
Ifrim DC, Joosten LAB, Kullberg BJ, Jacobs L, Jansen T, Williams DL, Gow NAR, van der Meer JWM, Netea MG, Quintin J. Candida albicans primes TLR cytokine responses through a Dectin-1/Raf-1-mediated pathway. THE JOURNAL OF IMMUNOLOGY 2013; 190:4129-35. [PMID: 23475217 DOI: 10.4049/jimmunol.1202611] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The immune system is essential to maintain homeostasis with resident microbial populations, ensuring that the symbiotic host-microbial relationship is maintained. In parallel, commensal microbes significantly shape mammalian immunity at the host mucosal surface, as well as systemically. Candida albicans is an opportunistic pathogen that lives as a commensal on skin and mucosa of healthy individuals. Little is known about its capacity to modulate responses toward other microorganisms, such as colonizing bacteria (e.g., intestinal microorganisms). The aim of this study was to assess the cytokine production of PBMCs induced by commensal bacteria when these cells were primed by C. albicans. We show that C. albicans and β-1,3-glucan induce priming of human primary mononuclear cells and this leads to enhanced cytokine production upon in vitro stimulation with TLR ligands and bacterial commensals. This priming requires the β-1,3-glucan receptor dectin-1 and the noncanonical Raf-1 pathway. In addition, although purified mannans cannot solely mediate the priming, the presence of mannosyl residues in the cell wall of C. albicans is nevertheless required. In conclusion, C. albicans is able to modify cytokine responses to TLR ligands and colonizing bacteria, which is likely to impact the inflammatory reaction during mucosal diseases.
Collapse
Affiliation(s)
- Daniela C Ifrim
- Department of Experimental Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen 6525 GA, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Thriving within the host: Candida spp. interactions with phagocytic cells. Med Microbiol Immunol 2013; 202:183-95. [DOI: 10.1007/s00430-013-0288-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 01/04/2023]
|
33
|
Wagener J, Weindl G, de Groot PWJ, de Boer AD, Kaesler S, Thavaraj S, Bader O, Mailänder-Sanchez D, Borelli C, Weig M, Biedermann T, Naglik JR, Korting HC, Schaller M. Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells. PLoS One 2012; 7:e50518. [PMID: 23226301 PMCID: PMC3511564 DOI: 10.1371/journal.pone.0050518] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/23/2012] [Indexed: 12/20/2022] Open
Abstract
C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo.
Collapse
Affiliation(s)
- Jeanette Wagener
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Günther Weindl
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Piet W. J. de Groot
- Regional Center for Biomedical Research, Albacete Science & Technology Park, University of Castilla – La Mancha, Albacete, Spain
| | - Albert D. de Boer
- Regional Center for Biomedical Research, Albacete Science & Technology Park, University of Castilla – La Mancha, Albacete, Spain
- Department of Medical Microbiology and National Reference Center for Systemic Mycoses, University Medical Center Göttingen, Göttingen, Germany
| | - Susanne Kaesler
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Selvam Thavaraj
- Department of Oral Immunology, King’s College London Dental Institute, King’s College London, London, United Kingdom
| | - Oliver Bader
- Department of Medical Microbiology and National Reference Center for Systemic Mycoses, University Medical Center Göttingen, Göttingen, Germany
| | | | - Claudia Borelli
- Department of Dermatology, Ludwig-Maximilians-University, München, Germany
| | - Michael Weig
- Department of Medical Microbiology and National Reference Center for Systemic Mycoses, University Medical Center Göttingen, Göttingen, Germany
| | - Tilo Biedermann
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julian R. Naglik
- Department of Oral Immunology, King’s College London Dental Institute, King’s College London, London, United Kingdom
| | | | - Martin Schaller
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
34
|
|
35
|
Mille C, Fradin C, Delplace F, Trinel PA, Masset A, François N, Coddeville B, Bobrowicz P, Jouault T, Guerardel Y, Wildt S, Janbon G, Poulain D. Members 5 and 6 of the Candida albicans BMT family encode enzymes acting specifically on β-mannosylation of the phospholipomannan cell-wall glycosphingolipid. Glycobiology 2012; 22:1332-42. [PMID: 22745283 DOI: 10.1093/glycob/cws097] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A family of nine genes encoding proteins involved in the synthesis of β-1,2 mannose adhesins of Candida albicans has been identified. Four of these genes, BMT1-4, encode enzymes acting stepwise to add β-mannoses on to cell-wall phosphopeptidomannan (PPM). None of these acts on phospholipomannan (PLM), a glycosphingolipid member of the mannose-inositol-phosphoceramide family, which contributes with PPM to β-mannose surface expression. We show that deletion of BMT5 and BMT6 led to a dramatic reduction of PLM glycosylation and accumulation of PLM with a truncated β-oligomannoside chain, respectively. Disruptions had no effect on sphingolipid biosynthesis and on PPM β-mannosylation. β-Mannose surface expression was not affected, confirming that β-mannosylation is a process based on specificity of acceptor molecules, but liable to global regulation.
Collapse
|
36
|
Dementhon K, El-Kirat-Chatel S, Noël T. Development of an in vitro model for the multi-parametric quantification of the cellular interactions between Candida yeasts and phagocytes. PLoS One 2012; 7:e32621. [PMID: 22479332 PMCID: PMC3316538 DOI: 10.1371/journal.pone.0032621] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 02/02/2012] [Indexed: 11/18/2022] Open
Abstract
We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to fungal cells and phagocyte survival, and monitored in parallel the overall phagocytosis process by measuring the part of ingested fungal cells among the total fungal biomass that changed over time. Candida albicans, C. glabrata, and C. lusitaniae were used as a proof of concept: they exhibited species-specific differences in their association rate with phagocytes. The fungal biomass uptaken by the phagocytes differed significantly according to the Candida species. The measure of the survival of fungal and immune cells during the interaction showed that C. albicans was the more aggressive yeast in vitro, destroying the vast majority of the phagocytes within five hours. All three species of Candida were able to survive and to escape macrophage phagocytosis either by the intraphagocytic yeast-to-hyphae transition (C. albicans) and the fungal cell multiplication until phagocytes burst (C. glabrata, C. lusitaniae), or by the avoidance of phagocytosis (C. lusitaniae). We demonstrated that our model was sensitive enough to quantify small variations of the parameters of the interaction. The method has been conceived to be amenable to the high-throughput screening of mutants in order to unravel the molecular mechanisms involved in the interaction between yeasts and host phagocytes.
Collapse
Affiliation(s)
- Karine Dementhon
- Univ. Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Sofiane El-Kirat-Chatel
- Univ. Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Thierry Noël
- Univ. Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- * E-mail:
| |
Collapse
|
37
|
Reales-Calderón JA, Martínez-Solano L, Martínez-Gomariz M, Nombela C, Molero G, Gil C. Sub-proteomic study on macrophage response to Candida albicans unravels new proteins involved in the host defense against the fungus. J Proteomics 2012; 75:4734-46. [PMID: 22342486 DOI: 10.1016/j.jprot.2012.01.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/16/2022]
Abstract
In previous proteomic studies on the response of murine macrophages against Candida albicans, many differentially expressed proteins involved in processes like inflammation, cytoskeletal rearrangement, stress response and metabolism were identified. In order to look for proteins important for the macrophage response, but in a lower concentration in the cell, 3 sub-cellular extracts were analyzed: cytosol, organelle/membrane and nucleus enriched fractions from RAW 264.7 macrophages exposed or not to C. albicans SC5314 for 3 h. The samples were studied using DIGE technology, and 17 new differentially expressed proteins were identified. This sub-cellular fractionation permitted the identification of 2 mitochondrion proteins, a membrane receptor, Galectin-3, and some ER related proteins, that are not easily detected in total cell extracts. Besides, the study of different fractions allowed us to detect, not only total increase in Galectin-3 protein amount, but its distinct allocation along the interaction. The identified proteins are involved in the pro-inflammatory and oxidative responses, immune response, unfolded protein response and apoptosis. Some of these processes increase the host response and others could be the effect of C. albicans resistance to phagocytosis. Thus, the sub-proteomic approach has been a very useful tool to identify new proteins involved in macrophage-fungus interaction. This article is part of a Special Issue entitled: Translational Proteomics.
Collapse
|
38
|
Naglik JR, Moyes DL, Wächtler B, Hube B. Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect 2011; 13:963-76. [PMID: 21801848 DOI: 10.1016/j.micinf.2011.06.009] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/10/2011] [Accepted: 06/10/2011] [Indexed: 12/31/2022]
Abstract
Candida albicans interactions with epithelial cells are critical for commensal growth, fungal pathogenicity and host defence. This review will outline our current understanding of C. albicans-epithelial interactions and will discuss how this may lead to the induction of a protective mucosal immune response.
Collapse
Affiliation(s)
- Julian R Naglik
- Department of Oral Immunology, King's College London Dental Institute, King's College London, London SE1 9RT, United Kingdom.
| | | | | | | |
Collapse
|
39
|
Martinez-Esparza M, Tapia-Abellan A, Vitse-Standaert A, Garcia-Penarrubia P, Arguelles JC, Poulain D, Jouault T. Glycoconjugate expression on the cell wall of tps1/tps1 trehalose-deficient Candida albicans strain and implications for its interaction with macrophages. Glycobiology 2011; 21:796-805. [DOI: 10.1093/glycob/cwr007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
40
|
Volling K, Thywissen A, Brakhage AA, Saluz HP. Phagocytosis of melanized Aspergillus conidia by macrophages exerts cytoprotective effects by sustained PI3K/Akt signalling. Cell Microbiol 2011; 13:1130-48. [PMID: 21501368 DOI: 10.1111/j.1462-5822.2011.01605.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Host cell death is a critical component of innate immunity and often determines the progression and outcome of infections. The opportunistic human pathogen Aspergillus fumigatus can manipulate the immune system either by inducing or by inhibiting host cell apoptosis dependent on its distinct morphological form. Here, we show that conidia of Aspergillus ssp. inhibit apoptosis of macrophages induced via the intrinsic (staurosporine) and extrinsic (Fas ligand) pathway. Hence, mitochondrial cytochrome c release and caspase activation were prevented. We further found that the anti-apoptotic effect depends on both host cell de novo protein synthesis and phagocytosis of conidia by macrophages. Moreover, sustained PI3K/Akt signalling in infected cells is an important determinant to resist apoptosis. We demonstrate that pigmentless pksP mutant conidia of A. fumigatus failed to trigger protection against apoptosis and provide evidence that the sustained survival of infected macrophages depends on the presence of the grey-green conidial pigment consisting of dihydroxynaphthalene-melanin. In conclusion, we revealed a novel potential function of melanin in the pathogenesis of A. fumigatus. For the first time, we show that melanin itself is a crucial component to inhibit macrophage apoptosis which may contribute to dissemination of the fungus within the host.
Collapse
Affiliation(s)
- Katrin Volling
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstrasse 11a, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
41
|
Sarazin A, Poulain D, Jouault T. In vitropro- and anti-inflammatory responses to viableCandida albicansyeasts by a murine macrophage cell line. Med Mycol 2010; 48:912-21. [DOI: 10.3109/13693781003767592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
42
|
Villar C, Zhao X. Candida albicans induces early apoptosis followed by secondary necrosis in oral epithelial cells. Mol Oral Microbiol 2010; 25:215-25. [DOI: 10.1111/j.2041-1014.2010.00577.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Jouault T, Sarazin A, Martinez-Esparza M, Fradin C, Sendid B, Poulain D. Host responses to a versatile commensal: PAMPs and PRRs interplay leading to tolerance or infection by Candida albicans. Cell Microbiol 2009; 11:1007-15. [PMID: 19388906 DOI: 10.1111/j.1462-5822.2009.01318.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The molecular interactions between commensal microorganisms and their host are basically different from those triggered by pathogens since they involve tolerance. When the commensal is genetically equipped to become an opportunistic pathogen, as is the case with Candida albicans, the picture becomes more complex. In this case, the balance between protection and invasion depends on host reactivity to altered microbial expression of ligands interacting with innate immune sensors. Based on experimental evidence obtained with C. albicans, we discuss the different molecular processes involved in the sensing of this important opportunistic human pathogen by a panel of pattern recognition receptors (PRRs) according to the numerous pathogen-associated molecular patterns (PAMPs) that can be exposed at its surface. Beneficial or deleterious immune responses that either maintain a commensal state or favour damage by the yeast result from this dynamic interplay.
Collapse
|
44
|
Candida albicans experimental infection: effects on human sperm motility, mitochondrial membrane potential and apoptosis. Reprod Biomed Online 2009; 18:496-501. [DOI: 10.1016/s1472-6483(10)60125-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Li M, Chen Q, Shen Y, Liu W. Candida albicans phospholipomannan triggers inflammatory responses of human keratinocytes through Toll-like receptor 2. Exp Dermatol 2008; 18:603-10. [PMID: 19196344 DOI: 10.1111/j.1600-0625.2008.00832.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Toll-like receptors (TLRs) play an important role in the recognition of Candida albicans components and activation of innate immunity. Phospholipomannan (PLM), a glycolipid, is expressed at the surface of C. albicans cell wall, which acts as a member of the pathogen-associated molecular patterns family. In this study, we sought to clarify whether C. albicans-native PLM could induce an inflammation response in human keratinocytes and to determine the underlying mechanisms. Exposure of cultured human primary keratinocytes to PLM led to the increased gene expression and secretion of proinflammatory cytokines (IL-6) and chemokines (IL-8). PLM hydrolysed with beta-d-mannoside mannohydrolase failed to induce gene expression and secretion of IL-6 and IL-8. PLM up-regulated the mRNA and protein levels of TLR2, whereas the mRNA level of TLR4 was not altered. Keratinocytes challenged with PLM resulted in the activation of NF-kappaB and mitogen-activated protein kinase (MAPKs) including p38. Anti-TLR2 neutralizing antibody, NFkappaB and p38MAPK inhibitors blocked the PLM-induced secretion of IL-6, IL-8 in keratinocytes, but no such effect was observed in pretreatment with anti-TLR4-neutralizing antibody and lipopolysaccharide inhibitor (polymyxin B). These data suggest C. albicans-native PLM may contribute to the inflammatory responses of cutaneous candidiasis in the TLR2-NF-kappaB and p38MAPK signalling pathway dependent manner.
Collapse
Affiliation(s)
- Min Li
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, 12 Jiangwangmiao St., Nanjing 210042, China.
| | | | | | | |
Collapse
|
46
|
Heinsbroek SEM, Kamen LA, Taylor PR, Brown GD, Swanson J, Gordon S. Actin and phosphoinositide recruitment to fully formed Candida albicans phagosomes in mouse macrophages. J Innate Immun 2008; 1:244-53. [PMID: 20375582 DOI: 10.1159/000173694] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 07/22/2008] [Indexed: 11/19/2022] Open
Abstract
Candida albicans is a dimorphic yeast that enters macrophages (Mphi) via the beta-glucan receptor dectin-1. Phagocytosis of C. albicans is characterized by actin polymerization, Syk kinase activation and rapid acquisition of phagolysosomal markers. In mice, C. albicans are able to resist the harsh environment of the phagosome and form pseudohyphae inside the phagolysosomal compartment, eventually extending from the Mphi. In this study, we investigated these unique C. albicans phagosomes and found that actin localized dynamically around the phagosomes, before disintegrating. Membrane phosphoinositides, PI(4,5)P(2), PI(3,4,5)P(3), PI(3,4)P(2), and PI(3)P also localized to the phagosomes. Localization was not related to actin polymerization, and inhibitor studies showed that polymerization of actin on the C. albicans phagosome was independent of PI3K. The ability of mature C. albicans phagosomes to stimulate actin polymerization could facilitate the escape of the growing yeast from the Mphi.
Collapse
|
47
|
Mille C, Bobrowicz P, Trinel PA, Li H, Maes E, Guerardel Y, Fradin C, Martínez-Esparza M, Davidson RC, Janbon G, Poulain D, Wildt S. Identification of a New Family of Genes Involved in β-1,2-Mannosylation of Glycans in Pichia pastoris and Candida albicans. J Biol Chem 2008; 283:9724-36. [DOI: 10.1074/jbc.m708825200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
48
|
Martínez-Esparza M, Aguinaga A, González-Párraga P, García-Peñarrubia P, Jouault T, Argüelles JC. Role of trehalose in resistance to macrophage killing: study with a tps1/tps1 trehalose-deficient mutant of Candida albicans. Clin Microbiol Infect 2007; 13:384-94. [PMID: 17359322 DOI: 10.1111/j.1469-0691.2007.01663.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Accumulation of trehalose by yeast is an important protective mechanism against different stress conditions. This study examined the effect of trehalose on several growth features, as well as its association with the intracellular survival of yeasts exposed to macrophages. A tps1/tps1 mutant and its parental counterpart, CAI4, exhibited similar growth rates and preserved their dimorphic conversion and agglutination ability. However, electron-microscopy of cell-wall architecture showed a partial loss of material from the outer cell-wall layer in the tps1/tps1 mutant. Flow-cytometry revealed that the mutant had lower auto-fluorescence levels and a higher fluorescein isothiocynate staining efficiency. When co-cultured with macrophages, a slight reduction in binding to macrophages and slower ingestion kinetics were revealed for the tps1/tps1 mutant, but these did not interfere significantly with the amount of yeast ingested by macrophages after co-incubation for 2 h. Under the same conditions, CAI4 cells were more resistant to macrophage killing than was the tps1 null mutant, provided that the macrophages had been stimulated previously with interferon-gamma. Measurement of trehalose content and the anti-oxidant activities of yeast cells recovered after phagocytosis revealed that the trehalose content and the glutathione reductase activity were increased only in CAI4 cells, whereas levels of catalase activity were increased similarly in both strains. These results suggest that the presence of trehalose in Candida albicans is a contributory factor that protects the cell from injury caused by macrophages.
Collapse
Affiliation(s)
- M Martínez-Esparza
- Department of Biochemistry, Molecular Biology (B) and Immunology, Medical School, University of Murcia, Murcia, Spain.
| | | | | | | | | | | |
Collapse
|
49
|
Trinel PA, Delplace F, Maes E, Zanetta JP, Mille C, Coddeville B, Jouault T, Strecker G, Poulain D. Candida albicans serotype B strains synthesize a serotype-specific phospholipomannan overexpressing a beta-1,2-linked mannotriose. Mol Microbiol 2006; 58:984-98. [PMID: 16262785 DOI: 10.1111/j.1365-2958.2005.04890.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Candida albicans strains consist of serotypes A and B depending on the presence of terminal beta-1,2-linked mannose residues in the acid-stable part of serotype A phosphopeptidomannan (PPM). The distribution of C. albicans serotypes varies according to country and human host genetic and infectious backgrounds. However, these epidemiological traits have not yet been related to a phenotypically stable molecule as cell surface expression of the serotype A epitope depends on the growth conditions. We have shown that C. albicans serotype A associates beta-mannose residues with another molecule, phospholipomannan (PLM), which is a member of the mannoseinositolphosphoceramide family. In this study, PLM from serotype B strains was analysed in order to provide structural bases for the differences in molecular mass and antigenicity observed between PLMs from both serotypes. Through these analyses, carbon 10 was shown to be the location of a second hydroxylation of fatty acids previously unknown in fungal sphingolipids. Minor differences observed in the ceramide moiety appeared to be strain-dependent. More constant features of PLM from serotype B strains were the incorporation of greater amounts of phytosphingosine C20, a twofold reduced glycosylation of PLM and overexpression of a beta-1,2 mannotriose, the epitope of protective antibodies. This specific beta-mannosylation was observed even when growth conditions altered serotype A PPM-specific epitopes, confirming the potential of PLM as a phenotypically stable molecule for serotyping. This study also suggests that the regulation of beta-mannosyltransferases, which define specific immunomodulatory adhesins whose activity depends on the mannosyl chain length, are part of the genetic background that differentiates serotypes.
Collapse
Affiliation(s)
- Pierre-André Trinel
- Inserm E0360, Physiopathologie des Candidoses, Faculté de Médecine, Pôle Recherche, 59037, Lille Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hauwel M, Furon E, Canova C, Griffiths M, Neal J, Gasque P. Innate (inherent) control of brain infection, brain inflammation and brain repair: the role of microglia, astrocytes, "protective" glial stem cells and stromal ependymal cells. ACTA ACUST UNITED AC 2005; 48:220-33. [PMID: 15850661 DOI: 10.1016/j.brainresrev.2004.12.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 12/21/2022]
Abstract
In invertebrates and primitive vertebrates, the brain contains large numbers of "professional" macrophages associated with neurones, ependymal tanycytes and radial glia to promote robust regenerative capacity. In higher vertebrates, hematogenous cells are largely excluded from the brain, and innate immune molecules and receptors produced by the resident "amateur" macrophages (microglia, astrocytes and ependymal cells) control pathogen infiltration and clearance of toxic cell debris. However, there is minimal capacity for regeneration. The transfer of function from hematogenous cells to macroglia and microglia is associated with the sophistication of a yet poorly-characterized neurone-glia network. This evolutionary pattern may have been necessary to reduce the risk of autoimmune attack while preserving the neuronal web but the ability to repair central nervous system damage may have been sacrificed in the process. We herein argue that it may be possible to re-educate and stimulate the resident phagocytes to promote clearance of pathogens (e.g., Prion), toxic cell debris (e.g., amyloid fibrils and myelin) and apoptotic cells. Moreover, as part of this greater division of labour between cell types in vertebrate brains, it may be possible to harness the newly described properties of glial stem cells in neuronal protection (revitalization) rather than replacement, and to control brain inflammation. We will also highlight the emerging roles of stromal ependymal cells in controlling stem cell production and migration into areas of brain damage. Understanding the mechanisms involved in the nurturing of damaged neurons by protective glial stem cells with the safe clearance of cell debris could lead to remedial strategies for chronic brain diseases.
Collapse
Affiliation(s)
- Mathieu Hauwel
- Department of Medical Biochemistry and Immunology, Brain Inflammation and Immunity Group (BIIG), University of Wales College of Medicine, Tenovus Building, Heath Park, Cardiff, UK
| | | | | | | | | | | |
Collapse
|