1
|
Bai R, Chen D, Xiong H, Song H, Wang T, Yang X, Tang J, Feng Y, Li J, Li F. SPAG6 c.900 T>C affects boar semen quality and blood-testis barrier function by creating a new splice acceptor site. Anim Genet 2023. [PMID: 37211688 DOI: 10.1111/age.13330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/16/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
Sperm associated antigen 6 (SPAG6) acts as a scaffolding protein in the center of the flagellar axoneme and has an impact on the maturation of the motility of mammalian sperm flagella and the maintenance of sperm structure. In our previous research, SPAG6 c.900 T>C in exon 7 and exon 7 skipped transcript was identified by analyzing RNA-seq data of testicular tissues from 60 day (sexually immature) and 180 day (sexually mature) Large White boars. Herein, we found porcine SPAG6 c.900 T>C to be associated with semen quality traits in Duroc, Large White and Landrace pigs. SPAG6 c.900 C can generate a new splice acceptor site, inhibit the occurrence of SPAG6 exon 7 skipping to a certain extent, thereby promote the growth of Sertoli cells and maintain the normal blood-testis barrier function. This study provides new insights into the molecular regulation of spermatogenesis and a new genetic marker for the improvement of semen quality in pigs.
Collapse
Affiliation(s)
- Rong Bai
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Dake Chen
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hao Xiong
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Huibin Song
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Tiansu Wang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xinpeng Yang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jinhua Tang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yue Feng
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jialian Li
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Fenge Li
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
2
|
Samadi M, Beigi L, Yadegari F, Ansari AM, Majidzadeh-A K, Eskordi M, Farahmand L. Recognition of functional genetic polymorphism using ESE motif definition: a conservative evolutionary approach to CYP2D6/CYP2C19 gene variants. Genetica 2022; 150:289-297. [PMID: 35913522 DOI: 10.1007/s10709-022-00161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/24/2022] [Indexed: 11/04/2022]
Abstract
Although predicting the effects of variants near intron-exon boundaries is relatively straightforward, predicting the functional Exon Splicing Enhancers (ESEs) and the possible effects of variants within ESEs remains a challenge. Considering the essential role of CYP2D6/CYP2C19 genes in drug metabolism, we attempted to identify variants that are most likely to disrupt splicing through their effect on these ESEs. ESEs were predicted in these two genes using ESEfinder 3.0, incorporating a series of filters (increased threshold and evolutionary conservation). Finally, reported mutations were evaluated for their potential to disrupt splicing by affecting these ESEs. Initially, 169 and 243 ESEs were predicted for CYP2C19/CYP2D6, respectively. However, applying the filters, the number of predicted ESEs was reduced to 26 and 19 in CYP2C19/CYP2D6, respectively. Comparing prioritized predicted ESEs with known sequence variants in CYP2C19/CYP2D6 genes highlights 18 variations within conserved ESEs for each gene. We found good agreement in cases where such predictions could be compared to experimental evidence. In total, we prioritized a subset of mutational changes in CYP2C19/CYP2D6 genes that may affect the function of these genes and lead to altered drug responses. Clinical studies and functional analysis for investigating detailed functional consequences of the mentioned mutations and their phenotypic outcomes is mostly recommended.
Collapse
Affiliation(s)
- Mitra Samadi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Laleh Beigi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Yadegari
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Alireza Madjid Ansari
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Maryam Eskordi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
3
|
Ptok J, Müller L, Theiss S, Schaal H. Context matters: Regulation of splice donor usage. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194391. [PMID: 31202784 DOI: 10.1016/j.bbagrm.2019.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 11/16/2022]
Abstract
Elaborate research on splicing, starting in the late seventies, evolved from the discovery that 5' splice sites are recognized by their complementarity to U1 snRNA towards the realization that RNA duplex formation cannot be the sole basis for 5'ss selection. Rather, their recognition is highly influenced by a number of context factors including transcript architecture as well as splicing regulatory elements (SREs) in the splice site neighborhood. In particular, proximal binding of splicing regulatory proteins highly influences splicing outcome. The importance of SRE integrity especially becomes evident in the light of human pathogenic mutations where single nucleotide changes in SREs can severely affect the resulting transcripts. Bioinformatics tools nowadays greatly assist in the computational evaluation of 5'ss, their neighborhood and the impact of pathogenic mutations. Although predictions are already quite robust, computational evaluation of the splicing regulatory landscape still faces challenges to increase future reliability. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany.
| |
Collapse
|
4
|
Unique CD44 intronic SNP is associated with tumor grade in breast cancer: a case control study and in silico analysis. Cancer Cell Int 2018; 18:28. [PMID: 29483847 PMCID: PMC5824488 DOI: 10.1186/s12935-018-0522-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
Background CD44 encoded by a single gene is a cell surface transmembrane glycoprotein. Exon 2 is one of the important exons to bind CD44 protein to hyaluronan. Experimental evidences show that hyaluronan–CD44 interaction intensifies the proliferation, migration, and invasion of breast cancer cells. Therefore, the current study aimed at investigating the association between specific polymorphisms in exon 2 and its flanking region of CD44 with predisposition to breast cancer. Methods In the current study, 175 Iranian female patients with breast cancer and 175 age-matched healthy controls were recruited in biobank, Breast Cancer Research Center, Tehran, Iran. Single nucleotide polymorphisms of CD44 exon 2 and its flanking were analyzed via polymerase chain reaction and gene sequencing techniques. Association between the observed variation with breast cancer risk and clinico-pathological characteristics were studied. Subsequently, bioinformatics analysis was conducted to predict potential exonic splicing enhancer (ESE) motifs changed as the result of a mutation. Results A unique polymorphism of the gene encoding CD44 was identified at position 14 nucleotide upstream of exon 2 (A37692→G) by the sequencing method. The A > G polymorphism exhibited a significant association with higher-grades of breast cancer, although no significant relation was found between this polymorphism and breast cancer risk. Finally, computational analysis revealed that the intronic mutation generated a new consensus-binding motif for the splicing factor, SC35, within intron 1. Conclusions The current study results indicated that A > G polymorphism was associated with breast cancer development; in addition, in silico analysis with ESE finder prediction software showed that the change created a new SC35 binding site.
Collapse
|
5
|
Brillen AL, Schöneweis K, Walotka L, Hartmann L, Müller L, Ptok J, Kaisers W, Poschmann G, Stühler K, Buratti E, Theiss S, Schaal H. Succession of splicing regulatory elements determines cryptic 5΄ss functionality. Nucleic Acids Res 2017; 45:4202-4216. [PMID: 28039323 PMCID: PMC5397162 DOI: 10.1093/nar/gkw1317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022] Open
Abstract
A critical step in exon definition is the recognition of a proper splice donor (5΄ss) by the 5’ end of U1 snRNA. In the selection of appropriate 5΄ss, cis-acting splicing regulatory elements (SREs) are indispensable. As a model for 5΄ss recognition, we investigated cryptic 5΄ss selection within the human fibrinogen Bβ-chain gene (FGB) exon 7, where we identified several exonic SREs that simultaneously acted on up- and downstream cryptic 5΄ss. In the FGB exon 7 model system, 5΄ss selection iteratively proceeded along an alternating sequence of U1 snRNA binding sites and interleaved SREs which in principle supported different 3’ exon ends. Like in a relay race, SREs either suppressed a potential 5΄ss and passed the splicing baton on or splicing actually occurred. From RNA-Seq data, we systematically selected 19 genes containing exons with silent U1 snRNA binding sites competing with nearby highly used 5΄ss. Extensive SRE analysis by different algorithms found authentic 5΄ss significantly more supported by SREs than silent U1 snRNA binding sites, indicating that our concept may permit generalization to a model for 5΄ss selection and 3’ exon end definition.
Collapse
Affiliation(s)
- Anna-Lena Brillen
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Katrin Schöneweis
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Lara Walotka
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Linda Hartmann
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Johannes Ptok
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wolfgang Kaisers
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZ, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.,Institute for Molecular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, 34149 Trieste, Italy
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University Düsseldorf, 40225
| | - Heiner Schaal
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Grodecká L, Buratti E, Freiberger T. Mutations of Pre-mRNA Splicing Regulatory Elements: Are Predictions Moving Forward to Clinical Diagnostics? Int J Mol Sci 2017; 18:ijms18081668. [PMID: 28758972 PMCID: PMC5578058 DOI: 10.3390/ijms18081668] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 02/08/2023] Open
Abstract
For more than three decades, researchers have known that consensus splice sites alone are not sufficient regulatory elements to provide complex splicing regulation. Other regulators, so-called splicing regulatory elements (SREs) are needed. Most importantly, their sequence variants often underlie the development of various human disorders. However, due to their variable location and high degeneracy, these regulatory sequences are also very difficult to recognize and predict. Many different approaches aiming to identify SREs have been tried, often leading to the development of in silico prediction tools. While these tools were initially expected to be helpful to identify splicing-affecting mutations in genetic diagnostics, we are still quite far from meeting this goal. In fact, most of these tools are not able to accurately discern the SRE-affecting pathological variants from those not affecting splicing. Nonetheless, several recent evaluations have given appealing results (namely for EX-SKIP, ESRseq and Hexplorer predictors). In this review, we aim to summarize the history of the different approaches to SRE prediction, and provide additional validation of these tools based on patients' clinical data. Finally, we evaluate their usefulness for diagnostic settings and discuss the challenges that have yet to be met.
Collapse
Affiliation(s)
- Lucie Grodecká
- Centre for Cardiovascular Surgery and Transplantation, Brno 65691, Czech Republic.
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy.
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno 65691, Czech Republic.
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic.
| |
Collapse
|
7
|
Identification of single nucleotide polymorphisms in the agouti signaling protein (ASIP) gene in some goat breeds in tropical and temperate climates. Mol Biol Rep 2013; 40:4447-57. [PMID: 23661018 DOI: 10.1007/s11033-013-2535-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
The agouti-signaling protein (ASIP) plays a major role in mammalian pigmentation as an antagonist to melanocortin-1 receptor gene to stimulate pheomelanin synthesis, a major pigment conferring mammalian coat color. We sequenced a 352 bp fragment of ASIP gene spanning part of exon 2 and part of intron 2 in 215 animals representing six goat breeds from Nigeria and the United States: West African Dwarf, predominantly black; Red Sokoto, mostly red; and Sahel, mostly white from Nigeria; black and white Alpine, brown and white Spanish and white Saanen from the US. Twenty haplotypes from nine mutations representing three intronic, one silent and five missense (p.S19R, p.N35K, p.L36V, p.M42L and p.L45W) mutations were identified in Nigerian goats. Approximately 89 % of Nigerian goats carry haplotype 1 (TGCCATCCG) which seems to be the wild type configuration of mutations in this region of the gene. Although we found no association between these polymorphisms in the ASIP gene and coat color in Nigerian goats, in-silico functional analysis predicts putative deleterious functional impact of the p.L45W mutation on the basic amino-terminal domain of ASIP. In the American goats, two intronic mutations, g.293G>A and g.327C>A, were identified in the Alpine breed, although the g.293G>A mutation is common to American and Nigerian goat populations. All Sannen and Sahel goats in this study belong to haplotypes 1 of both populations which seem to be the wild-type composite ASIP haplotype. Overall, there was no clear association of this portion of the ASIP gene interrogated in this study with coat color variation. Therefore, additional genomic analyses of promoter sequence, the entire coding and non-coding regions of the ASIP gene will be required to obtain a definite conclusion.
Collapse
|
8
|
Dembowski JA, An P, Scoulos-Hanson M, Yeo G, Han J, Fu XD, Grabowski PJ. Alternative Splicing of a Novel Inducible Exon Diversifies the CASK Guanylate Kinase Domain. J Nucleic Acids 2012; 2012:816237. [PMID: 23008758 PMCID: PMC3447378 DOI: 10.1155/2012/816237] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/10/2012] [Indexed: 12/29/2022] Open
Abstract
Alternative pre-mRNA splicing has a major impact on cellular functions and development with the potential to fine-tune cellular localization, posttranslational modification, interaction properties, and expression levels of cognate proteins. The plasticity of regulation sets the stage for cells to adjust the relative levels of spliced mRNA isoforms in response to stress or stimulation. As part of an exon profiling analysis of mouse cortical neurons stimulated with high KCl to induce membrane depolarization, we detected a previously unrecognized exon (E24a) of the CASK gene, which encodes for a conserved peptide insertion in the guanylate kinase interaction domain. Comparative sequence analysis shows that E24a appeared selectively in mammalian CASK genes as part of a >3,000 base pair intron insertion. We demonstrate that a combination of a naturally defective 5' splice site and negative regulation by several splicing factors, including SC35 (SRSF2) and ASF/SF2 (SRSF1), drives E24a skipping in most cell types. However, this negative regulation is countered with an observed increase in E24a inclusion after neuronal stimulation and NMDA receptor signaling. Taken together, E24a is typically a skipped exon, which awakens during neuronal stimulation with the potential to diversify the protein interaction properties of the CASK polypeptide.
Collapse
Affiliation(s)
- Jill A. Dembowski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Gene Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joonhee Han
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paula J. Grabowski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
9
|
Imbard A, Boutron A, Vequaud C, Zater M, de Lonlay P, de Baulny HO, Barnerias C, Miné M, Marsac C, Saudubray JM, Brivet M. Molecular characterization of 82 patients with pyruvate dehydrogenase complex deficiency. Structural implications of novel amino acid substitutions in E1 protein. Mol Genet Metab 2011; 104:507-16. [PMID: 21914562 DOI: 10.1016/j.ymgme.2011.08.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 08/10/2011] [Accepted: 08/10/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pyruvate dehydrogenase complex (PDHc) deficiencies are an important cause of primary lactic acidosis. Most cases result from mutations in the X-linked gene for the pyruvate dehydrogenase E1α subunit (PDHA1) while a few cases result from mutations in genes for E1β (PDHB), E2 (DLAT), E3 (DLD) and E3BP (PDHX) subunits or PDH-phosphatase (PDP1). AIM To report molecular characterization of 82 PDHc-deficient patients and analyze structural effects of novel missense mutations in PDHA1. METHODS PDHA1 variations were investigated first, by exon sequencing using a long range PCR product, gene dosage assay and cDNA analysis. Mutation scanning in PDHX, PDHB, DLAT and DLD cDNAs was further performed in unsolved cases. Novel missense mutations in PDHA1 were located on the tridimensional model of human E1 protein to predict their possible functional consequences. RESULTS PDHA1 mutations were found in 30 girls and 35 boys. Three large rearrangements, including two contiguous gene deletion syndrome were identified. Novel missense, frameshift and splicing mutations were also delineated and a nonsense mutation in a mosaic male. Mutations p.Glu75Ala, p.Arg88Ser, p.Arg119Trp, p.Gly144Asp, p.Pro217Arg, p.Arg235Gly, p.Tyr243Cys, p.Tyr243Ser, p.Arg245Gly, p.Pro250Leu, p.Gly278Arg, p.Met282Val, p.Gly298Glu in PDHA1 were predicted to impair active site channel conformation or subunit interactions. Six out of the seven patients with PDHB mutations displayed the recurrent p.Met101Val mutation; 9 patients harbored PDHX mutations and one patient DLD mutations. CONCLUSION We provide an efficient stepwise strategy for mutation screening in PDHc genes and expand the growing list of PDHA1 mutations analyzed at the structural level.
Collapse
Affiliation(s)
- A Imbard
- Biochimie-Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Sud, AP-HP, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Romano M. G runs in cystathionine beta-synthase c.833C/c.844_845ins68 mRNA are splicing silencers of pathogenic 3' splice sites. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:568-74. [PMID: 20601281 DOI: 10.1016/j.bbagrm.2010.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/10/2010] [Accepted: 06/18/2010] [Indexed: 12/20/2022]
Abstract
The c.844_845ins68 is an evolutionary conserved polymorphism of the cystathionine beta-synthase gene that segregates with the pathogenic c.833C mutation and consists of a 68nt insertion duplicating the 3' splice site between intron 7 and exon 8. The gene rearrangement brought two GGGG runs close to each other and generated a splicing control element that allows the constitutive selection of the more distal 3' splice site in the c.844_854ins68 carriers. In this study, we have characterized functionally the two G4 runs within the duplication and have found that they work as silencers of the upstream potentially pathogenic 3' splice sites has been functionally characterized. This selection allows skipping of both the 68nt-insertion and the c.833C mutation, and is essential to preserve the wild-type ORF. Knocking down hnRNP H and F expression modulated the rescue of the proximal 3' splice site more than hnRNP H alone. These observations suggest that hnRNP H/F contribute jointly to prevention of CBS deficiency in c.844_854ins68 carriers by silencing the potentially pathogenic upstream acceptor site.
Collapse
Affiliation(s)
- Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy.
| |
Collapse
|
11
|
Keszei A, Brubaker CL, Carter R, Köllner T, Degenhardt J, Foley WJ. Functional and evolutionary relationships between terpene synthases from Australian Myrtaceae. PHYTOCHEMISTRY 2010; 71:844-52. [PMID: 20399476 DOI: 10.1016/j.phytochem.2010.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/16/2010] [Indexed: 05/06/2023]
Abstract
Myrtaceae is one of the chemically most variable and most significant essential oil yielding plant families. Despite an abundance of chemical information, very little work has focussed on the biochemistry of terpene production in these plants. We describe 70 unique partial terpene synthase transcripts and eight full-length cDNA clones from 21 myrtaceous species, and compare phylogenetic relationships and leaf oil composition to reveal clades defined by common function. We provide further support for the correlation between function and phylogenetic relationships by the first functional characterisation of terpene synthases from Myrtaceae: a 1,8-cineole synthase from Eucalyptus sideroxylon and a caryophyllene synthase from Eucalyptusdives.
Collapse
Affiliation(s)
- Andras Keszei
- Research School of Biology, Australian National University, Canberra, Australia.
| | | | | | | | | | | |
Collapse
|
12
|
Quintana E, Gort L, Busquets C, Navarro-Sastre A, Lissens W, Moliner S, Lluch M, Vilaseca MA, De Meirleir L, Ribes A, Briones P. Mutational study in thePDHA1gene of 40 patients suspected of pyruvate dehydrogenase complex deficiency. Clin Genet 2010; 77:474-82. [DOI: 10.1111/j.1399-0004.2009.01313.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
PIN1 gene variants in Alzheimer's disease. BMC MEDICAL GENETICS 2009; 10:115. [PMID: 19909517 PMCID: PMC2781804 DOI: 10.1186/1471-2350-10-115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 11/12/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND Peptidyl-prolyl isomerase, NIMA-interacting 1 (PIN1) plays a significant role in the brain and is implicated in numerous cellular processes related to Alzheimer's disease (AD) and other neurodegenerative conditions. There are confounding results concerning PIN1 activity in AD brains. Also PIN1 genetic variation was inconsistently associated with AD risk. METHODS We performed analysis of coding and promoter regions of PIN1 in early- and late-onset AD and frontotemporal dementia (FTD) patients in comparison with healthy controls. RESULTS Analysis of eighteen PIN1 common polymorphisms and their haplotypes in EOAD, LOAD and FTD individuals in comparison with the control group did not reveal their contribution to disease risk.In six unrelated familial AD patients four novel PIN1 sequence variants were detected. c.58+64C>T substitution that was identified in three patients, was located in an alternative exon. In silico analysis suggested that this variant highly increases a potential affinity for a splicing factor and introduces two intronic splicing enhancers. In the peripheral leukocytes of one living patient carrying the variant, a 2.82 fold decrease in PIN1 expression was observed. CONCLUSION Our data does not support the role of PIN1 common polymorphisms as AD risk factor. However, we suggest that the identified rare sequence variants could be directly connected with AD pathology, influencing PIN1 splicing and/or expression.
Collapse
|
14
|
Tamanaha R, Camacho CP, Pereira AC, da Silva AMA, Maciel RMB, Cerutti JM. Evaluation of RET polymorphisms in a six-generation family with G533C RET mutation: specific RET variants may modulate age at onset and clinical presentation. Clin Endocrinol (Oxf) 2009; 71:56-64. [PMID: 19138318 DOI: 10.1111/j.1365-2265.2008.03491.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CONTEXT We previously described a six-generation family with G533C RET mutation and medullary thyroid carcinoma, in the largest family reported do date. Of particular interest, phenotype variability regarding the age of onset and clinical presentation of the disease, was observed. OBJECTIVE We evaluate whether single SNPs within RET oncogene or haplotype comprising the RET variants (defined by Haploview) could predispose to early development of MTC in this family and influence the clinical manifestation. DESIGN Eight SNPs were selected based on their previous association with the clinical course of hereditary or sporadic MTC, in particular promoting an early onset of disease. The variants were initially tested in 77 G533C-carriers and 100 controls using either PCR-direct sequencing or PCR-RFLP. Association between a SNP or haplotype and age at diagnosis or presence of lymph node metastasis was tested in 34 G533C-carries with MTC. Different bioinformatic tools were used to evaluate the potential effects on RNA splicing. RESULTS An association was found between IVS1-126G > T and age at diagnosis. The variant [IVS8 +82A > G; 85-86 insC] was associated with the presence of lymph node metastases at diagnosis. In silico analysis suggested that this variant may induce abnormal splicing. This in silico analysis predicted that the [IVS8 +82A > G; 85-86 insC] could alter the splicing by disrupting and/or creating exonic splicing enhancer motifs. CONCLUSIONS We here identified two RET variants that were associated with phenotype variability in G533C-carriers, which highlights the fact that the modifier effect of a variant might depend on the type of mutation.
Collapse
Affiliation(s)
- Rosana Tamanaha
- Division of Genetics, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The SR protein family comprises a number of phylogenetically conserved and structurally related proteins with a characteristic domain rich in arginine and serine residues, known as the RS domain. They play significant roles in constitutive pre-mRNA splicing and are also important regulators of alternative splicing. In addition they participate in post-splicing activities, such as mRNA nuclear export, nonsense-mediated mRNA decay and mRNA translation. These wide-ranging roles of SR proteins highlight their importance as pivotal regulators of mRNA metabolism, and if these functions are disrupted, developmental defects or disease may result. Furthermore, animal models have shown a highly specific, non-redundant role for individual SR proteins in the regulation of developmental processes. Here, we will review the current literature to demonstrate how SR proteins are emerging as one of the master regulators of gene expression.
Collapse
|
16
|
Boichard A, Venet L, Naas T, Boutron A, Chevret L, de Baulny HO, De Lonlay P, Legrand A, Nordman P, Brivet M. Two silent substitutions in the PDHA1 gene cause exon 5 skipping by disruption of a putative exonic splicing enhancer. Mol Genet Metab 2008; 93:323-30. [PMID: 18023225 DOI: 10.1016/j.ymgme.2007.09.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/28/2007] [Accepted: 09/28/2007] [Indexed: 01/28/2023]
Abstract
BACKGROUND Synonymous mutations within exons may cause aberrant splicing by disrupting exonic splicing enhancer (ESE) motifs in the vicinity of non consensus splice sites. Mutational analysis of PDHA1 revealed only one silent single nucleotide substitution in exon 5 in two unrelated boys and a girl (c.483C>T and c.498C>T variants, respectively). For both patients, pyruvate dehydrogenase complex activity was low and the immunoreactive E1alpha protein was defective in cultured fibroblasts. METHODS AND RESULTS One of the boys was a somatic mosaic for the c.483C>T variant, as shown by the variable ratio of mutant to normal alleles in fibroblast, lymphocyte and single hair root DNA. Transcript analysis in fibroblasts from the three patients revealed the presence of both normal and truncated cDNAs, with the splicing out of exon 5 predicted to result in a frame shift and premature termination (p.Arg141AlafsX11). The treatment of fibroblasts with emetine before harvesting to prevent nonsense mRNA-mediated decay increased the amount of mutant mRNA. In silico analysis revealed that each variant disrupted a putative SRp55 binding site and that the intron 5 donor splice site (5'ss) contained a weak splicing signal. Transient transfection of COS-7 or Hela cells with hybrid minigene constructs containing wild-type or mutant PDHA1 exon 5, followed by RT-PCR demonstrated that each variant resulted in the incomplete inclusion of PDHA1 exon 5, and that this defect was corrected following the restoration of a perfect consensus sequence for the 5' splice site by site-directed mutagenesis. CONCLUSION These two synonymous mutations expand the spectrum of rare PDHA1 splicing mutations, all of which are located in non canonical splice sites.
Collapse
Affiliation(s)
- A Boichard
- Biochemistry laboratory, AP-HP hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhou Q, Lam PY, Han D, Cadenas E. c-Jun N-terminal kinase regulates mitochondrial bioenergetics by modulating pyruvate dehydrogenase activity in primary cortical neurons. J Neurochem 2007; 104:325-35. [PMID: 17949412 DOI: 10.1111/j.1471-4159.2007.04957.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study examines the role of c-jun N-terminal kinase (JNK) in mitochondrial signaling and bioenergetics in primary cortical neurons and isolated rat brain mitochondria. Exposure of neurons to either anisomycin (an activator of JNK/p38 mitogen-activated protein kinases) or H2O2 resulted in activation (phosphorylation) of JNK (mostly p46(JNK1)) and its translocation to mitochondria. Experiments with mitochondria isolated from either rat brain or primary cortical neurons and incubated with proteinase K revealed that phosphorylated JNK was associated with the outer mitochondrial membrane; this association resulted in the phosphorylation of the E(1alpha) subunit of pyruvate dehydrogenase, a key enzyme that catalyzes the oxidative decarboxylation of pyruvate and that links two major metabolic pathways: glycolysis and the tricarboxylic acid cycle. JNK-mediated phosphorylation of pyruvate dehydrogenase was not observed in experiments carried out with mitoplasts, thus suggesting the requirement of intact, functional mitochondria for this effect. JNK-mediated phosphorylation of pyruvate dehydrogenase was associated with a decline in its activity and, consequently, a shift to anaerobic pyruvate metabolism: the latter was confirmed by increased accumulation of lactic acid and decreased overall energy production (ATP levels). Pyruvate dehydrogenase appears to be a specific phosphorylation target for JNK, for other kinases, such as protein kinase A and protein kinase C did not elicit pyruvate dehydrogenase phosphorylation and did not decrease the activity of the complex. These results suggest that JNK mediates a signaling pathway that regulates metabolic functions in mitochondria as part of a network that coordinates cytosolic and mitochondrial processes relevant for cell function.
Collapse
Affiliation(s)
- Qiongqiong Zhou
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles, California 90089-9121, USA
| | | | | | | |
Collapse
|
18
|
Wimmer K, Roca X, Beiglböck H, Callens T, Etzler J, Rao AR, Krainer AR, Fonatsch C, Messiaen L. Extensive in silico analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5' splice-site disruption. Hum Mutat 2007; 28:599-612. [PMID: 17311297 DOI: 10.1002/humu.20493] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We describe 94 pathogenic NF1 gene alterations in a cohort of 97 Austrian neurofibromatosis type 1 patients meeting the NIH criteria. All mutations were fully characterized at the genomic and mRNA levels. Over half of the patients carried novel mutations, and only a quarter carried recurrent minor-lesion mutations at 16 mutational warm spots. The remaining patients carried NF1 microdeletions (7%) and rare recurring mutations. Thirty-six of the mutations (38%) altered pre-mRNA splicing, and fall into five groups: exon skipping resulting from mutations at authentic splice sites (type I), cryptic exon inclusion caused by deep intronic mutations (type II), creation of de novo splice sites causing loss of exonic sequences (type III), activation of cryptic splice sites upon authentic splice-site disruption (type IV), and exonic sequence alterations causing exon skipping (type V). Extensive in silico analyses of 37 NF1 exons and surrounding intronic sequences suggested that the availability of a cryptic splice site combined with a strong natural upstream 3' splice site (3'ss)is the main determinant of cryptic splice-site activation upon 5' splice-site disruption. Furthermore, the exonic sequences downstream of exonic cryptic 5' splice sites (5'ss) resemble intronic more than exonic sequences with respect to exonic splicing enhancer and silencer density, helping to distinguish between exonic cryptic and pseudo 5'ss. This study provides valuable predictors for the splicing pathway used upon 5'ss mutation, and underscores the importance of using RNA-based techniques, together with methods to identify microdeletions and intragenic copy-number changes, for effective and reliable NF1 mutation detection.
Collapse
Affiliation(s)
- K Wimmer
- Department of Medical Genetics, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Miné M, Chen JM, Brivet M, Desguerre I, Marchant D, de Lonlay P, Bernard A, Férec C, Abitbol M, Ricquier D, Marsac C. A large genomic deletion in the PDHX gene caused by the retrotranspositional insertion of a full-length LINE-1 element. Hum Mutat 2007; 28:137-42. [PMID: 17152059 DOI: 10.1002/humu.20449] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The long interspersed element-1 (LINE-1 or L1) retrotransposition has altered the human genome in many ways. In particular, recent in vitro studies have demonstrated that the retrotranspositional insertion of L1 elements has resulted in significant genomic deletions. Here we provide evidence for its operation in the human genome by identifying a approximately 46-kb pathological genomic deletion in the PDHX gene directly linked to the insertion of a full-length L1 element, in a patient with pyruvate dehydrogenase complex (PDHc) deficiency. Both the deduced bottom and top strand cleavage sites in the PDHX gene coincide with the consensus L1 endonuclease (EN) target sequence 5'-TTTT/A-3', while the full-length L1 element is followed by a 67-bp poly(A) tail. Interestingly, two hairpin structures, potentially formed by the inverted repeats present immediately 5' to the top strand nick site and 3' to the bottom strand nick site, may have facilitated the accessibility of L1 EN to the target sequences and also brought the two otherwise distantly located sequences into close proximity. Since the L1 element inserted in the PDHX gene is full-length, we favor the model of the template jumping as opposed to that of the microhomology-mediated end-joining for linking the 5' end of the nascent L1 copy to its genomic target. Our finding not only serves as an important complement to the in vitro approaches to studying L1 retrotransposition, but also reveals a novel mechanism causing human genetic disease.
Collapse
Affiliation(s)
- Manuèle Miné
- Centre de Recherches Thérapeutiques en Ophtalmologie, Faculté de Médecine Necker, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Marcucci R, Baralle FE, Romano M. Complex splicing control of the human Thrombopoietin gene by intronic G runs. Nucleic Acids Res 2006; 35:132-42. [PMID: 17158158 PMCID: PMC1802585 DOI: 10.1093/nar/gkl965] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The human thrombopoietin (THPO) gene displays a series of alternative splicing events that provide valuable models for studying splicing mechanisms. The THPO region spanning exon 1–4 presents both alternative splicing of exon 2 and partial intron 2 (IVS2) retention following the activation of a cryptic 3′ splice site 85 nt upstream of the authentic acceptor site. IVS2 is particularly rich in stretches of 3–5 guanosines (namely, G1–G10) and we have characterized the role of these elements in the processing of this intron. In vivo studies show that runs G7–G10 work in a combinatorial way to control the selection of the proper 3′ splice site. In particular, the G7 element behaves as the splicing hub of intron 2 and its interaction with hnRNP H1 is critical for the splicing process. Removal of hnRNP H1 by RNA interference promoted the usage of the cryptic 3′ splice site so providing functional evidence that this factor is involved in the selection of the authentic 3′ splice site of THPO IVS2.
Collapse
Affiliation(s)
- Roberto Marcucci
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99I-34012, Trieste, Italy
| | - Francisco E. Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99I-34012, Trieste, Italy
- To whom correspondence should be addressed. Tel: +39 040 375 7337; Fax: +39 040 375 7361;
| | - Maurizio Romano
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99I-34012, Trieste, Italy
- Department of Physiology and Pathology, University of TriesteVia A. Fleming 22, 34127, Trieste, Italy
| |
Collapse
|
21
|
Tazi J, Durand S, Jeanteur P. The spliceosome: a novel multi-faceted target for therapy. Trends Biochem Sci 2006; 30:469-78. [PMID: 16009556 DOI: 10.1016/j.tibs.2005.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 05/13/2005] [Accepted: 06/21/2005] [Indexed: 01/26/2023]
Abstract
The spliceosome is a dynamic and flexible ribonucleoprotein enzyme that removes intronic sequences in a regulated manner. Spliceosome action enables one stretch of genomic DNA sequence to yield several mRNAs that encode different proteins. It depends on a flexible mechanism for selecting splice sites, which calls for regulatory sequences (splicing enhancers or silencers) recognized by cognate trans-acting protein factors and constitutive ribonucleoprotein devices to build up the catalytic core. The identification of both types of elements now offers a comprehensive insight into how the spliceosome is adapted to carry out the removal of different introns and suggests novel therapeutic targets to, ultimately, restore a physiological pattern of alternatively spliced variants in a large repertoire of pathologies.
Collapse
Affiliation(s)
- Jamal Tazi
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR 5535, IFR 122, Centre National de Recherche Scientifique (CNRS), France.
| | | | | |
Collapse
|
22
|
Vetrini F, Tammaro R, Bondanza S, Surace EM, Auricchio A, De Luca M, Ballabio A, Marigo V. Aberrant splicing in the ocular albinism type 1 gene (OA1/GPR143) is corrected in vitro by morpholino antisense oligonucleotides. Hum Mutat 2006; 27:420-6. [PMID: 16550551 DOI: 10.1002/humu.20303] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An intronic point mutation was identified in the ocular albinism type 1 (OA1) gene (HUGO symbol, GPR143) in a family with the X-linked form of ocular albinism. Interestingly, the mutation creates a new acceptor splice site in intron 7 of the OA1 gene. In addition to low levels of normally spliced mRNA product of the OA1 gene, the patient samples contained also an aberrantly spliced mRNA with a 165 bp fragment of intron 7 (from position +750 to +914) inserted between exons 7 and 8. The abnormal transcript contained a premature stop codon and was unstable, as revealed by Northern blot analysis. We defined that mutation NC_000023.8:g.25288G>A generated a consensus binding motif for the splicing factor enhancer ASF/SF2, which most likely favored transcription of the aberrant mRNA. Furthermore, it activated a cryptic donor-splice site causing the inclusion between exons 7 and 8 of the 165 bp intronic fragment. Thus, the aberrant splicing is most likely explained by the generation of a de novo splicing enhancer motif. Finally, to rescue OA1 expression in the patient's melanocytes, we designed an antisense morpholino modified oligonucleotide complementary to the mutant sequence. The morpholino oligonucleotide (MO) was able to rescue OA1 expression and restore the OA1 protein level in the patient's melanocytes through skipping of the aberrant inclusion. The use of MO demonstrated that the lack of OA1 was caused by the generation of a new splice site. Furthermore, this technique will lead to new approaches to correct splice site mutations that cause human diseases.
Collapse
|
23
|
Willemsen M, Rodenburg RJT, Teszas A, van den Heuvel L, Kosztolanyi G, Morava E. Females with PDHA1 gene mutations: a diagnostic challenge. Mitochondrion 2006; 6:155-9. [PMID: 16713755 DOI: 10.1016/j.mito.2006.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 02/28/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
Biochemical analysis was performed in muscle tissue and in fibroblasts of four unrelated females consecutively diagnosed with a 'de novo' point mutation in the PDHA1 gene. Pyruvate dehydrogenase E1 subunit deficiency was confirmed in the muscle sample of all patients, however, in three out of four cases the activity of the pyruvate dehydrogenase complex in fibroblasts showed a normal activity. A skewed inactivation was confirmed of the maternal X chromosome in fibroblasts in all children. Due to the possibility of a skewed X inactivation pattern enzyme measurements in fibroblasts are not always reliable for the diagnosis of a PDHc defect in females. Based on the overlapping features of PDHc deficiency with those of the disorders of the oxidative phosphorylation we suggest performing a fresh muscle biopsy for detailed biochemical analysis in females with a suspected pyruvate dehydrogenase deficiency, followed by molecular genetic analysis of the PDHA1 gene.
Collapse
Affiliation(s)
- Marjolein Willemsen
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 Nijmegen, HB, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Mayeur H, Roche O, Vêtu C, Jaliffa C, Marchant D, Dollfus H, Bonneau D, Munier FL, Schorderet DF, Levin AV, Héon E, Sutherland J, Lacombe D, Said E, Mezer E, Kaplan J, Dufier JL, Marsac C, Menasche M, Abitbol M. Eight previously unidentified mutations found in the OA1 ocular albinism gene. BMC MEDICAL GENETICS 2006; 7:41. [PMID: 16646960 PMCID: PMC1468396 DOI: 10.1186/1471-2350-7-41] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 04/28/2006] [Indexed: 11/24/2022]
Abstract
Background Ocular albinism type 1 (OA1) is an X-linked ocular disorder characterized by a severe reduction in visual acuity, nystagmus, hypopigmentation of the retinal pigmented epithelium, foveal hypoplasia, macromelanosomes in pigmented skin and eye cells, and misrouting of the optical tracts. This disease is primarily caused by mutations in the OA1 gene. Methods The ophthalmologic phenotype of the patients and their family members was characterized. We screened for mutations in the OA1 gene by direct sequencing of the nine PCR-amplified exons, and for genomic deletions by PCR-amplification of large DNA fragments. Results We sequenced the nine exons of the OA1 gene in 72 individuals and found ten different mutations in seven unrelated families and three sporadic cases. The ten mutations include an amino acid substitution and a premature stop codon previously reported by our team, and eight previously unidentified mutations: three amino acid substitutions, a duplication, a deletion, an insertion and two splice-site mutations. The use of a novel Taq polymerase enabled us to amplify large genomic fragments covering the OA1 gene. and to detect very likely six distinct large deletions. Furthermore, we were able to confirm that there was no deletion in twenty one patients where no mutation had been found. Conclusion The identified mutations affect highly conserved amino acids, cause frameshifts or alternative splicing, thus affecting folding of the OA1 G protein coupled receptor, interactions of OA1 with its G protein and/or binding with its ligand.
Collapse
Affiliation(s)
- Hélène Mayeur
- EA no 2502 du ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, CEntre de Recherches Thérapeutiques en Ophtalmologie, (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, 156 rue de Vaugirard, 75015 Paris cedex, France
| | - Olivier Roche
- EA no 2502 du ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, CEntre de Recherches Thérapeutiques en Ophtalmologie, (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, 156 rue de Vaugirard, 75015 Paris cedex, France
- Service d'ophtalmologie, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | - Christelle Vêtu
- EA no 2502 du ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, CEntre de Recherches Thérapeutiques en Ophtalmologie, (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, 156 rue de Vaugirard, 75015 Paris cedex, France
| | - Carolina Jaliffa
- EA no 2502 du ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, CEntre de Recherches Thérapeutiques en Ophtalmologie, (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, 156 rue de Vaugirard, 75015 Paris cedex, France
| | - Dominique Marchant
- EA no 2502 du ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, CEntre de Recherches Thérapeutiques en Ophtalmologie, (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, 156 rue de Vaugirard, 75015 Paris cedex, France
| | - Hélène Dollfus
- Laboratoire de diagnostic génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | | | - Alex V Levin
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Joanne Sutherland
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Didier Lacombe
- Service de Génétique Médicale, Hôpital Pellegrin-Enfants, Bordeaux, France
| | - Edith Said
- Department of Pediatrics and Medical Genetics, St. Luke's Hospital, Gwardamangia, Malta
| | - Eedy Mezer
- Alberto Moscona Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel
| | - Josseline Kaplan
- Service de Génétique Médicale du CHU Necker-Enfants Malades, Unité INSERM 393, 149 rue de Sèvres, 75015, Paris, France
| | - Jean-Louis Dufier
- EA no 2502 du ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, CEntre de Recherches Thérapeutiques en Ophtalmologie, (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, 156 rue de Vaugirard, 75015 Paris cedex, France
- Service d'ophtalmologie, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | - Cécile Marsac
- EA no 2502 du ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, CEntre de Recherches Thérapeutiques en Ophtalmologie, (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, 156 rue de Vaugirard, 75015 Paris cedex, France
| | - Maurice Menasche
- EA no 2502 du ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, CEntre de Recherches Thérapeutiques en Ophtalmologie, (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, 156 rue de Vaugirard, 75015 Paris cedex, France
| | - Marc Abitbol
- EA no 2502 du ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, CEntre de Recherches Thérapeutiques en Ophtalmologie, (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, 156 rue de Vaugirard, 75015 Paris cedex, France
- Service d'ophtalmologie, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| |
Collapse
|
25
|
Královicová J, Vorechovsky I. Position-dependent repression and promotion of DQB1 intron 3 splicing by GGGG motifs. THE JOURNAL OF IMMUNOLOGY 2006; 176:2381-8. [PMID: 16455996 DOI: 10.4049/jimmunol.176.4.2381] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alternative splicing of HLA-DQB1 exon 4 is allele-dependent and results in variable expression of soluble DQbeta. We have recently shown that differential inclusion of this exon in mature transcripts is largely due to intron 3 variants in the branch point sequence (BPS) and polypyrimidine tract. To identify additional regulatory cis-elements that contribute to haplotype-specific splicing of DQB1, we systematically examined the effect of guanosine (G) repeats on intron 3 removal. We found that the GGG or GGGG repeats generally improved splicing of DQB1 intron 3, except for those that were adjacent to the 5' splice site where they had the opposite effect. The most prominent splicing enhancement was conferred by GGGG motifs arranged in tandem upstream of the BPS. Replacement of a G-rich segment just 5' of the BPS with a series of random sequences markedly repressed splicing, whereas substitutions of a segment further upstream that lacked the G-rich elements and had the same size did not result in comparable splicing inhibition. Systematic mutagenesis of both suprabranch guanosine quadruplets (G(4)) revealed a key role of central G residues in splicing enhancement, whereas cytosines in these positions had the most prominent repressive effects. Together, these results show a significant role of tandem G(4)NG(4) structures in splicing of both complete and truncated DQB1 intron 3, support position dependency of G repeats in splicing promotion and inhibition, and identify positively and negatively acting sequences that contribute to the haplotype-specific DQB1 expression.
Collapse
Affiliation(s)
- Jana Královicová
- Division of Human Genetics, University of Southampton, School of Medicine, UK
| | | |
Collapse
|
26
|
Abstract
Abundant evidence indicates that developmental evolution, the foundation of morphological evolution, is based on changes in gene function. Over the past decade a consensus has developed that transcriptional regulation, acting through enhancer sequences, is the primary level of evolutionarily significant change. Here we propose that other regulatory levels are probably as important as enhancers in developmental evolution. We also explain why these alternative regulatory levels might have been neglected, and briefly discuss ways to test our hypothesis.
Collapse
Affiliation(s)
- Claudio R Alonso
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
27
|
Soret J, Gabut M, Tazi J. SR Proteins as Potential Targets for Therapy. ALTERNATIVE SPLICING AND DISEASE 2006; 44:65-87. [PMID: 17076265 DOI: 10.1007/978-3-540-34449-0_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Serine- and arginine-rich (SR) proteins constitute a highly conserved family of pre-mRNA splicing factors that play key roles in the regulation of splice site selection, and thereby in the control of alternative splicing processes. In addition to conserved sequences at the splice junctions, splice site selection also depends upon different sets of auxiliary cis regulatory elements known as exonic and intronic splicing enhancers (ESEs and ISEs) or exonic and intronic silencers (ESSs and ISSs). Specific binding of SR proteins to their cognate splicing enhancers as well as binding of splicing repressor to silencer sequences serve to enhance or inhibit recognition of weak splice sites by the splicing machinery. Given that the vast majority of human genes contain introns and that most pre-mRNAs containing multiple exons undergo alternative splicing, mutations disrupting or creating such auxiliary elements can result in aberrant splicing events at the origin of various human diseases. In the past few years, numerous studies have reported several approaches allowing correction of such aberrant splicing events by targeting either the mutated sequences or the splicing regulators whose binding is affected by the mutation. The aim of the present review is to highlight the different means by which it is possible to modulate the activity of SR splicing factors and to bring out those holding the greatest promises for the development of therapeutic treatments.
Collapse
Affiliation(s)
- Johann Soret
- Institut de Génétique Moléculaire de Montpellier, UMR 5535, IFR 122, Centre National de Recherche Scientifique, 1919, route de Mende, 34293 Montpellier, France
| | | | | |
Collapse
|
28
|
Nielsen K, Heegaard S, Vorum H, Birkenkamp-Demtröder K, Ehlers N, Orntoft TF. Altered expression of CLC, DSG3, EMP3, S100A2, and SLPI in corneal epithelium from keratoconus patients. Cornea 2005; 24:661-8. [PMID: 16015083 DOI: 10.1097/01.ico.0000153556.59407.69] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This investigation was designed to determine whether the five genes, CLC, DSG3, EMP3, S100A2 and SLPI, are differentially expressed in keratoconus, as indicated from another study. METHODS Gene expression was monitored using quantitative real-time PCR on 14 keratoconus samples and 16 controls, and normalized to GAPDH and B2M. The DSG3, S100A2, and SLPI proteins were quantified by Western blotting, and the cellular localization was determined by immunohistochemistry. One of the genes, CLC, was reduced in gene expression and its four exons were sequenced. RESULTS The five genes were all differentially expressed in keratoconus (P < 0.04) and so were at least three of the encoded proteins (P = 0.009). DSG3 was expressed in association with the cell membrane of the basal and suprabasal epithelial cells, and S100A2 was expressed in the nucleus and cytoplasm, often as intracellular granules. Two SNPs (rs374185 and rs384138) were observed in the CLC gene, each with an allele frequency of 68%. No other mutations were detected. CONCLUSIONS The five genes, and three of the encoded proteins, were shown differentially expressed between a group of keratoconus patients and a reference group using different techniques. These alterations, in combination with earlier findings, strongly demonstrate the genes to be involved in the corneal disease. We suggest the unambiguously expressed DSG3 protein to be used as a marker for keratoconus.
Collapse
Affiliation(s)
- Kim Nielsen
- Department of Ophthalmology, Aarhus University Hospital, Denmark
| | | | | | | | | | | |
Collapse
|
29
|
Thumma BR, Nolan MF, Evans R, Moran GF. Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 2005; 171:1257-65. [PMID: 16085705 PMCID: PMC1456829 DOI: 10.1534/genetics.105.042028] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Linkage disequilibrium (LD) mapping using natural populations results in higher resolution of marker-trait associations compared to family-based quantitative trait locus (QTL) studies. Depending on the extent of LD, it is possible to identify alleles within candidate genes associated with a trait. Analysis of a natural mutant in Arabidopsis has shown that mutations in cinnamoyl CoA reductase (CCR), a key lignin gene, affect physical properties of the secondary cell wall such as stiffness and strength. Using this gene, we tested whether LD mapping could identify alleles associated with microfibril angle (MFA), a wood quality trait affecting stiffness and strength of wood. We identified 25 common single-nucleotide polymorphism (SNP) markers in the CCR gene in Eucalyptus nitens. Using single-marker and haplotype analyses in 290 trees from a E. nitens natural population, two haplotypes significantly associated with MFA were found. These results were confirmed in two full-sib families of E. nitens and Eucalyptus globulus. In an effort to understand the functional significance of the SNP markers, we sequenced the cDNA clones and identified an alternatively spliced variant from the significant haplotype region. This study demonstrates that LD mapping can be used to identify alleles associated with wood quality traits in natural populations of trees.
Collapse
Affiliation(s)
- Bala R Thumma
- CSIRO Forestry and Forest Products, Clayton, Victoria 3168, Australia.
| | | | | | | |
Collapse
|
30
|
Soret J, Bakkour N, Maire S, Durand S, Zekri L, Gabut M, Fic W, Divita G, Rivalle C, Dauzonne D, Nguyen CH, Jeanteur P, Tazi J. Selective modification of alternative splicing by indole derivatives that target serine-arginine-rich protein splicing factors. Proc Natl Acad Sci U S A 2005; 102:8764-9. [PMID: 15939885 PMCID: PMC1150812 DOI: 10.1073/pnas.0409829102] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prevalence of alternative splicing as a target for alterations leading to human genetic disorders makes it highly relevant for therapy. Here we have used in vitro splicing reactions with different splicing reporter constructs to screen 4,000 chemical compounds for their ability to selectively inhibit spliceosome assembly and splicing. We discovered indole derivatives as potent inhibitors of the splicing reaction. Importantly, compounds of this family specifically inhibit exonic splicing enhancer (ESE)-dependent splicing, because they interact directly and selectively with members of the serine-arginine-rich protein family. Treatment of cells expressing reporter constructs with ESE sequences demonstrated that selected indole derivatives mediate inhibition of ESE usage in vivo and prevent early splicing events required for HIV replication. This discovery opens the exciting possibility of a causal pharmacological treatment of aberrant splicing in human genetic disorders and development of new antiviral therapeutic approaches.
Collapse
Affiliation(s)
- Johann Soret
- Institut de Génétique Moléculaire de Montpellier, Unité Mixte de Recherche 5535, Centre National de Recherche Scientifique, 1919, Route de Mende, 34293 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gabut M, Miné M, Marsac C, Brivet M, Tazi J, Soret J. The SR protein SC35 is responsible for aberrant splicing of the E1alpha pyruvate dehydrogenase mRNA in a case of mental retardation with lactic acidosis. Mol Cell Biol 2005; 25:3286-94. [PMID: 15798212 PMCID: PMC1069624 DOI: 10.1128/mcb.25.8.3286-3294.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyruvate dehydrogenase (PDH) complex deficiency is a major cause of lactic acidosis and Leigh's encephalomyelopathies in infancy and childhood, resulting in early death in the majority of patients. Most of the molecular defects have been localized in the coding regions of the E1alpha PDH gene. Recently, we identified a novel mutation of the E1alpha PDH gene in a patient with an encephalopathy and lactic acidosis. This mutation, located downstream of exon 7, activates a cryptic splice donor and leads to the retention of intronic sequences. Here, we demonstrate that the mutation results in an increased binding of the SR protein SC35. Consistently, ectopic overexpression of this splicing factor enhanced the use of the cryptic splice site, whereas small interfering RNA-mediated reduction of the SC35 protein levels in primary fibroblasts from the patient resulted in the almost complete disappearance of the aberrantly spliced E1alpha PDH mRNA. Our findings open the exciting prospect for a novel therapy of an inherited disease by altering the level of a specific splicing factor.
Collapse
Affiliation(s)
- Mathieu Gabut
- UMR 5535, IFR122, CNRS-UMII, Institut de Génétique Moléculaire de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | | | | | | | | | | |
Collapse
|
32
|
Han K, Yeo G, An P, Burge CB, Grabowski PJ. A combinatorial code for splicing silencing: UAGG and GGGG motifs. PLoS Biol 2005; 3:e158. [PMID: 15828859 PMCID: PMC1079783 DOI: 10.1371/journal.pbio.0030158] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Accepted: 03/04/2005] [Indexed: 12/28/2022] Open
Abstract
Alternative pre-mRNA splicing is widely used to regulate gene expression by tuning the levels of tissue-specific mRNA isoforms. Few regulatory mechanisms are understood at the level of combinatorial control despite numerous sequences, distinct from splice sites, that have been shown to play roles in splicing enhancement or silencing. Here we use molecular approaches to identify a ternary combination of exonic UAGG and 5′-splice-site-proximal
GGGG motifs that functions cooperatively to silence the brain-region-specific CI cassette exon (exon 19) of the glutamate NMDA R1 receptor (GRIN1) transcript. Disruption of three components of the motif pattern converted the CI cassette into a constitutive exon, while predominant skipping was conferred when the same components were introduced, de novo, into a heterologous constitutive exon. Predominant exon silencing was directed by the motif pattern in the presence of six competing exonic splicing enhancers, and this effect was retained after systematically repositioning the two exonic UAGGs within the CI cassette. In this system, hnRNP A1 was shown to mediate silencing while hnRNP H antagonized silencing. Genome-wide computational analysis combined with RT-PCR testing showed that a class of skipped human and mouse exons can be identified by searches that preserve the sequence and spatial configuration of the UAGG and
GGGG motifs. This analysis suggests that the multi-component silencing code may play an important role in the tissue-specific regulation of the CI cassette exon, and that it may serve more generally as a molecular language to allow for intricate adjustments and the coordination of splicing patterns from different genes.
Many genes are alternatively spliced, but the signals that regulate the process are unclear. These authors have found a sequence motif that appears to function at many alternatively spliced genes
Collapse
Affiliation(s)
- Kyoungha Han
- 1Department of Biological Sciences, University of PittsburghPittsburgh, PennsylvaniaUnited States of America
| | - Gene Yeo
- 2Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyBoston, MassachusettsUnited States of America
| | - Ping An
- 1Department of Biological Sciences, University of PittsburghPittsburgh, PennsylvaniaUnited States of America
| | - Christopher B Burge
- 3Department of Biology, Massachusetts Institute of TechnologyBoston, MassachusettsUnited States of America
| | - Paula J Grabowski
- 1Department of Biological Sciences, University of PittsburghPittsburgh, PennsylvaniaUnited States of America
| |
Collapse
|
33
|
Stevens A, Donn R, Ray D. Regulation of glucocorticoid receptor gamma (GRgamma) by glucocorticoid receptor haplotype and glucocorticoid. Clin Endocrinol (Oxf) 2004; 61:327-31. [PMID: 15355448 DOI: 10.1111/j.1365-2265.2004.02097.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To measure glucocorticoid receptor gamma (GRgamma) expression in transformed lymphocytes from individuals of known GR gene haplotype. Recently, a glucocorticoid receptor haplotype (GAT) has been described that associates with increased sensitivity to dexamethasone. As there is strong linkage disequilibrium across the gene, this haplotype is likely to extend through exon 3, altered splicing of which generates the GRgamma isoform, a splice variant with impaired transactivation activity. Therefore we proposed that the GR haplotype affects glucocorticoid sensitivity either by influencing GRgamma expression basally, or in response to Gc exposure. DESIGN We have measured expression of GRgamma, using a validated RT-PCR assay in human B lymphoblast cells of known haplotype under basal conditions, and after dexamethasone treatment. PATIENTS The A549 human lung cell line and normal volunteers, five with the GAT GR haplotype and three with the CGA haplotype. MEASUREMENTS Relative expression of GRgamma compared to total GR mRNA. RESULTS GRgamma made up 5-6% of all the GR transcripts. There was no effect of carriage of the GR gene GAT haplotype on this expression. There was no effect of dexamethasone on relative expression of GRgamma. CONCLUSIONS We propose that the GRgamma isoform is a product of constitutive splicing, that it does not explain the GR haplotype association with altered glucocorticoid sensitivity, and is unlikely to play an important physiological role in affecting glucocorticoid sensitivity. As glucocorticoids do not affect GRgamma expression, relative to total GR, this splice variant is unlikely to influence glucocorticoid treatment response.
Collapse
Affiliation(s)
- Adam Stevens
- Endocrine Sciences Research Group, Faculty of Medicine, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
34
|
Abstract
Alternative splicing is the major source of proteome diversity in humans and thus is highly relevant to disease and therapy. For example, recent work suggests that the long-sought-after target of the analgesic acetaminophen is a neural-specific, alternatively spliced isoform of cyclooxygenase 1 (COX-1). Several important diseases, such as cystic fibrosis, have been linked with mutations or variations in either cis-acting elements or trans-acting factors that lead to aberrant splicing and abnormal protein production. Correction of erroneous splicing is thus an important goal of molecular therapies. Recent experiments have used modified oligonucleotides to inhibit cryptic exons or to activate exons weakened by mutations, suggesting that these reagents could eventually lead to effective therapies.
Collapse
Affiliation(s)
- Mariano A Garcia-Blanco
- Department of Molecular Genetics and Microbiology, Center for RNA Biology, Box 3053, Research Drive, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
35
|
Bourgeois CF, Lejeune F, Stévenin J. Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 78:37-88. [PMID: 15210328 DOI: 10.1016/s0079-6603(04)78002-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alternative splicing of pre-messenger RNA (pre-mRNA) is a highly regulated process that allows expansion of the potential of expression of the genome in higher eukaryotes and involves many factors. Among them, the family of the serine- and arginine-rich proteins (SR proteins) plays a pivotal role: it has essential functions during spliceosome assembly and also interacts with RNA regulatory sequences on the pre-mRNA as well as with multiple cofactors. Collectively, SR proteins, because of their capacity to recognize multiple RNA sequences with a broad specificity, are at the heart of the regulation pathways that lead to the choice of alternative splice sites. Moreover, a growing body of evidence shows that the mechanisms of splicing regulation are not limited to the basic involvement of cis- and trans-acting factors at the pre-mRNA level, but result from intricate pathways, initiated sometimes by stimuli that are external to the cell and integrate SR proteins (and other factors) within an extremely sophisticated network of molecular machines associated with one another. This review focuses on the molecular aspects of the functions of SR proteins. In particular, we discuss the different ways in which SR proteins manage to achieve a high level of specificity in splicing regulation, even though they are also involved in the constitutive reaction.
Collapse
Affiliation(s)
- Cyril F Bourgeois
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch, C.U. Strasbourg, France
| | | | | |
Collapse
|
36
|
Zatkova A, Messiaen L, Vandenbroucke I, Wieser R, Fonatsch C, Krainer AR, Wimmer K. Disruption of exonic splicing enhancer elements is the principal cause of exon skipping associated with seven nonsense or missense alleles of NF1. Hum Mutat 2004; 24:491-501. [PMID: 15523642 DOI: 10.1002/humu.20103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nonsense, missense, and even silent mutation-associated exon skipping is recognized in an increasing number of genes as a novel form of splicing mutation. The analysis of individual mutations of this kind can shed light on basic pre-mRNA splicing mechanisms. Using cDNA-based mutation detection analysis, we have identified one missense and six nonsense mutations that lead to different extents of exon-lacking transcripts in neurofibromatosis type 1 (NF1) patients. We confirmed mutation-associated exon skipping in a heterologous hybrid minigene context. There is evidence that the disruption of functional exonic splicing enhancer (ESE) sequences is frequently the mechanism underlying mutation-associated exon skipping. Therefore, we examined the wild-type and mutant NF1 sequences with two available ESE-prediction programs. Either or both programs predicted the disruption of ESE motifs in six out of the seven analyzed mutations. To ascertain the function of the predicted ESEs, we quantitatively measured their ability to rescue splicing of an enhancer-dependent exon, and found that all seven mutant ESEs had reduced splicing enhancement activity compared to the wild-type sequences. Our results suggest that the wild-type sequences function as ESE elements, whose disruption is responsible for the mutation-associated exon skipping observed in the NF1 patients. Further, this study illustrates the utility of ESE-prediction programs for delineating candidate sequences that may serve as ESE elements. However, until more refined prediction algorithms have been developed, experimental data, preferably from patient tissues, remain indispensable to assess the clinical significance, particularly of missense and silent mutations, and to understand the structure-function relationship in the corresponding protein.
Collapse
Affiliation(s)
- Andrea Zatkova
- Institut für Medizinische Biologie, Medizinische Universität Wien, Vienn, Austria
| | | | | | | | | | | | | |
Collapse
|
37
|
Namour F, Helfer AC, Quadros EV, Alberto JM, Bibi HM, Orning L, Rosenblatt DS, Jean-Louis G. Transcobalamin deficiency due to activation of an intra exonic cryptic splice site. Br J Haematol 2003; 123:915-20. [PMID: 14632784 DOI: 10.1046/j.1365-2141.2003.04685.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcobalamin (TC), a vitamin B12 (cobalamin, Cbl) binding protein in plasma, promotes the cellular uptake of the vitamin by receptor-mediated endocytosis. Inherited TC deficiency is an autosomal recessive disorder characterized by megaloblastic anaemia caused by cellular vitamin B12 depletion. It may be accompanied by neurological complications, including a delay in psychomotor and mental development. This report describes three sisters with inherited TC deficiency resulting from a splicing defect in the TC gene. A point mutation was identified in intron 3 splice site of the TC gene that activates a cryptic splice site in exon 3. The transcript generated has an in-frame deletion of 81 nucleotides and the resulting truncated protein is unstable and not secreted by the cells. Until now, genetic studies have been reported in only five patients with TC deficiency and the molecular defect was different in each of them, which gives evidence for a genetic heterogeneity of the disease.
Collapse
Affiliation(s)
- Fares Namour
- Laboratoire de Pathologie Cellulaire et Moléculaire en Nutrition, EMI-INSERM 0014, Faculté de Médecine de Nancy, Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR. ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res 2003; 31:3568-71. [PMID: 12824367 PMCID: PMC169022 DOI: 10.1093/nar/gkg616] [Citation(s) in RCA: 1218] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Point mutations frequently cause genetic diseases by disrupting the correct pattern of pre-mRNA splicing. The effect of a point mutation within a coding sequence is traditionally attributed to the deduced change in the corresponding amino acid. However, some point mutations can have much more severe effects on the structure of the encoded protein, for example when they inactivate an exonic splicing enhancer (ESE), thereby resulting in exon skipping. ESEs also appear to be especially important in exons that normally undergo alternative splicing. Different classes of ESE consensus motifs have been described, but they are not always easily identified. ESEfinder (http://exon.cshl.edu/ESE/) is a web-based resource that facilitates rapid analysis of exon sequences to identify putative ESEs responsive to the human SR proteins SF2/ASF, SC35, SRp40 and SRp55, and to predict whether exonic mutations disrupt such elements.
Collapse
Affiliation(s)
- Luca Cartegni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|