1
|
Powis G, Meuillet EJ, Indarte M, Booher G, Kirkpatrick L. Pleckstrin Homology [PH] domain, structure, mechanism, and contribution to human disease. Biomed Pharmacother 2023; 165:115024. [PMID: 37399719 DOI: 10.1016/j.biopha.2023.115024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
The pleckstrin homology [PH] domain is a structural fold found in more than 250 proteins making it the 11th most common domain in the human proteome. 25% of family members have more than one PH domain and some PH domains are split by one, or several other, protein domains although still folding to give functioning PH domains. We review mechanisms of PH domain activity, the role PH domain mutation plays in human disease including cancer, hyperproliferation, neurodegeneration, inflammation, and infection, and discuss pharmacotherapeutic approaches to regulate PH domain activity for the treatment of human disease. Almost half PH domain family members bind phosphatidylinositols [PIs] that attach the host protein to cell membranes where they interact with other membrane proteins to give signaling complexes or cytoskeleton scaffold platforms. A PH domain in its native state may fold over other protein domains thereby preventing substrate access to a catalytic site or binding with other proteins. The resulting autoinhibition can be released by PI binding to the PH domain, or by protein phosphorylation thus providing fine tuning of the cellular control of PH domain protein activity. For many years the PH domain was thought to be undruggable until high-resolution structures of human PH domains allowed structure-based design of novel inhibitors that selectively bind the PH domain. Allosteric inhibitors of the Akt1 PH domain have already been tested in cancer patients and for proteus syndrome, with several other PH domain inhibitors in preclinical development for treatment of other human diseases.
Collapse
Affiliation(s)
- Garth Powis
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA.
| | | | - Martin Indarte
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Garrett Booher
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Lynn Kirkpatrick
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Ru Q, Wang Y, Zhou E, Chen L, Wu Y. The potential therapeutic roles of Rho GTPases in substance dependence. Front Mol Neurosci 2023; 16:1125277. [PMID: 37063367 PMCID: PMC10097952 DOI: 10.3389/fnmol.2023.1125277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Rho GTPases family are considered to be molecular switches that regulate various cellular processes, including cytoskeleton remodeling, cell polarity, synaptic development and maintenance. Accumulating evidence shows that Rho GTPases are involved in neuronal development and brain diseases, including substance dependence. However, the functions of Rho GTPases in substance dependence are divergent and cerebral nuclei-dependent. Thereby, comprehensive integration of their roles and correlated mechanisms are urgently needed. In this review, the molecular functions and regulatory mechanisms of Rho GTPases and their regulators such as GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs) in substance dependence have been reviewed, and this is of great significance for understanding their spatiotemporal roles in addictions induced by different addictive substances and in different stages of substance dependence.
Collapse
Affiliation(s)
| | | | | | - Lin Chen
- *Correspondence: Lin Chen, ; Yuxiang Wu,
| | - Yuxiang Wu
- *Correspondence: Lin Chen, ; Yuxiang Wu,
| |
Collapse
|
3
|
Abstract
Cell migration, a crucial step in numerous biological processes, is tightly regulated in space and time. Cells employ Rho GTPases, primarily Rho, Rac, and Cdc42, to regulate their motility. Like other small G proteins, Rho GTPases function as biomolecular switches in regulating cell migration by operating between GDP bound 'OFF' and GTP bound 'ON' states. Guanine nucleotide exchange factors (GEFs) catalyse the shuttling of GTPases from OFF to ON state. G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors that are involved in many signalling phenomena including cell survival and cell migration events. In this review, we summarize signalling mechanisms, involving GPCRs, leading to the activation of RhoGEFs. GPCRs exhibit diverse GEF activation modes that include the interaction of heterotrimeric G protein subunits with different domains of GEFs, phosphorylation, protein-protein interaction, protein-lipid interaction, and/or a combination of these processes.
Collapse
Affiliation(s)
- Aishwarya Omble
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kiran Kulkarni
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,CONTACT Kiran Kulkarni Academy of Scientific and Innovative Research (Acsir), Ghaziabad 201002, India
| |
Collapse
|
4
|
Maltas J, Reed H, Porter A, Malliri A. Mechanisms and consequences of dysregulation of the Tiam family of Rac activators in disease. Biochem Soc Trans 2020; 48:2703-2719. [PMID: 33200195 DOI: 10.1042/bst20200481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
The Tiam family proteins - Tiam1 and Tiam2/STEF - are Rac1-specific Guanine Nucleotide Exchange Factors (GEFs) with important functions in epithelial, neuronal, immune and other cell types. Tiam GEFs regulate cellular migration, proliferation and survival, mainly through activating and directing Rac1 signalling. Dysregulation of the Tiam GEFs is significantly associated with human diseases including cancer, immunological and neurological disorders. Uncovering the mechanisms and consequences of dysregulation is therefore imperative to improving the diagnosis and treatment of diseases. Here we compare and contrast the subcellular localisation and function of Tiam1 and Tiam2/STEF, and review the evidence for their dysregulation in disease.
Collapse
Affiliation(s)
- Joe Maltas
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, U.K
| | - Hannah Reed
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, U.K
| | - Andrew Porter
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, U.K
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, U.K
| |
Collapse
|
5
|
Woida PJ, Satchell KJF. The Vibrio cholerae MARTX toxin silences the inflammatory response to cytoskeletal damage before inducing actin cytoskeleton collapse. Sci Signal 2020; 13:13/614/eaaw9447. [PMID: 31937566 DOI: 10.1126/scisignal.aaw9447] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are pore-forming bacterial toxins that translocate multiple functionally independent effector domains into a target eukaryotic cell. Vibrio cholerae colonizes intestinal epithelial cells (IECs) and uses a MARTX toxin with three effector domains-an actin cross-linking domain (ACD), a Rho inactivation domain (RID), and an α/β hydrolase domain (ABH)-to suppress innate immunity and enhance colonization. We investigated whether these multiple catalytic enzymes delivered from a single toxin functioned in a coordinated manner to suppress intestinal innate immunity. Using cultured human IECs, we demonstrated that ACD-induced cytoskeletal collapse activated extracellular signal-regulated kinase, p38, and c-Jun amino-terminal kinase mitogen-activated protein kinase (MAPK) signaling to elicit a robust proinflammatory response characterized by the secretion of interleukin-8 (IL-8; also called CXCL8) and the expression of CXCL8, tumor necrosis factor (TNF), and other proinflammatory genes. However, RID and ABH, which are naturally delivered together with ACD, blocked MAPK activation through Rac1 and thus prevented ACD-induced inflammation. RID also abolished IL-8 secretion induced by heat-killed bacteria, TNF, or latrunculin A. Thus, MARTX toxins use enzymatic multifunctionality to silence the host response to bacterial factors and to the damage caused by the toxins. Furthermore, these data show how V. cholerae MARTX toxin suppresses intestinal inflammation and contributes to cholera being classically defined as a noninflammatory diarrheal disease.
Collapse
Affiliation(s)
- Patrick J Woida
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Ali I, Eu S, Koch D, Bleimling N, Goody RS, Müller MP. Structure of the tandem PX-PH domains of Bem3 from Saccharomyces cerevisiae. Acta Crystallogr F Struct Biol Commun 2018; 74:315-321. [PMID: 29718000 PMCID: PMC5931145 DOI: 10.1107/s2053230x18005915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/16/2018] [Indexed: 11/11/2022] Open
Abstract
The structure of the tandem lipid-binding PX and pleckstrin-homology (PH) domains of the Cdc42 GTPase-activating protein Bem3 from Saccharomyces cerevisiae (strain S288c) has been determined to a resolution of 2.2 Å (Rwork = 21.1%, Rfree = 23.4%). It shows that the domains adopt a relative orientation that enables them to simultaneously bind to a membrane and suggests possible cooperativity in membrane binding.
Collapse
Affiliation(s)
- Imtiaz Ali
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Sungmin Eu
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Daniel Koch
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Nathalie Bleimling
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Roger S. Goody
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Matthias P. Müller
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
7
|
Xu Z, Gakhar L, Bain FE, Spies M, Fuentes EJ. The Tiam1 guanine nucleotide exchange factor is auto-inhibited by its pleckstrin homology coiled-coil extension domain. J Biol Chem 2017; 292:17777-17793. [PMID: 28882897 PMCID: PMC5663878 DOI: 10.1074/jbc.m117.799114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/25/2017] [Indexed: 12/22/2022] Open
Abstract
T-cell lymphoma invasion and metastasis 1 (Tiam1) is a Dbl-family guanine nucleotide exchange factor (GEF) that specifically activates the Rho-family GTPase Rac1 in response to upstream signals, thereby regulating cellular processes including cell adhesion and migration. Tiam1 contains multiple domains, including an N-terminal pleckstrin homology coiled-coiled extension (PHn-CC-Ex) and catalytic Dbl homology and C-terminal pleckstrin homology (DH-PHc) domain. Previous studies indicate that larger fragments of Tiam1, such as the region encompassing the N-terminal to C-terminal pleckstrin homology domains (PHn-PHc), are auto-inhibited. However, the domains in this region responsible for inhibition remain unknown. Here, we show that the PHn-CC-Ex domain inhibits Tiam1 GEF activity by directly interacting with the catalytic DH-PHc domain, preventing Rac1 binding and activation. Enzyme kinetics experiments suggested that Tiam1 is auto-inhibited through occlusion of the catalytic site rather than by allostery. Small angle X-ray scattering and ensemble modeling yielded models of the PHn-PHc fragment that indicate it is in equilibrium between "open" and "closed" conformational states. Finally, single-molecule experiments support a model in which conformational sampling between the open and closed states of Tiam1 contributes to Rac1 dissociation. Our results highlight the role of the PHn-CC-Ex domain in Tiam1 GEF regulation and suggest a combinatorial model for GEF inhibition and activation of the Rac1 signaling pathway.
Collapse
Affiliation(s)
- Zhen Xu
- From the Department of Biochemistry
| | - Lokesh Gakhar
- From the Department of Biochemistry
- Protein Crystallography Facility, and
| | | | - Maria Spies
- From the Department of Biochemistry
- Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Ernesto J Fuentes
- From the Department of Biochemistry,
- Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
8
|
Hasegawa J, Strunk BS, Weisman LS. PI5P and PI(3,5)P 2: Minor, but Essential Phosphoinositides. Cell Struct Funct 2017; 42:49-60. [PMID: 28302928 DOI: 10.1247/csf.17003] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In most eukaryotes, phosphoinositides (PIs) have crucial roles in multiple cellular functions. Although the cellular levels of phosphatidylinositol 5-phosphate (PI5P) and phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) are extremely low relative to some other PIs, emerging evidence demonstrates that both lipids are crucial for the endocytic pathway, intracellular signaling, and adaptation to stress. Mutations that causes defects in the biosynthesis of PI5P and PI(3,5)P2 are linked to human diseases including neurodegenerative disorders. Here, we review recent findings on cellular roles of PI5P and PI(3,5)P2, as well as the pathophysiological importance of these lipids.Key words: Phosphoinositides, Membrane trafficking, Endocytosis, Vacuoles/Lysosomes, Fab1/PIKfyve.
Collapse
|
9
|
Peotter JL, Phillips J, Tong T, Dimeo K, Gonzalez JM, Peters DM. Involvement of Tiam1, RhoG and ELMO2/ILK in Rac1-mediated phagocytosis in human trabecular meshwork cells. Exp Cell Res 2016; 347:301-11. [PMID: 27539661 DOI: 10.1016/j.yexcr.2016.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/02/2016] [Accepted: 08/13/2016] [Indexed: 12/20/2022]
Abstract
We previously demonstrated that an αvβ5 integrin/FAK- mediated pathway regulated the phagocytic properties of human trabecular meshwork (HTM) cells. Here we demonstrate that this process is mediated by Rac-1 and a previously unreported signaling pathway that utilizes the Tiam1 as well as a novel ILK/RhoG/ELMO2 signaling pathway. Phagocytosis in both a TM-1 cell line and normal HTM cells was mediated by Rac1 and could be significantly decreased by >75% using the Rac1 inhibitor EHop-016. Knockdown of Rac1 in TM-1 cells also inhibited phagocytosis by 40% whereas overexpression of a constitutively active Rac1 or stimulation with PDGF increased phagocytosis by 83% and 32% respectively. Tiam1 was involved in regulating phagocytosis. Knockdown of Tiam1 inhibited phagocytosis by 72% while overexpression of Tiam1 C1199 increased phagocytosis by 75%. Other upstream effectors of Rac1 found to be involved included ELMO2, RhoG, and ILK. Knockdowns of ELMO2, ILK, and RhoG caused a reduction in phagocytosis by 51%, 55% and 46% respectively. In contrast, knockdown of Vav2 and Dock1 or overexpression of Vav2 Y159/172F did not cause a significant change in phagocytosis. These data suggest a novel link between Tiam1 and RhoG/ILK /ELMO2 pathway as upstream effectors of the Rac1-mediated phagocytic process in TM cells.
Collapse
Affiliation(s)
- Jennifer L Peotter
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Jenny Phillips
- The Waisman Center, University of Wisconsin, Madison, WI 53706, USA
| | - Tiegang Tong
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Kaylee Dimeo
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Jose M Gonzalez
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Donna M Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA; Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
10
|
Cash JN, Davis EM, Tesmer JJG. Structural and Biochemical Characterization of the Catalytic Core of the Metastatic Factor P-Rex1 and Its Regulation by PtdIns(3,4,5)P3. Structure 2016; 24:730-740. [PMID: 27150042 DOI: 10.1016/j.str.2016.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 11/20/2022]
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchanger 1 (P-Rex1) is a Rho guanine nucleotide exchange factor synergistically activated by PIP3 and Gβγ that plays an important role in the metastasis of breast, prostate, and skin cancer, making it an attractive therapeutic target. However, the molecular mechanisms behind P-Rex1 regulation are poorly understood. We determined structures of the P-Rex1 pleckstrin homology (PH) domain bound to the headgroup of PIP3 and resolved that PIP3 binding to the PH domain is required for P-Rex1 activity in cells but not for membrane localization, which points to an allosteric activation mechanism by PIP3. We also determined structures of the P-Rex1 tandem Dbl homology/PH domains in complexes with two of its substrate GTPases, Rac1 and Cdc42. Collectively, this study provides important molecular insights into P-Rex1 regulation and tools for targeting the PIP3-binding pocket of P-Rex1 with a new generation of cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Jennifer N Cash
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Ellen M Davis
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - John J G Tesmer
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA.
| |
Collapse
|
11
|
Matsuzawa K, Akita H, Watanabe T, Kakeno M, Matsui T, Wang S, Kaibuchi K. PAR3-aPKC regulates Tiam1 by modulating suppressive internal interactions. Mol Biol Cell 2016; 27:1511-23. [PMID: 26941335 PMCID: PMC4850038 DOI: 10.1091/mbc.e15-09-0670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/24/2016] [Indexed: 01/19/2023] Open
Abstract
The Rac1 activator Tiam1 is inhibited by internal interactions. Phosphorylation of Tiam1 by aPKC lends bias to an “open” conformation, potentiating its activation and allowing for its localization through protein–protein interactions. Tiam1 is one of the most extensively analyzed activators of the small GTPase Rac. However, fundamental aspects of its regulation are poorly understood. Here we demonstrate that Tiam1 is functionally suppressed by internal interactions and that the PAR complex participates in its full activation. The N-terminal region of Tiam1 binds to the protein-binding and catalytic domains to inhibit its localization and activation. Atypical PKCs phosphorylate Tiam1 to relieve its intramolecular interactions, and the subsequent stabilization of its interaction with PAR3 allows it to exert localized activity. By analyzing Tiam1 regulation by PAR3-aPKC within the context of PDGF signaling, we also show that PAR3 directly binds PDGF receptor β. Thus we provide the first evidence for the negative regulation of Tiam1 by internal interactions, elucidate the nature of Tiam1 regulation by the PAR complex, and reveal a novel role for the PAR complex in PDGF signaling.
Collapse
Affiliation(s)
- Kenji Matsuzawa
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroki Akita
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takashi Watanabe
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mai Kakeno
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Toshinori Matsui
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shujie Wang
- Department of Neural Regeneration and Cell Communication, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
12
|
Marat AL, Haucke V. Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic. EMBO J 2016; 35:561-79. [PMID: 26888746 DOI: 10.15252/embj.201593564] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/26/2016] [Indexed: 12/31/2022] Open
Abstract
Phosphoinositides (PIs) form a minor class of phospholipids with crucial functions in cell physiology, ranging from cell signalling and motility to a role as signposts of compartmental membrane identity. Phosphatidylinositol 3-phosphates are present at the plasma membrane and within the endolysosomal system, where they serve as key regulators of both cell signalling and of intracellular membrane traffic. Here, we provide an overview of the metabolic pathways that regulate cellular synthesis of PI 3-phosphates at distinct intracellular sites and discuss the mechanisms by which these lipids regulate cell signalling and membrane traffic. Finally, we provide a framework for how PI 3-phosphate metabolism is integrated into the cellular network.
Collapse
Affiliation(s)
- Andrea L Marat
- Leibniz Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
13
|
Côte M, Fos C, Canonigo-Balancio AJ, Ley K, Bécart S, Altman A. SLAT promotes TCR-mediated, Rap1-dependent LFA-1 activation and adhesion through interaction of its PH domain with Rap1. J Cell Sci 2015; 128:4341-52. [PMID: 26483383 DOI: 10.1242/jcs.172742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/09/2015] [Indexed: 01/13/2023] Open
Abstract
SLAT (also known as DEF6) promotes T cell activation and differentiation by regulating NFAT-Ca(2+) signaling. However, its role in TCR-mediated inside-out signaling, which induces integrin activation and T cell adhesion, a central process in T cell immunity and inflammation, has not been explored. Here, we show that SLAT is crucial for TCR-induced adhesion to ICAM-1 and affinity maturation of LFA-1 in CD4(+) T cells. Mechanistic studies revealed that SLAT interacts, through its PH domain, with a key component of inside-out signaling, namely the active form of the small GTPase Rap1 (which has two isoforms, Rap1A and Rap1B). This interaction has been further shown to facilitate the interdependent recruitment of Rap1 and SLAT to the T cell immunological synapse upon TCR engagement. Furthermore, a SLAT mutant lacking its PH domain drastically inhibited LFA-1 activation and CD4(+) T cell adhesion. Finally, we established that a constitutively active form of Rap1, which is present at the plasma membrane, rescues the defective LFA-1 activation and ICAM-1 adhesion in SLAT-deficient (Def6(-/-)) T cells. These findings ascribe a new function to SLAT, and identify Rap1 as a target of SLAT function in TCR-mediated inside-out signaling.
Collapse
Affiliation(s)
- Marjorie Côte
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Camille Fos
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Ann J Canonigo-Balancio
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Stéphane Bécart
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Abstract
The establishment and maintenance of epithelial cell-cell junctions is crucially important to regulate adhesion, apico-basal polarity and motility of epithelial cells, and ultimately controls the architecture and physiology of epithelial organs. Junctions are supported, shaped and regulated by cytoskeletal filaments, whose dynamic organization and contractility are finely tuned by GTPases of the Rho family, primarily RhoA, Rac1 and Cdc42. Recent research has identified new molecular mechanisms underlying the cross-talk between these GTPases and epithelial junctions. Here we briefly summarize the current knowledge about the organization, molecular evolution and cytoskeletal anchoring of cell-cell junctions, and we comment on the most recent advances in the characterization of the interactions between Rho GTPases and junctional proteins, and their consequences with regards to junction assembly and regulation of cell behavior in vertebrate model systems. The concept of “zonular signalosome” is proposed, which highlights the close functional relationship between proteins of zonular junctions (zonulae occludentes and adhaerentes) and the control of cytoskeletal organization and signaling through Rho GTPases, transcription factors, and their effectors.
Collapse
Key Words
- AJ, adherens junction
- AMOT, angiomotin
- AMPK, Adenosine Monophosphate-Activated Protein Kinase
- APC, adenomatous poliposis coli
- CD2AP, CD2-associated protein
- CGN, cingulin
- CGNL1, paracingulin
- Cdc42
- Cdc42, cell division cycle 42
- DLC, deleted in liver cancer
- Dbl, diffuse B-cell lymphoma
- EPLIN, epithelial protein lost in neoplasm
- ERK, extracellular regulated kinase
- FERM, four.point.one, ezrin, radixin, moesin
- FGD5, FYVE, RhoGEF and PH domain containing 5
- GAP, GTPase activating protein
- GEF, guanine nucleotide exchange factor
- GST, glutathione -S- transferase; JAM = junctional adhesion molecule
- MCF-7, Michigan Cancer Foundation - 7
- MDCK, Madin Darby Canine Kidney
- MKLP1, mitotic kinesin-like protein-1
- MRCK, myotonic dystrophy-related Cdc42-binding kinase
- MgcRacGAP, male germ cell racGAP
- PA, puncta adhaerentia
- PAK, p21-activated kinase; PATJ, Pals1 associated tight junction protein
- PCNA, proliferating cell nuclear antigen
- PDZ, Post synaptic density protein (PSD95), Drosophila, disc large tumour suppressor (DlgA), and zonula occludens-1
- PLEKHA7, pleckstrin homology domain containing, family A member 7
- RICH-1, RhoGAP interacting with CIP4 homologues
- ROCK, Rho-associated protein kinase
- Rac
- Rho
- SH3BP1, (SH3 domain 490 binding protein-1)
- TJ, tight junction
- Tbx-3, T-box-3
- Tiam, Tumor invasion and metastasis
- WASP, Wiskott-Aldrich Syndrome Protein
- WAVE, WASP family Verprolin-homologous protein
- ZA, zonula adhaerens
- ZO, zonula occludens
- ZONAB, (ZO-1)–associated nucleic acid binding protein.
- cytoseleton
- epithelium
- junctions
Collapse
Affiliation(s)
- Sandra Citi
- a Department of Cell Biology ; University of Geneva ; Geneva , Switzerland
| | | | | | | |
Collapse
|
15
|
Abstract
Rac and PI3Ks are intracellular signal transducers able to regulate multiple signaling pathways fundamental for cell behavior. PI3Ks are lipid kinases that produce phosphorylated lipids which, in turn, transduce extracellular cues within the cell, while Rac is a small G protein that impacts on actin organization. Compelling evidence indicates that in multiple circumstances the 2 signaling pathways appear intermingled. For instance, phosphorylated lipids produced by PI3Ks recruit and activate GEF and GAP proteins, key modulators of Rac function. Conversely, PI3Ks interact with activated Rac, leading to Rac signaling amplification. This review summarizes the molecular mechanisms underlying the cross-talk between Rac and PI3K signaling in 2 different processes, cell migration and ROS production.
Collapse
Affiliation(s)
- Carlo C Campa
- a Molecular Biotechnology Center; Department of Molecular Biotechnology and Health Sciences; University of Torino ; Torino , Italy
| | | | | | | | | |
Collapse
|
16
|
Phosphatidylinositol 5-phosphate regulates invasion through binding and activation of Tiam1. Nat Commun 2014; 5:4080. [PMID: 24905281 DOI: 10.1038/ncomms5080] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 05/09/2014] [Indexed: 12/13/2022] Open
Abstract
PtdIns5P is a lipid messenger acting as a stress-response mediator in the nucleus, and known to maintain cell activation through traffic alterations upon bacterial infection. Here, we show that PtdIns5P regulates actin dynamics and invasion via recruitment and activation of the exchange factor Tiam1 and Rac1. Restricted Rac1 activation results from the binding of Tiam1 DH-PH domains to PtdIns5P. Using an assay that mimics Rac1 membrane anchoring by using Rac1-His and liposomes containing Ni(2+)-NTA modified lipids, we demonstrate that intrinsic Tiam1 DH-PH activity increases when Rac1 is anchored in a PtdIns5P-enriched environment. This pathway appears to be general since it is valid in different pathophysiological models: receptor tyrosine kinase activation, bacterial phosphatase IpgD expression and the invasive NPM-ALK(+) lymphomas. The discovery that PtdIns5P could be a keystone of GTPases and cytoskeleton spatiotemporal regulation opens important research avenues towards unravelling new strategies counteracting cell invasion.
Collapse
|
17
|
Regulation of Drosophila mesoderm migration by phosphoinositides and the PH domain of the Rho GTP exchange factor Pebble. Dev Biol 2012; 372:17-27. [PMID: 23000359 DOI: 10.1016/j.ydbio.2012.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 08/20/2012] [Accepted: 09/13/2012] [Indexed: 11/27/2022]
Abstract
The Drosophila RhoGEF Pebble (Pbl) is required for cytokinesis and migration of mesodermal cells. In a screen for genes that could suppress migration defects in pbl mutants we identified the phosphatidylinositol phosphate (PtdInsP) regulator pi5k59B. Genetic interaction tests with other PtdInsP regulators suggested that PtdIns(4,5)P2 levels are important for mesoderm migration when Pbl is depleted. Consistent with this, the leading front of migrating mesodermal cells was enriched for PtdIns(4,5)P2. Given that Pbl contains a Pleckstrin Homology (PH) domain, a known PtdInsP-binding motif, we examined PtdInsP-binding of Pbl and the importance of the PH domain for Pbl function. In vitro lipid blot assays showed that Pbl binds promiscuously to PtdInsPs, with binding strength associated with the degree of phosphorylation. Pbl was also able to bind lipid vesicles containing PtdIns(4,5)P2 but binding was strongly reduced upon deletion of the PH domain. Similarly, in vivo, loss of the PH domain prevented localisation of Pbl to the cell cortex and severely affected several aspects of early mesoderm development, including flattening of the invaginated tube onto the ectoderm, extension of protrusions, and dorsal migration to form a monolayer. Pbl lacking the PH domain could still localise to the cytokinetic furrow, however, and cytokinesis failure was reduced in pbl(ΔPH) mutants. Taken together, our results support a model in which interaction of the PH-domain of Pbl with PtdIns(4,5)P2 helps localise it to the plasma membrane which is important for mesoderm migration.
Collapse
|
18
|
Sun H, Zhuang G, Chai L, Wang Z, Johnson D, Ma Y, Chen YH. TIPE2 controls innate immunity to RNA by targeting the phosphatidylinositol 3-kinase-Rac pathway. THE JOURNAL OF IMMUNOLOGY 2012; 189:2768-73. [PMID: 22904303 DOI: 10.4049/jimmunol.1103477] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RNA receptors such as TLR3 and retinoid acid-inducible gene I/melanoma differentiation-associated gene 5 play essential roles in innate immunity to RNA viruses. However, how innate immunity to RNAs is controlled at the molecular level is not well understood. We describe in this study a new regulatory pathway of anti-RNA immunity that is composed of PI3K, its target GTPase Rac, and the newly described immune regulator TNF-α-induced protein 8 like-2 (TIPE2, or TNFAIP8L2). Polyinosinic-polycytidylic acid [Poly (I:C)], a dsRNA receptor ligand, activates Rac via its guanine nucleotide exchange factor Tiam; this leads to the activation of cytokine genes and, paradoxically, downregulation of the Tipe2 gene. TIPE2 is a negative regulator of immunity; its deficiency leads to hyperactivation of the PI3K-Rac pathway as exemplified by enhanced AKT, Rac, P21-activated kinase, and IFN regulatory factor 3 activities. As a consequence, TIPE2 knockout myeloid cells are hyperreactive to Poly (I:C) stimulation, and TIPE2 knockout mice are hypersensitive to Poly (I:C)-induced lethality. These results indicate that TIPE2 controls innate immunity to RNA by targeting the PI3K-Rac pathway. Therefore, manipulating TIPE2 or Rac functions can be effective for controlling RNA viral infections.
Collapse
Affiliation(s)
- Honghong Sun
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling. Cell Res 2012; 22:1479-501. [PMID: 22825554 PMCID: PMC3463263 DOI: 10.1038/cr.2012.110] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
During developmental and tumor angiogenesis, semaphorins regulate blood vessel navigation by signaling through plexin receptors that inhibit the R-Ras subfamily of small GTPases. R-Ras is mainly expressed in vascular cells, where it induces adhesion to the extracellular matrix (ECM) through unknown mechanisms. We identify the Ras and Rab5 interacting protein RIN2 as a key effector that in endothelial cells interacts with and mediates the pro-adhesive and -angiogenic activity of R-Ras. Both R-Ras-GTP and RIN2 localize at nascent ECM adhesion sites associated with lamellipodia. Upon binding, GTP-loaded R-Ras converts RIN2 from a Rab5 guanine nucleotide exchange factor (GEF) to an adaptor that first interacts at high affinity with Rab5-GTP to promote the selective endocytosis of ligand-bound/active β1 integrins and then causes the translocation of R-Ras to early endosomes. Here, the R-Ras/RIN2/Rab5 signaling module activates Rac1-dependent cell adhesion via TIAM1, a Rac GEF that localizes on early endosomes and is stimulated by the interaction with both Ras proteins and the vesicular lipid phosphatidylinositol 3-monophosphate. In conclusion, the ability of R-Ras-GTP to convert RIN2 from a GEF to an adaptor that preferentially binds Rab5-GTP allows the triggering of the endocytosis of ECM-bound/active β1 integrins and the ensuing funneling of R-Ras-GTP toward early endosomes to elicit the pro-adhesive and TIAM1-mediated activation of Rac1.
Collapse
|
20
|
Scheffzek K, Welti S. Pleckstrin homology (PH) like domains - versatile modules in protein-protein interaction platforms. FEBS Lett 2012; 586:2662-73. [PMID: 22728242 DOI: 10.1016/j.febslet.2012.06.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 12/21/2022]
Abstract
The initial reports on pleckstrin homology (PH) domains almost 20 years ago described them as sequence feature of proteins involved in signal transduction processes. Investigated at first along the phospholipid binding properties of a small subset of PH representatives, the PH fold turned out to appear as mediator of phosphotyrosine and polyproline peptide binding to other signaling proteins. While phospholipid binding now seems rather the exception among PH-like domains, protein-protein interactions established as more and more important feature of these modules. In this review we focus on the PH superfold as a versatile protein-protein interaction platform and its three-dimensional integration in an increasing number of available multidomain structures.
Collapse
Affiliation(s)
- Klaus Scheffzek
- Division Biological Chemistry, Biocenter, Innsbruck Medical University, Innrain 80/82, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
21
|
Gonzalez-Billault C, Muñoz-Llancao P, Henriquez DR, Wojnacki J, Conde C, Caceres A. The role of small GTPases in neuronal morphogenesis and polarity. Cytoskeleton (Hoboken) 2012; 69:464-85. [PMID: 22605667 DOI: 10.1002/cm.21034] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 12/21/2022]
Abstract
The highly dynamic remodeling and cross talk of the microtubule and actin cytoskeleton support neuronal morphogenesis. Small RhoGTPases family members have emerged as crucial regulators of cytoskeletal dynamics. In this review we will comprehensively analyze findings that support the participation of RhoA, Rac, Cdc42, and TC10 in different neuronal morphogenetic events ranging from migration to synaptic plasticity. We will specifically address the contribution of these GTPases to support neuronal polarity and axonal elongation.
Collapse
Affiliation(s)
- Christian Gonzalez-Billault
- Faculty of Sciences, Laboratory of Cell and Neuronal Dynamics, Department of Biology and Institute for Cell Dynamics and Biotechnology, Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
22
|
Demarco RS, Struckhoff EC, Lundquist EA. The Rac GTP exchange factor TIAM-1 acts with CDC-42 and the guidance receptor UNC-40/DCC in neuronal protrusion and axon guidance. PLoS Genet 2012; 8:e1002665. [PMID: 22570618 PMCID: PMC3343084 DOI: 10.1371/journal.pgen.1002665] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 03/07/2012] [Indexed: 11/19/2022] Open
Abstract
The mechanisms linking guidance receptors to cytoskeletal dynamics in the growth cone during axon extension remain mysterious. The Rho-family GTPases Rac and CDC-42 are key regulators of growth cone lamellipodia and filopodia formation, yet little is understood about how these molecules interact in growth cone outgrowth or how the activities of these molecules are regulated in distinct contexts. UNC-73/Trio is a well-characterized Rac GTP exchange factor in Caenorhabditis elegans axon pathfinding, yet UNC-73 does not control CED-10/Rac downstream of UNC-6/Netrin in attractive axon guidance. Here we show that C. elegans TIAM-1 is a Rac-specific GEF that links CDC-42 and Rac signaling in lamellipodia and filopodia formation downstream of UNC-40/DCC. We also show that TIAM-1 acts with UNC-40/DCC in axon guidance. Our results indicate that a CDC-42/TIAM-1/Rac GTPase signaling pathway drives lamellipodia and filopodia formation downstream of the UNC-40/DCC guidance receptor, a novel set of interactions between these molecules. Furthermore, we show that TIAM-1 acts with UNC-40/DCC in axon guidance, suggesting that TIAM-1 might regulate growth cone protrusion via Rac GTPases in response to UNC-40/DCC. Our results also suggest that Rac GTPase activity is controlled by different GEFs in distinct axon guidance contexts, explaining how Rac GTPases can specifically control multiple cellular functions. Axons extend great distances to make precise synaptic connections in the developing nervous system. Axons are guided to their targets by the growth cone, a dynamic structure at the axon distal tip that senses extracellular cues telling the axon where to go. In response to guidance cues, growth cones alter their shape and motility resulting in outgrowth and turning. The cytoskeleton (actin and microtubules) underlies growth cone motility and guidance. The signaling mechanisms linking guidance receptors to cytoskeletal change remain mysterious. Here, we define a new signaling mechanism downstream of the guidance receptor UNC-40/DCC involving the GTPases CDC-42 and Rac, which have long been known to control growth cone protrusion. We show that CDC-42 and Rac act in a linear pathway in axon guidance; CDC-42 acts upstream of the GTPase regulatory molecule TIAM-1, which is a GTP exchange factor specific for Rac and which activates Rac signaling. We also show that TIAM-1 acts with UNC-40/DCC signaling in protrusion and axon guidance. Our results imply that Rac GTPase function in axon guidance is complex and that distinct GEFs (TIAM-1 and UNC-73/Trio) might control Rac GTPases in different aspects of axon guidance.
Collapse
Affiliation(s)
- Rafael S. Demarco
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Eric C. Struckhoff
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Erik A. Lundquist
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Viaud J, Gaits-Iacovoni F, Payrastre B. Regulation of the DH-PH tandem of guanine nucleotide exchange factor for Rho GTPases by phosphoinositides. Adv Biol Regul 2012; 52:303-14. [PMID: 22781744 DOI: 10.1016/j.jbior.2012.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
Rho GTPases act as molecular switches central in cellular processes such as cytoskeleton dynamics, migration, cell proliferation, growth or survival. Their activation is tightly regulated downstream of cell surface receptors by Guanine nucleotide Exchange Factors (GEFs), that are responsible for the specificity, the accuracy, and the spatial restriction of Rho GTPases response to extracellular cues. Because there is about four time more RhoGEFs that Rho GTPases, and GEFs do not always show a strict specificity for GTPases, it is clear that their regulation depends on specific interactions with the subcellular environment. RhoGEFs bear a peculiar structure, highly conserved though evolution, consisting of a DH-PH tandem, the DH (Dbl homology) domain being responsible for the exchange activity. The function of the PH (Pleckstrin homology) domain known to bind phosphoinositides, however, remains elusive, and reports are in many cases rather confusing. This review summarizes data on the regulation of RhoGEFs activity through interaction of the PH-associated DH domain with phosphoinositides which are considered as critical players in the spatial organization of major signaling pathways.
Collapse
Affiliation(s)
- Julien Viaud
- INSERM, UMR1048, Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France
| | | | | |
Collapse
|
24
|
Liu J, Zhou J, Xing D. Phosphatidylinositol 3-kinase plays a vital role in regulation of rice seed vigor via altering NADPH oxidase activity. PLoS One 2012; 7:e33817. [PMID: 22448275 PMCID: PMC3309022 DOI: 10.1371/journal.pone.0033817] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 02/17/2012] [Indexed: 12/30/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) has been reported to be important in normal plant growth and stress responses. In this study, it was verified that PI3K played a vital role in rice seed germination through regulating NADPH oxidase activity. Suppression of PI3K activity by inhibitors wortmannin or LY294002 could abate the reactive oxygen species (ROS) formation, which resulted in disturbance to the seed germination. And then, the signal cascades that PI3K promoted the ROS liberation was also evaluated. Diphenylene iodonium (DPI), an NADPH oxidase inhibitor, suppressed most of ROS generation in rice seed germination, which suggested that NADPH oxidase was the main source of ROS in this process. Pharmacological experiment and RT-PCR demonstrated that PI3K promoted the expression of Os rboh9. Moreover, functional analysis by native PAGE and the measurement of the 2, 3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazo-lium-5- carboxanilide (XTT) formazan concentration both showed that PI3K promoted the activity of NADPH oxidase. Furthermore, the western blot analysis of OsRac-1 demonstrated that the translocation of Rac-1 from cytoplasm to plasma membrane, which was known as a key factor in the assembly of NADPH oxidase, was suppressed by treatment with PI3K inhibitors, resulting in the decreased activity of NADPH oxidase. Taken together, these data favored the novel conclusion that PI3K regulated NADPH oxidase activity through modulating the recruitment of Rac-1 to plasma membrane and accelerated the process of rice seed germination.
Collapse
Affiliation(s)
| | | | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- * E-mail:
| |
Collapse
|
25
|
Johnson JL, Erickson JW, Cerione RA. C-terminal di-arginine motif of Cdc42 protein is essential for binding to phosphatidylinositol 4,5-bisphosphate-containing membranes and inducing cellular transformation. J Biol Chem 2012; 287:5764-74. [PMID: 22215673 DOI: 10.1074/jbc.m111.336487] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases regulate a diverse range of processes that are dependent on their proper cellular localization. The membrane localization of these GTPases is due in large part to their carboxyl-terminal geranylgeranyl moiety. In addition, most of the Rho family members contain a cluster of positively charged residues (i.e. a "polybasic domain"), directly preceding their geranylgeranyl moiety, and it has been suggested that this domain serves to fine-tune their localization among different cellular membrane sites. Here, we have taken a closer look at the role of the polybasic domain of Cdc42 in its ability to bind to membranes and induce the transformation of fibroblasts. A FRET assay for the binding of Cdc42 to liposomes of defined composition showed that Cdc42 associates more strongly with liposomes containing phosphatidylinositol 4,5-bisphosphate (PIP(2)) when compared either with uncharged control membranes or with liposomes containing a charge-equivalent amount of phosphatidylserine. The carboxyl-terminal di-arginine motif (Arg-186 and Arg-187) was shown to play an essential role in the binding of Cdc42 to PIP(2)-containing membranes. We further showed that substitutions for the di-arginine motif, when introduced within a constitutively active ("fast cycling") Cdc42(F28L) background, had little effect on the ability of the activated Cdc42 mutant to induce microspikes/filopodia in NIH 3T3 cells, whereas they eliminated its ability to transform fibroblasts. Taken together, these findings suggest that the di-arginine motif within the carboxyl terminus of Cdc42 is necessary for this GTPase to bind at membrane sites containing PIP(2), where it can initiate signaling activities that are essential for the oncogenic transformation of cells.
Collapse
Affiliation(s)
- Jared L Johnson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
26
|
Chao WT, Daquinag AC, Ashcroft F, Kunz J. Type I PIPK-alpha regulates directed cell migration by modulating Rac1 plasma membrane targeting and activation. ACTA ACUST UNITED AC 2010; 190:247-62. [PMID: 20660631 PMCID: PMC2930278 DOI: 10.1083/jcb.200911110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PIPKI-α does a job other PIPKI isoforms cannot; it recruits Rac1 to the plasma membrane upon integrin activation, spatially regulating the actin-organizing GTPase during migration. Phosphatidylinositol-4,5-bisphosphate (PI4,5P2) is a critical regulator of cell migration, but the roles of the type I phosphatidylinositol-4-phosphate 5-kinases (PIPKIs), which synthesize PI4,5P2, have yet to be fully defined in this process. In this study, we report that one kinase, PIPKI-α, is a novel upstream regulator of Rac1 that links activated integrins to the regulation of cell migration. We show that PIPKI-α controls integrin-induced translocation of Rac1 to the plasma membrane and thereby regulates Rac1 activation. Strikingly, this function is not shared with other PIPKI isoforms, is independent of catalytic activity, and requires physical interaction of PIPKI-α with the Rac1 polybasic domain. Consistent with its role in Rac1 activation, depletion of PIPKI-α causes pronounced defects in membrane ruffling, actin organization, and focal adhesion formation, and ultimately affects the directional persistence of migration. Thus, our study defines the role of PIPKI-α in cell migration and describes a new mechanism for the spatial regulation of Rac1 activity that is critical for cell migration.
Collapse
Affiliation(s)
- Wei-Ting Chao
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
27
|
Itoh N, Nakayama M, Nishimura T, Fujisue S, Nishioka T, Watanabe T, Kaibuchi K. Identification of focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3-kinase) as Par3 partners by proteomic analysis. Cytoskeleton (Hoboken) 2010; 67:297-308. [PMID: 20191563 DOI: 10.1002/cm.20444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Partition defective 3 (Par3) is involved in a variety of polarity events including establishment of apico-basal polarity of epithelial cell, axon/dendrite specification of neurons and directional migration of cells with front-rear polarity. Par3 is thought to regulate cell polarity as a scaffold protein by interacting with various partner proteins such as Par6, aPKC, Tiam1/2 and Numb. However, the mode of actions of Par3 in polarized migration remains largely unknown. To explore Par3 functions, we screened Par3-interacting proteins by combining Par3 affinity column chromatography and shotgun analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We obtained about two hundred Par3-interacting proteins from the rat brain cytosol fraction. Among them, we focused on FAK and PI3-kinase, as both of them participate in directional cell migration. FAK associated with the PDZ domain and the coiled-coil region of Par3 and p110 of PI3-kinase associated with the coiled-coil region of Par3. Par3 was partially colocalized with FAK in spreading cells. Depletion of Par3 by RNA interference inhibited adhesion-induced activation of FAK and PI3-kinase, and RNA interference-resistant Par3 restored the inhibitory effects. In addition, Par3 was required for the adhesion-induced cell spreading as well as for directional cell migration toward collagen. These results suggest that Par3 directly interacts with FAK and PI3-kinase, enhancing their activities for polarized cell migration.
Collapse
Affiliation(s)
- Norimichi Itoh
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Chen Z, Medina F, Liu MY, Thomas C, Sprang SR, Sternweis PC. Activated RhoA binds to the pleckstrin homology (PH) domain of PDZ-RhoGEF, a potential site for autoregulation. J Biol Chem 2010; 285:21070-81. [PMID: 20430886 PMCID: PMC2898337 DOI: 10.1074/jbc.m110.122549] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/15/2010] [Indexed: 01/24/2023] Open
Abstract
Guanine nucleotide exchange factors (GEFs) catalyze exchange of GDP for GTP by stabilizing the nucleotide-free state of the small GTPases through their Dbl homology/pleckstrin homology (DH.PH) domains. Unconventionally, PDZ-RhoGEF (PRG), a member of the RGS-RhoGEFs, binds tightly to both nucleotide-free and activated RhoA (RhoA.GTP). We have characterized the interaction between PRG and activated RhoA and determined the structure of the PRG-DH.PH-RhoA.GTPgammaS (guanosine 5'-O-[gamma-thio]triphosphate) complex. The interface bears striking similarity to a GTPase-effector interface and involves the switch regions in RhoA and a hydrophobic patch in PRG-PH that is conserved among all Lbc RhoGEFs. The two surfaces that bind activated and nucleotide-free RhoA on PRG-DH.PH do not overlap, and a ternary complex of PRG-DH.PH bound to both forms of RhoA can be isolated by size-exclusion chromatography. This novel interaction between activated RhoA and PH could play a key role in regulation of RhoGEF activity in vivo.
Collapse
Affiliation(s)
- Zhe Chen
- From the Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390 and
| | - Frank Medina
- From the Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390 and
| | - Mu-ya Liu
- From the Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390 and
| | - Celestine Thomas
- the Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | - Stephen R. Sprang
- the Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | - Paul C. Sternweis
- From the Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390 and
| |
Collapse
|
29
|
Ahmad KF, Lim WA. The minimal autoinhibited unit of the guanine nucleotide exchange factor intersectin. PLoS One 2010; 5:e11291. [PMID: 20585582 PMCID: PMC2892021 DOI: 10.1371/journal.pone.0011291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 06/02/2010] [Indexed: 01/21/2023] Open
Abstract
Intersectin-1L is a member of the Dbl homology (DH) domain guanine nucleotide exchange factors (GEF) which control Rho-family GTPase signaling. Intersectin-1L is a GEF that is specific for Cdc42. It plays an important role in endocytosis, and is regulated by several partners including the actin regulator N-WASP. Intact intersectin-1L shows low Cdc42 exchange activity, although the isolated catalytic DH domain shows high activity. This finding suggests that the molecule is autoinhibited. To investigate the mechanism of autoinhibition we have constructed a series of domain deletions. We find that the five SH3 domains of intersectin are important for autoinhibition, with the fifth domain (SH3(E)) being sufficient for the bulk of the autoinhibitory effect. This SH3 domain appears to primarily interact with the DH domain. We have determined the crystal structure of the SH3(E)-DH domain construct, which shows a domain swapped arrangement in which the SH3 from one monomer interacts with the DH domain of the other monomer. Analytical ultracentrifugation and gel filtration, however, show that under biochemical concentrations, the construct is fully monomeric. Thus we propose that the actual autoinhibited structure contains the related intramolecular SH3(E)-DH interaction. We propose a model in which this intramolecular interaction may block or distort the GTPase binding region of the DH domain.
Collapse
Affiliation(s)
- K. Farid Ahmad
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Wendell A. Lim
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Reddy-Alla S, Schmitt B, Birkenfeld J, Eulenburg V, Dutertre S, Böhringer C, Götz M, Betz H, Papadopoulos T. PH-domain-driven targeting of collybistin but not Cdc42 activation is required for synaptic gephyrin clustering. Eur J Neurosci 2010; 31:1173-84. [PMID: 20345913 DOI: 10.1111/j.1460-9568.2010.07149.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Collybistin (Cb) is a brain-specific guanine nucleotide exchange factor (GEF) that is essential for the synaptic clustering of gephyrin and GABAA receptors in selected regions of the mammalian central nervous system. It has been previously proposed that Cb regulates gephyrin clustering by activating Cdc42, and thus acts as a signal transducer in a membrane activation process which labels postsynaptic membrane domains for inhibitory synapse formation. Here, we dissected the functional roles of the Dbl-homology (DH) and pleckstrin homology (PH) domains of the constitutively active splice variant Cb II by substituting conserved amino acid residues that are required for GEF activity towards Cdc42 and phosphoinositide binding, respectively. A Cb II mutant lacking any detectable GEF activity towards Cdc42 was still fully active in inducing gephyrin scaffold formation, both in transfected NIH-3T3 cells and in cultured hippocampal neurons. Furthermore, mice with a forebrain-specific inactivation of the Cdc42 gene displayed normal densities of gephyrin and GABA(A) receptor clusters in the hippocampus. In contrast, substitution of Cb II PH-domain residues essential for phosphoinositide binding abolished gephyrin recruitment to synaptic sites. Our results provide evidence that the formation of gephyrin scaffolds at inhibitory synapses requires an intact Cb II PH-domain but is Cdc42-independent.
Collapse
Affiliation(s)
- Suneel Reddy-Alla
- Department of Neurochemistry, Max-Planck Institute for Brain Research, 60528 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chrencik JE, Brooun A, Zhang H, Mathews II, Hura GL, Foster SA, Perry JJP, Streiff M, Ramage P, Widmer H, Bokoch GM, Tainer JA, Weckbecker G, Kuhn P. Structural basis of guanine nucleotide exchange mediated by the T-cell essential Vav1. J Mol Biol 2008; 380:828-43. [PMID: 18589439 DOI: 10.1016/j.jmb.2008.05.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 05/08/2008] [Accepted: 05/11/2008] [Indexed: 12/27/2022]
Abstract
The guanine nucleotide exchange factor (GEF) Vav1 plays an important role in T-cell activation and tumorigenesis. In the GEF superfamily, Vav1 has the ability to interact with multiple families of Rho GTPases. The structure of the Vav1 DH-PH-CRD/Rac1 complex to 2.6 A resolution reveals a unique intramolecular network of contacts between the Vav1 cysteine-rich domain (CRD) and the C-terminal helix of the Vav1 Dbl homology (DH) domain. These unique interactions stabilize the Vav1 DH domain for its intimate association with the Switch II region of Rac1 that is critical for the displacement of the guanine nucleotide. Small angle x-ray scattering (SAXS) studies support this domain arrangement for the complex in solution. Further, mutational analyses confirms that the atypical CRD is critical for maintaining both optimal guanine nucleotide exchange activity and broader specificity of Vav family GEFs. Taken together, the data outline the detailed nature of Vav1's ability to contact a range of Rho GTPases using a novel protein-protein interaction network.
Collapse
Affiliation(s)
- Jill E Chrencik
- Department of Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Strumane K, Song JY, Baas I, Collard JG. Increased Rac activity is required for the progression of T-lymphomas induced by Pten-deficiency. Leuk Res 2008; 32:113-20. [PMID: 17521720 DOI: 10.1016/j.leukres.2007.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 01/30/2007] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
Mutation of the tumor suppressor PTEN results in loss of its PI3-kinase counteracting function. PI3-kinase stimulates tumor formation by PKB/Akt-mediated cell proliferation and prevention of apoptosis. PI3-kinase may also activate Rho-GTPases and their regulatory GEFs to promote invasion. Here we have analyzed the function of the Rac-specific activator, Tiam1, in PI3-kinase-induced T-lymphomagenesis. Mice with a T cell-specific Pten deletion developed T-lymphomas with enhanced PKB/Akt phosphorylation. However, these T-lymphomas infiltrated more frequently into various organs in Tiam1-deficient mice compared to wild type mice. Surprisingly, Tiam1-deficient lymphomas showed increased Rac activity, suggesting that the lack of Tiam1 is compensated by alternative Rac-activating mechanisms that lead to increased progression of PI3-kinase-induced T-lymphomas.
Collapse
Affiliation(s)
- Kristin Strumane
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
33
|
Barber MA, Donald S, Thelen S, Anderson KE, Thelen M, Welch HCE. Membrane translocation of P-Rex1 is mediated by G protein betagamma subunits and phosphoinositide 3-kinase. J Biol Chem 2007; 282:29967-76. [PMID: 17698854 DOI: 10.1074/jbc.m701877200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-Rex1 is a guanine-nucleotide exchange factor (GEF) for the small GTPase Rac that is directly activated by the betagamma subunits of heterotrimeric G proteins and by the lipid second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)), which is generated by phosphoinositide 3-kinase (PI3K). Gbetagamma subunits and PIP(3) are membrane-bound, whereas the intracellular localization of P-Rex1 in basal cells is cytosolic. Activation of PI3K alone is not sufficient to promote significant membrane translocation of P-Rex1. Here we investigated the subcellular localization of P-Rex1 by fractionation of Sf9 cells co-expressing P-Rex1 with Gbetagamma and/or PI3K. In basal, serum-starved cells, P-Rex1 was mainly cytosolic, but 7% of the total was present in the 117,000 x g membrane fraction. Co-expression of P-Rex1 with either Gbetagamma or PI3K caused only an insignificant increase in P-Rex1 membrane localization, whereas Gbetagamma and PI3K together synergistically caused a robust increase in membrane-localized P-Rex1 to 23% of the total. PI3K-driven P-Rex1 membrane recruitment was wortmannin-sensitive. The use of P-Rex1 mutants showed that the isolated Dbl homology/pleckstrin homology domain tandem of P-Rex1 is sufficient for synergistic Gbetagamma- and PI3K-driven membrane localization; that the enzymatic GEF activity of P-Rex1 is not required for membrane translocation; and that the other domains of P-Rex1 (DEP, PDZ, and IP4P) contribute to keeping the enzyme localized in the cytosol of basal cells. In vitro Rac2-GEF activity assays showed that membrane-derived purified P-Rex1 has a higher basal activity than cytosol-derived P-Rex1, but both can be further activated by PIP(3) and Gbetagamma subunits.
Collapse
Affiliation(s)
- Mark A Barber
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | | | | | | | | | | |
Collapse
|
34
|
Chhatriwala MK, Betts L, Worthylake DK, Sondek J. The DH and PH domains of Trio coordinately engage Rho GTPases for their efficient activation. J Mol Biol 2007; 368:1307-20. [PMID: 17391702 PMCID: PMC1890047 DOI: 10.1016/j.jmb.2007.02.060] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/13/2007] [Accepted: 02/16/2007] [Indexed: 12/20/2022]
Abstract
Rho-family GTPases are activated by the exchange of bound GDP for GTP, a process that is catalyzed by Dbl-family guanine nucleotide exchange factors (GEFs). The catalytic unit of Dbl-family GEFs consists of a Dbl homology (DH) domain followed almost invariantly by a pleckstrin-homology (PH) domain. The majority of the catalytic interface forms between the switch regions of the GTPase and the DH domain, but full catalytic activity often requires the associated PH domain. Although PH domains are usually characterized as lipid-binding regions, they also participate in protein-protein interactions. For example, the DH-associated PH domain of Dbs must contact its cognate GTPases for efficient exchange. Similarly, the N-terminal DH/PH fragment of Trio, which catalyzes exchange on both Rac1 and RhoG, is fourfold more active in vitro than the isolated DH domain. Given continued uncertainty regarding functional roles of DH-associated PH domains, we have undertaken structural and functional analyses of the N-terminal DH/PH cassette of Trio. The crystal structure of this fragment of Trio bound to nucleotide-depleted Rac1 highlights the engagement of the PH domain with Rac1 and substitution of residues involved in this interface substantially diminishes activation of Rac1 and RhoG. Also, these mutations significantly reduce the ability of full-length Trio to induce neurite outgrowth dependent on RhoG activation in PC-12 cells. Overall, these studies substantiate a general role for DH-associated PH domains in engaging Rho GTPases directly for efficient guanine nucleotide exchange and support a parsimonious explanation for the essentially invariant linkage between DH and PH domains.
Collapse
Affiliation(s)
- Mariya K Chhatriwala
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | | | | | | |
Collapse
|
35
|
Muroya K, Kawasaki Y, Hayashi T, Ohwada S, Akiyama T. PH domain-mediated membrane targeting of Asef. Biochem Biophys Res Commun 2007; 355:85-8. [PMID: 17292853 DOI: 10.1016/j.bbrc.2007.01.131] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 01/20/2007] [Indexed: 11/16/2022]
Abstract
The APC-associated guanine nucleotide exchange factor (GEF) Asef regulates cell morphology and migration. Asef contains a pleckstrin homology (PH) domain in addition to Dbl homology (DH), APC-binding (ABR), and Src homology 3 (SH3) domains. Here we show that the PH domain of Asef binds to phosphatidylinositol 3,4,5-trisphophate [PtdIns(3,4,5)P3] and targets Asef to the cell-cell adhesion sites in MDCK II cells. Furthermore, we demonstrate that overexpression of Asef in MDCK II cells results in increases in the amounts of E-cadherin and the actin filaments at the sites of cell-cell contact. These results suggest that Asef is targeted via its PH domain to the cell-cell adhesion sites and is involved in the regulation of cell adhesion.
Collapse
Affiliation(s)
- Ken Muroya
- Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
36
|
Lemmon MA. Pleckstrin homology (PH) domains and phosphoinositides. BIOCHEMICAL SOCIETY SYMPOSIUM 2007; 74:81-93. [PMID: 17233582 PMCID: PMC3777418 DOI: 10.1042/bss0740081] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PH (pleckstrin homology) domains represent the 11th most common domain in the human proteome. They are best known for their ability to bind phosphoinositides with high affinity and specificity, although it is now clear that less than 10% of all PH domains share this property. Cases in which PH domains bind specific phosphoinositides with high affinity are restricted to those phosphoinositides that have a pair of adjacent phosphates in their inositol headgroup. Those that do not [PtdIns3P, PtdIns5P and PtdIns(3,5)P2] are instead recognized by distinct classes of domains including FYVE domains, PX (phox homology) domains, PHD (plant homeodomain) fingers and the recently identified PROPPINs (b-propellers that bind polyphosphoinositides). Of the 90% of PH domains that do not bind strongly and specifically to phosphoinositides, few are well understood. One group of PH domains appears to bind both phosphoinositides (with little specificity) and Arf (ADP-ribosylation factor) family small G-proteins, and are targeted to the Golgi apparatus where both phosphoinositides and the relevant Arfs are both present. Here, the PH domains may function as coincidence detectors. A central challenge in understanding the majority of PH domains is to establish whether the very low affinity phosphoinositide binding reported in many cases has any functional relevance. For PH domains from dynamin and from Dbl family proteins, this weak binding does appear to be functionally important, although its precise mechanistic role is unclear. In many other cases, it is quite likely that alternative binding partners are more relevant, and that the observed PH domain homology represents conservation of structural fold rather than function.
Collapse
Affiliation(s)
- Mark A Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 809C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|
37
|
Baumeister M, Rossman K, Sondek J, Lemmon M. The Dbs PH domain contributes independently to membrane targeting and regulation of guanine nucleotide-exchange activity. Biochem J 2006; 400:563-72. [PMID: 17007612 PMCID: PMC1698603 DOI: 10.1042/bj20061020] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dbl family GEFs (guanine nucleotide-exchange factors) for the Rho GTPases almost invariably contain a PH (pleckstrin homology) domain adjacent to their DH (Dbl homology) domain. The DH domain is responsible for GEF activity, and the PH domain plays a regulatory role that remains poorly understood. We demonstrated previously that Dbl family PH domains bind phosphoinositides with low affinity and cannot function as independent membrane targeting modules. In the present study, we show that dimerization of a Dbs (Dbl's big sister) DH/PH domain fragment is sufficient to drive it to the plasma membrane through a mechanism involving PH domain-phosphoinositide interactions. Thus, the Dbs PH domain could play a significant role in membrane targeting if it co-operates with other domains in the protein. We also show that mutations that prevent phosphoinositide binding by the Dbs PH domain significantly impair cellular GEF activity even in chimaeric proteins that are robustly membrane targeted by farnesylation or by the PH domain of phospholipase C-delta1. This finding argues that the Dbs PH domain plays a regulatory role that is independent of its ability to aid membrane targeting. Thus, we suggest that the PH domain plays dual roles, contributing independently to membrane localization of Dbs (as part of a multi-domain interaction) and allosteric regulation of the DH domain.
Collapse
Affiliation(s)
- Mark A. Baumeister
- *Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
- †Graduate Group in Immunology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
| | - Kent L. Rossman
- ‡Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - John Sondek
- §Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Mark A. Lemmon
- *Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
38
|
Falasca M, Maffucci T. Emerging roles of phosphatidylinositol 3-monophosphate as a dynamic lipid second messenger. Arch Physiol Biochem 2006; 112:274-84. [PMID: 17178602 DOI: 10.1080/13813450601094664] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The lipid products of phosphoinositide 3-kinase (PI3K) are involved in many cellular responses such as proliferation, migration and survival. Disregulation of PI3K-activated pathways is implicated in different disease including diabetes and cancer. Among the different products of PI3Ks, phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3) has a well established role in signal transduction whereas the monophosphate phosphatidylinositol-3-phosphate (PtdIns-3-P) has been considered for a long time just a cellular component confined in endosomal structures. Only recently several evidence have indicated that PtdIns-3-P can also act as a dynamic intracellular second messenger. The role of PtdIns-3-P as mediator of crucial intracellular signals is therefore just beginning to be appreciated. Here we review some of the latest evidence showing that pools of PtdIns-3-P can be generated upon cellular stimulation in compartments different from the "classical" endosomal region. We describe several proteins that can be targets in mediating signals deriving from such stimulated PtdIns-3-P pools. In addition we describe the potential mechanism of switching on and off such signals. Taken together all this evidence suggest a novel, key role for PtdIns-3-P in signal transduction.
Collapse
Affiliation(s)
- Marco Falasca
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, 5 University Street, London, WC1E 6JJ, UK.
| | | |
Collapse
|
39
|
Mesmin B, Antonny B. GEF and glucosylation assays on liposome-bound Rac. Methods Enzymol 2006; 406:70-80. [PMID: 16472650 DOI: 10.1016/s0076-6879(06)06006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Rac binds tightly to lipid membranes through a lipid modification. The influence of the lipid membrane environment on the multiple interactions of Rac has not been well documented. In this chapter, we detail a method to prepare geranyl-geranylated Rac bound to liposomes of defined composition. With this method, one can dissect some lipid-protein interactions that facilitate the interaction of Rac with other proteins such as guanine nucleotide exchange factors and bacterial toxins.
Collapse
Affiliation(s)
- Bruno Mesmin
- CNRS-Institut de Pharmacologie, Moleculaire et Cellulaire, Valbonne, France
| | | |
Collapse
|
40
|
Domin J, Harper L, Aubyn D, Wheeler M, Florey O, Haskard D, Yuan M, Zicha D. The class II phosphoinositide 3-kinase PI3K-C2beta regulates cell migration by a PtdIns3P dependent mechanism. J Cell Physiol 2006; 205:452-62. [PMID: 16113997 DOI: 10.1002/jcp.20478] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The biological and pathophysiological significance of class II phosphoinositide 3-kinase enzyme expression currently remains unclear. Using an in vitro scrape wound assay and time-lapse video microscopy, we demonstrate that cell motility is increased in cultures expressing recombinant PI3K-C2beta enzyme. In addition, overexpression of PI3K-C2beta transiently decreased cell adhesion, stimulated the formation of cytoplasmic processes, and decreased the rate of cell proliferation. Consistent with these observations, expression of PI3K-C2beta also decreased expression of alpha4 beta1 integrin subunits. Using asynchronous cultures, we show that endogenous PI3K-C2beta is present in lamellipodia of motile cells. When cells expressing recombinant PI3K-C2beta were plated onto fibronectin, cortical actin staining increased markedly and actin rich lamellipodia and filopodia became evident. Overexpression of a 2xFYVE(Hrs) domain fusion protein abolished this response demonstrating that the effect of PI3K-C2beta on the reorganization of actin filaments is dependent upon PtdIns3P. Finally, overexpression of PI3K-C2beta increased GTP loading of Cdc42. Our data demonstrates for the first time, that PI3K-C2beta plays a regulatory role in cell motility and that the mechanism by which it reorganizes the actin cytoskeleton is dependent upon PtdIns3P production.
Collapse
Affiliation(s)
- Jan Domin
- Division of Medicine, Imperial College, London.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Dbl homology (DH) domains are almost always followed immediately by pleckstrin homology (PH) domains in Dbl family proteins, and these DH-PH fragments directly activate GDP-bound Rho GTPases by catalyzing the exchange of GDP for GTP. New crystal structures of the DH-PH domains from leukemia-associated Rho guanine nucleotide exchange factor (RhoGEF) and PDZ-RhoGEF bound to RhoA reveal how DH-PH domains cooperate to specifically activate Rho GTPases.
Collapse
Affiliation(s)
- Kent L Rossman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
42
|
Aijaz S, D'Atri F, Citi S, Balda MS, Matter K. Binding of GEF-H1 to the Tight Junction-Associated Adaptor Cingulin Results in Inhibition of Rho Signaling and G1/S Phase Transition. Dev Cell 2005; 8:777-86. [PMID: 15866167 DOI: 10.1016/j.devcel.2005.03.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 01/05/2005] [Accepted: 03/03/2005] [Indexed: 10/25/2022]
Abstract
The activity of Rho GTPases is carefully timed to control epithelial proliferation and differentiation. RhoA is downregulated when epithelial cells reach confluence, resulting in inhibition of signaling pathways that stimulate proliferation. Here we show that GEF-H1/Lfc, a guanine nucleotide exchange factor for RhoA, directly interacts with cingulin, a junctional adaptor. Cingulin binding inhibits RhoA activation and signaling, suggesting that the increase in cingulin expression in confluent cells causes downregulation of RhoA by inhibiting GEF-H1/Lfc. In agreement, RNA interference of GEF-H1 or transfection of GEF-H1 binding cingulin mutants inhibit G1/S phase transition of MDCK cells, and depletion of cingulin by regulated RNA interference results in irregular monolayers and RhoA activation. These results indicate that forming epithelial tight junctions contribute to the downregulation of RhoA in epithelia by inactivating GEF-H1 in a cingulin-dependent manner, providing a molecular mechanism whereby tight junction formation is linked to inhibition of RhoA signaling.
Collapse
Affiliation(s)
- Saima Aijaz
- Division of Cell Biology, Institute of Ophthalmology, University College London, UK
| | | | | | | | | |
Collapse
|
43
|
Fleming I, Batty I, Prescott A, Gray A, Kular G, Stewart H, Downes C. Inositol phospholipids regulate the guanine-nucleotide-exchange factor Tiam1 by facilitating its binding to the plasma membrane and regulating GDP/GTP exchange on Rac1. Biochem J 2005; 382:857-65. [PMID: 15242348 PMCID: PMC1133961 DOI: 10.1042/bj20040916] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 07/02/2004] [Accepted: 07/09/2004] [Indexed: 11/17/2022]
Abstract
Binding of the Rac1-specific guanine-nucleotide-exchange factor, Tiam1, to the plasma membrane requires the N-terminal pleckstrin homology domain. In the present study, we show that membrane-association is mediated by binding of PtdIns(4,5)P(2) to the pleckstrin homology domain. Moreover, in 1321N1 astrocytoma cells, translocation of Tiam1 to the cytosol, following receptor-mediated stimulation of PtdIns(4,5)P(2) breakdown, correlates with decreased Rac1-GTP levels, indicating that membrane-association is required for GDP/GTP exchange on Rac1. In addition, we show that platelet-derived growth factor activates Rac1 in vivo by increasing PtdIns(3,4,5)P(3) concentrations, rather than the closely related lipid, PtdIns(3,4)P(2). Finally, the data demonstrate that PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3) bind to the same pleckstrin homology domain in Tiam1 and that soluble inositol phosphates appear to compete with lipids for this binding. Together, these novel observations provide strong evidence that distinct phosphoinositides regulate different functions of this enzyme, indicating that local concentrations of signalling lipids and the levels of cytosolic inositol phosphates will play crucial roles in determining its activity in vivo.
Collapse
Affiliation(s)
- Ian N. Fleming
- Division of Signal Transduction, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, U.K
- To whom correspondence should be addressed, at the present address Cyclacel Ltd, James Lindsay Place, Dundee, Scotland DD1 5JJ, U.K. (email )
| | - Ian H. Batty
- Division of Signal Transduction, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, U.K
| | - Alan R. Prescott
- Division of Signal Transduction, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, U.K
| | - Alex Gray
- Division of Signal Transduction, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, U.K
| | - Gursant S. Kular
- Division of Signal Transduction, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, U.K
| | - Hazel Stewart
- Division of Signal Transduction, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, U.K
| | - C. Peter Downes
- Division of Signal Transduction, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, U.K
| |
Collapse
|
44
|
Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 2005; 6:167-80. [PMID: 15688002 DOI: 10.1038/nrm1587] [Citation(s) in RCA: 1347] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Guanine nucleotide-exchange factors (GEFs) are directly responsible for the activation of Rho-family GTPases in response to diverse extracellular stimuli, and ultimately regulate numerous cellular responses such as proliferation, differentiation and movement. With 69 distinct homologues, Dbl-related GEFs represent the largest family of direct activators of Rho GTPases in humans, and they activate Rho GTPases within particular spatio-temporal contexts. The failure to do so can have significant consequences and is reflected in the aberrant function of Dbl-family GEFs in some human diseases.
Collapse
Affiliation(s)
- Kent L Rossman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
45
|
Swanson JA, Hoppe AD. The coordination of signaling during Fc receptor-mediated phagocytosis. J Leukoc Biol 2004; 76:1093-103. [PMID: 15466916 DOI: 10.1189/jlb.0804439] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Phagocytosis by macrophages can be initiated by Fcgamma receptors (FcR) in membranes that bind to Fc regions of immunoglobulin G (IgG). Activated FcR transduce signals to cytoplasm, which regulate the internalization of IgG-coated particles into plasma membrane-derived vacuoles, phagosomes. Particles internalized by phagocytosis are much larger than FcR, which prompts questions of if and how the receptors are coordinated with each other. FcR-mediated signal transduction entails recruitment of proteins from cytoplasm to the receptor, largely via protein phosphorylation. These FcR signaling complexes then activate proteins that regulate actin, myosin, membrane fusion, and the production of reactive oxygen intermediates. Recent fluorescence microscopic studies of phagocytosis in macrophages indicate that signaling by FcR occurs as a sequence of distinct stages, evident in the spatial and temporal patterns of phosphoinositides, protein kinase C, and Rho-family GTPase activation on forming phagosomes. The coordination of these stages may be regulated by lipids or lipid-anchored proteins, which diffuse away from FcR complexes. Lateral diffusion of FcR-derived signals could integrate FcR-dependent responses over large areas of membrane in the forming phagosome.
Collapse
Affiliation(s)
- Joel A Swanson
- University of Michigan Medical School, 1335 Catherine Street, Med Sci II, Rm. 5608, Ann Arbor, MI 48109-0620, USA.
| | | |
Collapse
|
46
|
Kristelly R, Gao G, Tesmer JJG. Structural determinants of RhoA binding and nucleotide exchange in leukemia-associated Rho guanine-nucleotide exchange factor. J Biol Chem 2004; 279:47352-62. [PMID: 15331592 DOI: 10.1074/jbc.m406056200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho guanine-nucleotide exchange factors (RhoGEFs) activate Rho GTPases, and thereby regulate cytoskeletal structure, gene transcription, and cell migration. Leukemia-associated RhoGEF (LARG) belongs to a small subfamily of RhoGEFs that are RhoA-selective and directly activated by the Galpha12/13 family of heterotrimeric G proteins. Herein we describe the atomic structures of the catalytic Dbl homology (DH) and pleckstrin homology (PH) domains of LARG alone and in complex with RhoA. These structures demonstrate that the DH/PH domains of LARG can undergo a dramatic conformational change upon binding RhoA, wherein both the DH and PH domains directly engage RhoA. Through mutational analysis we show that full nucleotide exchange activity requires a novel N-terminal extension on the DH domain that is predicted to exist in a broader family of RhoGEFs that includes p115-RhoGEF, Lbc, Lfc, Net1, and Xpln, and identify regions within the LARG PH domain that contribute to its ability to facilitate nucleotide exchange in vitro. In crystals of the DH/PH-RhoA complex, the active site of RhoA adopts two distinct GDP-excluding conformations among the four unique complexes in the asymmetric unit. Similar changes were previously observed in structures of nucleotide-free Ras and Ef-Tu. A potential protein-docking site on the LARG PH domain is also evident and appears to be conserved throughout the Lbc subfamily of RhoGEFs.
Collapse
Affiliation(s)
- Romana Kristelly
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712-0165, USA
| | | | | |
Collapse
|
47
|
Worthylake DK, Rossman KL, Sondek J. Crystal Structure of the DH/PH Fragment of Dbs without Bound GTPase. Structure 2004; 12:1078-86. [PMID: 15274927 DOI: 10.1016/j.str.2004.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 03/24/2004] [Accepted: 03/25/2004] [Indexed: 11/17/2022]
Abstract
Dbl proteins are guanine nucleotide exchange factors for Rho GTPases, containing adjacent Dbl homology (DH) and pleckstrin homology (PH) domains. This domain architecture is virtually invariant and typically required for full exchange potential. Several structures of DH/PH fragments bound to GTPases implicate the PH domain in nucleotide exchange. To more fully understand the functional linkage between DH and PH domains, we have determined the crystal structure of the DH/PH fragment of Dbs without bound GTPase. This structure is generally similar to previously determined structures of Dbs bound to GTPases albeit with greater apparent mobility between the DH and PH domains. These comparisons suggest that the DH and PH domains of Dbs are spatially primed for binding GTPases and small alterations in intradomain conformations that may be elicited by subtle biological responses, such as altered phosphoinositide levels, are sufficient to enhance exchange by facilitating interactions between the PH domain and GTPases.
Collapse
Affiliation(s)
- David K Worthylake
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
48
|
Cheng L, Mahon GM, Kostenko EV, Whitehead IP. Pleckstrin Homology Domain-mediated Activation of the Rho-specific Guanine Nucleotide Exchange Factor Dbs by Rac1. J Biol Chem 2004; 279:12786-93. [PMID: 14701795 DOI: 10.1074/jbc.m313099200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Dbs is a Rho-specific guanine nucleotide exchange factor that was identified in a screen for proteins whose expression causes deregulated growth in NIH 3T3 mouse fibroblasts. Although Rac1 has not been shown to be a substrate for Dbs in either in vitro or in vivo assays, the Rat ortholog of Dbs (Ost) has been shown to bind specifically to GTP.Rac1 in vitro. The dependence of the Rac1/Dbs interaction on GTP suggests that Dbs may in fact be an effector for Rac1. Here we show that the interaction between activated Rac1 and Dbs can be recapitulated in mammalian cells and that the Rac1 docking site resides within the pleckstrin homology domain of Dbs. This interaction is specific for Rac1 and is not observed between Rac1 and several other members of the Rho-specific guanine nucleotide exchange factor family. Co-expression of Dbs with activated Rac1 causes enhanced focus forming activity and elevated levels of GTP.RhoA in NIH 3T3 cells, indicating that Dbs is activated by the interaction. Consistent with this, activated Rac1 co-localizes with Dbs in NIH 3T3 cells, and natively expressed Rac1 relocalizes in response to Dbs expression. To summarize, we have characterized a surprisingly direct pleckstrin homology domain-mediated mechanism through which Rho GTPases can become functionally linked.
Collapse
Affiliation(s)
- Li Cheng
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 225 Warren Street, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
49
|
Erickson JW, Cerione RA. Structural Elements, Mechanism, and Evolutionary Convergence of Rho Protein−Guanine Nucleotide Exchange Factor Complexes. Biochemistry 2003; 43:837-42. [PMID: 14744125 DOI: 10.1021/bi036026v] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rho GTPases act as key regulators of cellular biochemistry by determining the timing, direction, and amplitude of signal transduction in a number of important pathways. The rate of activation of a GTPase-controlled reaction is limited by the rate of GTP binding to the Rho protein, and this, in turn, depends on the rate that GDP dissociates from the GTPase. The latter is controlled by the action of guanine nucleotide exchange factors (GEFs) that catalyze GDP-GTP exchange by increasing the rate of GDP dissociation. Here, the recently reported structural information for Rho GTPase-GEF complexes and the molecular basis for the specificity of their interactions are discussed. Underscoring the importance of regulating the Rho GTPase activation pathway, genetically unrelated proteins have evolved which complement or mimic the Dbl homology-Pleckstrin homology (DH-PH) domain-containing family of proteins in their ability to catalyze GDP-GTP exchange. In particular, the structure of the mammalian Cdc42 protein bound to the SopE protein from Salmonella typhimurium illustrates how two unrelated protein folds are able to carry out guanine nucleotide exchange by a remarkably similar mechanism. It will be interesting to see if this conservation of mechanism extends to a newly recognized class of GEFs related to the DOCK180 family.
Collapse
Affiliation(s)
- Jon W Erickson
- Department of Chemistry and Chemical Biology, Veterinary Medical Center, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
50
|
Abstract
The monomeric GTPase Rac and the lipid kinase phosphoinositide 3-kinase (PI3K) are intracellular signalling enzymes that each regulate a huge range of cellular functions. Their signalling pathways overlap. Several pathways lead from PI3K activation via the production of the lipid second messenger phosphatidylinositol (3,4,5)-triphosphate (PtdIns(3,4,5)P(3)) to the activation of guanine-nucleotide exchange factors (GEFs) that activate Rac. Vice versa, Rac can also stimulate the activation of PI3K, although the mechanism for this is unclear. We review here the evidence that links PI3K and Rac signalling pathways.
Collapse
Affiliation(s)
- Heidi C E Welch
- Inositide Laboratory, Signalling Programme, The Babraham Institute, Cambridge CB2 4AT, UK.
| | | | | | | |
Collapse
|