1
|
Zhu R, Mao Y, Xu X, Li Y, Zheng J. HOXA1 silencing inhibits cisplatin resistance of oral squamous cell carcinoma cells via IκB/NF-κB signaling pathway. Anticancer Drugs 2024; 35:492-500. [PMID: 38477942 DOI: 10.1097/cad.0000000000001592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The resistance of oral squamous cell carcinoma (OSCC) cells to cisplatin remains a tough nut to crack in OSCC therapy. Homeobox A1 (HOXA1) overexpression has been detected in head and neck squamous carcinoma (HNSC). Accordingly, this study aims to explore the potential role and mechanism of HOXA1 on cisplatin resistance in OSCC. The expression of HOXA1 in HNSC and its role in overall survival (OS) rate of OSCC patients were analyzed by bioinformatic analysis. Following transfection as needed, OSCC cells were induced by different concentrations of cisplatin, and the cell viability and apoptosis were evaluated by cell counting kit-8 and flow cytometry assays. The mRNA and protein expression levels of HOXA1 and the phosphorylation of IκBα and p65 were determined by real-time quantitative PCR and western blot. HOXA1 expression level was upregulated in HNSC tissues and OSCC cells. Overexpressed HOXA1 was correlated with a low OS rate of OSCC patients. Cisplatin exerted an anti-cancer effect on OSCC cells. HOXA1 silencing or cisplatin suppressed OSCC cell viability, boosted the apoptosis, and repressed the phosphorylation of IκBα and p65. Intriguingly, the combination of HOXA1 silencing and cisplatin generated a stronger anti-cancer effect on OSCC cells than their single use. HOXA1 silencing attenuates cisplatin resistance of OSCC cells via IκB/NF-κB signaling pathway, hinting that HOXA1 is a biomarker associated with OSCC and HOXA1 silencing can enhance the sensitivity of OSCC cells to cisplatin.
Collapse
Affiliation(s)
- Ruifeng Zhu
- School of Stomatology, Xuzhou Medical University
| | - Yiting Mao
- School of Stomatology, Xuzhou Medical University
| | - Xianzhi Xu
- School of Stomatology, Xuzhou Medical University
| | - Yingying Li
- School of Stomatology, Xuzhou Medical University
| | - Jiwei Zheng
- School of Stomatology, Xuzhou Medical University
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Blanchett R, Lau KH, Pfeifer GP. Homeobox and Polycomb target gene methylation in human solid tumors. Sci Rep 2024; 14:13912. [PMID: 38886487 PMCID: PMC11183203 DOI: 10.1038/s41598-024-64569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
DNA methylation is an epigenetic mark that plays an important role in defining cancer phenotypes, with global hypomethylation and focal hypermethylation at CpG islands observed in tumors. These methylation marks can also be used to define tumor types and provide an avenue for biomarker identification. The homeobox gene class is one that has potential for this use, as well as other genes that are Polycomb Repressive Complex 2 targets. To begin to unravel this relationship, we performed a pan-cancer DNA methylation analysis using sixteen Illumina HM450k array datasets from TCGA, delving into cancer-specific qualities and commonalities between tumor types with a focus on homeobox genes. Our comparisons of tumor to normal samples suggest that homeobox genes commonly harbor significant hypermethylated differentially methylated regions. We identified two homeobox genes, HOXA3 and HOXD10, that are hypermethylated in all 16 cancer types. Furthermore, we identified several potential homeobox gene biomarkers from our analysis that are uniquely methylated in only one tumor type and that could be used as screening tools in the future. Overall, our study demonstrates unique patterns of DNA methylation in multiple tumor types and expands on the interplay between the homeobox gene class and oncogenesis.
Collapse
Affiliation(s)
- Reid Blanchett
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
3
|
Feng C, Song C, Song S, Zhang G, Yin M, Zhang Y, Qian F, Wang Q, Guo M, Li C. KnockTF 2.0: a comprehensive gene expression profile database with knockdown/knockout of transcription (co-)factors in multiple species. Nucleic Acids Res 2024; 52:D183-D193. [PMID: 37956336 PMCID: PMC10767813 DOI: 10.1093/nar/gkad1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Transcription factors (TFs), transcription co-factors (TcoFs) and their target genes perform essential functions in diseases and biological processes. KnockTF 2.0 (http://www.licpathway.net/KnockTF/index.html) aims to provide comprehensive gene expression profile datasets before/after T(co)F knockdown/knockout across multiple tissue/cell types of different species. Compared with KnockTF 1.0, KnockTF 2.0 has the following improvements: (i) Newly added T(co)F knockdown/knockout datasets in mice, Arabidopsis thaliana and Zea mays and also an expanded scale of datasets in humans. Currently, KnockTF 2.0 stores 1468 manually curated RNA-seq and microarray datasets associated with 612 TFs and 172 TcoFs disrupted by different knockdown/knockout techniques, which are 2.5 times larger than those of KnockTF 1.0. (ii) Newly added (epi)genetic annotations for T(co)F target genes in humans and mice, such as super-enhancers, common SNPs, methylation sites and chromatin interactions. (iii) Newly embedded and updated search and analysis tools, including T(co)F Enrichment (GSEA), Pathway Downstream Analysis and Search by Target Gene (BLAST). KnockTF 2.0 is a comprehensive update of KnockTF 1.0, which provides more T(co)F knockdown/knockout datasets and (epi)genetic annotations across multiple species than KnockTF 1.0. KnockTF 2.0 facilitates not only the identification of functional T(co)Fs and target genes but also the investigation of their roles in the physiological and pathological processes.
Collapse
Affiliation(s)
- Chenchen Feng
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & School of Computer, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Chao Song
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuang Song
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guorui Zhang
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Mingxue Yin
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuexin Zhang
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Fengcui Qian
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Qiuyu Wang
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & School of Computer, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chunquan Li
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & School of Computer, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
4
|
Heinze SD, Berger S, Engleitner S, Daube M, Hajnal A. Prolonging somatic cell proliferation through constitutive hox gene expression in C. elegans. Nat Commun 2023; 14:6850. [PMID: 37891160 PMCID: PMC10611754 DOI: 10.1038/s41467-023-42644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
hox genes encode a conserved family of homeodomain transcription factors that are essential to determine the identity of body segments during embryogenesis and maintain adult somatic stem cells competent to regenerate organs. In contrast to higher organisms, somatic cells in C. elegans irreversibly exit the cell cycle after completing their cell lineage and the adult soma cannot regenerate. Here, we show that hox gene expression levels in C. elegans determine the temporal competence of somatic cells to proliferate. Down-regulation of the central hox gene lin-39 in dividing vulval cells results in their premature cell cycle exit, whereas constitutive lin-39 expression causes precocious Pn.p cell and sex myoblast divisions and prolongs the proliferative phase of the vulval cells past their normal point of arrest. Furthermore, ectopic expression of hox genes in the quiescent anchor cell re-activates the cell cycle and induces proliferation until young adulthood. Thus, constitutive expression of a single hox transcription factor is sufficient to prolong somatic cell proliferation beyond the restriction imposed by the cell lineage. The down-regulation of hox gene expression in most somatic cells at the end of larval development may be one cause for the absence of cell proliferation in adult C. elegans.
Collapse
Affiliation(s)
- Svenia D Heinze
- Department of Molecular Life Sciences, University Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057, Zürich, Switzerland
| | - Simon Berger
- Department of Molecular Life Sciences, University Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Institute for Chemical- and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093, Zürich, Switzerland
| | - Stefanie Engleitner
- Department of Molecular Life Sciences, University Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057, Zürich, Switzerland
| | - Michael Daube
- Department of Molecular Life Sciences, University Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Sciences, University Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| |
Collapse
|
5
|
Fan L, Sudeep K, Qi J. Histone Demethylase KDM3 (JMJD1) in Transcriptional Regulation and Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:69-86. [PMID: 37751136 PMCID: PMC11052651 DOI: 10.1007/978-3-031-38176-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Methylation of histone H3 lysine 9 (H3K9) is a repressive histone mark and associated with inhibition of gene expression. KDM3 is a subfamily of the JmjC histone demethylases. It specifically removes the mono- or di-methyl marks from H3K9 and thus contributes to activation of gene expression. KDM3 subfamily includes three members: KDM3A, KDM3B and KDM3C. As KDM3A (also known as JMJD1A or JHDM2A) is the best studied, this chapter will mainly focus on the role of KDM3A-mediated gene regulation in the biology of normal and cancer cells. Knockout mouse studies have revealed that KDM3A plays a role in the physiological processes such as spermatogenesis, metabolism and sex determination. KDM3A is upregulated in several types of cancers and has been shown to promote cancer development, progression and metastasis. KDM3A can enhance the expression or activity of transcription factors through its histone demethylase activity, thereby altering the transcriptional program and promoting cancer cell proliferation and survival. We conclude that KDM3A may serve as a promising target for anti-cancer therapies.
Collapse
Affiliation(s)
- Lingling Fan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 655 W Baltimore Street, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA
| | - Khadka Sudeep
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 655 W Baltimore Street, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA
| | - Jianfei Qi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 655 W Baltimore Street, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Kopchick JJ, Basu R, Berryman DE, Jorgensen JOL, Johannsson G, Puri V. Covert actions of growth hormone: fibrosis, cardiovascular diseases and cancer. Nat Rev Endocrinol 2022; 18:558-573. [PMID: 35750929 PMCID: PMC9703363 DOI: 10.1038/s41574-022-00702-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/20/2022]
Abstract
Since its discovery nearly a century ago, over 100,000 studies of growth hormone (GH) have investigated its structure, how it interacts with the GH receptor and its multiple actions. These include effects on growth, substrate metabolism, body composition, bone mineral density, the cardiovascular system and brain function, among many others. Recombinant human GH is approved for use to promote growth in children with GH deficiency (GHD), along with several additional clinical indications. Studies of humans and animals with altered levels of GH, from complete or partial GHD to GH excess, have revealed several covert or hidden actions of GH, such as effects on fibrosis, cardiovascular function and cancer. In this Review, we do not concentrate on the classic and controversial indications for GH therapy, nor do we cover all covert actions of GH. Instead, we stress the importance of the relationship between GH and fibrosis, and how fibrosis (or lack thereof) might be an emerging factor in both cardiovascular and cancer pathologies. We highlight clinical data from patients with acromegaly or GHD, alongside data from cellular and animal studies, to reveal novel phenotypes and molecular pathways responsible for these actions of GH in fibrosis, cardiovascular function and cancer.
Collapse
Affiliation(s)
- John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
- The Diabetes Institute, Ohio University, Athens, OH, USA.
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
| | - Reetobrata Basu
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| | - Jens O L Jorgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Gudmundur Johannsson
- Department of Endocrinology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Göteborg, Gothenburg, Sweden
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| |
Collapse
|
7
|
Belpaire M, Taminiau A, Geerts D, Rezsohazy R. HOXA1, a breast cancer oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188747. [PMID: 35675857 DOI: 10.1016/j.bbcan.2022.188747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
More than 25 years ago, the first literature records mentioned HOXA1 expression in human breast cancer. A few years later, HOXA1 was confirmed as a proper oncogene in mammary tissue. In the following two decades, molecular data about the mode of action of the HOXA1 protein, the factors contributing to activate and maintain HOXA1 gene expression and the identity of its target genes have accumulated and provide a wider view on the association of this transcription factor to breast oncogenesis. Large-scale transcriptomic data gathered from wide cohorts of patients further allowed refining the relationship between breast cancer type and HOXA1 expression. Several recent reports have reviewed the connection between cancer hallmarks and the biology of HOX genes in general. Here we take HOXA1 as a paradigm and propose an extensive overview of the molecular data centered on this oncoprotein, from what its expression modulators, to the interactors contributing to its oncogenic activities, and to the pathways and genes it controls. The data converge to an intricate picture that answers questions on the multi-modality of its oncogene activities, point towards better understanding of breast cancer aetiology and thereby provides an appraisal for treatment opportunities.
Collapse
Affiliation(s)
- Magali Belpaire
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Dirk Geerts
- Heart Failure Research Center, Amsterdam University Medical Center (AMC), Universiteit van Amsterdam, Amsterdam, the Netherlands.
| | - René Rezsohazy
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
8
|
The Diagnostic and Prognostic Values of HOXA Gene Family in Kidney Clear Cell Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:1762637. [PMID: 35342423 PMCID: PMC8942704 DOI: 10.1155/2022/1762637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/03/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the most common cancers with high mortality worldwide. As members of the homeobox (HOX) family, homeobox-A (HOXA) genes have been reported to play an increasingly important role in tumorigenesis and the progression of multiple cancers. However, limited studies have investigated the potential diagnostic and prognostic roles of HOXA genes in KIRC. In this research, we explored the expression pattern of the HOXA gene family in KIRC progression by differential analysis of expression profiles from The Cancer Genome Atlas (TCGA). By using univariate Cox analysis and lasso regression analysis, we comprehensively evaluated the prognostic value of HOXA genes and eventually identified a prognostic risk model consisting of five HOXA genes (HOXA2, HOXA3, HOXA7, HOXA11, and HOXA13). The risk model was further validated as a novel independent prognostic factor for KIRC patients based on the calculated risk score by Kaplan-Meier analysis, univariate and multivariate Cox regression analyses, and time-dependent receiver operating characteristic (ROC) curve analysis. Moreover, to explore the potential mechanism of tumorigenesis and clinical application of KIRC, we also developed the HOXA-based competing endogenous RNA (ceRNA) regulatory network and machine learning classification model. Valproic acid and tretinoin were predicted to be the most promising small molecules to adjuvant treatment of KIRC by mining the CMAP and DGIdb drug database. Subsequently, pathway and functional enrichment analyses provided us with new ways to search for a possible mechanism of action of drugs. Taken together, our study demonstrated the nonnegligible role of HOXA genes in KIRC and constructed an effective prognostic and diagnostic model, which offers novel insights into KIRC prognosis.
Collapse
|
9
|
Yao J, Zhang Y, Li M, Sun Z, Liu T, Zhao M, Li Z. Single-Cell RNA-Seq Reveals the Promoting Role of Ferroptosis Tendency During Lung Adenocarcinoma EMT Progression. Front Cell Dev Biol 2022; 9:822315. [PMID: 35127731 PMCID: PMC8810644 DOI: 10.3389/fcell.2021.822315] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 01/31/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) and ferroptosis are two important processes in biology. In tumor cells, they are intimately linked. We used single-cell RNA sequencing to investigate the regulatory connection between EMT and ferroptosis tendency in LUAD epithelial cells. We used Seurat to construct the expression matrix using the GEO dataset GSE131907 and extract epithelial cells. We found a positive correlation between the trends of EMT and ferroptosis tendency. Then we used SCENIC to analyze differentially activated transcription factors and constructed a molecular regulatory directed network by causal inference. Some ferroptosis markers (GPX4, SCP2, CAV1) were found to have strong regulatory effects on EMT. Cell communication networks were constructed by iTALK and implied that Ferro_High_EMT_High cells have a higher expression of SDC1, SDC4, and activation of LGALS9-HARVCR2 pathways. By deconvolution of bulk sequencing, the results of CIBERSORTx showed that the co-occurrence of ferroptosis tendency and EMT may lead to tumor metastasis and non-response to immunotherapy. Our findings showed there is a strong correlation between ferroptosis tendency and EMT. Ferroptosis may have a promotive effect on EMT. High propensities of ferroptosis and EMT may lead to poor prognosis and non-response to immunotherapy.
Collapse
Affiliation(s)
- Jiaxi Yao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Yuchong Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Mengling Li
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Zuyu Sun
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Tao Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Tao Liu, ; Mingfang Zhao, ; Zhi Li,
| | - Mingfang Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Tao Liu, ; Mingfang Zhao, ; Zhi Li,
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Tao Liu, ; Mingfang Zhao, ; Zhi Li,
| |
Collapse
|
10
|
Belpaire M, Ewbank B, Taminiau A, Bridoux L, Deneyer N, Marchese D, Lima-Mendez G, Baurain JF, Geerts D, Rezsohazy R. HOXA1 Is an Antagonist of ERα in Breast Cancer. Front Oncol 2021; 11:609521. [PMID: 34490074 PMCID: PMC8417444 DOI: 10.3389/fonc.2021.609521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is a heterogeneous disease and the leading cause of female cancer mortality worldwide. About 70% of breast cancers express ERα. HOX proteins are master regulators of embryo development which have emerged as being important players in oncogenesis. HOXA1 is one of them. Here, we present bioinformatic analyses of genome-wide mRNA expression profiles available in large public datasets of human breast cancer samples. We reveal an extremely strong opposite correlation between HOXA1 versus ER expression and that of 2,486 genes, thereby supporting a functional antagonism between HOXA1 and ERα. We also demonstrate in vitro that HOXA1 can inhibit ERα activity. This inhibition is at least bimodal, requiring an intact HOXA1 DNA-binding homeodomain and involving the DNA-binding independent capacity of HOXA1 to activate NF-κB. We provide evidence that the HOXA1-PBX interaction known to be critical for the transcriptional activity of HOXA1 is not involved in the ERα inhibition. Finally, we reveal that HOXA1 and ERα can physically interact but that this interaction is not essential for the HOXA1-mediated inhibition of ERα. Like other HOX oncoproteins interacting with ERα, HOXA1 could be involved in endocrine therapy resistance.
Collapse
Affiliation(s)
- Magali Belpaire
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Bruno Ewbank
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Noémie Deneyer
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Damien Marchese
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Gipsi Lima-Mendez
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Jean-François Baurain
- Pôle d'imagerie moléculaire, radiothérapie et oncologie (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Woluwe-Saint-Lambert, Belgium.,King Albert II Cancer Institute, Cliniques Universitaires St Luc, Woluwe-Saint-Lambert, Belgium
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam University Medical Centrum (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - René Rezsohazy
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
11
|
Ding B, Xu S, Sun X, Gao J, Nie W, Xu H. miR-18a-3p Encourages Apoptosis of Chondrocyte in Osteoarthritis via HOXA1 Pathway. Curr Mol Pharmacol 2021; 13:328-341. [PMID: 32013856 DOI: 10.2174/1874467213666200204143740] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/12/2020] [Accepted: 01/20/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Osteoarthritis is a disorder of joints featuring inflammation and degeneration of articular cartilage. Recently, miRs have been found to be associated in the regulation of chondrocytes and their apoptosis. miR-18a-3p has been found to be associated in the pathogenesis of rheumatoid arthritis, however, its role in articular cartilage tissues remains unclear. METHODS C57BL/6 strain of mice and human cartilage tissue were used for the study. Histological analysis was done on isolated cartilage samples followed by TUNEL assay and immunohistochemical analysis. The chondrocytes were isolated from mouse and human cartilage tissues, RNA was isolated and subjected for qRT-PCR analysis. The chondrocytes were transfected with miR-18a-3p agomir, antagomir and siHOXA-1. Luciferase assay was done in 293T cells. Flow cytometry analysis was done and western blot analysis for studying the expression of proteins. RESULTS The expression of miR-18a-3p was upregulated in chondrocytes after exposing them to interlukin- 1β (IL-1β) in vitro. The transfection of miR-18a-3p antagomir halted the IL-1β mediated apoptosis. The luciferase assay suggested that miR-18a-3p targets the 3'UTR region of HOXA1 gene thus blocking its expression. The treatment of HOXA1 siRNA demonstrated the rescuing effect of miR- 18a-3p antagomir on the apoptosis of chondrocytes. Treatment of miR-18a-3p antagomir attenuated the surface of cartilage in osteoarthritis mice and the agomir worsened it. TUNEL assay suggested decreased apoptosis and over-expression of HOAX1 in osteoarthritis mice post miR-18a-3p knockdown. CONCLUSION The findings confirmed the involvement of miR-18a-3p/HOXA1 pathway as a potential mechanism in the regulation of Osteoarthritis.
Collapse
Affiliation(s)
- Baiyang Ding
- Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Shujuan Xu
- Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Xiumin Sun
- Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Jianming Gao
- Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Wenlei Nie
- Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Hongguang Xu
- Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| |
Collapse
|
12
|
Zhong W, Bao L, Yuan Y, Meng Y. CircRASSF2 acts as a prognostic factor and promotes breast cancer progression by modulating miR-1205/HOXA1 axis. Bioengineered 2021; 12:3014-3028. [PMID: 34180753 PMCID: PMC8806576 DOI: 10.1080/21655979.2021.1933300] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Circular RNA (circRNA), a recently identified endogenous non-coding RNA molecule, regulates gene expression in mammals. At the current stage, the expression and function of circRASSF2 in breast cancer (BC) have not been clarified. According to our study, it is found that circRASSF2 sequences contain miR-1205 binding sites, and Homeobox gene A1 (HOXA1) is the target gene of miR-1205. Besides, the clinical observations and histopathologic study reveal that the expression of circRASSF2 increased to a significant extent in BC tissues and serum. Additionally, it is found that circRASSF2 expression had a positive correlation with distant metastasis, lymph node metastasis, TNM stage, differentiation and tumor size, and that overall survival (OS) and progression-free survival (PFS) of circRASSF2 high expression BC patients were inferior to those with low circRASSF2 expression. In vitro study, an overt decrease was detected in the proliferation, clone formation ability, migration and invasion of breast cancer cells in cells when circRASSF2 was knocked down. We confirmed the direct interaction between circRASSF2, miR-1205 and HOXA1 by a dual luciferase reporter system. Additionally, our study revealed that over-expression of miR-1205 decreased HOXA1 protein expression, and HOXA1 protein expression decreased when circRASSF2 were knocked down, and when miR-1205 expression was inhibited, HOXA1 expression was significantly increased. In conclusion, our study suggests that circRASSF2 regulates BC progression through the miR-1205/HOXA1 pathway. Our findings suggest the prospect of circRASSF2 serving as therapeutic target as such to cure BC patients.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Breast Cancer, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Bao
- Department of Pathology, The Affliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong Province, China
| | - Yangyi Yuan
- Fuzhou Medical College, Nanchang University, Nanchang, Jiangxi Province
| | - Yanzhi Meng
- Department of Medical Ultrasonics, Wuhan Youfu Hospital, Wuhan, Hubei, China
| |
Collapse
|
13
|
Estrogen suppresses HOXB2 expression via ERα in breast cancer cells. Gene 2021; 794:145746. [PMID: 34062258 DOI: 10.1016/j.gene.2021.145746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/27/2021] [Accepted: 05/27/2021] [Indexed: 11/20/2022]
Abstract
The expression of HOXB2, a homeobox transcription factor, is altered in a variety of solid tumors. Using an in vivo screen to identify regulators of breast tumor growth in murine mammary fat pads, Boimel and co-workers recently identified HOXB2 as a tumor suppressor. However, the mechanistic underpinnings of its role in breast cancer is not understood. Given the emerging interaction of estrogen-regulated gene expression and altered HOX gene expression network in the pathophysiology of breast cancer, this study addressed the relationship between estrogen signaling and HOXB2 expression. Using a mouse model and human breast cancer cell lines, we show that estrogen suppresses HOXB2 expression. Suppression of HOXB2 by PPT, a known ERα agonist, in MCF-7 and T47D cells indicated the involvement of ERα, which was confirmed by siRNA-mediated ERα knockdown experiments. In-silico analysis of the upstream promoter region revealed the presence of three putative EREs. Chromatin immunoprecipitation experiments showed that upon estrogen binding, ERα engaged with EREs in the 5' upstream region of HOXB2 in MCF-7 and T47D cells. Future investigations should address the implications of estrogen-mediated suppression on the proposed tumor suppressor function of HOXB2.
Collapse
|
14
|
Bondos SE, Geraldo Mendes G, Jons A. Context-dependent HOX transcription factor function in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:225-262. [PMID: 32828467 DOI: 10.1016/bs.pmbts.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During animal development, HOX transcription factors determine the fate of developing tissues to generate diverse organs and appendages. The power of these proteins is striking: mis-expressing a HOX protein causes homeotic transformation of one body part into another. During development, HOX proteins interpret their cellular context through protein interactions, alternative splicing, and post-translational modifications to regulate cell proliferation, cell death, cell migration, cell differentiation, and angiogenesis. Although mutation and/or mis-expression of HOX proteins during development can be lethal, changes in HOX proteins that do not pattern vital organs can result in survivable malformations. In adults, mutation and/or mis-expression of HOX proteins disrupts their gene regulatory networks, deregulating cell behaviors and leading to arthritis and cancer. On the molecular level, HOX proteins are composed of DNA binding homeodomain, and large regions of unstructured, or intrinsically disordered, protein sequence. The primary roles of HOX proteins in arthritis and cancer suggest that mutations associated with these diseases in both the structured and disordered regions of HOX proteins can have substantial functional effects. These insights lead to new questions critical for understanding and manipulating HOX function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Sarah E Bondos
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States.
| | - Gabriela Geraldo Mendes
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| | - Amanda Jons
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| |
Collapse
|
15
|
Brotto DB, Siena ÁDD, de Barros II, Carvalho SDCES, Muys BR, Goedert L, Cardoso C, Plaça JR, Ramão A, Squire JA, Araujo LF, Silva WAD. Contributions of HOX genes to cancer hallmarks: Enrichment pathway analysis and review. Tumour Biol 2020; 42:1010428320918050. [PMID: 32456563 DOI: 10.1177/1010428320918050] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Homeobox genes function as master regulatory transcription factors during development, and their expression is often altered in cancer. The HOX gene family was initially studied intensively to understand how the expression of each gene was involved in forming axial patterns and shaping the body plan during embryogenesis. More recent investigations have discovered that HOX genes can also play an important role in cancer. The literature has shown that the expression of HOX genes may be increased or decreased in different tumors and that these alterations may differ depending on the specific HOX gene involved and the type of cancer being investigated. New studies are also emerging, showing the critical role of some members of the HOX gene family in tumor progression and variation in clinical response. However, there has been limited systematic evaluation of the various contributions of each member of the HOX gene family in the pathways that drive the common phenotypic changes (or "hallmarks") and that underlie the transformation of normal cells to cancer cells. In this review, we investigate the context of the engagement of HOX gene targets and their downstream pathways in the acquisition of competence of tumor cells to undergo malignant transformation and tumor progression. We also summarize published findings on the involvement of HOX genes in carcinogenesis and use bioinformatics methods to examine how their downstream targets and pathways are involved in each hallmark of the cancer phenotype.
Collapse
Affiliation(s)
- Danielle Barbosa Brotto
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Ádamo Davi Diógenes Siena
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Isabela Ichihara de Barros
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Simone da Costa E Silva Carvalho
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Bruna Rodrigues Muys
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Lucas Goedert
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cibele Cardoso
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Jessica Rodrigues Plaça
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Anelisa Ramão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Jeremy Andrew Squire
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Luiza Ferreira Araujo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Wilson Araújo da Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil.,Center for Integrative System Biology (CISBi), NAP/USP, University of São Paulo, Ribeirão Preto, Brazil.,Center for Medical Genomics, Clinics Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
16
|
Li J, Zeng T, Li W, Wu H, Sun C, Yang F, Yang M, Fu Z, Yin Y. Long non-coding RNA SNHG1 activates HOXA1 expression via sponging miR-193a-5p in breast cancer progression. Aging (Albany NY) 2020; 12:10223-10234. [PMID: 32497022 PMCID: PMC7346023 DOI: 10.18632/aging.103123] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/24/2020] [Indexed: 01/04/2023]
Abstract
Breast cancer is the leading cause of cancer death in women worldwide. Long non-coding RNA small nucleolar RNA host gene 1 (SNHG1) has been reported to be involved in human diseases, including cancer. Here, we found that SNHG1 expression was significantly upregulated in human breast cancer tissues and cell lines. We explored the function of SNHG1 in breast cancer cells using in vitro and in vivo experiments and found that SNHG1 promotes breast cancer metastasis and proliferation. The potential molecular mechanism of SNHG1 in breast cancer cells may involve SNHG1 acting as a sponge of miR-193a-5p to activate the expression of the oncogene HOXA1. In summary, our study reveals a novel SNHG1/miR-193a-5p/HOXA1 competing endogenous RNA regulatory pathway in breast cancer progression and may provide new strategies for breast cancer therapy.
Collapse
Affiliation(s)
- Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tianyu Zeng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fan Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Mengzhu Yang
- Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Care Hospital, Gynecology and Obstetrics Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
17
|
Li J, Ye M, Zhou C. Expression Profile and Prognostic Values of HOXA Family Members in Laryngeal Squamous Cell Cancer. Front Oncol 2020; 10:368. [PMID: 32296636 PMCID: PMC7136465 DOI: 10.3389/fonc.2020.00368] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
The homeobox A cluster (HOXA) gene family, comprising 11 members, is involved in a wide spectrum of biological functions in human cancers. However, there is little research on the expression profile and prognostic values of HOXA genes in laryngeal squamous cell cancer (LSCC). Based on updated public resources and integrative bioinformatics analysis, we assessed the expression profile and prognostic values of the HOXA family members. Expression and methylation data on HOXA family members were obtained from The Cancer Genome Atlas (TCGA). The prognostic values of HOXA members and clinical features were identified. A gene set enrichment analysis (GSEA) was conducted to explore the mechanism underlying the involvement of HOXA members in LSCC. The associations between tumor immune infiltrating cells (TIICs) and the HOXA family members were evaluated using the Tumor Immune Estimation Resource (TIMER) database. HOXA2 and HOXA4 were downregulated and HOXA7 and HOXA9–13 were upregulated in LSCC. Upregulation of HOXA10, HOXA11, and HOXA13, along with two clinical characteristics (M stage and gender), were associated with a poor LSCC prognosis based on the results of univariate and multivariate Cox proportional hazards regression analyses. Although there were no significant correlations between TIICs and HOXA members, the GSEA results indicated that HOXA members participate in multiple biological processes underlying tumorigenesis. This study comprehensively analyzed the HOXA members, providing insights for further investigation of the HOXA family members as potential targets in LSCC.
Collapse
Affiliation(s)
- Jinyun Li
- Department of Oncology and Hematology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Meng Ye
- Department of Oncology and Hematology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
18
|
Research Progress of the Functional Role of ACK1 in Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1018034. [PMID: 31772931 PMCID: PMC6854235 DOI: 10.1155/2019/1018034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/13/2019] [Indexed: 01/25/2023]
Abstract
ACK1 is a nonreceptor tyrosine kinase with a unique structure, which is tightly related to the biological behavior of tumors. Previous studies have demonstrated that ACK1 was involved with multiple signaling pathways of tumor progression. Its crucial role in tumor cell proliferation, apoptosis, invasion, and metastasis was tightly related to the prognosis and clinicopathology of cancer. ACK1 has a unique way of regulating cellular pathways, different from other nonreceptor tyrosine kinases. As an oncogenic kinase, recent studies have shown that ACK1 plays a critical regulatory role in the initiation and progression of tumors. In this review, we will be summarizing the structural characteristics, activation, and regulation of ACK1 in breast cancer, aiming to deeply understand the functional and mechanistic role of ACK1 and provide novel therapeutic strategies for breast cancer treatment.
Collapse
|
19
|
Paço A, Freitas R. HOX genes as transcriptional and epigenetic regulators during tumorigenesis and their value as therapeutic targets. Epigenomics 2019; 11:1539-1552. [PMID: 31556724 DOI: 10.2217/epi-2019-0090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Several HOX genes are aberrantly expressed in a wide range of cancers interfering with their development and resistance to treatment. This seems to be often caused by alterations in the methylation profiles of their promoters. The role of HOX gene products in cancer is highly 'tissue specific', relying ultimately on their ability to regulate oncogenes or tumor-suppressor genes, directly as transcriptional regulators or indirectly interfering with the levels of epigenetic regulators. Nowadays, different strategies have been tested the use of HOX genes as therapeutic targets for cancer diagnosis and treatment. Here, we trace the history of the research concerning the involvement of HOX genes in cancer, their connection with epigenetic regulation and their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Ana Paço
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, 7006-554 Évora, Portugal
| | - Renata Freitas
- I3S - Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal.,IBMC - Institute for Molecular & Cell Biology, University of Porto, 4200-135 Porto, Portugal.,ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
20
|
Basu R, Kopchick JJ. The effects of growth hormone on therapy resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:827-846. [PMID: 32382711 PMCID: PMC7204541 DOI: 10.20517/cdr.2019.27] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pituitary derived and peripherally produced growth hormone (GH) is a crucial mediator of longitudinal growth, organ development, metabolic regulation with tissue specific, sex specific, and age-dependent effects. GH and its cognate receptor (GHR) are expressed in several forms of cancer and have been validated as an anti-cancer target through a large body of in vitro, in vivo and epidemiological analyses. However, the underlying molecular mechanisms of GH action in cancer prognosis and therapeutic response had been sparse until recently. This review assimilates the critical details of GH-GHR mediated therapy resistance across different cancer types, distilling the therapeutic implications based on our current understanding of these effects.
Collapse
Affiliation(s)
- Reetobrata Basu
- Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Ohio University, Athens, OH 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Ohio University, Athens, OH 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
21
|
Han Z, Guan Y, Liu B, Lin Y, Yan Y, Wang H, Wang H, Jing B. MicroRNA-99a-5p alleviates atherosclerosis via regulating Homeobox A1. Life Sci 2019; 232:116664. [DOI: 10.1016/j.lfs.2019.116664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
22
|
Lin X, Pavani KC, Smits K, Deforce D, Heindryckx B, Van Soom A, Peelman L. Bta-miR-10b Secreted by Bovine Embryos Negatively Impacts Preimplantation Embryo Quality. Front Genet 2019; 10:757. [PMID: 31507632 PMCID: PMC6713719 DOI: 10.3389/fgene.2019.00757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/17/2019] [Indexed: 01/02/2023] Open
Abstract
In a previous study, we found miR-10b to be more abundant in a conditioned culture medium of degenerate embryos compared to that of blastocysts. Here, we show that miR-10b mimics added to the culture medium can be taken up by embryos. This uptake results in an increase in embryonic cell apoptosis and aberrant expression of DNA methyltransferases (DNMTs). Using several algorithms, Homeobox A1 (HOXA1) was identified as one of the potential miR-10b target genes and dual-luciferase assay confirmed HOXA1 as a direct target of miR-10b. Microinjection of si-HOXA1 into embryos also resulted in an increase in embryonic cell apoptosis and downregulation of DNMTs. Cell progression analysis using Madin–Darby bovine kidney cells (MDBKs) showed that miR-10b overexpression and HOXA1 knockdown results in suppressed cell cycle progression and decreased cell viability. Overall, this work demonstrates that miR-10b negatively influences embryo quality and might do this through targeting HOXA1 and/or influencing DNA methylation.
Collapse
Affiliation(s)
- Xiaoyuan Lin
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | - Katrien Smits
- Reproduction, Obstetrics and Herd Health, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ann Van Soom
- Reproduction, Obstetrics and Herd Health, Ghent University, Ghent, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Ma Y, Wu Y, Chen J, Huang K, Ji B, Chen Z, Wang Q, Ma J, Shen S, Zhang J. miR-10a-5p Promotes Chondrocyte Apoptosis in Osteoarthritis by Targeting HOXA1. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 14:398-409. [PMID: 30731321 PMCID: PMC6365368 DOI: 10.1016/j.omtn.2018.12.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is a common joint disease characterized by degradation of the articular cartilage and joint inflammation. Studies have revealed the importance of microRNAs in the regulation of chondrocyte apoptosis. MicroRNA deep sequencing of control and osteoarthritic cartilage has revealed that miR-10a-5p is significantly upregulated in osteoarthritic tissues. However, its role in these tissues remains unknown. The present study was conducted to investigate the effect of miR-10a-5p in promoting OA. miR-10a-5p expression was increased in chondrocytes after interleukin-1β treatment in vitro. Transfection with a miR-10a-5p inhibitor abrogated interleukin-1β-induced apoptosis. A luciferase activity assay showed that miR-10a-5p targeted the 3′ UTR of the homeobox gene HOXA1, inhibiting its expression. Treatment with HOXA1 siRNA reversed the rescuing effect of the miR-10a-5p inhibitor on chondrocyte apoptosis. Additionally, an OA model was established in mice by anterior cruciate ligament transection. AntagomiR-10a-5p improved the cartilage surfaces of osteoarthritic mice, whereas agomiR-10a-5p worsened them. A terminal deoxynucleotidyl transferase dUTP nick-end labeling assay indicated reduced apoptosis and increased HOXA1 expression in osteoarthritic mice after miR-10a-5p knockdown. These findings reveal a novel mechanism regulating OA progression and demonstrate the potential of miR-10a-5p and homeobox protein HOXA1 as therapeutic targets.
Collapse
Affiliation(s)
- Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang Province 310016, China
| | - Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang Province 310016, China
| | - Junxin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang Province 310016, China
| | - Kangmao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang Province 310016, China
| | - Bin Ji
- Department of Orthopaedic Surgery, The First Hospital of Jiaxing, Jiaxing, Zhejiang Province 314000, China
| | - Zhijun Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang Province 310016, China
| | - Qiang Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang Province 310016, China
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang Province 310016, China.
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang Province 310016, China.
| | - Jianfeng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang Province 310016, China.
| |
Collapse
|
24
|
Li Q, Dong C, Cui J, Wang Y, Hong X. Over-expressed lncRNA HOTAIRM1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in glioblastoma multiforme. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:265. [PMID: 30376874 PMCID: PMC6208043 DOI: 10.1186/s13046-018-0941-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
Background Glioblastoma multiforme (GBM) is the common primary brain tumor classified the most malignant glioma. Long non-coding RNAs (LncRNAs) are important epigenetic regulators with critical roles in cancer initiation and progression. LncRNA HOTAIRM1 transcribes from the antisense strand of HOXA gene cluster which locus in chromosome 7p15.2. Recent studies have shown that HOTAIRM1 is involved in acute myeloid leukemia and colorectal cancer. Here we sought to investigate the role of HOTAIRM1 in GBM and explore its mechanisms of action. Methods The expressions of HOTAIRM1 and HOXA1 in GBM tissues and cells were determined by qRT-PCR, and the association between HOTAIRM1, HOXA1 transcription and tumor grade were analyzed. The biological function of HOTAIRM1 in GBM was evaluated both in vitro and in vivo. Chromatin immunoprecipitation (ChIP) assay and quantitative Sequenom MassARRAY methylation analysis were performed to explore whether HOTAIRM1 could regulate histone and DNA modification status of the HOXA1 gene transcription start sites (TSS) and activate its transcription. ChIP and RNA-ChIP were further performed to determine the molecular mechanism of HOTAIRM1 in epigenetic regulation of the HOXA1 gene. Results HOTAIRM1 was abnormally up-regulated in GBM tissues and cells, and this up-regulation was correlated with grade malignancy in glioma patients. HOTAIRM1 silencing caused tumor suppressive effects via inhibiting cell proliferation, migration and invasion, and inducing cell apoptosis. In vivo experiments showed knockdown of HOTAIRM1 lessened the tumor growth. Additionally, HOTAIRM1 action as regulating the expression of the HOXA1 gene. HOXA1, as an oncogene, it’s expression levels were markedly elevated in GBM tissues and cell lines. Mechanistically, HOTAIRM1 mediated demethylation of histone H3K9 and H3K27 and reduced DNA methylation levels by sequester epigenetic modifiers G9a and EZH2, which are H3K9me2 and H3K27me3 specific histone methyltransferases, and DNA methyltransferases (DnmTs) away from the TSS of HOXA1 gene. Conclusions We investigated the potential role of HOTAIRM1 to promote GBM cell proliferation, migration, invasion and inhibit cell apoptosis by epigenetic regulation of HOXA1 gene that can be targeted simultaneously to effectively treat GBM, thus putting forward a promising strategy for GBM treatment. Meanwhile, this finding provides an example of transcriptional control over the chromatin state of gene and may help explain the role of lncRNAs within the HOXA gene cluster. Electronic supplementary material The online version of this article (10.1186/s13046-018-0941-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.
| | - Chengya Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China
| | - Jiayue Cui
- Department of Histology and Embryology of Basic Medicine College, Jilin University, Changchun, Jilin Province, China
| | - Yubo Wang
- Department of Neurosurgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
25
|
You ML, Chen YJ, Chong QY, Wu MM, Pandey V, Chen RM, Liu L, Ma L, Wu ZS, Zhu T, Lobie PE. Trefoil factor 3 mediation of oncogenicity and chemoresistance in hepatocellular carcinoma is AKT-BCL-2 dependent. Oncotarget 2018; 8:39323-39344. [PMID: 28445151 PMCID: PMC5503616 DOI: 10.18632/oncotarget.16950] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/07/2017] [Indexed: 12/14/2022] Open
Abstract
The efficacious treatment of hepatocellular carcinoma (HCC) remains a challenge, partially being attributed to intrinsic chemoresistance. Previous reports have observed increased TFF3 expression in HCC. Herein, we investigated the functional role of TFF3 in progression of HCC, and in both intrinsic and acquired chemoresistance. TFF3 expression was observed to be upregulated in HCC and associated with poor clinicopathological features and worse patient survival outcome. Functionally, forced expression of TFF3 in HCC cell lines increased cell proliferation, cell survival, anchorage-independent and 3D matrigel growth, cell invasion and migration, and in vivo tumor growth. In contrast, depleted expression of TFF3 decreased the oncogenicity of HCC cells as indicated by the above parameters. Furthermore, forced expression of TFF3 decreased doxorubicin sensitivity of HCC cells, which was attributed to increased doxorubicin efflux and cancer stem cell-like behavior of Hep3B cells. In contrast, depletion of TFF3 increased doxorubicin sensitivity and decreased cancer stem cell-like behavior of Hep3B cells. Correspondingly, TFF3 expression was markedly increased in Hep3B cells with acquired doxorubicin resistance, while the depletion of TFF3 resulted in re-sensitization of the Hep3B cells to doxorubicin. The increased doxorubicin efflux and enhanced cancer stem cell-like behavior of the doxorubicin-resistant Hep3B cells was observed to be dependent on TFF3 expression. In addition, we determined that TFF3-stimulated oncogenicity and chemoresistance in HCC cells was mediated by AKT-dependent expression of BCL-2. Hence, therapeutic inhibition of TFF3 should be considered to hinder HCC progression and overcome intrinsic and acquired chemoresistance in HCC.
Collapse
Affiliation(s)
- Ming-Liang You
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Yi-Jun Chen
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Ming-Ming Wu
- Hefei National Laboratory for Physical Sciences at Microscale Hefei, Anhui, China.,The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Vijay Pandey
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Ru-Mei Chen
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Liang Liu
- Department of Oncology and Department of Radiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Lan Ma
- Tsinghua Berkeley Shenzhen Institute (TBSI), Shenzhen, China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale Hefei, Anhui, China.,The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore.,Tsinghua Berkeley Shenzhen Institute (TBSI), Shenzhen, China
| |
Collapse
|
26
|
Draime A, Bridoux L, Belpaire M, Pringels T, Degand H, Morsomme P, Rezsohazy R. The O-GlcNAc transferase OGT interacts with and post-translationally modifies the transcription factor HOXA1. FEBS Lett 2018; 592:1185-1201. [PMID: 29465778 DOI: 10.1002/1873-3468.13015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 11/06/2022]
Abstract
HOXA1 belongs to the HOX family of transcription factors which are key regulators of animal development. Little is known about the molecular pathways controlling HOXA1. Recent data from our group revealed distinct partner proteins interacting with HOXA1. Among them, OGT is an O-linked N-acetylglucosamine (O-GlcNAc) transferase modifying a variety of proteins involved in different cellular processes including transcription. Here, we confirm OGT as a HOXA1 interactor, we characterise which domains of HOXA1 and OGT are required for the interaction, and we provide evidence that OGT post-translationally modifies HOXA1. Mass spectrometry experiments indeed reveal that HOXA1 can be phosphorylated on the AGGTVGSPQYIHHSY peptide and that upon OGT expression, the phosphate adduct is replaced by an O-GlcNAc group.
Collapse
Affiliation(s)
- Amandine Draime
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Magali Belpaire
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Tamara Pringels
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Hervé Degand
- Molecular Physiology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Molecular Physiology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
27
|
Ning ZQ, Lu HL, Chen C, Wang L, Cai W, Li Y, Cao TH, Zhu J, Shu YQ, Shen H. MicroRNA-30e reduces cell growth and enhances drug sensitivity to gefitinib in lung carcinoma. Oncotarget 2018; 8:4572-4581. [PMID: 27992364 PMCID: PMC5354855 DOI: 10.18632/oncotarget.13944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 12/06/2016] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) play critical roles in variousbiological processes,including malignancy. Here, we demonstrated that miR-30e levels were markedly reduced in human lung carcinoma specimens in comparisonwith adjacent normal tissues. In addition, miR-30eamounts were starkly lower in the resistant PC9/gefitinib (PC9G) cancer cells compared with PC9 cells. Meanwhile, miR-30eoverexpression inPC9G cells resulted in reduced cell proliferation and migration,reversing drug resistance to gefitinib.Conversely,miR-30e silencing in PC9 cells increased proliferation as well as migration, and conferred resistance to gefitinib.Moreover, HOXA1, which was identified asa new miR-30etarget, plays important roles in regulating cell fate, early developmental patterns and organogenesis.Importantly, miR-30ealso inhibited PC9G growth in vivo. Taken together, these findings demonstrated that miR-30eshould be considered a tumor suppressor miRNA, which could be used in treatinghuman lung cancer.
Collapse
Affiliation(s)
- Zhi-Qiang Ning
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Hai-Lin Lu
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Chao Chen
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Lin Wang
- Institute of Medcine, University of Zhengzhou, Henan Province, 450000, China
| | - Wei Cai
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Yan Li
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Ting-Hua Cao
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Jing Zhu
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Yong-Qian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hua Shen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
28
|
Autocrine hGH stimulates oncogenicity, epithelial-mesenchymal transition and cancer stem cell-like behavior in human colorectal carcinoma. Oncotarget 2017; 8:103900-103918. [PMID: 29262609 PMCID: PMC5732775 DOI: 10.18632/oncotarget.21812] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/08/2017] [Indexed: 11/25/2022] Open
Abstract
Tumor derived human growth hormone (hGH) has been implicated in cancer development and progression. However, the specific functional role of autocrine/paracrine hGH in colorectal cancer (CRC) remains largely to be determined. Herein, we demonstrated a crucial oncogenic role of autocrine hGH in CRC progression. Elevated hGH expression was detected in CRC compared to normal colorectal tissue, and hGH expression in CRC was positively associated with tumor size and lymph node metastasis. Forced expression of hGH stimulated cell proliferation, survival, oncogenicity and epithelial to mesenchymal transition (EMT) of CRC cells, and promoted xenograft growth and local invasion in vivo. Autocrine hGH expression in CRC cells stimulated the activation of the ERK1/2 pathway, which in turn resulted in increased transcription of the mesenchymal marker FIBRONECTIN 1 and transcriptional repression of the epithelial marker E-CADHERIN. The autocrine hGH-stimulated increase in CRC cell proliferation, cell survival and EMT was abrogated upon ERK1/2 inhibition. Furthermore, autocrine hGH-stimulated CRC cell migration and invasion was dependent on the ERK1/2-mediated increase in FIBRONECTIN 1 expression and decrease in E-CADHERIN expression. Forced expression of hGH also enhanced CSC-like behavior of CRC cells, as characterized by increased colonosphere formation, ALDH-positive population and CSC marker expression. Autocrine hGH-enhanced cancer stem cell (CSC)-like behavior in CRC cells was also observed to be E-CADHERIN-dependent. Thus, autocrine hGH plays a critical role in CRC progression, and inhibition of hGH could be a promising targeted therapeutic approach to limit disease progression in metastatic CRC patients.
Collapse
|
29
|
Li H, Li J, Yang T, Lin S, Li H. MicroRNA-433 Represses Proliferation and Invasion of Colon Cancer Cells by Targeting Homeobox A1. Oncol Res 2017; 26:315-322. [PMID: 29137689 PMCID: PMC7844791 DOI: 10.3727/096504017x15067856789781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aberrant expression of miR-433 has been validated in some types of cancers. However, the expression profile and the biological function of miR-433 on colon cancer are still elusive. This study was designed to investigate the function of miR-433 on the proliferation and invasion of colon cancer cells. We detected the expression of miR-433 in colon cancer tissues, adjacent normal tissues, and cell lines. CCK8 and Transwell assays were performed to explore the impact of miR-433 on colon cancer cell proliferation and invasion. The luciferase reporter assay was applied to identify the direct target of miR-433. The results demonstrated that miR-433 was downregulated in colon cancer tissues and cell lines when compared with the control. Overexpression of miR-433 significantly suppressed the ability of colon cancer cell proliferation and invasion, whereas knockdown of miR-433 remarkably enhanced cell proliferation and invasion. Homeobox A1 (HOXA1) was identified as a target of miR-433, and it mediated the functions of miR-433 on colon cancer cells. To conclude, we revealed that miR-433 was downregulated in colon cancer, and it inhibited colon cancer cell proliferation and invasion by directly targeting HOXA1.
Collapse
Affiliation(s)
- Heming Li
- Emergency Department, 5th Hospital of Dongguan City, Dongguan, P.R. China
| | - Junfeng Li
- Emergency Department, 5th Hospital of Dongguan City, Dongguan, P.R. China
| | - Taisheng Yang
- Emergency Department, 5th Hospital of Dongguan City, Dongguan, P.R. China
| | - Shuwen Lin
- Hepatobiliary Surgery Department, 5th Hospital of Dongguan City, Dongguan, P.R. China
| | - Heng Li
- Cardiovascular Department, TungWah Hospital of Sun-Yat Sen University, Donggguan, P.R. China
| |
Collapse
|
30
|
Brittain AL, Basu R, Qian Y, Kopchick JJ. Growth Hormone and the Epithelial-to-Mesenchymal Transition. J Clin Endocrinol Metab 2017; 102:3662-3673. [PMID: 28938477 DOI: 10.1210/jc.2017-01000] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
CONTEXT Previous studies have implicated growth hormone (GH) in the progression of several cancers, including breast, colorectal, and pancreatic. A mechanism by which GH may play this role in cancer is through the induction of the epithelial-to-mesenchymal transition (EMT). During the EMT process, epithelial cells lose their defining phenotypes, causing loss of cellular adhesion and increased cell migration. This review aims to carefully summarize the previous two decades of research that points to GH as an initiator of EMT, in both cancerous and noncancerous tissues. EVIDENCE ACQUISITION Sources were collected using PubMed and Google Scholar search engines by using specific GH- and/or EMT-related terms. Identified manuscripts were selected for further analysis based on presentation of GH-induced molecular markers of the EMT process in vivo or in vitro. EVIDENCE SYNTHESIS Cellular mechanisms involved in GH-induced EMT are the focus of this review, both in cancerous and noncancerous epithelial cells. CONCLUSIONS Our findings suggest that a myriad of molecular mechanisms are induced by GH that cause EMT and may point to potential therapeutic use of GH antagonists or any downregulator of GH action in EMT-related disease.
Collapse
Affiliation(s)
- Alison L Brittain
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio 45701
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio 45701
| |
Collapse
|
31
|
Wesolowski S, Vera D, Wu W. SRSF shape analysis for sequencing data reveal new differentiating patterns. Comput Biol Chem 2017; 70:56-64. [PMID: 28803038 DOI: 10.1016/j.compbiolchem.2017.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/14/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
Abstract
MOTIVATION Sequencing-based methods to examine fundamental features of the genome, such as gene expression and chromatin structure, rely on inferences from the abundance and distribution of reads derived from Illumina sequencing. Drawing sound inferences from such experiments relies on appropriate mathematical methods to model the distribution of reads along the genome, which has been challenging due to the scale and nature of these data. RESULTS We propose a new framework (SRSFseq) based on square root slope functions shape analysis to analyse Illumina sequencing data. In the new approach the basic unit of information is the density of mapped reads over region of interest located on the known reference genome. The densities are interpreted as shapes and a new shape analysis model is proposed. An equivalent of a Fisher test is used to quantify the significance of shape differences in read distribution patterns between groups of density functions in different experimental conditions. We evaluated the performance of this new framework to analyze RNA-seq data at the exon level, which enabled the detection of variation in read distributions and abundances between experimental conditions not detected by other methods. Thus, the method is a suitable supplement to the state-of-the-art count based techniques. The variety of density representations and flexibility of mathematical design allow the model to be easily adapted to other data types or problems in which the distribution of reads is to be tested. The functional interpretation and SRSF phase-amplitude separation technique give an efficient noise reduction procedure improving the sensitivity and specificity of the method.
Collapse
Affiliation(s)
| | - Daniel Vera
- Center of Genomics and Personalized Medicine, Florida State University, United States
| | - Wei Wu
- Department of Statistics, Florida State University, United States
| |
Collapse
|
32
|
Xu X, Nagel S, Quentmeier H, Wang Z, Pommerenke C, Dirks WG, Macleod RAF, Drexler HG, Hu Z. KDM3B shows tumor-suppressive activity and transcriptionally regulates HOXA1 through retinoic acid response elements in acute myeloid leukemia. Leuk Lymphoma 2017; 59:204-213. [PMID: 28540746 DOI: 10.1080/10428194.2017.1324156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
KDM3B reportedly shows both tumor-suppressive and tumor-promoting activities in leukemia. The function of KDM3B is likely cell-type dependent and its seeming functional discordance may reflect its phenotypic dependence on downstream targets. Here, we first showed the underexpression of KDM3B in acute myeloid leukemia (AML) patients and AML cell lines with MLL-AF6/9 or PML-RARA translocations. Overexpression of KDM3B repressed colony formation of AML cell line with 5q deletion. We then performed global microarray profiling to identify potential downstream targets of KDM3B, notably HOXA1, which was verified by real time PCR and Western blotting. We further showed KDM3B binding at retinoic acid response elements (RARE) but not at the promoter region of HOXA1 gene. KDM3B knockdown resulted in increased mono-methylation but decreased di-methylation of H3K9 at RARE while eschewing the promoter region of HOXA1. Collectively, we found that KDM3B exhibits potential tumor-suppressive activity and transcriptionally modulates HOXA1 expression via RARE in AML.
Collapse
Affiliation(s)
- Xin Xu
- a Laboratory for Stem Cell and Regenerative Medicine , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China
| | - Stefan Nagel
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Hilmar Quentmeier
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Zhanju Wang
- c Department of Hematology , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China
| | - Claudia Pommerenke
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Wilhelm G Dirks
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Roderick A F Macleod
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Hans G Drexler
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Zhenbo Hu
- a Laboratory for Stem Cell and Regenerative Medicine , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China.,c Department of Hematology , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China
| |
Collapse
|
33
|
Li Q, Zhang X, Li N, Liu Q, Chen D. miR-30b inhibits cancer cell growth, migration, and invasion by targeting homeobox A1 in esophageal cancer. Biochem Biophys Res Commun 2017; 485:506-512. [PMID: 28189678 DOI: 10.1016/j.bbrc.2017.02.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/05/2017] [Indexed: 12/29/2022]
Abstract
Emerging evidence has shown that microRNAs (miRNAs) play important roles in tumor development and progression. In particular, miR-30b is thought to be closely related to the migration, invasion, proliferation, communication, and drug resistance of tumor cells. However, the potential value of miR-30b in human esophageal cancer (EC) remains unclear. In this study, we investigated the biological functions of miR-30b and its potential role in EC. The results indicated that the expression levels of miR-30b were decreased in EC tissues and were correlated with invasion classification (P < 0.01), lymph node metastasis (P < 0.01), and pathological stage (P < 0.05). Log-rank tests demonstrated that low expression of miR-30bwas strongly correlated with poor overall survival in patients with EC (P < 0.05). Moreover, overexpression of miR-30b markedly inhibited the growth, migration, and invasion of ECA109 and TE-1 cells by directly downregulating homeobox A1 (HOXA1). When HOXA1 was reintroduced into miR-30b-transfected ECA109 or TE-1 cells, the inhibitory effects of miR-30b on EC cell growth, migration, and invasion were markedly reversed. In conclusion, our findings demonstrated that miR-30b could inhibit tumor cell growth, migration, and invasion by directly targeting HOXA1 in EC cells.
Collapse
Affiliation(s)
- Qing Li
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medial University, Chongqing 400042, China
| | - Xuan Zhang
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ning Li
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medial University, Chongqing 400042, China
| | - Qin Liu
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medial University, Chongqing 400042, China
| | - Dongfeng Chen
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medial University, Chongqing 400042, China.
| |
Collapse
|
34
|
Kawa MP, Stecewicz I, Piecyk K, Paczkowska E, Rogińska D, Sobuś A, Łuczkowska K, Pius-Sadowska E, Gawrych E, Petriczko E, Walczak M, Machaliński B. The Impact of Growth Hormone Therapy on the Apoptosis Assessment in CD34+ Hematopoietic Cells from Children with Growth Hormone Deficiency. Int J Mol Sci 2017; 18:ijms18010111. [PMID: 28067847 PMCID: PMC5297745 DOI: 10.3390/ijms18010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/10/2016] [Accepted: 12/21/2016] [Indexed: 01/07/2023] Open
Abstract
Growth hormone (GH) modulates hematopoietic cell homeostasis and is associated with apoptosis control, but with limited mechanistic insights. Aim of the study was to determine whether GH therapeutic supplementation (GH-TS) could affect apoptosis of CD34+ cells enriched in hematopoietic progenitor cells of GH deficient (GHD) children. CD34+ cells from peripheral blood of 40 GHD children were collected before and in 3rd and 6th month of GH-TS and compared to 60 controls adjusted for bone age, sex, and pubertal development. Next, apoptosis assessment via different molecular techniques was performed. Finally, to comprehensively characterize apoptosis process, global gene expression profile was determined using genome-wide RNA microarray technology. Results showed that GH-TS significantly reduced spontaneous apoptosis in CD34+ cells (p < 0.01) and results obtained using different methods to detect early and late apoptosis in analyzed cells population were consistent. GH-TS was also associated with significant downregulation of several members of TNF-alpha superfamily and other genes associated with apoptosis and stress response. Moreover, the significant overexpression of cyto-protective and cell cycle-associated genes was detected. These findings suggest that recombinant human GH has a direct anti-apoptotic activity in hematopoietic CD34+ cells derived from GHD subjects in course of GH-TS.
Collapse
Affiliation(s)
- Miłosz Piotr Kawa
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland.
| | - Iwona Stecewicz
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej Street, 71-252 Szczecin, Poland.
| | - Katarzyna Piecyk
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland.
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland.
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland.
| | - Anna Sobuś
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland.
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland.
| | - Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland.
| | - Elżbieta Gawrych
- Department of Pediatric and Oncological Surgery, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej Street, 71-252 Szczecin, Poland.
| | - Elżbieta Petriczko
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej Street, 71-252 Szczecin, Poland.
| | - Mieczysław Walczak
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej Street, 71-252 Szczecin, Poland.
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland.
| |
Collapse
|
35
|
Tamoxifen Resistance: Emerging Molecular Targets. Int J Mol Sci 2016; 17:ijms17081357. [PMID: 27548161 PMCID: PMC5000752 DOI: 10.3390/ijms17081357] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM’s biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein—coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer.
Collapse
|
36
|
Fu SW, Kirolikar SP, Ginsburg E, Tan X, Schwartz A, Simmens SJ, Man YG, Pinzone JJ, Teal C, Awate S, Vonderhaar BK, Berg PE. Beta protein 1 homeoprotein induces cell growth and estrogen-independent tumorigenesis by binding to the estrogen receptor in breast cancer. Oncotarget 2016; 7:53204-53216. [PMID: 27449292 PMCID: PMC5288179 DOI: 10.18632/oncotarget.10633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/06/2016] [Indexed: 12/18/2022] Open
Abstract
Expression of Beta Protein 1 (BP1), a homeotic transcription factor, increases during breast cancer progression and may be associated with tumor aggressiveness. In our present work, we investigate the influence of BP1 on breast tumor formation and size in vitro and in vivo. Cells overexpressing BP1 showed higher viability when grown in the absence of serum (p < 0.05), greater invasive potential (p < 0.05) and formed larger colonies (p < 0.004) compared with the controls. To determine the influence of BP1 overexpression on tumor characteristics, MCF-7 cells transfected with either empty vector (V1) or overexpressor plasmids (O2 and O4) were injected into the fat pads of athymic nude mice. Tumors grew larger in mice receiving O2 or O4 cells than in mice receiving V1 cells. Moreover, BP1 mRNA expression levels were positively correlated with tumor size in patients (p = 0.01). Interestingly, 20% of mice injected with O2 or O4 cells developed tumors in the absence of estrogen, while no mice receiving V1 cells developed tumors. Several mechanisms of estrogen independent tumor formation related to BP1 were established. These data are consistent with the fact that expression of breast cancer anti-estrogen resistance 1 (BCAR1) was increased in O2 compared to V1 cells (p < 0.01). Importantly, O2 cells exhibited increased proliferation when treated with tamoxifen, while V1 cells showed growth inhibition. Overall, BP1 overexpresssion in MCF-7 breast cancer cells leads to increased cell growth, estrogen-independent tumor formation, and increased proliferation. These findings suggest that BP1 may be an important biomarker and therapeutic target in ER positive breast cancer.
Collapse
Affiliation(s)
- Sidney W Fu
- Department of Medicine, Division of Genomic Medicine, George Washington University, Washington, DC 20037, USA
| | - Saurabh P Kirolikar
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037, USA
| | - Erika Ginsburg
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohui Tan
- Department of Medicine, Division of Genomic Medicine, George Washington University, Washington, DC 20037, USA
| | - Arnold Schwartz
- Department of Pathology, George Washington University Medical Center, Washington, DC 20037, USA
| | - Samuel J Simmens
- Department of Epidemiology and Biostatistics, School of Public Health and Health Services, George Washington University, Washington, DC 20037, USA
| | - Yan-Gao Man
- Department of Gynecologic and Breast Pathology, Armed Forces Institute of Pathology, Washington, DC 20306, USA
| | - Joseph J Pinzone
- David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Christine Teal
- Department of Surgery, George Washington University, Washington, DC 20037, USA
| | - Sanket Awate
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037, USA
| | - Barbara K Vonderhaar
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patricia E Berg
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
37
|
Wang X, Li Y, Qi W, Zhang N, Sun M, Huo Q, Cai C, Lv S, Yang Q. MicroRNA-99a inhibits tumor aggressive phenotypes through regulating HOXA1 in breast cancer cells. Oncotarget 2016; 6:32737-47. [PMID: 26417931 PMCID: PMC4741726 DOI: 10.18632/oncotarget.5355] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/07/2015] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are key regulators of tumor progression. Based on microarray data, we identified miR-99a as a potential tumor suppressor in breast cancer. Expression of miR-99a is frequently down-regulated in breast cancer tissues relative to normal breast tissues. Reduced miR-99a expression was highly associated with lymph node metastasis and shorter overall survival of patients with breast cancer. Gain- and loss-of-function studies revealed that, miR-99a significantly inhibits breast cancer cell proliferation, migration, and invasion. An integrated bioinformatics analysis identified HOXA1 mRNA as the direct functional target of miR-99a, and this regulation was confirmed by luciferase reporter assay. Furthermore, we showed for the first time that HOXA1 expression is elevated in breast cancer tissues. Knockdown of HOXA1 significantly inhibited breast cancer cell proliferation, migration and invasion, and restoration of HOXA1 partially rescued the inhibitory effect of miR-99a in breast cancer cells. Collectively, our data indicate that miR-99a plays a tumor-suppressor role in the development of breast cancer, and could serve as a potential therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yaming Li
- School of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Wenwen Qi
- School of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Mingjuan Sun
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Qiang Huo
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Chang Cai
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Shangge Lv
- School of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, P.R. China.,Department of Pathology Tissue Bank, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
38
|
The function of homeobox genes and lncRNAs in cancer. Oncol Lett 2016; 12:1635-1641. [PMID: 27588114 DOI: 10.3892/ol.2016.4901] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/24/2016] [Indexed: 02/02/2023] Open
Abstract
Recently, the homeobox (HOX) gene family has been reported as a factor in tumorigenesis. In the human genome, the HOX gene family contains 4 clusters with 39 genes and multiple transcripts. Mutation or abnormal expression of genes is responsible for developmental disorders. In addition, changes in the levels and activation of certain HOX genes has been associated with the development of cancer. Long non-coding RNAs (lncRNAs) have also been identified to serve critical functions in cancer. Although a limited number of lncRNAs have been previously investigated, the list of functional lncRNA genes has recently grown. Two of the most important and well-studied lncRNAs and HOX transcript genes are HOX transcript antisense RNA (HOTAIR) and HOXA distal transcript antisense RNA (HOTTIP). The present study aimed to review not only the function of the HOTAIR and HOTTIP genes in certain forms of cancer, but also to review other HOX genes and protein functions in cancer, particularly HOX family genes associated with lncRNAs.
Collapse
|
39
|
Mendes P, de Campos Gomes AC, Soares P. Digit ratio (2D:4D) is associated with breast cancer. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2016. [DOI: 10.14319/ijcto.43.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
40
|
Ren CX, Leng RX, Fan YG, Pan HF, Wu CH, Ye DQ. MicroRNA-210 and its theranostic potential. Expert Opin Ther Targets 2016; 20:1325-1338. [PMID: 27359286 DOI: 10.1080/14728222.2016.1206890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs) are a set of small single-stranded noncoding RNAs with diverse biological functions. As a prototypical hypoxamir, human microRNA-210 (hsa-miR-210) is one of the most widely studied miRNAs thus far. In addition to its involvement in sophisticated regulation of numerous biological processes, miR-210 has also been shown to be associated with the development of different human diseases including various types of cancers, cardiovascular and cerebrovascular diseases, and immunological diseases. Given its multi-faceted functions, miR-210 may serve as a novel and promising theranostic target for prevention and treatment of diseases. Areas covered: This review aims to provide a comprehensive overview of miR-210, the regulation of its expression, biological functions and molecular mechanisms, with particular emphasis on its diagnostic and therapeutic potential. Expert opinion: Although the exact roles of miR-210 in various diseases have not been fully clarified, targeting miR-210 may be a promising therapeutic strategy. Further investigations are also needed to facilitate therapeutic-clinical applications of miR-210 in human diseases.
Collapse
Affiliation(s)
- Chun-Xia Ren
- a Department of Epidemiology and Biostatistics , School of Public Health, Anhui Medical University , Hefei , Anhui , China.,b Anhui Provincial Laboratory of Population Health & Major Disease Screening and Diagnosis , Anhui Medical University , Hefei , Anhui , China.,c The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Rui-Xue Leng
- a Department of Epidemiology and Biostatistics , School of Public Health, Anhui Medical University , Hefei , Anhui , China.,b Anhui Provincial Laboratory of Population Health & Major Disease Screening and Diagnosis , Anhui Medical University , Hefei , Anhui , China
| | - Yin-Guang Fan
- a Department of Epidemiology and Biostatistics , School of Public Health, Anhui Medical University , Hefei , Anhui , China.,b Anhui Provincial Laboratory of Population Health & Major Disease Screening and Diagnosis , Anhui Medical University , Hefei , Anhui , China
| | - Hai-Feng Pan
- a Department of Epidemiology and Biostatistics , School of Public Health, Anhui Medical University , Hefei , Anhui , China.,b Anhui Provincial Laboratory of Population Health & Major Disease Screening and Diagnosis , Anhui Medical University , Hefei , Anhui , China
| | - Chang-Hao Wu
- d Faculty of Health and Medical Sciences , University of Surrey , Guildford , UK
| | - Dong-Qing Ye
- a Department of Epidemiology and Biostatistics , School of Public Health, Anhui Medical University , Hefei , Anhui , China.,b Anhui Provincial Laboratory of Population Health & Major Disease Screening and Diagnosis , Anhui Medical University , Hefei , Anhui , China
| |
Collapse
|
41
|
Taminiau A, Draime A, Tys J, Lambert B, Vandeputte J, Nguyen N, Renard P, Geerts D, Rezsöhazy R. HOXA1 binds RBCK1/HOIL-1 and TRAF2 and modulates the TNF/NF-κB pathway in a transcription-independent manner. Nucleic Acids Res 2016; 44:7331-49. [PMID: 27382069 PMCID: PMC5009750 DOI: 10.1093/nar/gkw606] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/24/2016] [Indexed: 11/14/2022] Open
Abstract
HOX proteins define a family of key transcription factors regulating animal embryogenesis. HOX genes have also been linked to oncogenesis and HOXA1 has been described to be active in several cancers, including breast cancer. Through a proteome-wide interaction screening, we previously identified the TNFR-associated proteins RBCK1/HOIL-1 and TRAF2 as HOXA1 interactors suggesting that HOXA1 is functionally linked to the TNF/NF-κB signaling pathway. Here, we reveal a strong positive correlation between expression of HOXA1 and of members of the TNF/NF-κB pathway in breast tumor datasets. Functionally, we demonstrate that HOXA1 can activate NF-κB and operates upstream of the NF-κB inhibitor IκB. Consistently, we next demonstrate that the HOXA1-mediated activation of NF-κB is non-transcriptional and that RBCK1 and TRAF2 influences on NF-κB are epistatic to HOXA1. We also identify an 11 Histidine repeat and the homeodomain of HOXA1 to be required both for RBCK1 and TRAF2 interaction and NF-κB stimulation. Finally, we highlight that activation of NF-κB is crucial for HOXA1 oncogenic activity.
Collapse
Affiliation(s)
- Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Amandine Draime
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Janne Tys
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Barbara Lambert
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Julie Vandeputte
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Nathan Nguyen
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Patricia Renard
- Cellular Biology Research Unit, Université de Namur, Namur 5000, Belgium
| | - Dirk Geerts
- Department of Pediatric Oncology/Hematology, Erasmus University Medical Center, Rotterdam 3015, The Netherlands
| | - René Rezsöhazy
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| |
Collapse
|
42
|
Vouyovitch CM, Perry JK, Liu DX, Bezin L, Vilain E, Diaz JJ, Lobie PE, Mertani HC. WNT4 mediates the autocrine effects of growth hormone in mammary carcinoma cells. Endocr Relat Cancer 2016; 23:571-85. [PMID: 27323961 DOI: 10.1530/erc-15-0528] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 06/20/2016] [Indexed: 12/27/2022]
Abstract
The expression of Wingless and Int-related protein (Wnt) ligands is aberrantly high in human breast cancer. We report here that WNT4 is significantly upregulated at the mRNA and protein level in mammary carcinoma cells expressing autocrine human growth hormone (hGH). Depletion of WNT4 using small interfering (si) RNA markedly decreased the rate of human breast cancer cell proliferation induced by autocrine hGH. Forced expression of WNT4 in the nonmalignant human mammary epithelial cell line MCF-12A stimulated cell proliferation in low and normal serum conditions, enhanced cell survival and promoted anchorage-independent growth and colony formation in soft agar. The effects of sustained production of WNT4 were concomitant with upregulation of proliferative markers (c-Myc, Cyclin D1), the survival marker BCL-XL, the putative WNT4 receptor FZD6 and activation of ERK1 and STAT3. Forced expression of WNT4 resulted in phenotypic conversion of MCF-12A cells, such that they exhibited the molecular and morphological characteristics of mesenchymal cells with increased cell motility. WNT4 production resulted in increased mesenchymal and cytoskeletal remodeling markers, promoted actin cytoskeleton reorganization and led to dissolution of cell-cell contacts. In xenograft studies, tumors with autocrine hGH expressed higher levels of WNT4 and FZD6 when compared with control tumors. In addition, Oncomine data indicated that WNT4 expression is increased in neoplastic compared with normal human breast tissue. Accordingly, immunohistochemical detection of WNT4 in human breast cancer biopsies revealed higher expression in tumor tissue vs normal breast epithelium. WNT4 is thus an autocrine hGH-regulated gene involved in the growth and development of the tumorigenic phenotype.
Collapse
Affiliation(s)
- Cécile M Vouyovitch
- Centre de Recherche en Cancérologie de LyonUMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Jo K Perry
- Liggins InstituteUniversity of Auckland, Auckland, New Zealand
| | - Dong Xu Liu
- Liggins InstituteUniversity of Auckland, Auckland, New Zealand
| | - Laurent Bezin
- Centre de Recherche en Neurosciences de LyonUMR INSERM U1028-CNRS5292, Université de Lyon, Lyon, France
| | - Eric Vilain
- Department of Human GeneticsUniversity of California, Los Angeles, California, USA
| | - Jean-Jacques Diaz
- Centre de Recherche en Cancérologie de LyonUMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of PharmacologyNational University of Singapore, Singapore, Republic of Singapore
| | - Hichem C Mertani
- Centre de Recherche en Cancérologie de LyonUMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| |
Collapse
|
43
|
Yuan C, Zhu X, Han Y, Song C, Liu C, Lu S, Zhang M, Yu F, Peng Z, Zhou C. Elevated HOXA1 expression correlates with accelerated tumor cell proliferation and poor prognosis in gastric cancer partly via cyclin D1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:15. [PMID: 26791264 PMCID: PMC4721151 DOI: 10.1186/s13046-016-0294-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND HOXA1 is a member of the Homeobox gene family, which encodes a group of highly conserved transcription factors that are important in embryonic development. However, it has been reported that HOXA1 exhibits oncogenic properties in many malignancies. This study focused on the expression and clinical significance of HOXA1 in gastric cancer (GC). METHODS To assess the mRNA and protein expression of HOXA1 and cyclin D1 in GC tissues, we utilized qRT-PCR and western blotting, respectively. The effects of HOXA1 on GC cell proliferation, migration, and invasion, as well as xenograft tumor formation and the cell cycle were investigated in our established stable HOXA1 knockdown GC cell lines. The protein expression of HOXA1 and cyclin D1 was examined by immunohistochemistry using GC tissue microarrays (TMA) to analyze their relationship on a histological level. The Kaplan-Meier method and cox proportional hazards model were used to analyze the relationship of HOXA1 and cyclin D1 expression with GC clinical outcomes. RESULTS HOXA1 mRNA and protein expression were upregulated in GC tissues. Knockdown of HOXA1 in GC cells not only inhibited cell proliferation, migration, and invasion in vitro but also suppressed xenograft tumor formation in vivo. Moreover, HOXA1 knockdown induced changes in the cell cycle, and HOXA1 knockdown cells were arrested at the G1 phase, the number of cells in S phase was reduced, and the expression of cyclin D1 was decreased. In GC tissues, high cyclin D1 mRNA and protein expression were detected, and a significant correlation was found between the expression of HOXA1 and cyclin D1. Survival analysis indicated that HOXA1 and cyclin D1 expression were significantly associated with disease-free survival (DFS) and overall survival (OS). Interestingly, patients with tumors that were positive for HOXA1 and cyclin D1 expression showed worse prognosis. Multivariate analysis confirmed that the combination of HOXA1 and cyclin D1 was an independent prognostic indicator for OS and DFS. CONCLUSION Our data show that HOXA1 plays a crucial role in GC development and clinical prognosis. HOXA1, alone or combination with cyclin D1, may serve as a novel prognostic biomarker for GC.
Collapse
Affiliation(s)
- Chenwei Yuan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Xingwu Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Yang Han
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chenlong Song
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chenchen Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Su Lu
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Meng Zhang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Fudong Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chongzhi Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China. .,Department of General Surgery, Kashgar Prefecture Second People's Hospital, Kashgar, Xinjiang Uyghur Autonomous Region, 844000, P. R. China.
| |
Collapse
|
44
|
YAP regulates the expression of Hoxa1 and Hoxc13 in mouse and human oral and skin epithelial tissues. Mol Cell Biol 2015; 35:1449-61. [PMID: 25691658 DOI: 10.1128/mcb.00765-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans.
Collapse
|
45
|
Li Y, Yang XH, Fang SJ, Qin CF, Sun RL, Liu ZY, Jiang BY, Wu X, Li G. HOXA7 stimulates human hepatocellular carcinoma proliferation through cyclin E1/CDK2. Oncol Rep 2014; 33:990-6. [PMID: 25501982 DOI: 10.3892/or.2014.3668] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/08/2014] [Indexed: 12/14/2022] Open
Abstract
HOX genes are transcription factors that control morphogenesis, organogenesis and differentiation. Increasing evidence suggests that HOX genes play a role in hepatocellular carcinoma (HCC) progression; however few studies have defined the functional roles and mechanisms of action. In the present study, we used siRNA and forced-expression in multiple cell lines to define the role of HOXA7 in the regulation of proliferation of HCC in vitro and in vivo. Knockdown of endogenous HOXA7 decreased the proliferation of HepG2 and QGY-7703 cells. These changes were not associated with significant changes in cyclin D1 and CDK4. However, downregulation of HOXA7 significantly reduced cyclin E1 and CDK2 protein levels. Conversely, overexpression of HOXA7 in QSG-7701 cells stimulated proliferation and increased cyclin E1 and CDK2 protein levels. Our results confirmed that HOXA7 promoted cell proliferation, and these changes were mediated by cyclin E1/CDK2. These observations contribute to our understanding of the important roles of HOXA7 in HCC development and progression and HOXA7 could be a promising molecular target for the development of new diagnostic and therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Yuehui Li
- Tumor Immunobiology Laboratory of the Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, Changsha, Hunan, P.R. China
| | - Xiao Hui Yang
- Xiangya Third Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Shu Juang Fang
- Tumor Immunobiology Laboratory of the Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, Changsha, Hunan, P.R. China
| | - Chang Fei Qin
- Tumor Immunobiology Laboratory of the Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, Changsha, Hunan, P.R. China
| | - Rui Li Sun
- Tumor Immunobiology Laboratory of the Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, Changsha, Hunan, P.R. China
| | - Zhao Yang Liu
- Tumor Immunobiology Laboratory of the Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, Changsha, Hunan, P.R. China
| | - Bin Yuan Jiang
- Tumor Immunobiology Laboratory of the Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, Changsha, Hunan, P.R. China
| | - Xiang Wu
- Tumor Immunobiology Laboratory of the Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, Changsha, Hunan, P.R. China
| | - Guancheng Li
- Tumor Immunobiology Laboratory of the Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
46
|
Hur H, Lee JY, Yun HJ, Park BW, Kim MH. Analysis of HOX gene expression patterns in human breast cancer. Mol Biotechnol 2014; 56:64-71. [PMID: 23820980 DOI: 10.1007/s12033-013-9682-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HOX genes are highly conserved transcription factors that determine the identity of cells and tissues along the anterior-posterior body axis in developing embryos. Aberrations in HOX gene expression have been shown in various tumors. However, the correlation of HOX gene expression patterns with tumorigenesis and cancer progression has not been fully characterized. Here, to analyze putative candidate HOX genes involved in breast cancer tumorigenesis and progression, the expression patterns of 39 HOX genes were analyzed using breast cancer cell lines and patient-derived breast tissues. In vitro analysis revealed that HOXA and HOXB gene expression occurred in a subtype-specific manner in breast cancer cell lines, whereas most HOXC genes were strongly expressed in most cell lines. Among the 39 HOX genes analyzed, 25 were chosen for further analysis in malignant and non-malignant tissues. Fourteen genes, encoding HOXA6, A13, B2, B4, B5, B6, B7, B8, B9, C5, C9, C13, D1, and D8, out of 25 showed statistically significant differential expression patterns between non-malignant and malignant breast tissues and are putative candidates associated with the development and malignant progression of breast cancer. Our data provide a valuable resource for furthering our understanding of HOX gene expression in breast cancer and the possible involvement of HOX genes in tumor progression.
Collapse
Affiliation(s)
- Ho Hur
- Department of Surgery, National Health Insurance Service Ilsan Hospital, Goyang, 410-719, Korea
| | | | | | | | | |
Collapse
|
47
|
Brock A, Krause S, Li H, Kowalski M, Goldberg MS, Collins JJ, Ingber DE. Silencing HoxA1 by intraductal injection of siRNA lipidoid nanoparticles prevents mammary tumor progression in mice. Sci Transl Med 2014; 6:217ra2. [PMID: 24382894 DOI: 10.1126/scitranslmed.3007048] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With advances in screening, the incidence of detection of premalignant breast lesions has increased in recent decades; however, treatment options remain limited to surveillance or surgical removal by lumpectomy or mastectomy. We hypothesized that disease progression could be blocked by RNA interference (RNAi) therapy and set out to develop a targeted therapeutic delivery strategy. Using computational gene network modeling, we identified HoxA1 as a putative driver of early mammary cancer progression in transgenic C3(1)-SV40TAg mice. Silencing this gene in cultured mouse or human mammary tumor spheroids resulted in increased acinar lumen formation, reduced tumor cell proliferation, and restoration of normal epithelial polarization. When the HoxA1 gene was silenced in vivo via intraductal delivery of nanoparticle-formulated small interfering RNA (siRNA) through the nipple of transgenic mice with early-stage disease, mammary epithelial cell proliferation rates were suppressed, loss of estrogen and progesterone receptor expression was prevented, and tumor incidence was reduced by 75%. This approach that leverages new advances in systems biology and nanotechnology offers a novel noninvasive strategy to block breast cancer progression through targeted silencing of critical genes directly within the mammary epithelium.
Collapse
Affiliation(s)
- Amy Brock
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Mahajan K, Lawrence HR, Lawrence NJ, Mahajan NP. ACK1 tyrosine kinase interacts with histone demethylase KDM3A to regulate the mammary tumor oncogene HOXA1. J Biol Chem 2014; 289:28179-91. [PMID: 25148682 DOI: 10.1074/jbc.m114.584425] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hormone therapy with the selective estrogen-receptor modulator tamoxifen provides a temporary relief for patients with estrogen receptor α (ER)-positive breast cancers. However, a subset of patients exhibiting overexpression of the HER2 receptor tyrosine kinase displays intrinsic resistance to tamoxifen therapy. Therefore, elucidating the mechanisms promoting the estrogen (E2)-independent ER-regulated gene transcription in tamoxifen-resistant breast tumors is essential to identify new therapeutic avenues to overcome drug resistance and ameliorate poor prognosis. The non-receptor tyrosine kinase, ACK1 (also known as TNK2), has emerged as a major integrator of signaling from various receptor tyrosine kinases including HER2. We have uncovered that heregulin-mediated ACK1 activation promoted ER activity in the presence of tamoxifen, which was significantly down-regulated upon ACK1 knockdown or inhibition of ACK1 by small molecule inhibitors, AIM-100 or Dasatinib. We report that ACK1 phosphorylates the ER co-activator, KDM3A, a H3K9 demethylase, at an evolutionary conserved tyrosine 1114 site in a heregulin-dependent manner, even in the presence of tamoxifen. Consistent with this finding, ACK1 activation resulted in a significant decrease in the deposition of dimethyl H3K9 epigenetic marks. Conversely, inhibition of ACK1 by AIM-100 or Dasatinib restored dimethyl H3K9 methylation marks and caused transcriptional suppression of the ER-regulated gene HOXA1. Thus, by its ability to regulate the epigenetic activity of an ER co-activator KDM3A, ACK1 modulates HOXA1 expression in the absence of E2, conferring tamoxifen resistance. These data reveal a novel therapeutic option, suppression of ACK1 signaling by AIM-100 or Dasatinib, to mitigate HOXA1 up-regulation in breast cancer patients displaying tamoxifen resistance.
Collapse
Affiliation(s)
- Kiran Mahajan
- From the Drug Discovery Department, Moffitt Cancer Center, and the Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Harshani R Lawrence
- From the Drug Discovery Department, Moffitt Cancer Center, and the Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Nicholas J Lawrence
- From the Drug Discovery Department, Moffitt Cancer Center, and the Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Nupam P Mahajan
- From the Drug Discovery Department, Moffitt Cancer Center, and the Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, Florida 33612
| |
Collapse
|
49
|
miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet 2014; 10:e1004177. [PMID: 24586203 PMCID: PMC3937226 DOI: 10.1371/journal.pgen.1004177] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/01/2014] [Indexed: 01/12/2023] Open
Abstract
Whether epithelial-mesenchymal transition (EMT) is always linked to increased tumorigenicity is controversial. Through microRNA (miRNA) expression profiling of mammary epithelial cells overexpressing Twist, Snail or ZEB1, we identified miR-100 as a novel EMT inducer. Surprisingly, miR-100 inhibits the tumorigenicity, motility and invasiveness of mammary tumor cells, and is commonly downregulated in human breast cancer due to hypermethylation of its host gene MIR100HG. The EMT-inducing and tumor-suppressing effects of miR-100 are mediated by distinct targets. While miR-100 downregulates E-cadherin by targeting SMARCA5, a regulator of CDH1 promoter methylation, this miRNA suppresses tumorigenesis, cell movement and invasion in vitro and in vivo through direct targeting of HOXA1, a gene that is both oncogenic and pro-invasive, leading to repression of multiple HOXA1 downstream targets involved in oncogenesis and invasiveness. These findings provide a proof-of-principle that EMT and tumorigenicity are not always associated and that certain EMT inducers can inhibit tumorigenesis, migration and invasion. Induction of epithelial-mesenchymal transition (EMT) in epithelial tumor cells has been shown to enhance migration, invasion and cancer ‘stemness’. Here we demonstrate that a miRNA downregulated in human breast tumors, miR-100, can simultaneously induce EMT and inhibit tumorigenesis, migration and invasion through direct targeting of distinct genes. This is the first report of an EMT inducer that suppresses cell movement and tumor invasion, which indicates that EMT is not always associated with increased tumorigenesis, migration and invasion, and that all EMT inducers are not equal: while some of them can promote tumorigenicity, motility and invasiveness, others inhibit these properties owing to their ability to concurrently target both EMT-repressing genes and oncogenic/pro-invasive genes. These findings provide new insights into the complex roles of EMT inducers.
Collapse
|
50
|
Xiao F, Bai Y, Chen Z, Li Y, Luo L, Huang J, Yang J, Liao H, Guo L. Downregulation of HOXA1 gene affects small cell lung cancer cell survival and chemoresistance under the regulation of miR-100. Eur J Cancer 2014; 50:1541-54. [PMID: 24559685 DOI: 10.1016/j.ejca.2014.01.024] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 01/22/2014] [Accepted: 01/28/2014] [Indexed: 12/25/2022]
Abstract
Chemoresistance is often developed in small cell lung cancer (SCLC) patients and leads to poor prognosis. Hox genes, a highly conserved family, play a crucial role in apoptosis, receptor signalling and differentiation. MicroRNAs (miRNAs) have also been shown to play a crucial role in these biological processes by regulating the target genes. Several studies reported that both Hox genes and miRNAs are involved in chemoresistance. The aim of our study is to characterise the clinical significance and functional roles of HOXA1 in SCLC. Expression of HOXA1 was examined in 63 cases of SCLC tissues and 29 cases of blood by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) methods. Multivariate analysis confirmed the prognostic significance of HOXA1 in SCLC patients. Restoration of HOXA1 expression was carried out in SCLC multidrug resistant cell line H69AR and its parental cell line H69 to assess its influence on chemoresistance. Luciferase reporter assay was used to assess HOXA1 as a target of miR-100. The results showed that HOXA1 was expressed in 46% (29/63) of SCLC. Low HOXA1 expression was associated with the poor prognosis of SCLC (P<0.05 by the Fisher's Exact Test) and the shorter survival rate (P<0.001 by the Kaplan-Meier method). HOXA1 expression on both mRNA and protein levels significantly correlated with chemotherapy response. Enforced expression of HOXA1 in resistant H69AR cells led to increased chemosensitivity through increasing cell apoptosis and cell-cycle arrest. Inhibition of HOXA1 expression using HOXA1 siRNA in H69 cells resulted in cell resistance to therapeutic drugs through reducing drug-induced cell apoptosis accompanied with cell cycle arrest. Expression of endogenous miR-100 was significantly elevated in resistant H69AR cells and negatively related with HOXA1 expression. The expression of HOXA1 in SCLC tissues correlated inversely with the expression levels of miR-100. Reporter assays confirmed that miR-100 targeted predicted sites in 3'-untranslated region (3'-UTR) of HOXA1 gene. Our data suggested that HOXA1-mediated SCLC chemoresistance is under the regulation of miR-100. HOXA1 may be a prognostic predictor and potential therapeutic target in human SCLC.
Collapse
Affiliation(s)
- Faman Xiao
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yifeng Bai
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenzhu Chen
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yufa Li
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Luqiao Luo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Huang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Yang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongzhan Liao
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|