1
|
Li M, Wang P, Zou Y, Wang W, Zhao Y, Liu M, Wu J, Zhang Y, Zhang N, Sun Y. Spleen tyrosine kinase (SYK) signals are implicated in cardio-cerebrovascular diseases. Heliyon 2023; 9:e15625. [PMID: 37180910 PMCID: PMC10172877 DOI: 10.1016/j.heliyon.2023.e15625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Post-translational modifications regulate numerous biochemical reactions and functions through covalent attachment to proteins. Phosphorylation, acetylation and ubiquitination account for over 90% of all reported post-translational modifications. As one of the tyrosine protein kinases, spleen tyrosine kinase (SYK) plays crucial roles in many pathophysiological processes and affects the pathogenesis and progression of various diseases. SYK is expressed in tissues outside the hematopoietic system, especially the heart, and is involved in the progression of various cardio-cerebrovascular diseases, such as atherosclerosis, heart failure, diabetic cardiomyopathy, stroke and others. Knowledge on the role of SYK in the progress of cardio-cerebrovascular diseases is accumulating, and many related mechanisms have been discovered and validated. This review summarizes the role of SYK in the progression of various cardio-cerebrovascular diseases, and aims to provide a theoretical basis for future experimental and clinical research targeting SYK as a therapeutic option for these diseases.
Collapse
Affiliation(s)
- Mohan Li
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Pengbo Wang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Wenbin Wang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanhui Zhao
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Mengke Liu
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Jianlong Wu
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Ying Zhang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Corresponding author. Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Corresponding author. Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Corresponding author. Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
2
|
Nurden AT. Clinical significance of altered collagen-receptor functioning in platelets with emphasis on glycoprotein VI. Blood Rev 2019; 38:100592. [PMID: 31351674 DOI: 10.1016/j.blre.2019.100592] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023]
Abstract
Much interest surrounds the receptors α2β1 and glycoprotein VI (GPVI) whose synchronized action mediates the attachment and activation of platelets on collagen, essential for preventing blood loss but also the most thrombogenic component of the vessel wall. Subject to density variations on platelets through natural polymorphisms, the absence of α2β1 or GPVI uniquely leads to a substantial block of hemostasis without causing major bleeding. Specific to the megakaryocyte lineage, GPVI and its signaling pathways are most promising targets for anti-thrombotic therapy. This review looks at the clinical consequences of the loss of collagen receptor function with emphasis on both the inherited and acquired loss of GPVI with brief mention of mouse models when necessary. A detailed survey of rare case reports of patients with inherited disease-causing variants of the GP6 gene is followed by an assessment of the causes and clinical consequences of acquired GPVI deficiency, a more frequent finding most often due to antibody-induced platelet GPVI shedding. Release of soluble GPVI is brought about by platelet metalloproteinases; a process induced by ligand or antibody binding to GPVI or even high shear forces. Also included is an assessment of the clinical importance of GPVI-mediated platelet interactions with fibrin and of the promise shown by the pharmacological inhibition of GPVI in a cardiovascular context. The role for GPVI in platelet function in inflammation and in the evolution and treatment of major illnesses such as rheumatoid arthritis, cancer and sepsis is also discussed.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut de Rhythmologie et de Modélisation Cardiaque, PTIB, Hôpital Xavier Arnozan, 33600 Pessac, France.
| |
Collapse
|
3
|
Qiao J, Arthur JF, Gardiner EE, Andrews RK, Zeng L, Xu K. Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox Biol 2018; 14:126-130. [PMID: 28888895 PMCID: PMC5596263 DOI: 10.1016/j.redox.2017.08.021] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022] Open
Abstract
Reactive oxygen species (ROS) are generated within activated platelets and play an important role in regulating platelet responses to collagen and collagen-mediated thrombus formation. As a major collagen receptor, platelet-specific glycoprotein (GP)VI is a member of the immunoglobulin (Ig) superfamily, with two extracellular Ig domains, a mucin domain, a transmembrane domain and a cytoplasmic tail. GPVI forms a functional complex with the Fc receptor γ-chain (FcRγ) that, following receptor dimerization, signals via an intracellular immunoreceptor tyrosine-based activation motif (ITAM), leading to rapid activation of Src family kinase signaling pathways. Our previous studies demonstrated that an unpaired thiol in the cytoplasmic tail of GPVI undergoes rapid oxidation to form GPVI homodimers in response to ligand binding, indicating an oxidative submembranous environment in platelets after GPVI stimulation. Using a redox-sensitive fluorescent dye (H2DCF-DA) in a flow cytometric assay to measure changes in intracellular ROS, we showed generation of ROS downstream of GPVI consists of two distinct phases: an initial Syk-independent burst followed by additional Syk-dependent generation. In this review, we will discuss recent findings on the regulation of platelet function by ROS, focusing on GPVI-dependent platelet activation and thrombus formation.
Collapse
Affiliation(s)
- Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China.
| | - Jane F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Robert K Andrews
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
4
|
Arthur JF, Gardiner EE, Andrews RK, Al-Tamimi M. Focusing on plasma glycoprotein VI. Thromb Haemost 2017; 107:648-55. [DOI: 10.1160/th11-10-0745] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/10/2011] [Indexed: 12/18/2022]
Abstract
SummaryNew methods for analysing both platelet and plasma forms of the platelet-specific collagen receptor, glycoprotein VI (GPVI) in experimental models or human clinical samples, and the development of the first therapeutic compounds based on dimeric soluble GPVI-Fc or anti-GPVI antibody-based constructs, coincide with increased understanding of the potential pathophysiological role of GPVI ligand binding and shedding. Platelet GPVI not only mediates platelet activation at the site of vascular injury where collagen is exposed, but is also implicated in the pathogenesis of other diseases, such as atherosclerosis and coagulopathy, rheumatoid arthritis and tumour metastasis. Here, we describe some of the critical mechanisms for generating soluble GPVI from platelets, and future avenues for exploiting this unique platelet-specific receptor for diagnosis and/or disease prevention.
Collapse
|
5
|
Identification of a calmodulin-binding domain in Sema4D that regulates its exodomain shedding in platelets. Blood 2013; 121:4221-30. [PMID: 23564909 DOI: 10.1182/blood-2012-11-470609] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Semaphorin 4D (Sema4D) is a transmembrane protein that supports contact-dependent amplification of platelet activation by collagen before being gradually cleaved by the metalloprotease ADAM17, as we have previously shown. Cleavage releases a soluble 120-kDa exodomain fragment for which receptors exist on platelets and endothelial cells. Here we have examined the mechanism that regulates Sema4D exodomain cleavage. The results show that the membrane-proximal cytoplasmic domain of Sema4D contains a binding site for calmodulin within the polybasic region Arg762-Lys779. Coprecipitation studies show that Sema4D and calmodulin are associated in resting platelets, forming a complex that dissociates upon platelet activation by the agonists that trigger Sema4D cleavage. Inhibiting calmodulin with W7 or introducing a membrane-permeable peptide corresponding to the calmodulin-binding site is sufficient to trigger the dissociation of Sema4D from calmodulin and initiate cleavage. Conversely, deletion of the calmodulin-binding site causes constitutive shedding of Sema4D. These results show that (1) Sema4D is a calmodulin-binding protein with a site of interaction in its membrane-proximal cytoplasmic domain, (2) platelet agonists cause dissociation of the calmodulin-Sema4D complex, and (3) dissociation of the complex is sufficient to trigger ADAM17-dependent cleavage of Sema4D, releasing a bioactive fragment.
Collapse
|
6
|
Gifford JL, Ishida H, Vogel HJ. Structural insights into calmodulin-regulated L-selectin ectodomain shedding. J Biol Chem 2012; 287:26513-27. [PMID: 22711531 DOI: 10.1074/jbc.m112.373373] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The L-selectin glycoprotein receptor mediates the initial steps of leukocyte migration into secondary lymphoid organs and sites of inflammation. Following cell activation through the engagement of G-protein-coupled receptors or immunoreceptors, the extracellular domains of L-selectin are rapidly shed, a process negatively controlled via the binding of the ubiquitous eukaryotic calcium-binding protein calmodulin to the cytoplasmic tail of L-selectin. Here we present the solution structure of calcium-calmodulin bound to a peptide encompassing the cytoplasmic tail and part of the transmembrane domain of L-selectin. The structure and accompanying biophysical study highlight the importance of both calcium and the transmembrane segment of L-selectin in the interaction between these two proteins, suggesting that by binding this region, calmodulin regulates in an "inside-out" fashion the ectodomain shedding of the receptor. Our structure provides the first molecular insight into the emerging new role for calmodulin as a transmembrane signaling partner.
Collapse
Affiliation(s)
- Jessica L Gifford
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
7
|
Arthur JF, Qiao J, Shen Y, Davis AK, Dunne E, Berndt MC, Gardiner EE, Andrews RK. ITAM receptor-mediated generation of reactive oxygen species in human platelets occurs via Syk-dependent and Syk-independent pathways. J Thromb Haemost 2012; 10:1133-41. [PMID: 22489915 DOI: 10.1111/j.1538-7836.2012.04734.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Ligation of the platelet-specific collagen receptor, GPVI/FcRγ, causes rapid, transient disulfide-dependent homodimerization, and the production of intracellular reactive oxygen species (ROS) generated by the NADPH oxidase, linked to GPVI via TRAF4. OBJECTIVES The aim of this study was to evaluate the role of early signaling events in ROS generation following engagement of either GPVI/FcRγ or a second immunoreceptor tyrosine-based activation motif (ITAM)-containing receptor on platelets, FcγRIIa. METHODS AND RESULTS Using an H(2) DCF-DA-based flow cytometric assay to measure intracellular ROS, we show that treatment of platelets with either the GPVI agonists, collagen-related peptide (CRP) or convulxin (Cvx), or the FcγRIIa agonist 14A2, increased intraplatelet ROS; other platelet agonists such as ADP and TRAP did not. Basal ROS in platelet-rich plasma from 14 healthy donors displayed little inter-individual variability. CRP, Cvx or 14A2 induced an initial burst of ROS within 2 min followed by additional ROS reaching a plateau after 15-20 min. The Syk inhibitor BAY61-3606, which blocks ITAM-dependent signaling, had no effect on the initial ROS burst, but completely inhibited the second phase. CONCLUSIONS Together, these results show for the first time that ROS generation downstream of GPVI or FcγRIIa consists of two distinct phases: an initial Syk-independent burst followed by additional Syk-dependent generation.
Collapse
Affiliation(s)
- J F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Loyau S, Dumont B, Ollivier V, Boulaftali Y, Feldman L, Ajzenberg N, Jandrot-Perrus M. Platelet glycoprotein VI dimerization, an active process inducing receptor competence, is an indicator of platelet reactivity. Arterioscler Thromb Vasc Biol 2011; 32:778-85. [PMID: 22155453 DOI: 10.1161/atvbaha.111.241067] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The immune receptor homologue glycoprotein VI (GPVI)/FcR receptor γ chain complex is primarily responsible for platelet activation by collagen. There is growing evidence that optimal binding of GPVI to collagen depends on the assembly of GPVI dimers. The valence of GPVI on resting platelets needs to be clearly established because platelet avidity for collagen would be greater if GPVI is constitutively expressed as a dimer than as a monomer. METHODS AND RESULTS Using a monoclonal antibody (9E18) that preferentially binds to GPVI dimers, we found that GPVI was maintained in a monomeric form on human resting platelets under the control of intraplatelet cAMP concentration. Activation by soluble agonists or von Willebrand factor induced a shift toward GPVI dimerization related to increased platelet adhesion to collagen. A correlation between platelet binding of 9E18 and P-selectin exposure was observed in patients experiencing coronary artery disease, and antagonists of the ADP receptor P2Y12 limited ADP-induced GPVI dimerization. CONCLUSION The rapid assembly of highly competent dimers of GPVI at sites of vascular lesion represents an important step in the sequence of events leading to platelet activation by collagen. GPVI dimers could represent a new marker to analyze platelet reactivity.
Collapse
Affiliation(s)
- Stéphane Loyau
- INSERM U698, CHU Xavier Bichat, 46 rue Henri Huchard 75877 Paris Cedex 18, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Qiao JL, Shen Y, Gardiner EE, Andrews RK. Proteolysis of platelet receptors in humans and other species. Biol Chem 2011; 391:893-900. [PMID: 20482312 DOI: 10.1515/bc.2010.081] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past 5 years, metalloproteinase-mediated ectodomain shedding of platelet receptors has emerged as a new mechanism for modulating platelet function. By regulating surface expression of the platelet-specific receptors, glycoprotein (GP)VI that binds collagen, and GPIbalpha (the major ligand-binding subunit of the GPIb-IX-V complex) that binds von Willebrand factor (VWF) and other procoagulant and proinflammatory ligands, shedding not only irreversibly downregulates GPVI/GPIbalpha function, but generates proteolytic fragments that might be unique biomarkers or modulators in plasma. This is potentially significant because GPVI and GPIbalpha are involved in initiating thrombotic diseases such as heart attack and stroke, as well as autoimmune diseases where anti-platelet antibodies result in thrombocytopenia. Altered expression levels of GPIbalpha/GPVI are associated with both thrombotic propensity and platelet aging, suggesting an additional role in platelet clearance. Although emerging data are elucidating molecular mechanisms underlying GPIbalpha/GPVI shedding, evidence for the functional consequences of shedding in vivo, either clinically or in animal models, is far more limited. Here we consider recent published evidence for GPVI or GPIbalpha shedding in humans, nonhuman primates and mice, and whether conservation of sheddase cleavage sites across species points to a functional role for metalloproteolytic shedding in vivo.
Collapse
Affiliation(s)
- Jian L Qiao
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
10
|
Arthur JF, Shen Y, Gardiner EE, Coleman L, Murphy D, Kenny D, Andrews RK, Berndt MC. TNF receptor-associated factor 4 (TRAF4) is a novel binding partner of glycoprotein Ib and glycoprotein VI in human platelets. J Thromb Haemost 2011; 9:163-72. [PMID: 20946164 DOI: 10.1111/j.1538-7836.2010.04091.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Reactive oxygen species generation is one consequence of ligand engagement of platelet glycoprotein (GP) receptors GPIb-IX-V and GPVI, which bind VWF/collagen and initiate thrombosis at arterial shear; however, the precise molecular mechanism coupling redox pathway activation to engagement of these receptors is unknown. OBJECTIVE The objective of this study was to identify novel binding partners for GPIb-IX-V and GPVI that could provide a potential link between redox pathways and early platelet signaling events. METHODS AND RESULTS Using protein array analysis and affinity-binding assays, we demonstrated that the orphan TNF receptor-associated factor (TRAF) family member, TRAF4, selectively binds cytoplasmic sequences of GPIbβ and GPVI. TRAF4, p47(phox) [of the NADPH oxidase (Nox2) enzyme complex] and other redox relevant signaling proteins such as Hic-5, co-immunoprecipitate with GPIb/GPVI from human platelet lysates whilst MBP-TRAF4 or MBP-p47(phox) fusion proteins specifically pull-down GPIb/GPVI. GPIb- or GPVI-selective agonists induce phosphorylation of the TRAF4-associated proteins, Hic-5 and Pyk2, with phosphorylation attenuated by Nox2 inhibition. CONCLUSION These results describe the first direct association of TRAF4 with a receptor, and identify a novel binding partner for GPIb-IX-V and GPVI, providing a potential link between these platelet receptors and downstream TRAF4/Nox2-dependent redox pathways.
Collapse
Affiliation(s)
- J F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Steevels TAM, Westerlaken GHA, Tijssen MR, Coffer PJ, Lenting PJ, Akkerman JWN, Meyaard L. Co-expression of the collagen receptors leukocyte-associated immunoglobulin-like receptor-1 and glycoprotein VI on a subset of megakaryoblasts. Haematologica 2010; 95:2005-12. [PMID: 20713462 DOI: 10.3324/haematol.2010.026120] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The collagen receptor glycoprotein VI generates activating signals through an immunoreceptor tyrosine-based activating motif on the co-associated Fc receptor gamma chain. Leukocyte-associated immunoglobulin-like receptor-1 also ligates collagen but generates inhibitory signals through immunoreceptor tyrosine-based inhibitory motifs. Thus far, the cellular expression of glycoprotein VI and leukocyte-associated immunoglobulin-like receptor-1 appears mutually exclusive. DESIGN AND METHODS Using flow cytometry, we studied expression of collagen receptors on differentiating human megakaryocytes. CD34(+) cells were isolated from umbilical cord blood and matured to megakaryocytes in vitro. Freshly isolated bone marrow cells were used to study primary megakaryocytes. Upon cell sorting, cytospins were made to examine cytological characteristics of differentiation. RESULTS Megakaryocyte maturation is accompanied by up-regulation of glycoprotein VI and down-regulation of leukocyte-associated immunoglobulin-like receptor-1. Interestingly, both in cultures from hematopoietic stem cells and primary cells obtained directly from bone marrow, we identified a subset of morphologically distinct megakaryocytes which co-express glycoprotein VI and leukocyte-associated immunoglobulin-like receptor-1. CONCLUSIONS This is the first report of a primary cell that co-expresses these collagen receptors with opposite signaling properties. Since megakaryocytes mature in the collagen-rich environment of the bone marrow, these findings may point to a role for leukocyte-associated immunoglobulin-like receptor-1 in the control of megakaryocyte maturation/migration.
Collapse
Affiliation(s)
- Tessa A M Steevels
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Li Z, Zhang G, Liu J, Stojanovic A, Ruan C, Lowell CA, Du X. An important role of the SRC family kinase Lyn in stimulating platelet granule secretion. J Biol Chem 2010; 285:12559-70. [PMID: 20189992 DOI: 10.1074/jbc.m109.098756] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Src family kinases (SFKs) have been proposed to play stimulatory and inhibitory roles in platelet activation. The mechanisms for these apparently contradictory roles are unclear. Here we show that SFK, mainly Lyn, is important in stimulating a common signaling pathway leading to secretion of platelet granules. Lyn knock-out or an isoform-nonselective SFK inhibitor, PP2, inhibited platelet secretion of both dense and alpha granules and the secretion-dependent platelet aggregation induced by thrombin, collagen, and thromboxane A(2). The inhibitory effect of Lyn knock-out on platelet aggregation was reversed by supplementing granule content ADP, indicating that the primary role of Lyn is to stimulate granule secretion. Inhibitory effect of PP2 on platelet aggregation induced by thrombin and thromboxane A(2) were also reversed by supplementing ADP. Furthermore, PP2 treatment or Lyn knock-out diminished agonist-induced Akt activation and cyclic GMP production. The inhibitory effect of PP2 or Lyn knock-out on platelet response can be corrected by supplementing cyclic GMP. These data indicate that Lyn stimulates platelet secretion by activating the phosphoinositide 3-kinase-Akt-nitric oxide (NO)-cyclic GMP pathway and also provide an explanation why Lyn can both stimulate and inhibit platelet activation.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Molecular priming of Lyn by GPVI enables an immune receptor to adopt a hemostatic role. Proc Natl Acad Sci U S A 2009; 106:21167-72. [PMID: 19940238 DOI: 10.1073/pnas.0906436106] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The immune receptor signaling pathway is used by nonimmune cells, but the molecular adaptations that underlie its functional diversification are not known. Circulating platelets use the immune receptor homologue glycoprotein VI (GPVI) to respond to collagen exposed at sites of vessel injury. In contrast to immune cell responses, platelet activation must take place within seconds to successfully form thrombi in flowing blood. Here, we show that the GPVI receptor utilizes a unique intracellular proline-rich domain (PRD) to accelerate platelet activation, a requirement for efficient platelet adhesion to collagen under flow. The GPVI PRD specifically binds the Src-family kinase Lyn and directly activates it, presumably through SH3 displacement. In resting platelets, Lyn is constitutively bound to GPVI in an activated state and platelets lacking Lyn exhibit defective collagen adhesion like that of platelets with GPVI receptors lacking the PRD. These findings define a molecular priming mechanism that enables an immune-type receptor to adopt a hemostatic function. These studies also demonstrate that active kinases can constitutively associate with immune-type receptors without initiating signal transduction before receptor ligation, consistent with a recent molecular model of immune receptor signaling in which receptor ligation is required to bring active kinases to their receptor substrates.
Collapse
|
14
|
The low-frequency isoform of platelet glycoprotein VIb attenuates ligand-mediated signal transduction but not receptor expression or ligand binding. Blood 2009; 114:1893-9. [PMID: 19465689 DOI: 10.1182/blood-2009-03-209510] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 2 most common haplotypes of human GP6, GP6a and GP6b, generate the allelic isoforms glycoprotein VI (GPVI)a and GPVIb that differ by 5 amino acids: S219P, K237E, and T249A in the ectodomains, and Q317L and H322N in the cytoplasmic domain. By quantitative Western blot, we found no association between GP6 genotype and total platelet GPVI content among 132 normal subjects. When expressed as soluble products or as membrane-associated receptors, GPVIa and GPVIb have identical affinities for type I collagen, collagen-related peptide, or convulxin. However, the cytoplasmic domain substitutions in GPVIb have a significant effect on GPVI-dependent subcellular associations and ligand-induced signal transduction. L317 increases binding to calmodulin, whereas N322 attenuates binding to Fyn/Lyn. Consistent with the latter finding, convulxin-induced Syk phosphorylation is significantly attenuated in Dami cells stably transfected with GPVIb, relative to GPVIa. This represents direct evidence that haplotype-related GPVI functional differences are inherent in the cytoplasmic domain substitutions, whereby GPVIb binds less strongly to Fyn/Lyn and attenuates the rate and extent of Syk phosphorylation. These allelic differences in GP6a and GP6b explain functional differences in the respective isoforms, but the molecular basis for the several-fold range in GPVI levels of human platelets remains to be determined.
Collapse
|
15
|
Abstract
Several recent findings point to an important role for redox regulation of platelet responses to collagen involving the receptor, glycoprotein (GP)VI. First, the antioxidant dietary compound, quercetin, was shown to inhibit GPVI-dependent platelet activation and signaling responses to collagen. Second, collagen increased platelet production of the oxygen radical, superoxide anion (O2-), mediated by the multi-subunit enzyme nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) oxidase. In that case, O2- was implicated in regulating not initial aggregation, but collagen-induced thrombus stabilization involving release of ADP. Third, our laboratory showed that an unpaired thiol in the GPVI cytoplasmic tail undergoes rapid oxidation to form GPVI homodimers following ligand binding, preceding GPVI signaling and ectodomain metalloproteolysis, and indicating formation of an oxidative submembranous environment in activated platelets. This review examines receptor/redox regulation in other cells, and relevance to the pathophysiological function of GPVI and other platelet receptors initiating thrombus formation in haemostasis or thrombotic diseases such as heart attack and stroke.
Collapse
Affiliation(s)
- Jane F Arthur
- Department of Immunology, Monash University, Alfred Medical Research & Education Precinct, Melbourne 3004, Victoria, Australia
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Surin WR, Barthwal MK, Dikshit M. Platelet collagen receptors, signaling and antagonism: Emerging approaches for the prevention of intravascular thrombosis. Thromb Res 2008; 122:786-803. [DOI: 10.1016/j.thromres.2007.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 10/17/2007] [Accepted: 10/21/2007] [Indexed: 02/02/2023]
|
18
|
Abstract
Human patients with defects associated with the platelet collagen receptor, glycoprotein (GP)VI, are rare and usually described as having a mild bleeding disorder. However, here we review clinical profiles of patients with familial or acquired GPVI defects, revealing the bleeding defect is often severe and associated with immune dysfunction. GPVI is a member of the immunoreceptor family, and co-expressed on platelets with Fc receptor gamma-chain (FcRgamma). Ligand binding to GPVI leads to activation of platelet integrins, in particular alpha(IIb)beta(3) that mediates platelet aggregation; and activation of endogenous platelet metalloproteinases resulting in ectodomain shedding and release of a soluble GPVI fragment. Increasing evidence supports the functional importance of GPVI/FcRgamma in thrombus formation at arterial shear rates, and expression levels of platelet GPVI may be a marker of thrombotic risk. Over the past 20 years, patients have been reported with GPVI-related defects involving: (i) an acquired deficiency, resulting from (a) anti-GPVI autoantibodies or (b) other causes; or (ii) a congenital deficiency, where (c) GPVI is not expressed or (d) is expressed in a dysfunctional form with defective signalling to alpha(IIb)beta(3). Clinical consequences of GPVI-related defects may be uniquely informative about the role of platelet GPVI in health and disease.
Collapse
Affiliation(s)
- Jane F Arthur
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, VIC, Australia
| | | | | |
Collapse
|
19
|
Arthur JF, Shen Y, Kahn ML, Berndt MC, Andrews RK, Gardiner EE. Ligand Binding Rapidly Induces Disulfide-dependent Dimerization of Glycoprotein VI on the Platelet Plasma Membrane. J Biol Chem 2007; 282:30434-41. [PMID: 17690106 DOI: 10.1074/jbc.m701330200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombus formation in hemostasis or thrombotic disease is initiated by adhesion of circulating platelets to damaged blood vessel walls. Exposed subendothelial collagen interacting with platelet glycoprotein (GP) VI leads to platelet activation and integrin alpha(IIb)beta(3)-mediated aggregation. We previously showed that ligand binding to GPVI also induces metalloproteinase-dependent shedding, generating an approximately 55-kDa soluble ectodomain fragment and an approximately 10-kDa membrane-associated remnant. Here, treatment of platelets with collagen or the GPVI-targeting rattlesnake toxin convulxin also induces rapid (10-30 s) formation of a high molecular weight GPVI complex (GPVIc) under nonreducing conditions, as detected by immunoblotting with anti-GPVI antibodies. The appearance of an approximately 20-kDa remnant detectable using a polyclonal antibody against the GPVI cytoplasmic tail under nonreducing, but not reducing, conditions after ectodomain shedding and nonreduced/reduced two-dimensional SDS-polyacrylamide gel analysis of biotinylated platelets confirmed that that GPVIc was a homodimer. Formation of disulfide-linked GPVIc was prolonged in the presence of metalloproteinase inhibitor GM6001 and was independent of GPVI signaling because it was unaffected by inhibitors of Src kinases, Syk, or phosphoinositide 3-kinase. To identify the thiol involved in disulfide bond formation, wild-type or mutant GPVI, where two available sulfhydryls (Cys-274 and Cys-338) were individually mutated to serine, was expressed in rat basophilic leukemia cells. Dimerization of wild-type and C274S GPVI, but not the C338S mutant, was observed after treating cells with convulxin. We conclude that (i) a subpopulation of GPVI forms a constitutive dimer on the platelet surface, facilitating rapid disulfide cross-linking, (ii) convulxin or other GPVI agonists induce disulfide-linked GPVI dimerization independent of GPVI signaling, and (iii) the penultimate residue of the GPVI cytoplasmic tail, Cys-338, mediates disulfide-dependent dimer formation.
Collapse
Affiliation(s)
- Jane F Arthur
- Department of Immunology, Monash University, Melbourne 3004, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Gardiner EE, Karunakaran D, Arthur JF, Mu FT, Powell MS, Baker RI, Hogarth PM, Kahn ML, Andrews RK, Berndt MC. Dual ITAM-mediated proteolytic pathways for irreversible inactivation of platelet receptors: de-ITAM-izing FcgammaRIIa. Blood 2007; 111:165-74. [PMID: 17848620 DOI: 10.1182/blood-2007-04-086983] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Collagen binding to glycoprotein VI (GPVI) induces signals critical for platelet activation in thrombosis. Both ligand-induced GPVI signaling through its coassociated Fc-receptor gamma-chain (FcRgamma) immunoreceptor tyrosine-activation motif (ITAM) and the calmodulin inhibitor, W7, dissociate calmodulin from GPVI and induce metalloproteinase-mediated GPVI ectodomain shedding. We investigated whether signaling by another ITAM-bearing receptor on platelets, FcgammaRIIa, also down-regulates GPVI expression. Agonists that signal through FcgammaRIIa, the mAbs VM58 or 14A2, potently induced GPVI shedding, inhibitable by the metalloproteinase inhibitor, GM6001. Unexpectedly, FcgammaRIIa also underwent rapid proteolysis in platelets treated with agonists for FcgammaRIIa (VM58/14A2) or GPVI/FcRgamma (the snake toxin, convulxin), generating an approximate 30-kDa fragment. Immunoprecipitation/pull-down experiments showed that FcgammaRIIa also bound calmodulin and W7 induced FcgammaRIIa cleavage. However, unlike GPVI, the approximate 30-kDa FcgammaRIIa fragment remained platelet associated, and proteolysis was unaffected by GM6001 but was inhibited by a membrane-permeable calpain inhibitor, E64d; consistent with this, micro-calpain cleaved an FcgammaRIIa tail-fusion protein at (222)Lys/(223)Ala and (230)Gly/(231)Arg, upstream of the ITAM domain. These findings suggest simultaneous activation of distinct extracellular (metalloproteinase-mediated) and intracellular (calpain-mediated) proteolytic pathways irreversibly inactivating platelet GPVI/FcRgamma and FcgammaRIIa, respectively. Activation of both pathways was observed with immunoglobulin from patients with heparin-induced thrombocytopenia (HIT), suggesting novel mechanisms for platelet dysfunction by FcgammaRIIa after immunologic insult.
Collapse
|
21
|
Dunkley S, Arthur JF, Evans S, Gardiner EE, Shen Y, Andrews RK. A familial platelet function disorder associated with abnormal signalling through the glycoprotein VI pathway. Br J Haematol 2007; 137:569-77. [PMID: 17539777 DOI: 10.1111/j.1365-2141.2007.06603.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The platelet collagen receptor, glycoprotein (GP)VI, of the immunoreceptor family forms a complex with the von Willebrand factor (VWF) receptor, GPIb-IX-V, critical for initiating thrombus formation. GPVI is co-associated with Fc receptor gamma-chain (FcRgamma), which contains a cytoplasmic immunoreceptor tyrosine-based activation motif domain, involved in activation of Syk, and a signalling cascade leading to (i) activation of alpha(IIb)beta(3), which binds VWF and fibrinogen and mediates platelet aggregation, and (ii) metalloproteinase-mediated shedding of the GPVI ectodomain (blocked by Syk inhibitors), a key mechanism for regulating GPVI surface expression. In this study, we report a familial case of abnormal platelet aggregation with dysfunctional signalling through GPVI that uniquely demonstrates divergent alpha(IIb)beta(3)-activating and GPVI-shedding pathways. The patient is a 60-year-old female with a history of immune disorders, excessive bleeding from childhood and a life-threatening haemorrhage post-trauma. Platelet aggregation to ADP, thrombin receptor-agonist peptide or ristocetin/VWF was normal (indicating normal expression and function of alpha(IIb)beta(3)), but platelet aggregation to GPVI agonists, collagen, collagen-related peptide, or convulxin, was defective. Both GPVI/FcRgamma expression and ligand-induced GPVI ectodomain shedding were normal, confirming expression of functional GPVI/FcRgamma, but suggesting a signalling defect downstream of Syk. A genetic defect in GPVI/Fcgamma signalling compromising platelet function is hypothesised in this family.
Collapse
Affiliation(s)
- Scott Dunkley
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Gardiner EE, Karunakaran D, Shen Y, Arthur JF, Andrews RK, Berndt MC. Controlled shedding of platelet glycoprotein (GP)VI and GPIb-IX-V by ADAM family metalloproteinases. J Thromb Haemost 2007; 5:1530-7. [PMID: 17445093 DOI: 10.1111/j.1538-7836.2007.02590.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Platelet glycoprotein (GP)VI that binds collagen, and GPIb-IX-V that binds von Willebrand factor, initiate thrombus formation. OBJECTIVES In this study, we investigated the mechanisms of metalloproteinase-mediated ectodomain shedding that regulate the surface expression of GPVI, GPIbalpha (the major ligand-binding subunit) and GPV (that regulates thrombin-dependent activation via GPIbalpha). METHODS AND RESULTS Immunoblotting human platelet lysates using affinity-purified antibodies against cytoplasmic domains of GPVI, GPIbalpha or GPV allowed simultaneous analysis of intact and cleaved receptor, and revealed (i) that a significant fraction of GPIbalpha, but not GPVI, exists in a cleaved state on platelets, even when isolated in the presence of metalloproteinase inhibitor (GM6001) or EDTA; (ii) the same-sized membrane-associated fragments of GPVI or GPIbalpha are generated by phorbol-ester (PMA), the mitochondrial-targeting reagent CCCP, the calmodulin inhibitor W7, or the thiol-modifying reagent, N-ethylmaleimide, that directly activates ADAM10/ADAM17; and (iii) GPV is shed by both metalloproteinase- and thrombin-dependent mechanisms, depending on the concentration of thrombin. Based on the predicted cleavage area defined by these studies, ADAM10, but not ADAM17, cleaved a GPVI-based synthetic peptide within the extracellular membrane-proximal sequence (PAR;Q(243)YY) as analyzed by MALDI-TOF-MS. In contrast, ADAM17, but not ADAM10, cleaved within the GPIbalpha-based peptide (LRG;V(465)LQ). Both ADAM10 and ADAM17 cleaved within a GPV-based peptide (AQP;V(494)TT). Metalloproteinase-mediated shedding of GPIbalpha from GPIb-IX-transfected or GPVI-transfected cells induced by W7 or N-ethylmaleimide was inhibited by mutagenesis of sequences identified from peptide analysis. CONCLUSIONS These findings suggest surface levels of GPVI, GPIbalpha and GPV may be controlled by distinct mechanisms involving ADAM10 and/or ADAM17.
Collapse
Affiliation(s)
- E E Gardiner
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Vic. Australia
| | | | | | | | | | | |
Collapse
|
23
|
Berndt MC, Karunakaran D, Gardiner EE, Andrews RK. Programmed autologous cleavage of platelet receptors. J Thromb Haemost 2007; 5 Suppl 1:212-9. [PMID: 17635729 DOI: 10.1111/j.1538-7836.2007.02484.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platelet adhesion receptors play a critical role in vascular pathophysiology, and control platelet adhesion, activation and aggregation in hemostasis, thrombotic disease and atherogenesis. One of the key emerging mechanisms for regulating platelet function is the programmed autologous cleavage of platelet receptors. Induced by ligand binding or platelet activation, proteolysis at extracellular (ectodomain shedding) or intracellular (cytoplasmic domain deactivation) sites down-regulates the adheso-signaling function of receptors, thereby controlling not only platelet responsiveness, but in the case of ectodomain shedding, liberating soluble ectodomain fragments into plasma where they constitute potential modulators or markers. This review discusses the underlying mechanisms for dual proteolytic pathways of receptor regulation, and the impact of these pathways on thrombus formation and stability in vivo.
Collapse
Affiliation(s)
- M C Berndt
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Vic., Australia.
| | | | | | | |
Collapse
|
24
|
Andrews RK, Karunakaran D, Gardiner EE, Berndt MC. Platelet Receptor Proteolysis. Arterioscler Thromb Vasc Biol 2007; 27:1511-20. [PMID: 17463334 DOI: 10.1161/atvbaha.107.141390] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The platelet plasma membrane is literally at the cutting-edge of recent research into proteolytic regulation of the function and surface expression of platelet receptors, revealing new mechanisms for how the thrombotic propensity of platelets is controlled in health and disease. Extracellular proteolysis of receptors irreversibly inactivates receptor-mediated adhesion and signaling, as well as releasing soluble fragments into the plasma where they act as potential markers or modulators. Platelet-surface sheddases, particularly of the metalloproteinase-disintegrin (ADAM) family, can be regulated by many of the same mechanisms that control receptor function, such as calmodulin association or activation of signaling pathways. This provides layers of regulation (proteinase and receptor), and a higher order of control of cellular function. Activation of pathways leading to extracellular shedding is concomitant with activation of intracellular proteinases such as calpain, which may also irreversibly deactivate receptors. In this review, platelet receptor shedding will be discussed in terms of (1) the identity of proteinases involved in receptor proteolysis, (2) key platelet receptors regulated by proteolytic pathways, and (3) how shedding might be regulated in normal physiology or future therapeutics. In particular, a focus on proteolytic regulation of the platelet collagen receptor, glycoprotein (GP)VI, illustrates many of the key biochemical, cellular, and clinical implications of current research in this area.
Collapse
Affiliation(s)
- Robert K Andrews
- Department of Immunology, Monash University, Alfred Medical Research & Education Precinct, Melbourne 3004, Australia.
| | | | | | | |
Collapse
|
25
|
Hughan SC, Hughes CE, McCarty OJT, Schweighoffer E, Soultanova I, Ware J, Tybulewicz VLJ, Watson SP. GPVI potentiation of platelet activation by thrombin and adhesion molecules independent of Src kinases and Syk. Arterioscler Thromb Vasc Biol 2007; 27:422-9. [PMID: 17110603 PMCID: PMC2990469 DOI: 10.1161/01.atv.0000252826.96134.21] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The present study investigates the role of Src and Syk tyrosine kinases in signaling by G-protein coupled and platelet adhesion receptors. METHODS AND RESULTS Using Syk-/- platelets or the Src kinase inhibitor PP2, we demonstrate a critical role for Src and Syk kinases in mediating lamellipodia formation on VWF, collagen, CRP, fibrinogen, and fibronectin. In all cases, the spreading defect was overcome by addition of thrombin. Conversely, platelet aggregation and alphaIIb beta3 activation induced by thrombin was similar to controls, arguing against a functional role for Src and Syk in alphaIIb beta3 activation. Unexpectedly, CRP potentiated integrin alphaIIb beta3 activation and platelet aggregation induced by subthreshold concentrations of thrombin in Syk-/- platelets or in the presence of the Src kinase inhibitor PP2. Potentiation in the presence of PP2 was lost in the absence of FcRgamma-chain or GPVI confirming that it was mediated through the immunoglobulin receptor. Further delineation of this PP2-resistant synergy revealed that PAR4 could trigger the enhanced response in combination with CRP. CONCLUSIONS We show that Syk is critical for lamellipodia formation on a range of immobilized proteins but that this can be overcome by addition of thrombin. Further, we reveal a novel role for GPVI in supporting thrombin-induced activation, independent of Syk and Src kinases.
Collapse
Affiliation(s)
- Sascha C Hughan
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, University of Birmingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Arthur JF, Shen Y, Mu FT, Leon C, Gachet C, Berndt MC, Andrews RK. Calmodulin interacts with the platelet ADP receptor P2Y1. Biochem J 2006; 398:339-43. [PMID: 16848759 PMCID: PMC1559453 DOI: 10.1042/bj20060822] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
P2Y1 [P2 (purinergic type-2)-receptor 1] is a G-protein-coupled ADP receptor that regulates platelet activation and ADP-induced Ca2+ signalling. Studies using P2Y1-knockout mice, G(q)-deficient mice or P2Y1-selective inhibitors have previously identified a key role for P2Y1 in pathophysiological thrombus formation at high shear stress. We provide evidence that a positively charged juxtamembrane sequence within the cytoplasmic C-terminal tail of P2Y1 can bind directly to the cytosolic regulatory protein calmodulin. Deletion by mutagenesis of the calmodulin-binding domain of P2Y1 inhibits intracellular Ca2+ flux in transfected cells. These results suggest that the interaction of calmodulin with the P2Y1 C-terminal tail may regulate P2Y1-dependent platelet aggregation.
Collapse
Affiliation(s)
- Jane F Arthur
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
This review summarizes recent developments in our understanding of the molecular basis of platelet activation by two distinct types of surface receptor, the immunoglobulin GPVI, and the integrin alphaIIb beta3 (also known as GPIIbIIIa). These two classes of receptor signal through similar yet distinct tyrosine kinase-based signaling cascades leading to activation of phospholipase C gamma2. The significance of these signaling cascades in platelet adhesion and platelet aggregation at arterial rates of shear is discussed.
Collapse
Affiliation(s)
- S P Watson
- Division of Medical Sciences, Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Birmingham, UK.
| | | | | | | |
Collapse
|
29
|
Quinton TM, Kim S, Jin J, Kunapuli SP. Lipid rafts are required in Galpha(i) signaling downstream of the P2Y12 receptor during ADP-mediated platelet activation. J Thromb Haemost 2005; 3:1036-41. [PMID: 15869601 DOI: 10.1111/j.1538-7836.2005.01325.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ADP is important in propagating hemostasis upon its secretion from activated platelets in response to other agonists. Lipid rafts are microdomains within the plasma membrane that are rich in cholesterol and sphingolipids, and have been implicated in the stimulatory mechanisms of platelet agonists. We sought to determine the importance of lipid rafts in ADP-mediated platelet activation via the G protein-coupled P2Y1 and P2Y12 receptors using lipid raft disruption by cholesterol depletion with methyl-beta-cyclodextrin. Stimulation of cholesterol-depleted platelets with ADP resulted in a reduction in the extent of aggregation but no difference in the extent of shape change or intracellular calcium release. Furthermore, repletion of cholesterol to previously depleted membranes restored ADP-mediated platelet aggregation. In addition, P2Y12-mediated inhibition of cAMP formation was significantly decreased upon cholesterol depletion from platelets. Stimulation of cholesterol-depleted platelets with agonists that depend upon Galpha(i) activation for full activation displayed significant loss of aggregation and secretion, but showed restoration when simultaneously stimulated with the Galpha(z)-coupled agonist epinephrine. Finally, Galpha(i) preferentially localizes to lipid rafts as determined by sucrose density centrifugation. We conclude that Galpha(i) signaling downstream of P2Y12 activation, but not Galpha(q) or Galpha(z) signaling downstream of P2Y1 or alpha2A activation, respectively, has a requirement for lipid rafts that is necessary for its function in ADP-mediated platelet activation.
Collapse
Affiliation(s)
- T M Quinton
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
30
|
Andrews RK, Berndt MC. Platelet physiology and thrombosis. Thromb Res 2005; 114:447-53. [PMID: 15507277 DOI: 10.1016/j.thromres.2004.07.020] [Citation(s) in RCA: 275] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 07/16/2004] [Accepted: 07/16/2004] [Indexed: 11/24/2022]
Abstract
Glycoprotein (GP) Ibalpha of the GPIb-IX-V complex and GPVI bind von Willebrand factor (vWF) and collagen, respectively, and are critical for the initial interaction of circulating platelets with the injured vessel wall under high shear conditions. These interactions act together to facilitate stable thrombus formation in vivo. Ligand binding to GPIb-IX-V of the leucine-rich repeat family or GPVI of the immunoglobulin superfamily initiates platelet activation, and inside-out activation of the platelet integrin, alphaIIbbeta3, that binds vWF or fibrinogen and mediates platelet aggregation. The binding site for GPIbalpha on vWF resides in the conserved A1 domain, encompassing the disulfide bond at Cys509-Cys695. This domain may be activated to bind platelet GPIbalpha under shear stress by anchoring of the downstream A3 domain to collagen and conformational distortion of the intervening A2 domain. The N-terminal, 282 residues, of GPIbalpha contains the binding site for vWF-A1, as well as the conserved A-type domain of the leukocyte integrin alphaMbeta2 (alphaM I domain) and P-selectin expressed on activated platelets or endothelial cells. Endothelial P-selectin also supports surface expression of vWF multimers, enabling platelet vessel wall interaction by at least two mechanisms. Recent evidence suggests GPVI that binds collagen, and GPIb-IX-V that binds collagen-bound vWF are physically associated on the platelet surface. This review will focus on the structure-function of primary platelet adhesion receptors, GPIb-IX-V and GPVI, and how they act together to regulate platelet thrombus formation in pathophysiology.
Collapse
Affiliation(s)
- Robert K Andrews
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia.
| | | |
Collapse
|
31
|
Gardiner EE, Arthur JF, Kahn ML, Berndt MC, Andrews RK. Regulation of platelet membrane levels of glycoprotein VI by a platelet-derived metalloproteinase. Blood 2004; 104:3611-7. [PMID: 15308568 DOI: 10.1182/blood-2004-04-1549] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Thrombosis can be initiated when activated platelets adhere to injured blood vessels via the interaction of subendothelial collagen with its platelet receptor, glycoprotein (GP) VI. Here we observed that incubation of platelets with convulxin, collagen, or collagen-related peptide (CRP) resulted in GPVI signaling-dependent loss of surface GPVI and the appearance of an approximately 55-kDa soluble fragment of GPVI as revealed by immunoblotting. Ethylenediaminetetraacetic acid (EDTA) or GM6001 (a metalloproteinase inhibitor with broad specificity) prevented this loss. In other receptor systems, calmodulin binding to membrane-proximal cytoplasmic sequences regulates metalloproteinase-mediated ectodomain shedding. In this regard, we have previously shown that calmodulin binds to a positively charged, membrane-proximal sequence within the cytoplasmic tail of GPVI. Incubation of platelets with calmodulin inhibitor W7 (150 μM) resulted in a time-dependent loss of GPVI from the platelet surface. Both EDTA and GM6001 prevented this loss. Surface plasmon resonance demonstrated that W7 specifically blocked the association of calmodulin with an immobilized synthetic peptide corresponding to the calmodulin-binding sequence of GPVI. These findings suggest that disruption of calmodulin binding to receptor cytoplasmic tails by agonist binding to the receptor triggers metalloproteinase-mediated loss of GPVI from the platelet surface. This process may represent a potential mechanism to regulate GPVI-dependent platelet adhesion.
Collapse
Affiliation(s)
- Elizabeth E Gardiner
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia, 3800.
| | | | | | | | | |
Collapse
|
32
|
Bori-Sanz T, Inoue KS, Berndt MC, Watson SP, Tulasne D. Delineation of the region in the glycoprotein VI tail required for association with the Fc receptor gamma-chain. J Biol Chem 2003; 278:35914-22. [PMID: 12847105 DOI: 10.1074/jbc.m301826200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycoprotein VI (GPVI).Fc receptor gamma-chain (FcRgamma-chain) complex is the major activation receptor for collagen on platelets. GPVI cross-linking mediates activation through tyrosine phosphorylation of an ITAM (immunoreceptor tyrosine-based activation motif) in the FcR gamma-chain by Src family kinases. It has been previously shown that a transmembrane arginine and the cytoplasmic domain of GPVI are required for association with the FcR gamma-chain in immortalized cell lines. In this study, we have delineated the regions in the GPVI tail that promote binding to FcR gamma-chain and mediate functional responses to the snake venom convulxin by reconstitution of mutant forms of GPVI in RBL-2H3 cells. Sequential truncation of the cytoplasmic tail of GPVI revealed a major role for the basic region and a minor role for the juxtamembrane six amino acids in the association with FcR gamma-chain and functional responses to convulxin. Analysis of selective deletions in the GPVI tail supported this conclusion. In addition, we show that the proline-rich domain is required for optimal Ca2+ release, whereas it is dispensable for FcR gamma-chain association.
Collapse
Affiliation(s)
- Teresa Bori-Sanz
- Division of Medical Sciences, The Medical School Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | | | | | |
Collapse
|