1
|
Mondragón-Rosas F, Florencio-Martínez LE, Villa-Delavequia GS, Manning-Cela RG, Carrero JC, Nepomuceno-Mejía T, Martínez-Calvillo S. Characterization of Tau95 led to the identification of a four-subunit TFIIIC complex in trypanosomatid parasites. Appl Microbiol Biotechnol 2024; 108:109. [PMID: 38204130 PMCID: PMC10781861 DOI: 10.1007/s00253-023-12903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 01/12/2024]
Abstract
RNA polymerase III (RNAP III) synthetizes small essential non-coding RNA molecules such as tRNAs and 5S rRNA. In yeast and vertebrates, RNAP III needs general transcription factors TFIIIA, TFIIIB, and TFIIIC to initiate transcription. TFIIIC, composed of six subunits, binds to internal promoter elements in RNAP III-dependent genes. Limited information is available about RNAP III transcription in the trypanosomatid protozoa Trypanosoma brucei and Leishmania major, which diverged early from the eukaryotic lineage. Analyses of the first published draft of the trypanosomatid genome sequences failed to recognize orthologs of any of the TFIIIC subunits, suggesting that this transcription factor is absent in these parasites. However, a putative TFIIIC subunit was recently annotated in the databases. Here we characterize this subunit in T. brucei and L. major and demonstrate that it corresponds to Tau95. In silico analyses showed that both proteins possess the typical Tau95 sequences: the DNA binding region and the dimerization domain. As anticipated for a transcription factor, Tau95 localized to the nucleus in insect forms of both parasites. Chromatin immunoprecipitation (ChIP) assays demonstrated that Tau95 binds to tRNA and U2 snRNA genes in T. brucei. Remarkably, by performing tandem affinity purifications we identified orthologs of TFIIIC subunits Tau55, Tau131, and Tau138 in T. brucei and L. major. Thus, contrary to what was assumed, trypanosomatid parasites do possess a TFIIIC complex. Other putative interacting partners of Tau95 were identified in T. brucei and L. major. KEY POINTS: • A four-subunit TFIIIC complex is present in T. brucei and L. major • TbTau95 associates with tRNA and U2 snRNA genes • Putative interacting partners of Tau95 might include some RNAP II regulators.
Collapse
Affiliation(s)
- Fabiola Mondragón-Rosas
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Luis E Florencio-Martínez
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Gino S Villa-Delavequia
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Rebeca G Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Ciudad de Mexico, CP 07360, México
| | - Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, 04510, México
| | - Tomás Nepomuceno-Mejía
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Santiago Martínez-Calvillo
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México.
| |
Collapse
|
2
|
Zhang R, Cheung CY, Seo SU, Liu H, Pardeshi L, Wong KH, Chow LMC, Chau MP, Wang Y, Lee AR, Kwon WY, Chen S, Chan BKW, Wong K, Choy RKW, Ko BCB. RUVBL1/2 Complex Regulates Pro-Inflammatory Responses in Macrophages via Regulating Histone H3K4 Trimethylation. Front Immunol 2021; 12:679184. [PMID: 34276666 PMCID: PMC8282052 DOI: 10.3389/fimmu.2021.679184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages play an important role in the host defense mechanism. In response to infection, macrophages activate a genetic program of pro-inflammatory response to kill any invading pathogen, and initiate an adaptive immune response. We have identified RUVBL2 - an ATP-binding protein belonging to the AAA+ (ATPase associated with diverse cellular activities) superfamily of ATPases - as a novel regulator in pro-inflammatory response of macrophages. Gene knockdown of Ruvbl2, or pharmacological inhibition of RUVBL1/2 activity, compromises type-2 nitric oxide synthase (Nos2) gene expression, nitric oxide production and anti-bacterial activity of mouse macrophages in response to lipopolysaccharides (LPS). RUVBL1/2 inhibitor similarly inhibits pro-inflammatory response in human monocytes, suggesting functional conservation of RUVBL1/2 in humans. Transcriptome analysis further revealed that major LPS-induced pro-inflammatory pathways in macrophages are regulated in a RUVBL1/2-dependent manner. Furthermore, RUVBL1/2 inhibition significantly reduced the level of histone H3K4me3 at the promoter region of Nos2 and Il6, two prototypical pro-inflammatory genes, and diminished the recruitment of NF-kappaB to the corresponding enhancers. Our study reveals RUVBL1/2 as an integral component of macrophage pro-inflammatory responses through epigenetic regulations, and the therapeutic potentials of RUVBL1/2 inhibitors in the treatment of diseases caused by aberrant activation of pro-inflammatory pathways.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chris Y Cheung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sang-Uk Seo
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hang Liu
- The University Research Facility in Chemical and Environmental Analysis, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.,Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Larry M C Chow
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Mary P Chau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yixiang Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ah Ra Lee
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Woon Yong Kwon
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, The City University of Hong Kong, Hong Kong, China
| | - Bill Kwan-Wai Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kenneth Wong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Richard K W Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ben C B Ko
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
3
|
Participation of TFIIIB Subunit Brf1 in Transcription Regulation in the Human Pathogen Leishmania major. Genes (Basel) 2021; 12:genes12020280. [PMID: 33669344 PMCID: PMC7920299 DOI: 10.3390/genes12020280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
In yeast and higher eukaryotes, transcription factor TFIIIB is required for accurate initiation of transcription by RNA Polymerase III (Pol III), which synthesizes transfer RNAs (tRNAs), 5S ribosomal RNA (rRNA), and other essential RNA molecules. TFIIIB is composed of three subunits: B double prime 1 (Bdp1), TATA-binding protein (TBP), and TFIIB-related factor 1 (Brf1). Here, we report the molecular characterization of Brf1 in Leishmania major (LmBrf1), a parasitic protozoan that shows distinctive transcription characteristics, including the apparent absence of Pol III general transcription factors TFIIIA and TFIIIC. Although single-knockout parasites of LmBrf1 were obtained, attempts to generate LmBrf1-null mutants were unsuccessful, which suggests that LmBrf1 is essential in promastigotes of L. major. Notably, Northern blot analyses showed that the half-lives of the messenger RNAs (mRNAs) from LmBrf1 and other components of the Pol III transcription machinery (Bdp1 and Pol III subunit RPC1) are very similar (~40 min). Stabilization of these transcripts was observed in stationary-phase parasites. Chromatin immunoprecipitation (ChIP) experiments showed that LmBrf1 binds to tRNA, small nuclear RNA (snRNA), and 5S rRNA genes. Unexpectedly, the results also indicated that LmBrf1 associates to the promoter region of the 18S rRNA genes and to three Pol II-dependent regions here analyzed. Tandem affinity purification and mass spectrometry analyses allowed the identification of a putative TFIIIC subunit. Moreover, several proteins involved in transcription by all three RNA polymerases co-purified with the tagged version of LmBrf1.
Collapse
|
4
|
Ellison MA, Lederer AR, Warner MH, Mavrich TN, Raupach EA, Heisler LE, Nislow C, Lee MT, Arndt KM. The Paf1 Complex Broadly Impacts the Transcriptome of Saccharomyces cerevisiae. Genetics 2019; 212:711-728. [PMID: 31092540 PMCID: PMC6614894 DOI: 10.1534/genetics.119.302262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
The Polymerase Associated Factor 1 complex (Paf1C) is a multifunctional regulator of eukaryotic gene expression important for the coordination of transcription with chromatin modification and post-transcriptional processes. In this study, we investigated the extent to which the functions of Paf1C combine to regulate the Saccharomyces cerevisiae transcriptome. While previous studies focused on the roles of Paf1C in controlling mRNA levels, here, we took advantage of a genetic background that enriches for unstable transcripts, and demonstrate that deletion of PAF1 affects all classes of Pol II transcripts including multiple classes of noncoding RNAs (ncRNAs). By conducting a de novo differential expression analysis independent of gene annotations, we found that Paf1 positively and negatively regulates antisense transcription at multiple loci. Comparisons with nascent transcript data revealed that many, but not all, changes in RNA levels detected by our analysis are due to changes in transcription instead of post-transcriptional events. To investigate the mechanisms by which Paf1 regulates protein-coding genes, we focused on genes involved in iron and phosphate homeostasis, which were differentially affected by PAF1 deletion. Our results indicate that Paf1 stimulates phosphate gene expression through a mechanism that is independent of any individual Paf1C-dependent histone modification. In contrast, the inhibition of iron gene expression by Paf1 correlates with a defect in H3 K36 trimethylation. Finally, we showed that one iron regulon gene, FET4, is coordinately controlled by Paf1 and transcription of upstream noncoding DNA. Together, these data identify roles for Paf1C in controlling both coding and noncoding regions of the yeast genome.
Collapse
Affiliation(s)
- Mitchell A Ellison
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Alex R Lederer
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Marcie H Warner
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Travis N Mavrich
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Elizabeth A Raupach
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Lawrence E Heisler
- Terrance Donnelly Centre and Banting and Best Department of Medical Research, University of Toronto, Ontario M5S 3E1, Canada
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver BC V6T 1Z3, British Columbia, Canada
| | - Miler T Lee
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| |
Collapse
|
5
|
Schořová Š, Fajkus J, Záveská Drábková L, Honys D, Schrumpfová PP. The plant Pontin and Reptin homologues, RuvBL1 and RuvBL2a, colocalize with TERT and TRB proteins in vivo, and participate in telomerase biogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:195-212. [PMID: 30834599 DOI: 10.1111/tpj.14306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/08/2019] [Accepted: 02/26/2019] [Indexed: 05/15/2023]
Abstract
Telomerase maturation and recruitment to telomeres is regulated by several telomerase- and telomere-associated proteins. Among a number of proteins, human Pontin and Reptin play critical roles in telomerase biogenesis. Here we characterized plant orthologues of Pontin and Reptin, RuvBL1 and RuvBL2a, respectively, and show association of Arabidopsis thaliana RuvBL1 (AtRuvBL1) with the catalytic subunit of telomerase (AtTERT) in the nucleolus in vivo. In contrast to mammals, interactions between AtTERT and AtRuvBL proteins in A. thaliana are not direct and they are rather mediated by one of the Arabidopsis thaliana Telomere Repeat Binding (AtTRB) proteins. We further show that plant orthologue of dyskerin, named AtCBF5, is indirectly associated with AtTRB proteins but not with the AtRuvBL proteins in the plant nucleus/nucleolus, and interacts with the Protection of telomere 1 (AtPOT1a) in the nucleolus or cytoplasmic foci. Our genome-wide phylogenetic analyses identify orthologues in RuvBL protein family within the plant kingdom. Dysfunction of AtRuvBL genes in heterozygous T-DNA insertion A. thaliana mutants results in reduced telomerase activity and indicate the involvement of AtRuvBL in plant telomerase biogenesis.
Collapse
Affiliation(s)
- Šárka Schořová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Lenka Záveská Drábková
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Feng X, Xu J, Liang Y, Chen GL, Fan XW, Li YZ. A proteomic-based investigation of potential copper-responsive biomarkers: Proteins, conceptual networks, and metabolic pathways featuring Penicillium janthinellum from a heavy metal-polluted ecological niche. Microbiologyopen 2017; 6. [PMID: 28488414 PMCID: PMC5552966 DOI: 10.1002/mbo3.485] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/05/2017] [Accepted: 03/14/2017] [Indexed: 12/13/2022] Open
Abstract
Filamentous fungi‐copper (Cu) interactions are very important in the formation of natural ecosystems and the bioremediation of heavy metal pollution. However, important issues at the proteome level remain unclear. We compared six proteomes from Cu‐resistant wild‐type (WT) Penicillium janthinellum strain GXCR and a Cu‐sensitive mutant (EC‐6) under 0, 0.5, and 3 mmol/L Cu treatments using iTRAQ. A total of 495 known proteins were identified, and the following conclusions were drawn from the results: Cu tolerance depends on ATP generation and supply, which is relevant to glycolysis pathway activity; oxidative phosphorylation, the TCA cycle, gluconeogenesis, fatty acid synthesis, and metabolism are also affected by Cu; high Cu sensitivity is primarily due to an ATP energy deficit; among ATP generation pathways, Cu‐sensitive and Cu‐insensitive metabolic steps exist; gluconeogenesis pathway is crucial to the survival of fungi in Cu‐containing and sugar‐scarce environments; fungi change their proteomes via two routes (from ATP, ATP‐dependent RNA helicases (ADRHs), and ribosome biogenesis to proteasomes and from ATP, ADRHs to spliceosomes and/or stress‐adapted RNA degradosomes) to cope with changes in Cu concentrations; and unique routes exist through which fungi respond to high environmental Cu. Further, a general diagram of Cu‐responsive paths and a model theory of high Cu are proposed at the proteome level. Our work not only provides the potential protein biomarkers that indicate Cu pollution and targets metabolic steps for engineering Cu‐tolerant fungi during bioremediation but also presents clues for further insight into the heavy metal tolerance mechanisms of other eukaryotes.
Collapse
Affiliation(s)
- Xin Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jian Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Guo-Li Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Limudomporn P, Moonsom S, Leartsakulpanich U, Suntornthiticharoen P, Petmitr S, Weinfeld M, Chavalitshewinkoon-Petmitr P. Characterization of Plasmodium falciparum ATP-dependent DNA helicase RuvB3. Malar J 2016; 15:526. [PMID: 27809838 PMCID: PMC5093981 DOI: 10.1186/s12936-016-1573-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is one of the most serious and widespread parasitic diseases affecting humans. Because of the spread of resistance in both parasites and the mosquito vectors to anti-malarial drugs and insecticides, controlling the spread of malaria is becoming difficult. Thus, identifying new drug targets is urgently needed. Helicases play key roles in a wide range of cellular activities involving DNA and RNA transactions, making them attractive anti-malarial drug targets. METHODS ATP-dependent DNA helicase gene (PfRuvB3) of Plasmodium falciparum strain K1, a chloroquine and pyrimethamine-resistant strain, was inserted into pQE-TriSystem His-Strep 2 vector, heterologously expressed and affinity purified. Identity of recombinant PfRuvB3 was confirmed by western blotting coupled with tandem mass spectrometry. Helicase and ATPase activities were characterized as well as co-factors required for optimal function. RESULTS Recombinant PfRuvB3 has molecular size of 59 kDa, showing both DNA helicase and ATPase activities. Its helicase activity is dependent on divalent cations (Cu2+, Mg2+, Ni+2 or Zn+2) and ATP or dATP but is inhibited by high NaCl concentration (>100 mM). PfPuvB3 is unable to act on blunt-ended duplex DNA, but manifests ATPase activity in the presence of either single- or double-stranded DNA. PfRuvB3.is inhibited by doxorubicin, daunorubicin and netropsin, known DNA helicase inhibitors. CONCLUSIONS Purified recombinant PfRuvB3 contains both DNA helicase and ATPase activities. Differences in properties of RuvB between the malaria parasite obtained from the study and human host provide an avenue leading to the development of novel drugs targeting specifically the malaria form of RuvB family of DNA helicases.
Collapse
Affiliation(s)
- Paviga Limudomporn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Saengduen Moonsom
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Pahonyothin Rd, Pathumthani, 12120, Thailand
| | - Pattra Suntornthiticharoen
- Department of Biomedical Sciences, Faculty of Science, Rangsit University, Lak Hok, Pathumthani, 12000, Thailand
| | - Songsak Petmitr
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Michael Weinfeld
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | | |
Collapse
|
8
|
Bragantini B, Tiotiu D, Rothé B, Saliou JM, Marty H, Cianférani S, Charpentier B, Quinternet M, Manival X. Functional and Structural Insights of the Zinc-Finger HIT protein family members Involved in Box C/D snoRNP Biogenesis. J Mol Biol 2016; 428:2488-2506. [DOI: 10.1016/j.jmb.2016.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/20/2016] [Accepted: 04/23/2016] [Indexed: 11/29/2022]
|
9
|
Zaarur N, Xu X, Lestienne P, Meriin AB, McComb M, Costello CE, Newnam GP, Ganti R, Romanova NV, Shanmugasundaram M, Silva STN, Bandeiras TM, Matias PM, Lobachev KS, Lednev IK, Chernoff YO, Sherman MY. RuvbL1 and RuvbL2 enhance aggresome formation and disaggregate amyloid fibrils. EMBO J 2015; 34:2363-82. [PMID: 26303906 DOI: 10.15252/embj.201591245] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/13/2015] [Indexed: 02/02/2023] Open
Abstract
The aggresome is an organelle that recruits aggregated proteins for storage and degradation. We performed an siRNA screen for proteins involved in aggresome formation and identified novel mammalian AAA+ protein disaggregases RuvbL1 and RuvbL2. Depletion of RuvbL1 or RuvbL2 suppressed aggresome formation and caused buildup of multiple cytoplasmic aggregates. Similarly, downregulation of RuvbL orthologs in yeast suppressed the formation of an aggresome-like body and enhanced the aggregate toxicity. In contrast, their overproduction enhanced the resistance to proteotoxic stress independently of chaperone Hsp104. Mammalian RuvbL associated with the aggresome, and the aggresome substrate synphilin-1 interacted directly with the RuvbL1 barrel-like structure near the opening of the central channel. Importantly, polypeptides with unfolded structures and amyloid fibrils stimulated the ATPase activity of RuvbL. Finally, disassembly of protein aggregates was promoted by RuvbL. These data indicate that RuvbL complexes serve as chaperones in protein disaggregation.
Collapse
Affiliation(s)
- Nava Zaarur
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Xiaobin Xu
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | | | - Anatoli B Meriin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Mark McComb
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | - Catherine E Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | - Gary P Newnam
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rakhee Ganti
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nina V Romanova
- Laboratory of Amyloid Biology and Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Maruda Shanmugasundaram
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, USA
| | - Sara T N Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Pedro M Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Kirill S Lobachev
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Igor K Lednev
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, USA
| | - Yury O Chernoff
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA Laboratory of Amyloid Biology and Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Michael Y Sherman
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
10
|
Reptin physically interacts with p65 and represses NF-κB activation. FEBS Lett 2015; 589:1951-7. [PMID: 25957047 DOI: 10.1016/j.febslet.2015.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/11/2015] [Accepted: 04/15/2015] [Indexed: 11/22/2022]
Abstract
Reptin and Pontin belong to the AAA+ ATPase family of DNA helicases. Both proteins are present in several chromatin-remodeling machineries and are involved in transcriptional regulation, DNA repair, and telomerase activity, but they also function independently from each other. Here we report the identification of p65 as an interacting partner of Reptin. Using reporter gene assays, we show Reptin inhibits NF-κB transactivation after TNFα stimulation. Reptin is mainly localized in the cytoplasm and impedes NF-κB activation by inhibiting IκB-α degradation and restraining p65 nuclear translocation. These results reveal a novel mechanism for the control of NF-κB pathway by cytoplasmic Reptin.
Collapse
|
11
|
Jeganathan A, Leong V, Zhao L, Huen J, Nano N, Houry WA, Ortega J. Yeast rvb1 and rvb2 proteins oligomerize as a conformationally variable dodecamer with low frequency. J Mol Biol 2015; 427:1875-86. [PMID: 25636407 DOI: 10.1016/j.jmb.2015.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/16/2014] [Accepted: 01/16/2015] [Indexed: 01/10/2023]
Abstract
Rvb1 and Rvb2 are conserved AAA+ (ATPases associated with diverse cellular activities) proteins found at the core of large multicomponent complexes that play key roles in chromatin remodeling, integrity of the telomeres, ribonucleoprotein complex biogenesis and other essential cellular processes. These proteins contain an AAA+ domain for ATP binding and hydrolysis and an insertion domain proposed to bind DNA/RNA. Yeast Rvb1 and Rvb2 proteins oligomerize primarily as heterohexameric rings. The six AAA+ core domains form the body of the ring and the insertion domains protrude from one face of the ring. Conversely, human Rvbs form a mixture of hexamers and dodecamers made of two stacked hexamers interacting through the insertion domains. Human dodecamers adopt either a contracted or a stretched conformation. Here, we found that yeast Rvb1/Rvb2 complexes when assembled in vivo mainly form hexamers but they also assemble as dodecamers with a frequency lower than 10%. Yeast dodecamers adopt not only the stretched and contracted structures that have been described for human Rvb1/Rvb2 dodecamers but also intermediate conformations in between these two extreme states. The orientation of the insertion domains of Rvb1 and Rvb2 proteins in these conformers changes as the dodecamer transitions from the stretched structure to a more contracted structure. Finally, we observed that for the yeast proteins, oligomerization as a dodecamer inhibits the ATPase activity of the Rvb1/Rvb2 complex. These results indicate that although human and yeast Rvb1 and Rvb2 proteins share high degree of homology, there are significant differences in their oligomeric behavior and dynamics.
Collapse
Affiliation(s)
- Ajitha Jeganathan
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Vivian Leong
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Liang Zhao
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Jennifer Huen
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Nardin Nano
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Joaquin Ortega
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.
| |
Collapse
|
12
|
Nano N, Houry WA. Chaperone-like activity of the AAA+ proteins Rvb1 and Rvb2 in the assembly of various complexes. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110399. [PMID: 23530256 DOI: 10.1098/rstb.2011.0399] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rvb1 and Rvb2 are highly conserved and essential eukaryotic AAA+ proteins linked to a wide range of cellular processes. AAA+ proteins are ATPases associated with diverse cellular activities and are characterized by the presence of one or more AAA+ domains. These domains have the canonical Walker A and Walker B nucleotide binding and hydrolysis motifs. Rvb1 and Rvb2 have been found to be part of critical cellular complexes: the histone acetyltransferase Tip60 complex, chromatin remodelling complexes Ino80 and SWR-C, and the telomerase complex. In addition, Rvb1 and Rvb2 are components of the R2TP complex that was identified by our group and was determined to be involved in the maturation of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes. Furthermore, the Rvbs have been associated with mitotic spindle assembly, as well as phosphatidylinositol 3-kinase-related protein kinase (PIKK) signalling. This review sheds light on the potential role of the Rvbs as chaperones in the assembly and remodelling of these critical complexes.
Collapse
Affiliation(s)
- Nardin Nano
- Department of Biochemistry, University of Toronto, , Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
13
|
Ahmad M, Tuteja R. Plasmodium falciparum RuvB proteins: Emerging importance and expectations beyond cell cycle progression. Commun Integr Biol 2012; 5:350-61. [PMID: 23060959 PMCID: PMC3460840 DOI: 10.4161/cib.20005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The urgent requirement of next generation antimalarials has been of recent interest due to the emergence of drug-resistant parasite. The genome-wide analysis of Plasmodium falciparum helicases revealed three RuvB proteins. Due to the presence of helicase motif I and II in PfRuvBs, there is a high probability that they contain ATPase and possibly helicase activity. The Plasmodium database has homologs of several key proteins that interact with RuvBs and are most likely involved in the cell cycle progression, chromatin remodeling, and other cellular activities. Phylogenetically PfRuvBs are closely related to Saccharomyces cerevisiae RuvB, which is essential for cell cycle progression and survival of yeast. Thus PfRuvBs can serve as potential drug target if they show an essential role in the survival of parasite.
Collapse
Affiliation(s)
- Moaz Ahmad
- Malaria Group; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | | |
Collapse
|
14
|
Xie C, Wang W, Yang F, Wu M, Mei Y. RUVBL2 is a novel repressor of ARF transcription. FEBS Lett 2012; 586:435-41. [PMID: 22285491 DOI: 10.1016/j.febslet.2012.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/26/2011] [Accepted: 01/18/2012] [Indexed: 12/29/2022]
Abstract
ARF is the second most commonly inactivated tumor suppressor behind p53. It has been implicated in the control of cell proliferation, cell senescence, and tumor suppression. However, the detailed mechanism underlying the transcriptional control of ARF remains largely unknown. Here we report RUVBL2 as a novel transcriptional repressor of ARF. Ectopic expression of RUVBL2 decreases the levels of ARF, whereas knockdown of RUVBL2 results in a marked increase in ARF levels. In addition, RUVBL2 down-regulates the levels of p53 in an ARF-dependent manner. Mechanistically, RUVBL2 binds to the distal region of ARF promoter, thus leading to the repression of ARF transcription. These results suggest an important role of RUVBL2 in the regulation of ARF-p53 pathway.
Collapse
Affiliation(s)
- Chongwei Xie
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | | | | | | | | |
Collapse
|
15
|
Grandin N, Corset L, Charbonneau M. Genetic and physical interactions between Tel2 and the Med15 Mediator subunit in Saccharomyces cerevisiae. PLoS One 2012; 7:e30451. [PMID: 22291956 PMCID: PMC3265489 DOI: 10.1371/journal.pone.0030451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/16/2011] [Indexed: 11/23/2022] Open
Abstract
Background In budding yeast, the highly conserved Tel2 protein is part of several complexes and its main function is now believed to be in the biogenesis of phosphatidyl inositol 3-kinase related kinases. Principal Findings To uncover potentially novel functions of Tel2, we set out to isolate temperature-sensitive (ts) mutant alleles of TEL2 in order to perform genetic screenings. MED15/GAL11, a subunit of Mediator, a general regulator of transcription, was isolated as a suppressor of these mutants. The isolated tel2 mutants exhibited a short telomere phenotype that was partially rescued by MED15/GAL11 overexpression. The tel2-15mutant was markedly deficient in the transcription of EST2, coding for the catalytic subunit of telomerase, potentially explaining the short telomere phenotype of this mutant. In parallel, a two-hybrid screen identified an association between Tel2 and Rvb2, a highly conserved member of the AAA+ family of ATPases further found by in vivo co-immunoprecipitation to be tight and constitutive. Transiently overproduced Tel2 and Med15/Gal11 associated together, suggesting a potential role for Tel2 in transcription. Other Mediator subunits, as well as SUA7/TFIIB, also rescued the tel2-ts mutants. Significance Altogether, the present data suggest the existence of a novel role for Tel2, namely in transcription, possibly in cooperation with Rvb2 and involving the existence of physical interactions with the Med15/Gal11 Mediator subunit.
Collapse
Affiliation(s)
- Nathalie Grandin
- UMR CNRS 5239, Ecole Normale Supérieure de Lyon, IFR128 BioSciences Gerland, Lyon, France
- UMR CNRS 6239, Université de Tours, Tours, France
| | | | - Michel Charbonneau
- UMR CNRS 5239, Ecole Normale Supérieure de Lyon, IFR128 BioSciences Gerland, Lyon, France
- UMR CNRS 6239, Université de Tours, Tours, France
- * E-mail:
| |
Collapse
|
16
|
Kakihara Y, Houry WA. The R2TP complex: Discovery and functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:101-7. [DOI: 10.1016/j.bbamcr.2011.08.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
|
17
|
Ruden DM, Lu X. Hsp90 affecting chromatin remodeling might explain transgenerational epigenetic inheritance in Drosophila. Curr Genomics 2011; 9:500-8. [PMID: 19506739 PMCID: PMC2691676 DOI: 10.2174/138920208786241207] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/08/2008] [Accepted: 08/14/2008] [Indexed: 01/01/2023] Open
Abstract
Transgenerational epigenetic inheritance, while poorly understood, is of great interest because it might help explain the increase in the incidence of diseases with an environmental contribution in humans, such as cancer, diabetes, and heart disease. Here, we review five Drosophila examples of transgenerational epigenetic inheritance and propose a unified mechanism that involves Polycomb Response Element/Trithorax Response Element (PRE/TRE) occupancy by either Polycomb Group (PcG) protein complexes or Trithorax group (TrxG) complexes. Among their other activities, PcG complexes cause histone 3 lysine 27 tri-methylation associated with repressed chromatin, whereas Trithorax group (TrxG) complexes induce histone 3 lysine 4 tri-methylation associated with actively transcribed chromatin. In this model, Hsp90 is an environmentally sensitive chromatin remodeling regulator that causes a switch in the chromatin from a permissive state to a non-permissive state for transcription. Consistent with this model, Hsp90 has recently been shown to be a chaperone for Tah1p (TPR-containing protein associated with Hsp90) and Pih1p (protein interacting with Hsp90), which connect to the chromatin remodelling factor Rvb1p (RuvB-like protein 1)/Rvb2p in yeast [1]. Also, Hsp90 is required for optimal activity of the histone H3 lysine-4 methyltransferase SMYD3 in mammals [2, 3]. Since PcG and TrxG complexes are involved in the post-translational modifications of histones, and since such modifications have been shown to be required to maintain imprinted marks, this unified mechanism might also help to explain transgenerational epigenetic inheritance in humans.
Collapse
Affiliation(s)
- Douglas M Ruden
- Wayne State University, Institute for Environmental Health Sciences, 2727 2 Ave, Room 4000, Detroit, MI 48201, USA
| | | |
Collapse
|
18
|
Grigoletto A, Lestienne P, Rosenbaum J. The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim Biophys Acta Rev Cancer 2011; 1815:147-57. [DOI: 10.1016/j.bbcan.2010.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 01/29/2023]
|
19
|
Yu X, Robinson JF, Sidhu JS, Hong S, Faustman EM. A system-based comparison of gene expression reveals alterations in oxidative stress, disruption of ubiquitin-proteasome system and altered cell cycle regulation after exposure to cadmium and methylmercury in mouse embryonic fibroblast. Toxicol Sci 2010; 114:356-77. [PMID: 20061341 PMCID: PMC2840217 DOI: 10.1093/toxsci/kfq003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/28/2009] [Indexed: 01/28/2023] Open
Abstract
Environmental and occupational exposures to heavy metals such as methylmercury (MeHg) and cadmium (Cd) pose significant health risks to humans, including neurotoxicity. The underlying mechanisms of their toxicity, however, remain to be fully characterized. Our previous studies with Cd and MeHg have demonstrated that the perturbation of the ubiquitin-proteasome system (UPS) was associated with metal-induced cytotoxicity and apoptosis. We conducted a microarray-based gene expression analysis to compare metal-altered gene expression patterns with a classical proteasome inhibitor, MG132 (0.5 microM), to determine whether the disruption of the UPS is a critical mechanism of metal-induced toxicity. We treated mouse embryonic fibroblast cells at doses of MeHg (2.5 microM) and Cd (5.0 microM) for 24 h. The doses selected were based on the neutral red-based cell viability assay where initial statistically significant decreases in variability were detected. Following normalization of the array data, we employed multilevel analysis tools to explore the data, including group comparisons, cluster analysis, gene annotations analysis (gene ontology analysis), and pathway analysis using GenMAPP and Ingenuity Pathway Analysis (IPA). Using these integrated approaches, we identified significant gene expression changes across treatments within the UPS (Uchl1 and Ube2c), antioxidant and phase II enzymes (Gsta2, Gsta4, and Noq1), and genes involved in cell cycle regulation pathways (ccnb1, cdc2a, and cdc25c). Furthermore, pathway analysis revealed significant alterations in genes implicated in Parkinson's disease pathogenesis following metal exposure. This study suggests that these pathways play a critical role in the development of adverse effects associated with metal exposures.
Collapse
Affiliation(s)
| | | | | | | | - Elaine M. Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, 98105
| |
Collapse
|
20
|
Huen J, Kakihara Y, Ugwu F, Cheung KLY, Ortega J, Houry WA. Rvb1–Rvb2: essential ATP-dependent helicases for critical complexesThis paper is one of a selection of papers published in this special issue entitled 8th International Conference on AAA Proteins and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:29-40. [DOI: 10.1139/o09-122] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rvb1 and Rvb2 are highly conserved, essential AAA+ helicases found in a wide range of eukaryotes. The versatility of these helicases and their central role in the biology of the cell is evident from their involvement in a wide array of critical cellular complexes. Rvb1 and Rvb2 are components of the chromatin-remodeling complexes INO80, Swr-C, and BAF. They are also members of the histone acetyltransferase Tip60 complex, and the recently identified R2TP complex present in Saccharomyces cerevisiae and Homo sapiens; a complex that is involved in small nucleolar ribonucleoprotein (snoRNP) assembly. Furthermore, in humans, Rvb1 and Rvb2 have been identified in the URI prefoldin-like complex. In Drosophila, the Polycomb Repressive complex 1 contains Rvb2, but not Rvb1, and the Brahma complex contains Rvb1 and not Rvb2. Both of these complexes are involved in the regulation of growth and development genes in Drosophila. Rvbs are therefore crucial factors in various cellular processes. Their importance in chromatin remodeling, transcription regulation, DNA damage repair, telomerase assembly, mitotic spindle formation, and snoRNP biogenesis is discussed in this review.
Collapse
Affiliation(s)
- Jennifer Huen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Yoshito Kakihara
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Francisca Ugwu
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Kevin L. Y. Cheung
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Joaquin Ortega
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| |
Collapse
|
21
|
Jaishankar A, Barthelery M, Freeman WM, Salli U, Ritty TM, Vrana KE. Human Embryonic and Mesenchymal Stem Cells Express Different Nuclear Proteomes. Stem Cells Dev 2009; 18:793-802. [DOI: 10.1089/scd.2008.0156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Amritha Jaishankar
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Miguel Barthelery
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Willard M. Freeman
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Ugur Salli
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Timothy M. Ritty
- Department of Orthopedics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Kent E. Vrana
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
22
|
de Planell-Saguer M, Schroeder DG, Rodicio MC, Cox GA, Mourelatos Z. Biochemical and genetic evidence for a role of IGHMBP2 in the translational machinery. Hum Mol Genet 2009; 18:2115-26. [PMID: 19299493 DOI: 10.1093/hmg/ddp134] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human motor neuron degenerative disease spinal muscular atrophy with respiratory distress type 1 (SMARD1) is caused by loss of function mutations of immunoglobulin mu-binding protein 2 (IGHMBP2), a protein of unknown function that contains DNA/RNA helicase and nucleic acid-binding domains. Reduced IGHMBP2 protein levels in neuromuscular degeneration (nmd) mice, the mouse model of SMARD1, lead to motor neuron degeneration. We report the biochemical characterization of IGHMBP2 and the isolation of a modifier locus that rescues the phenotype and motor neuron degeneration of nmd mice. We find that a 166 kb BAC transgene derived from CAST/EiJ mice and containing tRNA genes and activator of basal transcription 1 (Abt1), a protein-coding gene that is required for ribosome biogenesis, contains the genetic modifier responsible for motor neuron rescue. Our biochemical investigations show that IGHMBP2 associates physically with tRNAs and in particular with tRNA(Tyr), which are present in the modifier and with the ABT1 protein. We find that transcription factor IIIC-220 kDa (TFIIIC220), an essential factor required for tRNA transcription, and the helicases Reptin and Pontin, which function in transcription and in ribosome biogenesis, are also part of IGHMBP2-containing complexes. Our findings strongly suggest that IGHMBP2 is a component of the translational machinery and that these components can be manipulated genetically to suppress motor neuron degeneration.
Collapse
Affiliation(s)
- Mariàngels de Planell-Saguer
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6100, USA
| | | | | | | | | |
Collapse
|
23
|
Yeast Rvb1 and Rvb2 are ATP-Dependent DNA Helicases that Form a Heterohexameric Complex. J Mol Biol 2008; 376:1320-33. [DOI: 10.1016/j.jmb.2007.12.049] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/17/2007] [Accepted: 12/19/2007] [Indexed: 11/20/2022]
|
24
|
Gallant P. Control of transcription by Pontin and Reptin. Trends Cell Biol 2007; 17:187-92. [PMID: 17320397 DOI: 10.1016/j.tcb.2007.02.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/24/2007] [Accepted: 02/09/2007] [Indexed: 11/26/2022]
Abstract
Pontin and Reptin are two closely related members of the AAA+ family of DNA helicases. They have roles in diverse cellular processes, including the response to DNA double-strand breaks and the control of gene expression. The two proteins share residence in different multiprotein complexes, such as the Tip60, Ino80, SRCAP and Uri1 complexes in animals, which are involved (directly or indirectly) in transcriptional regulation, but they also function independently from each other. Both Reptin and Pontin repress certain transcriptional targets of Myc, but only Reptin is required for the repression of specific beta-catenin and nuclear factor-kappaB targets. Here, I review recent studies that have addressed the mechanisms of transcriptional control by Pontin and Reptin.
Collapse
Affiliation(s)
- Peter Gallant
- Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
25
|
Radovic S, Rapisarda VA, Tosato V, Bruschi CV. Functional and comparative characterization of Saccharomyces cerevisiae RVB1 and RVB2 genes with bacterial Ruv homologues. FEMS Yeast Res 2007; 7:527-39. [PMID: 17302941 DOI: 10.1111/j.1567-1364.2006.00205.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Expression of yeast RuvB-like gene analogues of bacterial RuvB is self-regulated, as episomal overexpression of RVB1 and RVB2 decreases the expression of their chromosomal copies by 85%. Heterozygosity for either gene correlates with lower double-strand break repair of inverted-repeat DNA and decreased survival after UV irradiation, suggesting their haploinsufficiency, while overexpression of the bacterial RuvAB complex improves UV survival in yeast. Rvb2p preferentially binds artificial DNA Holiday junctions like the bacterial RuvAB complex, whereas Rvb1p binds to duplex or cruciform DNA. As both proteins also interact with chromatin, their role in recombination and repair through chromatin remodelling, and their evolutionary relationship to the bacterial homologue, is discussed.
Collapse
Affiliation(s)
- Slobodanka Radovic
- Yeast Molecular Genetics Group, ICGEB, Area Science Park - W, Trieste, Italy
| | | | | | | |
Collapse
|
26
|
Kimata Y, Ishiwata-Kimata Y, Yamada S, Kohno K. Yeast unfolded protein response pathway regulates expression of genes for anti-oxidative stress and for cell surface proteins. Genes Cells 2005; 11:59-69. [PMID: 16371132 DOI: 10.1111/j.1365-2443.2005.00921.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The unfolded protein response (UPR) is a cellular protective event against endoplasmic reticulum (ER) stress. In the yeast UPR signaling pathway, the ER-located transmembrane protein Ire1 promotes splicing of the HAC1 premRNA (HAC1(u)) to produce the translatable transcription factor mRNA (HAC1i). We generated a HAC1i gene-bearing strain, in which the UPR pathway was constitutively activated, and compared its gene expression profile with that of a Deltaire1 HAC1u strain using cDNA microarray technology. Comparison of the gene expression profile was also performed between non-stressed wild-type cells and those exposed to ER stress. Genes for which the expression level was significantly changed in both of these experiments were categorized as targets of the Ire1-HAC1 signaling pathway. This analysis revealed that in addition to the previously known UPR targets, some anti-oxidative stress genes were up-regulated by the Ire1-HAC1 pathway, possibly in order to reduce reactive oxygen species produced during the cellular response to ER stress. Moreover, we categorized 15 genes as those down-regulated by the UPR, most of which seem to encode cell surface or extracellular proteins. This UPR-mediated gene repression may alleviate the load of client proteins targeted to the ER.
Collapse
Affiliation(s)
- Yukio Kimata
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | | | | | | |
Collapse
|
27
|
Jin J, Cai Y, Yao T, Gottschalk AJ, Florens L, Swanson SK, Gutiérrez JL, Coleman MK, Workman JL, Mushegian A, Washburn MP, Conaway RC, Conaway JW. A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex. J Biol Chem 2005; 280:41207-12. [PMID: 16230350 DOI: 10.1074/jbc.m509128200] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The mammalian Tip49a and Tip49b proteins belong to an evolutionarily conserved family of AAA+ ATPases. In Saccharomyces cerevisiae, orthologs of Tip49a and Tip49b, called Rvb1 and Rvb2, respectively, are subunits of two distinct ATP-dependent chromatin remodeling complexes, SWR1 and INO80. We recently demonstrated that the mammalian Tip49a and Tip49b proteins are integral subunits of a chromatin remodeling complex bearing striking similarities to the S. cerevisiae SWR1 complex (Cai, Y., Jin, J., Florens, L., Swanson, S. K., Kusch, T., Li, B., Workman, J. L., Washburn, M. P., Conaway, R. C., and Conaway, J. W. (2005) J. Biol. Chem. 280, 13665-13670). In this report, we identify a new mammalian Tip49a- and Tip49b-containing ATP-dependent chromatin remodeling complex, which includes orthologs of 8 of the 15 subunits of the S. cerevisiae INO80 chromatin remodeling complex as well as at least five additional subunits unique to the human INO80 (hINO80) complex. Finally, we demonstrate that, similar to the yeast INO80 complex, the hINO80 complex exhibits DNA- and nucleosome-activated ATPase activity and catalyzes ATP-dependent nucleosome sliding.
Collapse
Affiliation(s)
- Jingji Jin
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bellosta P, Hulf T, Balla Diop S, Usseglio F, Pradel J, Aragnol D, Gallant P. Myc interacts genetically with Tip48/Reptin and Tip49/Pontin to control growth and proliferation during Drosophila development. Proc Natl Acad Sci U S A 2005; 102:11799-804. [PMID: 16087886 PMCID: PMC1187951 DOI: 10.1073/pnas.0408945102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The transcription factor dMyc is the sole Drosophila ortholog of the vertebrate c-myc protooncogenes and a central regulator of growth and cell-cycle progression during normal development. We have investigated the molecular basis of dMyc function by analyzing its interaction with the putative transcriptional cofactors Tip48/Reptin (Rept) and Tip49/Pontin (Pont). We demonstrate that Rept and Pont have conserved their ability to bind to Myc during evolution. All three proteins are required for tissue growth in vivo, because mitotic clones mutant for either dmyc, pont,or rept suffer from cell competition. Most importantly, pont shows a strong dominant genetic interaction with dmyc that is manifested in the duration of development, rates of survival and size of the adult animal and, in particular, of the eye. The molecular basis for these effects may be found in the repression of certain target genes, such as mfas, by dMyc:Pont complexes. These findings indicate that dMyc:Pont complexes play an essential role in the control of cellular growth and proliferation during normal development.
Collapse
Affiliation(s)
- Paola Bellosta
- Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
29
|
Jónsson ZO, Jha S, Wohlschlegel JA, Dutta A. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Mol Cell 2004; 16:465-77. [PMID: 15525518 DOI: 10.1016/j.molcel.2004.09.033] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 06/03/2004] [Accepted: 08/18/2004] [Indexed: 01/25/2023]
Abstract
The Rvb1p and Rvb2p (or TIP48 and TIP49) nuclear ATP binding proteins are universally conserved in eukaryotes and essential for viability of yeasts. Rvbp associate with each other as a double hexamer, with YHR034c and with two complexes involved in chromatin remodeling, Ino80.com and Swr1.com. Loss of Rvb1p or Ino80p affects many yeast promoters similarly. Rvbp are not essential for the recruitment of Ino80p to promoters but are essential for the catalytic activity of Ino80.com. Loss of Rvbp leads to loss of the functionally critical Arp5p in Ino80.com. Rvb2p associates with Arp5p in vitro in a reaction dependent on the presence of ATP and Ino80p. Therefore, Rvbp are required for the structural and functional integrity of the Ino80 chromatin remodeling complex.
Collapse
Affiliation(s)
- Zophonías O Jónsson
- University of Virginia School of Medicine, Jordan 1240, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
30
|
Current awareness on yeast. Yeast 2003; 20:1151-8. [PMID: 14598808 DOI: 10.1002/yea.949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|