1
|
Bhale AS, Meilhac O, d'Hellencourt CL, Vijayalakshmi MA, Venkataraman K. Cholesterol transport and beyond: Illuminating the versatile functions of HDL apolipoproteins through structural insights and functional implications. Biofactors 2024; 50:922-956. [PMID: 38661230 DOI: 10.1002/biof.2057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
High-density lipoproteins (HDLs) play a vital role in lipid metabolism and cardiovascular health, as they are intricately involved in cholesterol transport and inflammation modulation. The proteome of HDL particles is indeed complex and distinct from other components in the bloodstream. Proteomics studies have identified nearly 285 different proteins associated with HDL; however, this review focuses more on the 15 or so traditionally named "apo" lipoproteins. Important lipid metabolizing enzymes closely working with the apolipoproteins are also discussed. Apolipoproteins stand out for their integral role in HDL stability, structure, function, and metabolism. The unique structure and functions of each apolipoprotein influence important processes such as inflammation regulation and lipid metabolism. These interactions also shape the stability and performance of HDL particles. HDLs apolipoproteins have multifaceted roles beyond cardiovascular diseases (CVDs) and are involved in various physiological processes and disease states. Therefore, a detailed exploration of these apolipoproteins can offer valuable insights into potential diagnostic markers and therapeutic targets. This comprehensive review article aims to provide an in-depth understanding of HDL apolipoproteins, highlighting their distinct structures, functions, and contributions to various physiological processes. Exploiting this knowledge holds great potential for improving HDL function, enhancing cholesterol efflux, and modulating inflammatory processes, ultimately benefiting individuals by limiting the risks associated with CVDs and other inflammation-based pathologies. Understanding the nature of all 15 apolipoproteins expands our knowledge of HDL metabolism, sheds light on their pathological implications, and paves the way for advancements in the diagnosis, prevention, and treatment of lipid and inflammatory-related disorders.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | - Christian Lefebvre d'Hellencourt
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | | | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Thomas SR, Zhang Y, Rye KA. The pleiotropic effects of high-density lipoproteins and apolipoprotein A-I. Best Pract Res Clin Endocrinol Metab 2022; 37:101689. [PMID: 36008277 DOI: 10.1016/j.beem.2022.101689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The high density lipoprotein (HDL) fraction of human plasma consists of multiple subpopulations of spherical particles that are structurally uniform, but heterogeneous in terms of size, composition and function. Numerous epidemiological studies have established that an elevated high density lipoprotein cholesterol (HDL-C) level is associated with decreased cardiovascular risk. However, with several recent randomised clinical trials of HDL-C raising agents failing to reduce cardiovascular events, contemporary research is transitioning towards clinical development of the cardioprotective functions of HDLs and the identification of functions that can be exploited for treatment of other diseases. This review describes the origins of HDLs and the causes of their compositional and functional heterogeneity. It then summarises current knowledge of how cardioprotective and other functions of HDLs are regulated. The final section of the review summarises recent advances in the clinical development of HDL-targeted therapies.
Collapse
Affiliation(s)
- Shane R Thomas
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Yunjia Zhang
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Kerry-Anne Rye
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Ong KL, Cochran BBiotech BJ, Manandhar B, Thomas S, Rye KA. HDL maturation and remodelling. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159119. [PMID: 35121104 DOI: 10.1016/j.bbalip.2022.159119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 11/29/2022]
Abstract
Cholesterol in the circulation is mostly transported in an esterified form as a component of lipoproteins. The majority of these cholesteryl esters are produced in nascent, discoidal high density lipoproteins (HDLs) by the enzyme, lecithin:cholesterol acyltransferase (LCAT). Discoidal HDLs are discrete populations of particles that consist of a phospholipid bilayer, the hydrophobic acyl chains of which are shielded from the aqueous environment by apolipoproteins that also confer water solubility on the particles. The progressive LCAT-mediated accumulation of cholesteryl esters in discoidal HDLs generates the spherical HDLs that predominate in normal human plasma. Spherical HDLs contain a core of water insoluble, neutral lipids (cholesteryl esters and triglycerides) that is surrounded by a surface monolayer of phospholipids with which apolipoproteins associate. Although spherical HDLs all have the same basic structure, they are extremely diverse in size, composition, and function. This review is concerned with how the biogenesis of discoidal and spherical HDLs is regulated and the mechanistic basis of their size and compositional heterogeneity. Current understanding of the impact of this heterogeneity on the therapeutic potential of HDLs of varying size and composition is also addressed in the context of several disease states.
Collapse
Affiliation(s)
- Kwok-Leung Ong
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia
| | - Blake J Cochran BBiotech
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia
| | - Bikash Manandhar
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia
| | - Shane Thomas
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia.
| |
Collapse
|
4
|
Yang Y, Wang J, He H, Zhang W, Zhang Y, Liu J. Influence of Fatty Acid Modification on Uptake of Lovastatin-Loaded Reconstituted High Density Lipoprotein by Foam Cells. Pharm Res 2018; 35:134. [DOI: 10.1007/s11095-018-2419-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/23/2018] [Indexed: 02/08/2023]
|
5
|
Didichenko SA, Navdaev AV, Cukier AMO, Gille A, Schuetz P, Spycher MO, Thérond P, Chapman MJ, Kontush A, Wright SD. Enhanced HDL Functionality in Small HDL Species Produced Upon Remodeling of HDL by Reconstituted HDL, CSL112: Effects on Cholesterol Efflux, Anti-Inflammatory and Antioxidative Activity. Circ Res 2016; 119:751-63. [PMID: 27436846 PMCID: PMC5006797 DOI: 10.1161/circresaha.116.308685] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/19/2016] [Indexed: 01/29/2023]
Abstract
Supplemental Digital Content is available in the text. Rationale: CSL112, human apolipoprotein A-I (apoA-I) reconstituted with phosphatidylcholine, is known to cause a dramatic rise in small high-density lipoprotein (HDL). Objective: To explore the mechanisms by which the formation of small HDL particles is induced by CSL112. Methods and Results: Infusion of CSL112 into humans caused elevation of 2 small diameter HDL fractions and 1 large diameter fraction. Ex vivo studies showed that this remodeling does not depend on lipid transfer proteins or lipases. Rather, interaction of CSL112 with purified HDL spontaneously gave rise to 3 HDL species: a large, spherical species composed of apoA-I from native HDL and CSL112; a small, disc-shaped species composed of apoA-I from CSL112, but smaller because of the loss of phospholipids; and the smallest species, lipid-poor apoA-I composed of apoA-I from HDL and CSL112. Time-course studies suggest that remodeling occurs by an initial fusion of CSL112 with HDL and subsequent fission leading to the smaller forms. Functional studies showed that ATP-binding cassette transporter 1–dependent cholesterol efflux and anti-inflammatory effects in whole blood were carried by the 2 small species with little activity in the large species. In contrast, the ability to inactivate lipid hydroperoxides in oxidized low-density lipoprotein was carried predominantly by the 2 largest species and was low in lipid-poor apoA-I. Conclusions: We have described a mechanism for the formation of small, highly functional HDL species involving spontaneous fusion of discoidal HDL with spherical HDL and subsequent fission. Similar remodeling is likely to occur during the life cycle of apoA-I in vivo.
Collapse
Affiliation(s)
- Svetlana A Didichenko
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Alexei V Navdaev
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Alexandre M O Cukier
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Andreas Gille
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Patrick Schuetz
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Martin O Spycher
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Patrice Thérond
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - M John Chapman
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Anatol Kontush
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.)
| | - Samuel D Wright
- From the CSL Behring AG, Berne, Switzerland (S.A.D., A.V.N., P.S., M.O.S.); National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France (A.M.O.C., M.J.C., A.K.); University of Pierre and Marie Curie - Paris 6, France (A.M.O.C., M.J.C., A.K.); Pitié - Salpétrière University Hospital; ICAN, Paris, France (A.M.O.C., M.J.C., A.K.); CSL Limited, Parkville, VIC, Australia (A.G.); AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (P.T.); and CSL Behring, King of Prussia, PA (S.D.W.).
| |
Collapse
|
6
|
Du XM, Kim MJ, Hou L, Le Goff W, Chapman MJ, Van Eck M, Curtiss LK, Burnett JR, Cartland SP, Quinn CM, Kockx M, Kontush A, Rye KA, Kritharides L, Jessup W. HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export. Circ Res 2015; 116:1133-42. [PMID: 25589556 DOI: 10.1161/circresaha.116.305485] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE High-density lipoprotein (HDL) is a heterogeneous population of particles. Differences in the capacities of HDL subfractions to remove cellular cholesterol may explain variable correlations between HDL-cholesterol and cardiovascular risk and inform future targets for HDL-related therapies. The ATP binding cassette transporter A1 (ABCA1) facilitates cholesterol efflux to lipid-free apolipoprotein A-I, but the majority of apolipoprotein A-I in the circulation is transported in a lipidated state and ABCA1-dependent efflux to individual HDL subfractions has not been systematically studied. OBJECTIVE Our aims were to determine which HDL particle subfractions are most efficient in mediating cellular cholesterol efflux from foam cell macrophages and to identify the cellular cholesterol transporters involved in this process. METHODS AND RESULTS We used reconstituted HDL particles of defined size and composition, isolated subfractions of human plasma HDL, cell lines stably expressing ABCA1 or ABCG1, and both mouse and human macrophages in which ABCA1 or ABCG1 expression was deleted. We show that ABCA1 is the major mediator of macrophage cholesterol efflux to HDL, demonstrating most marked efficiency with small, dense HDL subfractions (HDL3b and HDL3c). ABCG1 has a lesser role in cholesterol efflux and a negligible role in efflux to HDL3b and HDL3c subfractions. CONCLUSIONS Small, dense HDL subfractions are the most efficient mediators of cholesterol efflux, and ABCA1 mediates cholesterol efflux to small dense HDL and to lipid-free apolipoprotein A-I. HDL-directed therapies should target increasing the concentrations or the cholesterol efflux capacity of small, dense HDL species in vivo.
Collapse
Affiliation(s)
- Xian-Ming Du
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Mi-Jurng Kim
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Liming Hou
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Wilfried Le Goff
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - M John Chapman
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Miranda Van Eck
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Linda K Curtiss
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - John R Burnett
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Sian P Cartland
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Carmel M Quinn
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Maaike Kockx
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Anatol Kontush
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Kerry-Anne Rye
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Leonard Kritharides
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Wendy Jessup
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.).
| |
Collapse
|
7
|
Abstract
There is compelling evidence from human population studies that plasma levels of high-density lipoprotein (HDL) cholesterol correlate inversely with cardiovascular risk. Identification of this relationship has stimulated research designed to understand how HDL metabolism is regulated. The ultimate goal of these studies has been to develop HDL-raising therapies that have the potential to decrease the morbidity and mortality associated with atherosclerotic cardiovascular disease. However, the situation has turned out to be much more complex than originally envisaged. This is partly because the HDL fraction consists of multiple subpopulations of particles that vary in terms of shape, size, composition, and surface charge, as well as in their potential cardioprotective properties. This heterogeneity is a consequence of the continual remodeling and interconversion of HDL subpopulations by multiple plasma factors. Evidence that the remodeling of HDLs may impact on their cardioprotective properties is beginning to emerge. This serves to highlight the importance of understanding not only how the remodeling and interconversion of HDL subpopulations is regulated but also how these processes are affected by agents that increase HDL levels. This review provides an overview of what is currently understood about HDL metabolism and how the subpopulation distribution of these lipoproteins is regulated.
Collapse
Affiliation(s)
- Kerry-Anne Rye
- From the Lipid Research Group, Centre for Vascular Research, Lowy Center, University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|
8
|
Nguyen D, Nickel M, Mizuguchi C, Saito H, Lund-Katz S, Phillips MC. Interactions of apolipoprotein A-I with high-density lipoprotein particles. Biochemistry 2013; 52:1963-72. [PMID: 23425306 PMCID: PMC3603221 DOI: 10.1021/bi400032y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although the partitioning of apolipoprotein A-I (apoA-I) molecules in plasma between high-density lipoprotein (HDL)-bound and -unbound states is an integral part of HDL metabolism, the factors that control binding of apoA-I to HDL particles are poorly understood. To address this gap in knowledge, we investigated how the properties of the apoA-I tertiary structure domains and surface characteristics of spherical HDL particles influence apoA-I binding. The abilities of (14)C-labeled human and mouse apoA-I variants to associate with human HDL and lipid emulsion particles were determined using ultracentrifugation to separate free and bound protein. The binding of human apoA-I (243 amino acids) to HDL is largely mediated by its relatively hydrophobic C-terminal domain; the isolated N-terminal helix bundle domain (residues 1-190) binds poorly. Mouse apoA-I, which has a relatively polar C-terminal domain, binds to human HDL to approximately half the level of human apoA-I. The HDL binding abilities of apoA-I variants correlate strongly with their abilities to associate with phospholipid (PL)-stabilized emulsion particles, consistent with apoA-I-PL interactions at the particle surface being important. When equal amounts of HDL2 and HDL3 are present, all of the apoA-I variants partition preferentially to HDL3. Fluorescence polarization measurements using Laurdan-labeled HDL2 and HDL3 indicate that PL molecular packing is looser on the more negatively charged HDL3 particle surface, which promotes apoA-I binding. Overall, it is clear that both apoA-I structural features, especially the hydrophobicity of the C-terminal domain, and HDL surface characteristics such as the availability of free space influence the ability of apoA-I to associate with HDL particles.
Collapse
Affiliation(s)
- David Nguyen
- Lipid Research Group, Gastroenterology, Hepatology and Nutrition Division, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-4318, United States
| | | | | | | | | | | |
Collapse
|
9
|
Gao X, Yuan S, Jayaraman S, Gursky O. Role of apolipoprotein A-II in the structure and remodeling of human high-density lipoprotein (HDL): protein conformational ensemble on HDL. Biochemistry 2012; 51:4633-41. [PMID: 22631438 DOI: 10.1021/bi300555d] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-density lipoproteins (HDL, or "good cholesterol") are heterogeneous nanoparticles that remove excess cell cholesterol and protect against atherosclerosis. The cardioprotective action of HDL and its major protein, apolipoprotein A-I (apoA-I), is well-established, yet the function of the second major protein, apolipoprotein A-II (apoA-II), is less clear. In this review, we postulate an ensemble of apolipoprotein conformations on various HDL. This ensemble is based on the crystal structure of Δ(185-243)apoA-I determined by Mei and Atkinson combined with the "double-hairpin" conformation of apoA-II(dimer) proposed in the cross-linking studies by Silva's team, and is supported by the wide array of low-resolution structural, biophysical, and biochemical data obtained by many teams over decades. The proposed conformational ensemble helps integrate and improve several existing HDL models, including the "buckle-belt" conformation of apoA-I on the midsize disks and the "trefoil/tetrafoil" arrangement on spherical HDL. This ensemble prompts us to hypothesize that endogenous apoA-II (i) helps confer lipid surface curvature during conversion of nascent discoidal HDL(A-I) and HDL(A-II) containing either apoA-I or apoA-II to mature spherical HDL(A-I/A-II) containing both proteins, and (ii) hinders remodeling of HDL(A-I/A-II) by hindering the expansion of the apoA-I conformation. Also, we report that, although endogenous apoA-II circulates mainly on the midsize spherical HDL(A-I/A-II), exogenous apoA-II can bind to HDL of any size, thereby slightly increasing this size and stabilizing the HDL assembly. This suggests distinctly different effects of the endogenous and exogenous apoA-II on HDL. Taken together, the existing results and models prompt us to postulate a new structural and functional role of apoA-II on human HDL.
Collapse
Affiliation(s)
- Xuan Gao
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
10
|
Sontag TJ, Carnemolla R, Vaisar T, Reardon CA, Getz GS. Naturally occurring variant of mouse apolipoprotein A-I alters the lipid and HDL association properties of the protein. J Lipid Res 2012; 53:951-963. [PMID: 22402133 DOI: 10.1194/jlr.m021154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Plasma HDL levels are inversely associated with atherosclerosis. Inbred mouse strains differ in plasma HDL levels and susceptibility to atherosclerosis. Atherosclerosis-susceptible C57BL/6J mice possess plasma HDL levels 2-fold lower than atherosclerosis-resistant FVB/NJ mice. Polymorphisms have been previously identified between the two mouse strains in the major HDL apolipoproteins, ApoA-I and ApoA-II, which may affect their function on HDL. To begin to understand the HDL differences, we here report on a detailed comparison of the lipid-associated functions of the two mouse ApoA-I proteins. We demonstrate that these polymorphisms significantly alter the protein self-association properties, the ability of the proteins to clear lipid micelles from solution, and their binding affinity for mature mouse HDL. The changes in lipid binding do not appear to alter the ability of the protein to promote cholesterol efflux from cells or the formation of nascent HDL from primary hepatocytes. These apolipoprotein polymorphisms do not change the rate at which HDL protein or cholesterol are catabolized in vivo. Although the presence of the polymorphisms in ApoA-I alters important factors in HDL formation, the basis for the differences in the HDL plasma levels observed in the various mouse strains is more complex and requires additional investigation.
Collapse
Affiliation(s)
| | - Ronald Carnemolla
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA; and
| | - Tomas Vaisar
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, WA
| | | | - Godfrey S Getz
- Department of Pathology, University of Chicago, Chicago, IL.
| |
Collapse
|
11
|
Gauthamadasa K, Vaitinadin NS, Dressman JL, Macha S, Homan R, Greis KD, Silva RAGD. Apolipoprotein A-II-mediated conformational changes of apolipoprotein A-I in discoidal high density lipoproteins. J Biol Chem 2012; 287:7615-25. [PMID: 22235130 DOI: 10.1074/jbc.m111.291070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It is well accepted that HDL has the ability to reduce risks for several chronic diseases. To gain insights into the functional properties of HDL, it is critical to understand the HDL structure in detail. To understand interactions between the two major apolipoproteins (apos), apoA-I and apoA-II in HDL, we generated highly defined benchmark discoidal HDL particles. These particles were reconstituted using a physiologically relevant phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) incorporating two molecules of apoA-I and one homodimer of apoA-II per particle. We utilized two independent mass spectrometry techniques to study these particles. The techniques are both sensitive to protein conformation and interactions and are namely: 1) hydrogen deuterium exchange combined with mass spectrometry and 2) partial acetylation of lysine residues combined with MS. Comparison of mixed particles with apoA-I only particles of similar diameter revealed that the changes in apoA-I conformation in the presence of apoA-II are confined to apoA-I helices 3-4 and 7-9. We discuss these findings with respect to the relative reactivity of these two particle types toward a major plasma enzyme, lecithin:cholesterol acyltransferase responsible for the HDL maturation process.
Collapse
Affiliation(s)
- Kekulawalage Gauthamadasa
- Department of Pathology and Laboratory Medicine, Center for Lipids and Atherosclerosis Sciences, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Rye KA, Barter PJ. Predictive value of different HDL particles for the protection against or risk of coronary heart disease. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:473-80. [PMID: 22051746 DOI: 10.1016/j.bbalip.2011.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/10/2011] [Accepted: 10/13/2011] [Indexed: 12/26/2022]
Abstract
The inverse relationship between plasma HDL levels and the risk of developing coronary heart disease is well established. The underlying mechanisms of this relationship are poorly understood, largely because HDL consist of several functionally distinct subpopulations of particles that are continuously being interconverted from one to another. This review commences with an outline of what is known about the origins of individual HDL subpopulations, how their distribution is regulated, and describes strategies that are currently available for isolating them. We then summarise what is known about the functionality of specific HDL subpopulations, and how these findings might impact on cardiovascular risk. The final section highlights major gaps in existing knowledge of HDL functionality, and suggests how these deficiencies might be addressed. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Kerry-Anne Rye
- Lipid Research Group, The Heart Research Institute, Sydney, NSW, Australia.
| | | |
Collapse
|
13
|
Tian L, Fu M. The relationship between high density lipoprotein subclass profile and apolipoprotein concentrations. J Endocrinol Invest 2011; 34:461-72. [PMID: 21747218 DOI: 10.1007/bf03346714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The HDL fraction in human plasma is heterogeneous in terms of size, shape, composition, and surface charge. The HDL subclasses contents were quantified by 2-dimensional non-denaturing gel electrophoresis, immunoblotting, and image analysis. This research review systematically analyzed the relationship between the contents of HDL subclasses and the concentrations and ratios of the 5 major plasma apolipoproteins (apo). As the concentration of apoA-I increases, the contents of all HDL subclasses increase significantly. The most significant association was observed between large-sized HDL2b contents and apoA-I. ApoA-II played a dual function in the contents of HDL subclasses, and both small-sized HDL3b and HDL3a and large-sized HDL2b tended to increase with apoA-II concentration. An increase in the concentrations of apoC-II, C-III, and B-100 resulted in higher levels of small-sized HDL particles and lower levels of large-sized HDL particles. Plasma apoB- 100, apoC-II, and apoC-III appear to play a coordinated role in assembly of HDL particles and the determination of their contents. Higher concentrations of apoA-I could inhibit the reduction in content of large-sized HDL2b effected by apoB-100, C-II, and C-III. The preβ1-HDL contents increased significantly and those of HDL2b declined progressively with an increased apoB-100/apoA-I or a decreased apoC-III/apoC-II ratio. In summary, each apo has distinct but interrelated roles in HDL particle generation and metabolism. ApoA-I and apoC-II concentrations are independent determinants of HDL subtypes in circulation and apoA-I levels might be a more powerful factor to influence HDL subclasses distribution. Moreover, apoB- 100/apoA-I ratio could reliably and sensitively reflect the HDL subclass profile.
Collapse
Affiliation(s)
- L Tian
- Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | | |
Collapse
|
14
|
Jones MK, Gu F, Catte A, Li L, Segrest JP. "Sticky" and "promiscuous", the yin and yang of apolipoprotein A-I termini in discoidal high-density lipoproteins: a combined computational-experimental approach. Biochemistry 2011; 50:2249-63. [PMID: 21329368 DOI: 10.1021/bi101301g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Apolipoprotein (apo) A-I-containing lipoproteins in the form of high-density lipoproteins (HDL) are inversely correlated with atherosclerosis. Because HDL is a soft form of condensed matter easily deformable by thermal fluctuations, the molecular mechanisms for HDL remodeling are not well understood. A promising approach to understanding HDL structure and dynamics is molecular dynamics (MD). In the present study, two computational strategies, MD simulated annealing (MDSA) and MD temperature jump, were combined with experimental particle reconstitution to explore molecular mechanisms for phospholipid- (PL-) rich HDL particle remodeling. The N-terminal domains of full-length apoA-I were shown to be "sticky", acting as a molecular latch largely driven by salt bridges, until, at a critical threshold of particle size, the associated domains released to expose extensive hydrocarbon regions of the PL to solvent. The "sticky" N-termini also associate with other apoA-I domains, perhaps being involved in N-terminal loops suggested by other laboratories. Alternatively, the overlapping helix 10 C-terminal domains of apoA-I were observed to be extremely mobile or "promiscuous", transiently exposing limited hydrocarbon regions of PL. Based upon these models and reconstitution studies, we propose that separation of the N-terminal domains, as particles exceed a critical size, triggers fusion between particles or between particles and membranes, while the C-terminal domains of apoA-I drive the exchange of polar lipids down concentration gradients between particles. This hypothesis has significant biological relevance since lipid exchange and particle remodeling are critically important processes during metabolism of HDL particles at every step in the antiatherogenic process of reverse cholesterol transport.
Collapse
Affiliation(s)
- Martin K Jones
- Department of Medicine and Atherosclerosis Research Unit, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | | | | | | | | |
Collapse
|
15
|
de Beer MC, Ji A, Jahangiri A, Vaughan AM, de Beer FC, van der Westhuyzen DR, Webb NR. ATP binding cassette G1-dependent cholesterol efflux during inflammation. J Lipid Res 2010; 52:345-53. [PMID: 21138980 DOI: 10.1194/jlr.m012328] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
ATP binding cassette transporter G1 (ABCG1) mediates the transport of cellular cholesterol to HDL, and it plays a key role in maintaining macrophage cholesterol homeostasis. During inflammation, HDL undergoes substantial remodeling, acquiring lipid changes and serum amyloid A (SAA) as a major apolipoprotein. In the current study, we investigated whether remodeling of HDL that occurs during acute inflammation impacts ABCG1-dependent efflux. Our data indicate that lipid free SAA acts similarly to apolipoprotein A-I (apoA-I) in mediating sequential efflux from ABCA1 and ABCG1. Compared with normal mouse HDL, acute phase (AP) mouse HDL containing SAA exhibited a modest but significant 17% increase in ABCG1-dependent efflux. Interestingly, AP HDL isolated from mice lacking SAA (SAAKO mice) was even more effective in promoting ABCG1 efflux. Hydrolysis with Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) significantly reduced the ability of AP HDL from SAAKO mice to serve as a substrate for ABCG1-mediated cholesterol transfer, indicating that phospholipid (PL) enrichment, and not the presence of SAA, is responsible for alterations in efflux. AP human HDL, which is not PL-enriched, was somewhat less effective in mediating ABCG1-dependent efflux compared with normal human HDL. Our data indicate that inflammatory remodeling of HDL impacts ABCG1-dependent efflux independent of SAA.
Collapse
Affiliation(s)
- Maria C de Beer
- Departments of Physiology, University of Kentucky Medical Center, Lexington, KY, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Miyazaki O, Fukamachi I. Preβ1-HDL, a key element of reverse cholesterol transport: its potential as a biomarker. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Abstract
High density lipoprotein (HDL) possesses important anti-atherogenic properties and this review addresses the molecular mechanisms underlying these functions. The structures and cholesterol transport abilities of HDL particles are determined by the properties of their exchangeable apolipoprotein (apo) components. ApoA-I and apoE, which are the best characterized in structural terms, contain a series of amphipathic alpha-helical repeats. The helices located in the amino-terminal two-thirds of the molecule adopt a helix bundle structure while the carboxy-terminal segment forms a separately folded, relatively disorganized, domain. The latter domain initiates lipid binding and this interaction induces changes in conformation; the alpha-helix content increases and the amino-terminal helix bundle can open subsequently. These conformational changes alter the abilities of apoA-I and apoE to function as ligands for their receptors. The apoA-I and apoE molecules possess detergent-like properties and they can solubilize vesicular phospholipid to create discoidal HDL particles with hydrodynamic diameters of ~10 nm. In the case of apoA-I, such a particle is stabilized by two protein molecules arranged in an anti-parallel, double-belt, conformation around the edge of the disc. The abilities of apoA-I and apoE to solubilize phospholipid and stabilize HDL particles enable these proteins to be partners with ABCA1 in mediating efflux of cellular phospholipid and cholesterol, and the biogenesis of HDL particles. ApoA-I-containing nascent HDL particles play a critical role in cholesterol transport in the circulation whereas apoE-containing HDL particles mediate cholesterol transport in the brain. The mechanisms by which HDL particles are remodeled by lipases and lipid transfer proteins, and interact with SR-BI to deliver cholesterol to cells, are reviewed.
Collapse
|
18
|
Rosales C, Gillard BK, Courtney HS, Blanco-Vaca F, Pownall HJ. Apolipoprotein modulation of streptococcal serum opacity factor activity against human plasma high-density lipoproteins. Biochemistry 2009; 48:8070-6. [PMID: 19618959 DOI: 10.1021/bi901087z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human plasma HDL are the target of streptococcal serum opacity factor (SOF), a virulence factor that clouds human plasma. Recombinant (r) SOF transfers cholesteryl esters (CE) from approximately 400,000 HDL particles to a CE-rich microemulsion (CERM), forms a cholesterol-poor HDL-like particle (neo HDL), and releases lipid-free (LF) apo A-I. Whereas the rSOF reaction requires labile apo A-I, the modulation effects of other apos are not known. We compared the products and rates of the rSOF reaction against human HDL and HDL from mice overexpressing apos A-I and A-II. Kinetic studies showed that the reactivity of various HDL species is apo-specific. LpA-I reacts faster than LpA-I/A-II. Adding apos A-I and A-II inhibited the SOF reaction, an effect that was more profound for apo A-II. The rate of SOF-mediated CERM formation was slower against HDL from mice expressing human apos A-I and A-II than against WT mice HDL and slowest against HDL from apo A-II overexpressing mice. The lower reactivity of SOF against HDL containing human apos is due to the higher hydropathy of human apo A-I, particularly its C-terminus relative to mouse apo A-I, and the higher lipophilicity of human apo A-II. The SOF-catalyzed reaction is the first to target HDL rather than its transporters and receptors in a way that enhances reverse cholesterol transport (RCT). Thus, effects of apos on the SOF reaction are highly relevant. Our studies show that the "humanized" apo A-I-expressing mouse is a good animal model for studies of rSOF effects on RCT in vivo.
Collapse
Affiliation(s)
- Corina Rosales
- Section of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
19
|
Wróblewska M, Kortas-Stempak B, Szutowicz A, Badzio T. Phospholipids mediated conversion of HDLs generates specific apoA-II pre-beta mobility particles. J Lipid Res 2009; 50:667-75. [PMID: 19066403 PMCID: PMC2656660 DOI: 10.1194/jlr.m800399-jlr200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/17/2008] [Indexed: 11/20/2022] Open
Abstract
Apolipoproteins (apo)A-I and A-II are major proteins of human HDL. The cycling of apoA-I between lipid-poor and lipid-rich forms of HDL plays a key role in the transport of cholesterol by these particles. ApoA-II resides only in part of HDL particles, and little is known about its role in HDL metabolism. Our study investigates the redistribution of apoA-II after HDL remodelling induced by exogenous phospholipids (PL). During incubation with egg yolk lecithin (EYL) liposomes, human HDL became PL-enriched and free cholesterol (FC)-depleted, and lost small amounts of apoA-I and apoA-II. The loss of FC and apolipoproteins correlated with the rise of PL content in HDL. Agarose gel electrophoresis demonstrated the appearance of new pre-beta mobility fractions containing apoA-I and apoA-II in liposomes and HDL mixtures. Two-dimensional nondenaturing 2-27% PAGE has shown that the pre-beta mobility fraction that appeared at initial liposome-PL/HDL-PL ratio 5:1 consisted of two distinct heterogeneous subpopulations of particles containing either apoA-I or apoA-II. Our study provides evidence that during HDL conversion mediated by PL apoA-II dissociated from HDL particles yielding apoA-II-specific pre-beta mobility particles. This observation supports the hypothesis that apoA-II in plasma, like apoA-I, may cycle between lipid-poor and lipid-rich forms of HDL.
Collapse
|
20
|
Jones MK, Catte A, Patterson JC, Gu F, Chen J, Li L, Segrest JP. Thermal stability of apolipoprotein A-I in high-density lipoproteins by molecular dynamics. Biophys J 2009; 96:354-71. [PMID: 19167289 DOI: 10.1016/j.bpj.2008.09.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/22/2008] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein (apo) A-I is an unusually flexible protein whose lipid-associated structure is poorly understood. Thermal denaturation, which is used to measure the global helix stability of high-density lipoprotein (HDL)-associated apoA-I, provides no information about local helix stability. Here we report the use of temperature jump molecular dynamics (MD) simulations to scan the per-residue helix stability of apoA-I in phospholipid-rich HDL. When three 20 ns MD simulations were performed at 500 K on each of two particles created by MD simulations at 310 K, bilayers remained intact but expanded by 40%, and total apoA-I helicity decreased from 95% to 72%. Of significance, the conformations of the overlapping N- and C-terminal domains of apoA-I in the particles were unusually mobile, exposing hydrocarbon regions of the phospholipid to solvent; a lack of buried interhelical salt bridges in the terminal domains correlated with increased mobility. Nondenaturing gradient gels show that 40% expansion of the phospholipid surface of 100:2 particles by addition of palmitoyloleoylphosphatidylcholine exceeds the threshold of particle stability. As a unifying hypothesis, we propose that the terminal domains of apoA-I are phospholipid concentration-sensitive molecular triggers for fusion/remodeling of HDL particles. Since HDL remodeling is necessary for cholesterol transport, our model for remodeling has substantial biomedical implications.
Collapse
Affiliation(s)
- Martin K Jones
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Differential stability of high-density lipoprotein subclasses: effects of particle size and protein composition. J Mol Biol 2009; 387:628-38. [PMID: 19236880 DOI: 10.1016/j.jmb.2009.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/09/2009] [Accepted: 02/13/2009] [Indexed: 01/17/2023]
Abstract
High-density lipoproteins (HDLs) are complexes of proteins (mainly apoA-I and apoA-II) and lipids that remove cholesterol and prevent atherosclerosis. Understanding the distinct properties of the heterogeneous HDL population may aid the development of new diagnostic tools and therapies for atherosclerosis. Mature human HDLs form two major subclasses differing in particle diameter and metabolic properties, HDL(2) (large) and HDL(3) (small). These subclasses are comprised of HDL(A-I) containing only apoA-I, and HDL(A-I/A-II) containing apoA-I and apoA-II. ApoA-I is strongly cardioprotective, but the function of the smaller, more hydrophobic apoA-II is unclear. ApoA-II is thought to counteract the cardioprotective action of apoA-I by stabilizing HDL particles and inhibiting their remodeling. To test this notion, we performed the first kinetic stability study of human HDL subclasses. The results revealed that the stability of plasma spherical HDL decreases with increasing particle diameter; which may facilitate preferential cholesterol ester uptake from large lipid-loaded HDL(2). Surprisingly, size-matched plasma HDL(A-I/A-II) showed comparable or slightly lower stability than HDL(A-I); this is consistent with the destabilization of model discoidal HDL observed upon increasing the A-II to A-I ratio. These results clarify the roles of the particle size and protein composition in HDL remodeling, and help reconcile conflicting reports regarding the role of apoA-II in this remodeling.
Collapse
|
22
|
Brousseau ME, Millar JS, Diffenderfer MR, Nartsupha C, Asztalos BF, Wolfe ML, Mancuso JP, Digenio AG, Rader DJ, Schaefer EJ. Effects of cholesteryl ester transfer protein inhibition on apolipoprotein A-II-containing HDL subspecies and apolipoprotein A-II metabolism. J Lipid Res 2009; 50:1456-62. [PMID: 19193611 DOI: 10.1194/jlr.p800037-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was designed to establish the mechanism responsible for the increased apolipoprotein (apo) A-II levels caused by the cholesteryl ester transfer protein inhibitor torcetrapib. Nineteen subjects with low HDL cholesterol (<40 mg/dl), nine of whom were also treated with 20 mg of atorvastatin daily, received placebo for 4 weeks, followed by 120 mg of torcetrapib daily for the next 4 weeks. Six subjects in the nonatorvastatin cohort participated in a third phase, in which they received 120 mg of torcetrapib twice daily for 4 weeks. At the end of each phase, subjects underwent a primed-constant infusion of [5,5,5-(2)H(3)]L-leucine to determine the kinetics of HDL apoA-II. Relative to placebo, torcetrapib significantly increased apoA-II concentrations by reducing HDL apoA-II catabolism in the atorvastatin (-9.4%, P < 0.003) and nonatorvastatin once- (-9.9%, P = 0.02) and twice- (-13.2%, P = 0.02) daily cohorts. Torcetrapib significantly increased the amount of apoA-II in the alpha-2-migrating subpopulation of HDL when given as monotherapy (27%, P < 0.02; 57%, P < 0.003) or on a background of atorvastatin (28%, P < 0.01). In contrast, torcetrapib reduced concentrations of apoA-II in alpha-3-migrating HDL, with mean reductions of -14% (P = 0.23), -18% (P < 0.02), and -18% (P < 0.01) noted during the atorvastatin and nonatorvastatin 120 mg once- and twice-daily phases, respectively. Our findings indicate that CETP inhibition increases plasma concentrations of apoA-II by delaying HDL apoA-II catabolism and significantly alters the remodeling of apoA-II-containing HDL subpopulations.
Collapse
Affiliation(s)
- Margaret E Brousseau
- Cardiovascular Research Laboratory, Tufts University School of Medicine, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rye KA, Bursill CA, Lambert G, Tabet F, Barter PJ. The metabolism and anti-atherogenic properties of HDL. J Lipid Res 2008; 50 Suppl:S195-200. [PMID: 19033213 DOI: 10.1194/jlr.r800034-jlr200] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Population studies have shown that plasma HDL levels correlate inversely with cardiovascular disease risk. In recent years there has been intense interest in developing strategies for exploiting these cardioprotective properties by increasing HDL levels. While this approach has considerable merit, it is important to recognize that HDL are structurally and functionally diverse and consist of numerous, highly dynamic subpopulations of particles that do not all inhibit atherosclerosis to the same extent. For this reason it is essential to assess HDL subpopulation distribution and functionality when considering therapeutic interventions that raise HDL levels. This review documents what is known about the relationship between the metabolism and function of HDL subpopulations and how this affects their cardioprotective properties.
Collapse
Affiliation(s)
- Kerry-Anne Rye
- Lipid Research Group, The Heart Research Institute, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
24
|
Jahangiri A, de Beer MC, Noffsinger V, Tannock LR, Ramaiah C, Webb NR, van der Westhuyzen DR, de Beer FC. HDL remodeling during the acute phase response. Arterioscler Thromb Vasc Biol 2008; 29:261-7. [PMID: 19008529 DOI: 10.1161/atvbaha.108.178681] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The purpose of this study was to examine the interactive action of serum amyloid A (SAA), group IIA secretory phospholipase A(2) (sPLA(2)-IIA), and cholesteryl ester transfer protein (CETP) on HDL remodeling and cholesterol efflux during the acute phase (AP) response elicited in humans after cardiac surgery. METHODS AND RESULTS Plasma was collected from patients before (pre-AP), 24 hours after (AP-1 d), and 5 days after cardiac surgery (AP-5 d). SAA levels were increased 16-fold in AP-1 d samples. The activity of sPLA(2)-IIA was increased from 77.7+/-38.3 U/mL (pre-AP) to 281.4+/-57.1 U/mL (AP-1 d; P<0.001). CETP mass and activity reduction was commensurate to the reduction of HDL cholesterol levels. The combined action of SAA, sPLA(2)-IIA, and CETP in vitro markedly remodeled HDL with the generation of lipid-poor apoA-I from both pre-AP and AP-1 d HDL. The net result of this remodeling was a relative preservation of ABCA1- and ABCG1-dependent cholesterol efflux during the acute phase response. CONCLUSIONS Our results show that the many and complex changes in plasma proteins during the acute phase response markedly remodel HDL with functional implications, particularly the relative retention of cholesterol efflux capacity.
Collapse
Affiliation(s)
- Anisa Jahangiri
- Department of Internal Medicine, Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Guha M, Gao X, Jayaraman S, Gursky O. Correlation of structural stability with functional remodeling of high-density lipoproteins: the importance of being disordered. Biochemistry 2008; 47:11393-7. [PMID: 18839964 DOI: 10.1021/bi8014746] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
High-density lipoproteins (HDLs) are protein-lipid assemblies that remove excess cell cholesterol and prevent atherosclerosis. HDLs are stabilized by kinetic barriers that decelerate protein dissociation and lipoprotein fusion. We propose that similar barriers modulate metabolic remodeling of plasma HDLs; hence, changes in particle composition that destabilize HDLs and accelerate their denaturation may accelerate their metabolic remodeling. To test this notion, we correlate existing reports on HDL-mediated cell cholesterol efflux and esterification, which are obligatory early steps in cholesterol removal, with our kinetic studies of HDL stability. The results support our hypothesis and show that factors accelerating cholesterol efflux and esterification in model discoidal lipoproteins (including reduced protein size, reduced fatty acyl chain length, and/or increased level of cis unsaturation) destabilize lipoproteins and accelerate their fusion and apolipoprotein dissociation. Oxidation studies of plasma spherical HDLs show a similar trend: mild oxidation by Cu(2+) or OCl(-) accelerates cell cholesterol efflux, protein dissociation, and HDL fusion, while extensive oxidation inhibits these reactions. Consequently, moderate destabilization may be beneficial for HDL functions by facilitating insertion of cholesterol and lipophilic enzymes, promoting dissociation of lipid-poor apolipoproteins, which are primary acceptors of cell cholesterol, and thereby accelerating HDL metabolism. Therefore, HDL stability must be delicately balanced to maintain the structural integrity of the lipoprotein assembly and ensure structural specificity necessary for interactions of HDL with its metabolic partners, while facilitating rapid HDL remodeling and turnover at key junctures of cholesterol transport. The inverse correlation between HDL stability and remodeling illustrates the functional importance of structural disorder in macromolecular assemblies stabilized by kinetic barriers.
Collapse
Affiliation(s)
- Madhumita Guha
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Clinical and epidemiological studies have shown that HDLs, a class of plasma lipoproteins, heterogeneous in size and density, have an atheroprotective role attributed, for years, to their capacity to promote the efflux of cholesterol from activated cholesterol-loaded arterial macrophages. Recent studies, however, have recognized that the physical heterogeneity of HDLs is associated with multiple functions that involve both the protein and the lipid components of these particles. ApoA-I, quantitatively the major protein constituent, has an amphipathic structure suited for transport of lipids. It readily interacts with the ATP-binding cassette transporter ABCA1, the SR-B1 scavenger receptor; activates the enzyme lecithin-cholesterol acyl transferase (LCAT), which is critical for HDL maturation. It also has antioxidant and antiinflammatory properties, along with the HDL-associated enzymes paraoxonase, platelet activating factor acetylhydrolase (PAF), and glutathione peroxidase. Regarding the lipid moiety, an atheroprotective role has been recognized for lysosphingolipids, particularly sphingosine-1-phosphate (S1P). All of these atheroprotective functions are lost in the post-translational dependent dysfunctional plasma HDLs of subjects with systemic inflammation, coronary heart disease, diabetes, and chronic renal disease. The emerging notion that particle quality has more predictive power than quantity has stimulated further exploration of the HDL proteome, already revealing unsuspected pro- or antiatherogenic proteins/peptides associated with HDL.
Collapse
Affiliation(s)
- Angelo M Scanu
- Department of Medicine, University of Chicago, MC5041, 5841 S. Maryland Ave., Chicago, IL 60637, USA.
| | | |
Collapse
|
27
|
Wool GD, Reardon CA, Getz GS. Apolipoprotein A-I mimetic peptide helix number and helix linker influence potentially anti-atherogenic properties. J Lipid Res 2008; 49:1268-83. [PMID: 18323574 DOI: 10.1194/jlr.m700552-jlr200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We hypothesize that apolipoprotein A-I (apoA-I) mimetic peptides better mimicking the punctuated alpha-helical repeats of full-length apoA-I are more anti-inflammatory and anti-atherogenic. This study compares a monomeric apoA-I mimetic helix to three different tandem helix peptides in vitro: 4F (18 mer), 4F-proline-4F (37 mer, Pro), 4F-alanine-4F (37 mer, Ala), and 4F-KVEPLRA-4F [the human apoA-I 4/5 interhelical sequence (IHS), 43 mer]. All peptides cleared turbid lipid suspensions, with 4F being most effective. In contrast to lipid clearance, tandem peptides were more effective at remodeling mouse HDL. All four peptides displaced apoA-I and apoE from the HDL, leaving a larger particle containing apoA-II and peptide. Peptide-remodeled HDL particles show no deficit in ABCG1 cholesterol efflux despite the loss of the majority of apoA-I. Tandem peptides show greater ability to efflux cholesterol from lipid-loaded murine macrophages, compared with 4F. Although 4F inhibited oxidation of purified mouse LDL, the Ala tandem peptide increased oxidation. We compared several tandem 4F-based peptides with monomeric 4F in assays that correlated with suggested anti-inflammatory/anti-atherogenic pathways. Tandem 4F-based peptides, which better mimic full-length apoA-I, exceed monomeric 4F in HDL remodeling and cholesterol efflux but not LDL oxidation protection. In addition, apoA-I mimetic peptides may increase reverse cholesterol transport through both ABCA1 as well as ABCG1 pathways.
Collapse
Affiliation(s)
- Geoffrey D Wool
- The University of Chicago, Department of Pathology, Chicago, IL, USA
| | | | | |
Collapse
|
28
|
Castellani LW, Nguyen CN, Charugundla S, Weinstein MM, Doan CX, Blaner WS, Wongsiriroj N, Lusis AJ. Apolipoprotein AII is a regulator of very low density lipoprotein metabolism and insulin resistance. J Biol Chem 2007; 283:11633-44. [PMID: 18160395 DOI: 10.1074/jbc.m708995200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein AII (apoAII) transgenic (apoAIItg) mice exhibit several traits associated with the insulin resistance (IR) syndrome, including IR, obesity, and a marked hypertriglyceridemia. Because treatment of the apoAIItg mice with rosiglitazone ameliorated the IR and hypertriglyceridemia, we hypothesized that the hypertriglyceridemia was due largely to overproduction of very low density lipoprotein (VLDL) by the liver, a normal response to chronically elevated insulin and glucose. We now report in vivo and in vitro studies that indicate that hepatic fatty acid oxidation was reduced and lipogenesis increased, resulting in a 25% increase in triglyceride secretion in the apoAIItg mice. In addition, we observed that hydrolysis of triglycerides from both chylomicrons and VLDL was significantly reduced in the apoAIItg mice, further contributing to the hypertriglyceridemia. This is a direct, acute effect, because when mouse apoAII was injected into mice, plasma triglyceride concentrations were significantly increased within 4 h. VLDL from both control and apoAIItg mice contained significant amounts of apoAII, with approximately 4 times more apoAII on apoAIItg VLDL. ApoAII was shown to transfer spontaneously from high density lipoprotein (HDL) to VLDL in vitro, resulting in VLDL that was a poorer substrate for hydrolysis by lipoprotein lipase. These results indicate that one function of apoAII is to regulate the metabolism of triglyceride-rich lipoproteins, with HDL serving as a plasma reservoir of apoAII that is transferred to the triglyceride-rich lipoproteins in much the same way as VLDL and chylomicrons acquire most of their apoCs from HDL.
Collapse
Affiliation(s)
- Lawrence W Castellani
- Departments of Medicine/Cardiology University of California, Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Dugué-Pujol S, Rousset X, Château D, Pastier D, Klein C, Demeurie J, Cywiner-Golenzer C, Chabert M, Verroust P, Chambaz J, Châtelet FP, Kalopissis AD. Apolipoprotein A-II is catabolized in the kidney as a function of its plasma concentration. J Lipid Res 2007; 48:2151-61. [PMID: 17652309 DOI: 10.1194/jlr.m700089-jlr200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated in vivo catabolism of apolipoprotein A-II (apo A-II), a major determinant of plasma HDL levels. Like apoA-I, murine apoA-II (mapoA-II) and human apoA-II (hapoA-II) were reabsorbed in the first segment of kidney proximal tubules of control and hapoA-II-transgenic mice, respectively. ApoA-II colocalized in brush border membranes with cubilin and megalin (the apoA-I receptor and coreceptor, respectively), with mapoA-I in intracellular vesicles of tubular epithelial cells, and was targeted to lysosomes, suggestive of degradation. By use of three transgenic lines with plasma hapoA-II concentrations ranging from normal to three times higher, we established an association between plasma concentration and renal catabolism of hapoA-II. HapoA-II was rapidly internalized in yolk sac epithelial cells expressing high levels of cubilin and megalin, colocalized with cubilin and megalin on the cell surface, and effectively competed with apoA-I for uptake, which was inhibitable by anti-cubilin antibodies. Kidney cortical cells that only express megalin internalized LDL but not apoA-II, apoA-I, or HDL, suggesting that megalin is not an apoA-II receptor. We show that apoA-II is efficiently reabsorbed in kidney proximal tubules in relation to its plasma concentration.
Collapse
Affiliation(s)
- Sonia Dugué-Pujol
- Institut National de la Santé et de la Recherche Médicale, U872, Equipe 6, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dallinga-Thie GM, Dullaart RPF, van Tol A. Concerted actions of cholesteryl ester transfer protein and phospholipid transfer protein in type 2 diabetes: effects of apolipoproteins. Curr Opin Lipidol 2007; 18:251-7. [PMID: 17495597 DOI: 10.1097/mol.0b013e3280e12685] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Type 2 diabetes frequently coincides with dyslipidemia, characterized by elevated plasma triglycerides, low high-density lipoprotein cholesterol levels and the presence of small dense low-density lipoprotein particles. Plasma lipid transfer proteins play an essential role in lipoprotein metabolism. It is thus vital to understand their pathophysiology and determine which factors influence their functioning in type 2 diabetes. RECENT FINDINGS Cholesteryl ester transfer protein-mediated transfer is increased in diabetic patients and contributes to low plasma high-density lipoprotein cholesterol levels. Apolipoproteins A-I, A-II and E are components of the donor lipoprotein particles that participate in the transfer of cholesteryl esters from high-density lipoprotein to apolipoprotein B-containing lipoproteins. Current evidence for functional roles of apolipoproteins C-I, F and A-IV as modulators of cholesteryl ester transfer is discussed. Phospholipid transfer protein activity is increased in diabetic patients and may contribute to hepatic very low-density lipoprotein synthesis and secretion and vitamin E transfer. Apolipoprotein E could stimulate the phospholipid transfer protein-mediated transfer of surface fragments of triglyceride-rich lipoproteins to high-density lipoprotein, and promote high-density lipoprotein remodelling. SUMMARY Both phospholipid and cholesteryl ester transfer proteins are important in very low and high-density lipoprotein metabolism and display concerted actions in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Geesje M Dallinga-Thie
- Department of Vascular Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
31
|
Warnick GR, McNamara JR, Boggess CN, Clendenen F, Williams PT, Landolt CC. Polyacrylamide gradient gel electrophoresis of lipoprotein subclasses. Clin Lab Med 2007; 26:803-46. [PMID: 17110241 DOI: 10.1016/j.cll.2006.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
High-density (HDL), low-density (LDL), and very-low-density (VLDL) lipoproteins are heterogeneous cholesterol-containing particles that differ in their metabolism, environmental interactions, and association with disease. Several protocols use polyacrylamide gradient gel electrophoresis (GGE) to separate these major lipoproteins into known subclasses. This article provides a brief history of the discovery of lipoprotein heterogeneity and an overview of relevant lipoprotein metabolism, highlighting the importance of the subclasses in the context of their metabolic origins, fates, and clinical implications. Various techniques using polyacrylamide GGE to assess HDL and LDL heterogeneity are described, and how the genetic and environmental determinations of HDL and LDL affect lipoprotein size heterogeneity and the implications for cardiovascular disease are outlined.
Collapse
Affiliation(s)
- G Russell Warnick
- Berkeley HeartLab Inc., 960 Atlantic Avenue, Suite 100 Alameda, CA 94501, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Nalini M Rajamannan
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
33
|
Hime NJ, Drew KJ, Wee K, Barter PJ, Rye KA. Formation of high density lipoproteins containing both apolipoprotein A-I and A-II in the rabbit. J Lipid Res 2005; 47:115-22. [PMID: 16222033 DOI: 10.1194/jlr.m500284-jlr200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human plasma HDLs are classified on the basis of apolipoprotein composition into those that contain apolipoprotein A-I (apoA-I) without apoA-II [(A-I)HDL] and those containing apoA-I and apoA-II [(A-I/A-II)HDL]. ApoA-I enters the plasma as a component of discoidal particles, which are remodeled into spherical (A-I)HDL by LCAT. ApoA-II is secreted into the plasma either in the lipid-free form or as a component of discoidal high density lipoproteins containing apoA-II without apoA-I [(A-II)HDL]. As discoidal (A-II)HDL are poor substrates for LCAT, they are not converted into spherical (A-II)HDL. This study investigates the fate of apoA-II when it enters the plasma. Lipid-free apoA-II and apoA-II-containing discoidal reconstituted HDL [(A-II)rHDL] were injected intravenously into New Zealand White rabbits, a species that is deficient in apoA-II. In both cases, the apoA-II was rapidly and quantitatively incorporated into spherical (A-I)HDL to form spherical (A-I/A-II)HDL. These particles were comparable in size and composition to the (A-I/A-II)HDL in human plasma. Injection of lipid-free apoA-II and discoidal (A-II)rHDL was also accompanied by triglyceride enrichment of the endogenous (A-I)HDL and VLDL as well as the newly formed (A-I/A-II)HDL. We conclude that, irrespective of the form in which apoA-II enters the plasma, it is rapidly incorporated into spherical HDLs that also contain apoA-I to form (A-I/A-II)HDL.
Collapse
Affiliation(s)
- Neil J Hime
- Lipid Research Group, The Heart Research Institute, Camperdown, Sydney, New South Wales 2050, Australia
| | | | | | | | | |
Collapse
|
34
|
de Beer MC, van der Westhuyzen DR, Whitaker NL, Webb NR, de Beer FC. SR-BI-mediated selective lipid uptake segregates apoA-I and apoA-II catabolism. J Lipid Res 2005; 46:2143-50. [PMID: 16061955 DOI: 10.1194/jlr.m500068-jlr200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HDL receptor scavenger receptor class B type I (SR-BI) binds HDL and mediates the selective uptake of cholesteryl ester. We previously showed that remnants, produced when human HDL(2) is catabolized in mice overexpressing SR-BI, become incrementally smaller, ultimately consisting of small alpha-migrating particles, distinct from pre-beta HDL. When mixed with mouse plasma, some remnant particles rapidly increase in size by associating with HDL without the mediation of cholesteryl ester transfer protein, LCAT, or phospholipid transfer protein. Here, we show that processing of HDL(2) by SR-BI-overexpressing mice resulted in the preferential loss of apolipoprotein A-II (apoA-II). Short-term processing generated two distinct, small alpha-migrating particles. One particle (8.0 nm diameter) contained apoA-I and apoA-II; the other particle (7.7 nm diameter) contained only apoA-I. With extensive SR-BI processing, only the 7.7 nm particle remained. Only the 8.0 nm remnants were able to associate with HDL. Compared with HDL(2), this remnant was more readily taken up by the liver than by the kidney. We conclude that SR-BI-generated HDL remnants consist of particles with or without apoA-II and that only those containing apoA-II associate with HDL in an enzyme-independent manner. Extensive SR-BI processing generates small apoA-II-depleted particles unable to reassociate with HDL and readily taken up by the liver. This represents a pathway by which apoA-I and apoA-II catabolism are segregated.
Collapse
Affiliation(s)
- Maria C de Beer
- Graduate Center for Nutritional Sciences, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
35
|
Jahangiri A, Rader DJ, Marchadier D, Curtiss LK, Bonnet DJ, Rye KA. Evidence that endothelial lipase remodels high density lipoproteins without mediating the dissociation of apolipoprotein A-I. J Lipid Res 2005; 46:896-903. [PMID: 15687350 DOI: 10.1194/jlr.m400212-jlr200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endothelial lipase (EL) is a triglyceride lipase gene family member that has high phospholipase and low triglyceride lipase activity. The aim of this study was to determine whether the phospholipase activity of EL is sufficient to remodel HDLs into small particles and mediate the dissociation of apolipoprotein A-I (apoA-I). Spherical, reconstituted HDLs (rHDLs) containing apoA-I only [(A-I)rHDLs], apoA-II only [(A-II)rHDLs], or both apoA-I and apoA-II [(A-I/A-II) rHDLs] were prepared. The rHDLs, which contained only cholesteryl esters in their core and POPC on the surface, were incubated with EL. As the rHDLs did not contain triacylglycerol, only the POPC was hydrolyzed. Hydrolysis was greater in the (A-I/A-II)rHDLs than in the (A-I)rHDLs. The (A-II)rHDL phospholipids were not hydrolyzed by EL. EL remodeled the (A-I)rHDLs and (A-I/A-II)rHDLs, but not the (A-II)rHDLs, into smaller particles. The reduction in particle size was related to the amount of phospholipid hydrolysis, with the diameter of the (A-I/A-II)rHDLs decreasing more than that of the (A-I)rHDLs. These changes did not affect the conformation of apoA-I, and neither apoA-I nor apoA-II dissociated from the rHDLs. Comparable results were obtained when human plasma HDLs were incubated with EL. These results establish that the phospholipase activity of EL remodels plasma HDLs and rHDLs into smaller particles without mediating the dissociation of apolipoproteins.
Collapse
Affiliation(s)
- A Jahangiri
- Lipid Research Group, Heart Research Institute, Camperdown, Sydney, New South Wales 2050, Australia.
| | | | | | | | | | | |
Collapse
|
36
|
Jayaraman S, Gantz DL, Gursky O. Kinetic stabilization and fusion of apolipoprotein A-2:DMPC disks: comparison with apoA-1 and apoC-1. Biophys J 2005; 88:2907-18. [PMID: 15681655 PMCID: PMC1305385 DOI: 10.1529/biophysj.104.055921] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Denaturation studies of high-density lipoproteins (HDL) containing human apolipoprotein A-2 (apoA-2) and dimyristoyl phosphatidylcholine indicate kinetic stabilization. Circular dichroism (CD) and light-scattering melting curves show hysteresis and scan rate dependence, indicating thermodynamically irreversible transition with high activation energy E(a). CD and light-scattering data suggest that protein unfolding triggers HDL fusion. Electron microscopy, gel electrophoresis, and differential scanning calorimetry show that such fusion involves lipid vesicle formation and dissociation of monomolecular lipid-poor protein. Arrhenius analysis reveals two kinetic phases, a slower phase with E(a,slow) = 60 kcal/mol and a faster phase with E(a,fast) = 22 kcal/mol. Only the fast phase is observed upon repetitive heating, suggesting that lipid-poor protein and protein-containing vesicles have lower kinetic stability than the disks. Comparison of the unfolding rates and the melting data recorded by differential scanning calorimetry, CD, and light scattering indicates the rank order for the kinetic disk stability, apoA-1 > apoA-2 > apoC-1, that correlates with protein size rather than hydrophobicity. This contrasts with the tighter association of apoA-2 than apoA-1 with mature HDL, suggesting different molecular determinants for stabilization of model discoidal and plasma spherical HDL. Different effects of apoA-2 and apoA-1 on HDL fusion and stability may reflect different metabolic properties of apoA-2 and/or apoA-1-containing HDL.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
37
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
38
|
Martín-Campos JM, Escolà-Gil JC, Ribas V, Blanco-Vaca F. Apolipoprotein A-II, genetic variation on chromosome 1q21-q24, and disease susceptibility. Curr Opin Lipidol 2004; 15:247-53. [PMID: 15166779 DOI: 10.1097/00041433-200406000-00003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Apolipoprotein (apo) A-II is the second most abundant HDL apolipoprotein; however its function remains largely unknown. Owing to the lack of consequences of apoA-II deficiency in humans, it has long been considered an apolipoprotein of minor importance. Overexpression of apoA-II in transgenic mice, however, causes combined hyperlipidemia and, in some cases, insulin resistance. This, and the location of the apoA-II gene in chromosome 1q23, a hot region in the search for genes associated with familial combined hyperlipidemia, insulin resistance and type 2 diabetes mellitus, has greatly increased interest in this protein. RECENT FINDINGS ApoA-II is biochemically and genetically linked to familial combined hyperlipidemia. Given that the chromosome 1q21-q24 region is associated with insulin resistance or type 2 diabetes, this region is a now a focus of interest in the study of these complex, often overlapping diseases. However, no polymorphisms that increase apoA-II levels have been identified to date in humans. Other nonstructural loci may regulate apoA-II plasma concentration. Further, plasma apoA-II concentration is increased by saturated fat intake. Several reports have added to our understanding of the relationship between apoA-II mutations and amyloidosis both in humans and mice. SUMMARY An increased plasma concentration of apoA-II might contribute to familial combined hyperlipidemia or type 2 diabetes mellitus expression, which emphasizes the need to understand its function and metabolism. Genetic studies in well characterized patients and genomic and proteomic approaches in cell and mouse models may help to achieve this understanding.
Collapse
Affiliation(s)
- Jesús M Martín-Campos
- Servei de Bioquímica i Institut de Recerca, Hospital de la Santa Creu i Sant Pau, and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
39
|
Rye KA, Barter PJ. Formation and Metabolism of Prebeta-Migrating, Lipid-Poor Apolipoprotein A-I. Arterioscler Thromb Vasc Biol 2004; 24:421-8. [PMID: 14592845 DOI: 10.1161/01.atv.0000104029.74961.f5] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The preferred extracellular acceptor of cell phospholipids and unesterified cholesterol in the process mediated by the ATP-binding cassette A1 (ABCA1) transporter is a monomolecular, prebeta-migrating, lipid-poor or lipid-free form of apolipoprotein (apo) A-I. This monomolecular form of apoA-I is quite distinct from the prebeta-migrating, discoidal high-density lipoprotein (HDL) that contains two or three molecules of apoA-I per particle and which are present as minor components of the HDL fraction in human plasma. The mechanism of the ABCA1-mediated efflux of phospholipid and cholesterol from cells has been studied extensively. In contrast, much less attention has been given to the origin and subsequent metabolism of the acceptor lipid-free/lipid-poor apoA-I. There is a substantial body of evidence from studies conducted in vitro that a monomolecular, lipid-free/lipid-poor form of apoA-I dissociates from HDL during the remodeling of HDLs by plasma factors such as cholesteryl ester transfer protein, hepatic lipase, and phospholipid transfer protein. The rate at which apoA-I dissociates from HDL is influenced by the phospholipid composition of the particles and by the presence of apoA-II. This review describes current knowledge regarding the formation, metabolism, and regulation of monomolecular, lipid-free/lipid-poor apoA-I in plasma.
Collapse
Affiliation(s)
- Kerry-Anne Rye
- Heart Research Institute, Camperdown, Sydney, NSW, Australia
| | | |
Collapse
|
40
|
Boucher J, Ramsamy TA, Braschi S, Sahoo D, Neville TAM, Sparks DL. Apolipoprotein A-II regulates HDL stability and affects hepatic lipase association and activity. J Lipid Res 2004; 45:849-58. [PMID: 14967812 DOI: 10.1194/jlr.m300431-jlr200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of apolipoprotein A-II (apoA-II) on the structure and stability of HDL has been investigated in reconstituted HDL particles. Purified human apoA-II was incorporated into sonicated, spherical LpA-I particles containing apoA-I, phospholipids, and various amounts of triacylglycerol (TG), diacylglycerol (DG), and/or free cholesterol. Although the addition of PC to apoA-I reduces the thermodynamic stability (free energy of denaturation) of its alpha-helices, PC has the opposite effect on apoA-II and significantly increases its helical stability. Similarly, substitution of apoA-I with various amounts of apoA-II significantly increases the thermodynamic stability of the particle alpha-helical structure. ApoA-II also increases the size and net negative charge of the lipoprotein particles. ApoA-II directly affects apoA-I conformation and increases the immunoreactivity of epitopes in the N and C termini of apoA-I but decreases the exposure of central domains in the molecule (residues 98-186). ApoA-II appears to increase HL association with HDL and inhibits lipid hydrolysis. ApoA-II mildly inhibits PC hydrolysis in TG-enriched particles but significantly inhibits DG hydrolysis in DG-rich LpA-I. In addition, apoA-II enhances the ability of reconstituted LpA-I particles to inhibit VLDL-TG hydrolysis by HL. Therefore, apoA-II affects both the structure and the dynamic behavior of HDL particles and selectively modifies lipid metabolism.
Collapse
Affiliation(s)
- Jonathan Boucher
- Lipoproteins and Atherosclerosis Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | | | | | | | | | | |
Collapse
|