1
|
Steinkühler J, Peruzzi JA, Krüger A, Villaseñor CG, Jacobs ML, Jewett MC, Kamat NP. Improving Cell-Free Expression of Model Membrane Proteins by Tuning Ribosome Cotranslational Membrane Association and Nascent Chain Aggregation. ACS Synth Biol 2024; 13:129-140. [PMID: 38150067 DOI: 10.1021/acssynbio.3c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cell-free gene expression (CFE) systems are powerful tools for transcribing and translating genes outside of a living cell. Synthesis of membrane proteins is of particular interest, but their yield in CFE is substantially lower than that for soluble proteins. In this paper, we study the CFE of membrane proteins and develop a quantitative kinetic model. We identify that ribosome stalling during the translation of membrane proteins is a strong predictor of membrane protein synthesis due to aggregation between the ribosome nascent chains. Synthesis can be improved by the addition of lipid membranes, which incorporate protein nascent chains and, therefore, kinetically compete with aggregation. We show that the balance between peptide-membrane association and peptide aggregation rates determines the yield of the synthesized membrane protein. We define a membrane protein expression score that can be used to rationalize the engineering of lipid composition and the N-terminal domain of a native and computationally designed membrane proteins produced through CFE.
Collapse
Affiliation(s)
- Jan Steinkühler
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Bio-Inspired Computation, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Justin A Peruzzi
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Citlayi G Villaseñor
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Miranda L Jacobs
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Neha P Kamat
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Harris NJ, Pellowe GA, Blackholly LR, Gulaidi-Breen S, Findlay HE, Booth PJ. Methods to study folding of alpha-helical membrane proteins in lipids. Open Biol 2022; 12:220054. [PMID: 35855589 PMCID: PMC9297032 DOI: 10.1098/rsob.220054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
How alpha-helical membrane proteins fold correctly in the highly hydrophobic membrane interior is not well understood. Their folding is known to be highly influenced by the lipids within the surrounding bilayer, but the majority of folding studies have focused on detergent-solubilized protein rather than protein in a lipid environment. There are different ways to study folding in lipid bilayers, and each method has its own advantages and disadvantages. This review will discuss folding methods which can be used to study alpha-helical membrane proteins in bicelles, liposomes, nanodiscs or native membranes. These folding methods include in vitro folding methods in liposomes such as denaturant unfolding studies, and single-molecule force spectroscopy studies in bicelles, liposomes and native membranes. This review will also discuss recent advances in co-translational folding studies, which use cell-free expression with liposomes or nanodiscs or are performed in vivo with native membranes.
Collapse
Affiliation(s)
- Nicola J. Harris
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Grant A. Pellowe
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Laura R. Blackholly
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | | | - Heather E. Findlay
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Paula J. Booth
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
3
|
Harris NJ, Reading E, Booth PJ. Cell-Free Synthesis Strategies to Probe Co-translational Folding of Proteins Within Lipid Membranes. Methods Mol Biol 2022; 2433:273-292. [PMID: 34985751 DOI: 10.1007/978-1-0716-1998-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In order to comprehend the molecular basis of transmembrane protein biogenesis, methods are required that are capable of investigating the co-translational folding of these hydrophobic proteins. Equally, in artificial cell studies, controllable methods are desirable for in situ synthesis of membrane proteins that then direct reactions in the synthetic cell membrane. Here we describe a method that exploits cell-free expression systems and tunable membrane mimetics to facilitate co-translational studies. Alteration of the lipid bilayer composition improves the efficiency of the folding system. The approach also enables membrane transport proteins to be made and inserted into artificial cell platforms such as droplet interface bilayers. Importantly, this gives a new facet to the droplet networks by enabling specific transport of molecules across the synthetic bilayer against a concentration gradient. This method also includes a protocol to pause and restart translation of membrane proteins at specified positions during their co-translational folding. This stop-start strategy provides an avenue to investigate whether the proteins fold in sequence order, or if the correct fold of N-terminal regions is reliant on the synthesis of downstream residues.
Collapse
Affiliation(s)
| | - Eamonn Reading
- Department of Chemistry, King's College London, London, UK
| | - Paula J Booth
- Department of Chemistry, King's College London, London, UK.
| |
Collapse
|
4
|
Kongpracha P, Wiriyasermkul P, Isozumi N, Moriyama S, Kanai Y, Nagamori S. Simple but efficacious enrichment of integral membrane proteins and their interactions for in-depth membrane proteomics. Mol Cell Proteomics 2022; 21:100206. [PMID: 35085786 PMCID: PMC9062332 DOI: 10.1016/j.mcpro.2022.100206] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/13/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
Membrane proteins play essential roles in various cellular processes, such as nutrient transport, bioenergetic processes, cell adhesion, and signal transduction. Proteomics is one of the key approaches to exploring membrane proteins comprehensively. Bottom–up proteomics using LC–MS/MS has been widely used in membrane proteomics. However, the low abundance and hydrophobic features of membrane proteins, especially integral membrane proteins, make it difficult to handle the proteins and are the bottleneck for identification by LC–MS/MS. Herein, to improve the identification and quantification of membrane proteins, we have stepwisely evaluated methods of membrane enrichment for the sample preparation. The enrichment methods of membranes consisted of precipitation by ultracentrifugation and treatment by urea or alkaline solutions. The best enrichment method in the study, washing with urea after isolation of the membranes, resulted in the identification of almost twice as many membrane proteins compared with samples without the enrichment. Notably, the method significantly enhances the identified numbers of multispanning transmembrane proteins, such as solute carrier transporters, ABC transporters, and G-protein–coupled receptors, by almost sixfold. Using this method, we revealed the profiles of amino acid transport systems with the validation by functional assays and found more protein–protein interactions, including membrane protein complexes and clusters. Our protocol uses standard procedures in biochemistry, but the method was efficient for the in-depth analysis of membrane proteome in a wide range of samples. Fractionation of membranes improves the identification of membrane proteins. Membranes washed with urea or alkaline increase identified transmembrane proteins. Urea wash increases the detection of multispanning transmembrane proteins. Proteomics of urea-washed membranes keeps more protein–protein interactions.
Collapse
Affiliation(s)
- Pornparn Kongpracha
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Collaborative Research for Biomolecular Dynamics, Nara Medical University, Nara, Japan
| | - Pattama Wiriyasermkul
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Collaborative Research for Biomolecular Dynamics, Nara Medical University, Nara, Japan
| | - Noriyoshi Isozumi
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Satomi Moriyama
- Department of Collaborative Research for Biomolecular Dynamics, Nara Medical University, Nara, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shushi Nagamori
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Collaborative Research for Biomolecular Dynamics, Nara Medical University, Nara, Japan.
| |
Collapse
|
5
|
Kruyer NS, Sugianto W, Tickman BI, Alba Burbano D, Noireaux V, Carothers JM, Peralta-Yahya P. Membrane Augmented Cell-Free Systems: A New Frontier in Biotechnology. ACS Synth Biol 2021; 10:670-681. [PMID: 33749249 DOI: 10.1021/acssynbio.0c00625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Membrane proteins are present in a wide array of cellular processes from primary and secondary metabolite synthesis to electron transport and single carbon metabolism. A key barrier to applying membrane proteins industrially is their difficult functional production. Beyond expression, folding, and membrane insertion, membrane protein activity is influenced by the physicochemical properties of the associated membrane, making it difficult to achieve optimal membrane protein performance outside the endogenous host. In this review, we highlight recent work on production of membrane proteins in membrane augmented cell-free systems (CFSs) and applications thereof. CFSs lack membranes and can thus be augmented with user-specified, tunable, mimetic membranes to generate customized environments for production of functional membrane proteins of interest. Membrane augmented CFSs would enable the synthesis of more complex plant secondary metabolites, the growth and division of synthetic cells for drug delivery and cell therapeutic applications, as well as enable green energy applications including methane capture and artificial photosynthesis.
Collapse
Affiliation(s)
- Nicholas S. Kruyer
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Widianti Sugianto
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin I. Tickman
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
| | - Diego Alba Burbano
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James M. Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Pamela Peralta-Yahya
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
Harris NJ, Pellowe GA, Booth PJ. Cell-free expression tools to study co-translational folding of alpha helical membrane transporters. Sci Rep 2020; 10:9125. [PMID: 32499529 PMCID: PMC7272624 DOI: 10.1038/s41598-020-66097-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/15/2020] [Indexed: 11/28/2022] Open
Abstract
Most helical membrane proteins fold co-translationally during unidirectional polypeptide elongation by the ribosome. Studies thus far, however, have largely focussed on refolding full-length proteins from artificially induced denatured states that are far removed from the natural co-translational process. Cell-free translation offers opportunities to remedy this deficit in folding studies and has previously been used for membrane proteins. We exploit this cell-free approach to develop tools to probe co-translational folding. We show that two transporters from the ubiquitous Major Facilitator Superfamily can successfully insert into a synthetic bilayer without the need for translocon insertase apparatus that is essential in vivo. We also assess the cooperativity of domain insertion, by expressing the individual transporter domains cell-free. Furthermore, we manipulate the cell-free reaction to pause and re-start protein synthesis at specific points in the protein sequence. We find that full-length protein can still be made when stalling after the first N terminal helix has inserted into the bilayer. However, stalling after the first three helices have exited the ribosome cannot be successfully recovered. These three helices cannot insert stably when ribosome-bound during co-translational folding, as they require insertion of downstream helices.
Collapse
Affiliation(s)
- Nicola J Harris
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Grant A Pellowe
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Paula J Booth
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| |
Collapse
|
7
|
Serdiuk T, Steudle A, Mari SA, Manioglu S, Kaback HR, Kuhn A, Müller DJ. Insertion and folding pathways of single membrane proteins guided by translocases and insertases. SCIENCE ADVANCES 2019; 5:eaau6824. [PMID: 30801000 PMCID: PMC6385520 DOI: 10.1126/sciadv.aau6824] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/17/2018] [Indexed: 05/17/2023]
Abstract
Biogenesis in prokaryotes and eukaryotes requires the insertion of α-helical proteins into cellular membranes for which they use universally conserved cellular machineries. In bacterial inner membranes, insertion is facilitated by YidC insertase and SecYEG translocon working individually or cooperatively. How insertase and translocon fold a polypeptide into the native protein in the membrane is largely unknown. We apply single-molecule force spectroscopy assays to investigate the insertion and folding process of single lactose permease (LacY) precursors assisted by YidC and SecYEG. Both YidC and SecYEG initiate folding of the completely unfolded polypeptide by inserting a single structural segment. YidC then inserts the remaining segments in random order, whereas SecYEG inserts them sequentially. Each type of insertion process proceeds until LacY folding is complete. When YidC and SecYEG cooperate, the folding pathway of the membrane protein is dominated by the translocase. We propose that both of the fundamentally different pathways along which YidC and SecYEG insert and fold a polypeptide are essential components of membrane protein biogenesis.
Collapse
Affiliation(s)
- Tetiana Serdiuk
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH)–Zürich, 4058 Basel, Switzerland
| | - Anja Steudle
- Institute of Microbiology and Molecular Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Stefania A. Mari
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH)–Zürich, 4058 Basel, Switzerland
| | - Selen Manioglu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH)–Zürich, 4058 Basel, Switzerland
| | - H. Ronald Kaback
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andreas Kuhn
- Institute of Microbiology and Molecular Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Daniel J. Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH)–Zürich, 4058 Basel, Switzerland
- Corresponding author.
| |
Collapse
|
8
|
Zhu L, Kaback HR, Dalbey RE. YidC protein, a molecular chaperone for LacY protein folding via the SecYEG protein machinery. J Biol Chem 2013; 288:28180-94. [PMID: 23928306 DOI: 10.1074/jbc.m113.491613] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To understand how YidC and SecYEG function together in membrane protein topogenesis, insertion and folding of the lactose permease of Escherichia coli (LacY), a 12-transmembrane helix protein LacY that catalyzes symport of a galactoside and an H(+), was studied. Although both the SecYEG machinery and signal recognition particle are required for insertion of LacY into the membrane, YidC is not required for translocation of the six periplasmic loops in LacY. Rather, YidC acts as a chaperone, facilitating LacY folding. Upon YidC depletion, the conformation of LacY is perturbed, as judged by monoclonal antibody binding studies and by in vivo cross-linking between introduced Cys pairs. Disulfide cross-linking also demonstrates that YidC interacts with multiple transmembrane segments of LacY during membrane biogenesis. Moreover, YidC is strictly required for insertion of M13 procoat protein fused into the middle cytoplasmic loop of LacY. In contrast, the loops preceding and following the inserted procoat domain are dependent on SecYEG for insertion. These studies demonstrate close cooperation between the two complexes in membrane biogenesis and that YidC functions primarily as a foldase for LacY.
Collapse
Affiliation(s)
- Lu Zhu
- From the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 and
| | | | | |
Collapse
|
9
|
Bogdanov M, Dowhan W. Lipid-dependent generation of dual topology for a membrane protein. J Biol Chem 2012; 287:37939-48. [PMID: 22969082 DOI: 10.1074/jbc.m112.404103] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanism by which membrane proteins exhibit structural and functional duality in the same membrane or different membranes is unknown. We posit that such duality is determined by both the protein sequence and the membrane lipid composition wherein a spatial or temporal change in the latter can result in a post-assembly change in protein structure and function. To investigate whether co-existence of multiple topological conformers is dependent on the membrane lipid composition, we determined the topological organization of lactose permease in an Escherichia coli model cell system in which phosphatidylethanolamine membrane content can be systematically varied. At intermediate levels of phosphatidylethanolamine a mixture of native and topologically mis-oriented conformers co-existed. There was no threshold level of phosphatidylethanolamine determining a sharp transition from one conformer to the other. Co-existing conformers were not in rapid equilibrium at a static lipid composition indicating that duality of topology is established during an early folding step. Depletion of intermediate levels of phosphatidylethanolamine after final protein assembly resulted in complete mis-orientation of the native conformer. Combined with previous results, such topological dynamics are reversible in both directions. We propose a thermodynamically based model for how lipid-protein interactions can result in a mixed topological organization and how changes in lipid composition can result in changes in the ratio of topologically distinct conformers of proteins. These observations demonstrate a potential lipid-dependent biological switch for generating dynamic structural and functional heterogeneity for a protein within the same membrane or between different membranes in more complex eukaryotic cells.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas 77303, USA.
| | | |
Collapse
|
10
|
Roos C, Kai L, Proverbio D, Ghoshdastider U, Filipek S, Dötsch V, Bernhard F. Co-translational association of cell-free expressed membrane proteins with supplied lipid bilayers. Mol Membr Biol 2012; 30:75-89. [PMID: 22716775 DOI: 10.3109/09687688.2012.693212] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Routine strategies for the cell-free production of membrane proteins in the presence of detergent micelles and for their efficient co-translational solubilization have been developed. Alternatively, the expression in the presence of rationally designed lipid bilayers becomes interesting in particular for biochemical studies. The synthesized membrane proteins would be directed into a more native-like environment and cell-free expression of transporters, channels or other membrane proteins in the presence of supplied artificial membranes could allow their subsequent functional analysis without any exposure to detergents. In addition, lipid-dependent effects on activity and stability of membrane proteins could systematically be studied. However, in contrast to the generally efficient detergent solubilization, the successful stabilization of membrane proteins with artificial membranes appears to be more difficult. A number of strategies have therefore been explored in order to optimize the co-translational association of membrane proteins with different forms of supplied lipid bilayers including liposomes, bicelles, microsomes or nanodiscs. In this review, we have compiled the current state-of-the-art of this technology and we summarize parameters which have been indicated as important for the co-translational association of cell-free synthesized membrane proteins with supplied membranes.
Collapse
Affiliation(s)
- Christian Roos
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
LacY mutant Cys154 → Gly exhibits a periplasmic-closed crystal structure identical to the WT, but is periplasmic-open in the membrane. The mutant hardly catalyzes transport, but binds galactosides from either side of the membrane with the same affinity and is resistant to site-directed proteolysis relative to the pseudo-WT. Site-directed alkylation was also applied to 11 single-Cys mutants in Cys154 → Gly LacY in right-side-out membrane vesicles or after solubilization and purification in dodecyl-β-D-maltopyranoside (DDM). Unlike the pseudo-WT, Cys replacements on the periplasmic side of the Cys154 → Gly mutant label rapidly in the membrane without sugar, but labeling decreases markedly after the mutant proteins are purified. Thus, Cys154 → Gly LacY likely favors a higher-energy intermediate periplasmic-open conformation in situ, but collapses to a lower-energy periplasmic-closed conformation in DDM after purification. Notably, branched-chain or neopentyl glycol maltoside detergents stabilize Cys154 → Gly LacY in the membrane-embedded form.
Collapse
|
12
|
Besserer GM, Nicoll DA, Abramson J, Philipson KD. Characterization and purification of a Na+/Ca2+ exchanger from an archaebacterium. J Biol Chem 2012; 287:8652-9. [PMID: 22287543 DOI: 10.1074/jbc.m111.331280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The superfamily of cation/Ca(2+) exchangers includes both Na(+)/Ca(2+) exchangers (NCXs) and Na(+)/Ca(2+),K(+) exchangers (NCKX) as the families characterized in most detail. These Ca(2+) transporters have prominent physiological roles. For example, NCX and NCKX are important in regulation of cardiac contractility and visual processes, respectively. The superfamily also has a large number of members of the YrbG family expressed in prokaryotes. However, no members of this family have been functionally expressed, and their transport properties are unknown. We have expressed, purified, and characterized a member of the YrbG family, MaX1 from Methanosarcina acetivorans. MaX1 catalyzes Ca(2+) uptake into membrane vesicles. The Ca(2+) uptake requires intravesicular Na(+) and is stimulated by an inside positive membrane potential. Despite very limited sequence similarity, MaX1 is a Na(+)/Ca(2+) exchanger with kinetic properties similar to those of NCX. The availability of a prokaryotic Na(+)/Ca(2+) exchanger should facilitate structural and mechanistic investigations.
Collapse
Affiliation(s)
- Gabriel Mercado Besserer
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1751, USA
| | | | | | | |
Collapse
|
13
|
Protein localization in Escherichia coli cells: comparison of the cytoplasmic membrane proteins ProP, LacY, ProW, AqpZ, MscS, and MscL. J Bacteriol 2009; 192:912-24. [PMID: 20008071 DOI: 10.1128/jb.00967-09] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluorescence microscopy has revealed that the phospholipid cardiolipin (CL) and FlAsH-labeled transporters ProP and LacY are concentrated at the poles of Escherichia coli cells. The proportion of CL among E. coli phospholipids can be varied in vivo as it is decreased by cls mutations and it increases with the osmolality of the growth medium. In this report we compare the localization of CL, ProP, and LacY with that of other cytoplasmic membrane proteins. The proportion of cells in which FlAsH-labeled membrane proteins were concentrated at the cell poles was determined as a function of protein expression level and CL content. Each tagged protein was expressed from a pBAD24-derived plasmid; tagged ProP was also expressed from the chromosome. The osmosensory transporter ProP and the mechanosensitive channel MscS concentrated at the poles at frequencies correlated with the cellular CL content. The lactose transporter LacY was found at the poles at a high and CL-independent frequency. ProW (a component of the osmoregulatory transporter ProU), AqpZ (an aquaporin), and MscL (a mechanosensitive channel) were concentrated at the poles in a minority of cells, and this polar localization was CL independent. The frequency of polar localization was independent of induction (at arabinose concentrations up to 1 mM) for proteins encoded by pBAD24-derived plasmids. Complementation studies showed that ProW, AqpZ, MscS, and MscL remained functional after introduction of the FlAsH tag (CCPGCC). These data suggest that CL-dependent polar localization in E. coli cells is not a general characteristic of transporters, channels, or osmoregulatory proteins. Polar localization can be frequent and CL independent (as observed for LacY), frequent and CL dependent (as observed for ProP and MscS), or infrequent (as observed for AqpZ, ProW, and MscL).
Collapse
|
14
|
Abstract
The topology of polytopic membrane proteins is determined by topogenic sequences in the protein, protein-translocon interactions, and interactions during folding within the protein and between the protein and the lipid environment. Orientation of transmembrane domains is dependent on membrane phospholipid composition during initial assembly as well as on changes in lipid composition postassembly. The membrane translocation potential of negative amino acids working in opposition to the positive-inside rule is largely dampened by the normal presence of phosphatidylethanolamine, thus explaining the dominance of positive residues as retention signals. Phosphatidylethanolamine provides the appropriate charge density that permits the membrane surface to maintain a charge balance between membrane translocation and retention signals and also allows the presence of negative residues in the cytoplasmic face of proteins for other purposes.
Collapse
Affiliation(s)
- William Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | |
Collapse
|
15
|
Lian J, Ma Y, Cai J, Wu M, Wang J, Wang X, Xu Z. High-level expression of soluble subunit b of F1F0 ATP synthase in Escherichia coli cell-free system. Appl Microbiol Biotechnol 2009; 85:303-11. [PMID: 19517105 DOI: 10.1007/s00253-009-2055-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 11/28/2022]
|
16
|
EmrE, a model for studying evolution and mechanism of ion-coupled transporters. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:748-62. [DOI: 10.1016/j.bbapap.2008.12.018] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 11/23/2022]
|
17
|
Boy D, Koch HG. Visualization of distinct entities of the SecYEG translocon during translocation and integration of bacterial proteins. Mol Biol Cell 2009; 20:1804-15. [PMID: 19158385 DOI: 10.1091/mbc.e08-08-0886] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The universally conserved SecYEG/Sec61 translocon constitutes the major protein-conducting channel in the cytoplasmic membrane of bacteria and the endoplasmic reticulum membrane of eukaryotes. It is engaged in both translocating secretory proteins across the membrane as well as in integrating membrane proteins into the lipid phase of the membrane. In the current study we have detected distinct SecYEG translocon complexes in native Escherichia coli membranes. Blue-Native-PAGE revealed the presence of a 200-kDa SecYEG complex in resting membranes. When the SecA-dependent secretory protein pOmpA was trapped inside the SecYEG channel, a smaller SecY-containing complex of approximately 140-kDa was observed, which probably corresponds to a monomeric SecYEG-substrate complex. Trapping the SRP-dependent polytopic membrane protein mannitol permease in the SecYEG translocon, resulted in two complexes of 250 and 600 kDa, each containing both SecY and the translocon-associated membrane protein YidC. The appearance of both complexes was correlated with the number of transmembrane domains that were exposed during targeting of mannitol permease to the membrane. These results suggest that the assembly or the stability of the bacterial SecYEG translocon is influenced by the substrate that needs to be transported.
Collapse
Affiliation(s)
- Diana Boy
- Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | | |
Collapse
|
18
|
Bogdanov M, Xie J, Dowhan W. Lipid-protein interactions drive membrane protein topogenesis in accordance with the positive inside rule. J Biol Chem 2008; 284:9637-41. [PMID: 19074771 DOI: 10.1074/jbc.r800081200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transmembrane domain orientation within some membrane proteins is dependent on membrane lipid composition. Initial orientation occurs within the translocon, but final orientation is determined after membrane insertion by interactions within the protein and between lipid headgroups and protein extramembrane domains. Positively and negatively charged amino acids in extramembrane domains represent cytoplasmic retention and membrane translocation forces, respectively, which are determinants of protein orientation. Lipids with no net charge dampen the translocation potential of negative residues working in opposition to cytoplasmic retention of positive residues, thus allowing the functional presence of negative residues in cytoplasmic domains without affecting protein topology.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
19
|
Bogdanov M, Xie J, Heacock P, Dowhan W. To flip or not to flip: lipid-protein charge interactions are a determinant of final membrane protein topology. ACTA ACUST UNITED AC 2008; 182:925-35. [PMID: 18779371 PMCID: PMC2528571 DOI: 10.1083/jcb.200803097] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular details of how lipids influence final topological organization of membrane proteins are not well understood. Here, we present evidence that final topology is influenced by lipid-protein interactions most likely outside of the translocon. The N-terminal half of Escherichia coli lactose permease (LacY) is inverted with respect to the C-terminal half and the membrane bilayer when assembled in mutants lacking phosphatidylethanolamine and containing only negatively charged phospholipids. We demonstrate that inversion is dependent on interactions between the net charge of the cytoplasmic surface of the N-terminal bundle and the negative charge density of the membrane bilayer surface. A transmembrane domain, acting as a molecular hinge between the two halves of the protein, must also exit from the membrane for inversion to occur. Phosphatidylethanolamine dampens the translocation potential of negative residues in favor of the cytoplasmic retention potential of positive residues, thus explaining the dominance of positive over negative amino acids as co- or post-translational topological determinants.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School and Graduate School of Biomedical Sciences, Houston, TX 77225, USA
| | | | | | | |
Collapse
|
20
|
Lipids in the assembly of membrane proteins and organization of protein supercomplexes: implications for lipid-linked disorders. Subcell Biochem 2008; 49:197-239. [PMID: 18751913 DOI: 10.1007/978-1-4020-8831-5_8] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipids play important roles in cellular dysfunction leading to disease. Although a major role for phospholipids is in defining the membrane permeability barrier, phospholipids play a central role in a diverse range of cellular processes and therefore are important factors in cellular dysfunction and disease. This review is focused on the role of phospholipids in normal assembly and organization of the membrane proteins, multimeric protein complexes, and higher order supercomplexes. Since lipids have no catalytic activity, it is difficult to determine their function at the molecular level. Lipid function has generally been defined by affects on protein function or cellular processes. Molecular details derived from genetic, biochemical, and structural approaches are presented for involvement of phosphatidylethanolamine and cardiolipin in protein organization. Experimental evidence is presented that changes in phosphatidylethanolamine levels results in misfolding and topological misorientation of membrane proteins leading to dysfunctional proteins. Examples are presented for diseases in which proper protein folding or topological organization is not attained due to either demonstrated or proposed involvement of a lipid. Similar changes in cardiolipin levels affects the structure and function of individual components of the mitochondrial electron transport chain and their organization into supercomplexes resulting in reduced mitochondrial oxidative phosphorylation efficiency and apoptosis. Diseases in which mitochondrial dysfunction has been linked to reduced cardiolipin levels are described. Therefore, understanding the principles governing lipid-dependent assembly and organization of membrane proteins and protein complexes will be useful in developing novel therapeutic approaches for disorders in which lipids play an important role.
Collapse
|
21
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
22
|
Kalmbach R, Chizhov I, Schumacher MC, Friedrich T, Bamberg E, Engelhard M. Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes. J Mol Biol 2007; 371:639-48. [PMID: 17586523 DOI: 10.1016/j.jmb.2007.05.087] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 05/15/2007] [Accepted: 05/30/2007] [Indexed: 11/24/2022]
Abstract
The expression of membrane proteins for functional and structural studies or medicinal applications is still not very well established. Membrane-spanning proteins that mediate the information flow of the extracellular side with the interior of the cell are prime targets for drug development methods that would allow screening techniques or high throughput formats are of particular interest. Here we describe a systematic approach to the liposome-assisted cell-free synthesis of functional membrane proteins. We demonstrate the synthesis of bacteriorhodopsin (bR(cf)) in presence of small unilamellar liposomes. The yield of bR(cf) per volume cell culture is comparable to that of bacteriorhodopsin in its native host. The functional analysis of bR(cf) was performed directly using the cell-free reaction mixture. Photocycle measurements reveal kinetic data similar to that determined for bR in Halobacterium salinarum cell-envelope vesicles. The liposomes can be attached directly to black lipid membranes (BLM), which allows measuring light activated photocurrents in situ. The results reveal a functional proton pump with properties identical to those established for the native protein.
Collapse
Affiliation(s)
- Rolf Kalmbach
- Max-Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Shimohata N, Nagamori S, Akiyama Y, Kaback HR, Ito K. SecY alterations that impair membrane protein folding and generate a membrane stress. ACTA ACUST UNITED AC 2007; 176:307-17. [PMID: 17242069 PMCID: PMC2063957 DOI: 10.1083/jcb.200611121] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report on a class of Escherichia coli SecY mutants that impair membrane protein folding. The mutants also up-regulate the Cpx/σE stress response pathways. Similar stress induction was also observed in response to a YidC defect in membrane protein biogenesis but not in response to the signal recognition particle–targeting defect or in response to a simple reduction in the abundance of the translocon. Together with the previous contention that the Cpx system senses a protein abnormality not only at periplasmic and outer membrane locations but also at the plasma membrane, abnormal states of membrane proteins are postulated to be generated in these secY mutants. In support of this notion, in vitro translation, membrane integration, and folding of LacY reveal that mutant membrane vesicles allow the insertion of LacY but not subsequent folding into a normal conformation recognizable by conformation-specific antibodies. The results demonstrate that normal SecY function is required for the folding of membrane proteins after their insertion into the translocon.
Collapse
Affiliation(s)
- Nobuyuki Shimohata
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
24
|
Kiefer D, Kuhn A. YidC as an essential and multifunctional component in membrane protein assembly. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 259:113-38. [PMID: 17425940 DOI: 10.1016/s0074-7696(06)59003-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Membrane proteins fulfill a number of vital functions in prokaryotic and eukaryotic cells. They are often organized in multicomponent complexes, folded within the membrane bilayer and interacting with the cytoplasmic and periplasmic or external soluble compartments. For the biogenesis of integral membrane proteins, the essential biochemical steps are (1) the insertion and topogenesis of the transmembrane protein segments into the lipid bilayer, (2) the three-dimensional folding of the translocated hydrophilic domains, and (3) the assembly into multimeric complexes. Intensive research has elucidated the basic mechanisms of membrane protein insertion in the homologous translocation machineries of different cellular systems. Whereas the Sec translocation system is found in the endoplasmic reticulum of eukaryotic cells and in the prokaryotic plasma membrane, the YidC-Oxa1 membrane insertase is present in prokaryotic and organellar membranes. This review focuses on the discoveries of the YidC system in bacterial as well as the Oxa1/Alb3 protein family of eukaryotic cells and will particularly emphasize evolutionary aspects.
Collapse
Affiliation(s)
- Dorothee Kiefer
- Department of Microbiology, University of Hohenheim, D-70599 Stuttgart, Germany
| | | |
Collapse
|
25
|
van Bloois E, Nagamori S, Koningstein G, Ullers RS, Preuss M, Oudega B, Harms N, Kaback HR, Herrmann JM, Luirink J. The Sec-independent Function of Escherichia coli YidC Is Evolutionary-conserved and Essential. J Biol Chem 2005; 280:12996-3003. [PMID: 15671040 DOI: 10.1074/jbc.m414094200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
YidC plays a role in the integration and assembly of many (if not all) Escherichia coli inner membrane proteins. Strikingly, YidC operates in two distinct pathways: one associated with the Sec translocon that also mediates protein translocation across the inner membrane and one independent from the Sec translocon. YidC is homologous to Alb3 and Oxa1 that function in the integration of proteins into the thylakoid membrane of chloroplasts and inner membrane of mitochondria, respectively. Here, we have expressed the conserved region of yeast Oxa1 in a conditional E. coli yidC mutant. We find that Oxa1 restores growth upon depletion of YidC. Data obtained from in vivo protease protection assays and in vitro cross-linking and folding assays suggest that Oxa1 complements the insertion of Sec-independent proteins but is unable to take over the Sec-associated function of YidC. Together, our data indicate that the Sec-independent function of YidC is conserved and essential for cell growth.
Collapse
Affiliation(s)
- Edwin van Bloois
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dalbey RE, Chen M. Sec-translocase mediated membrane protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:37-53. [DOI: 10.1016/j.bbamcr.2004.03.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 03/08/2004] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
|
27
|
Guan L, Kaback HR. Binding affinity of lactose permease is not altered by the H+ electrochemical gradient. Proc Natl Acad Sci U S A 2004; 101:12148-52. [PMID: 15304639 PMCID: PMC514448 DOI: 10.1073/pnas.0404936101] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The x-ray structure of lactose permease of Escherichia coli (LacY) exhibits a single sugar-binding site at the apex of a hydrophilic cavity open to the cytoplasm, and it has been postulated that the binding site has alternating access to either side of the membrane during turnover. Here, the affinity of LacY for ligand in right-side-out or inside-out membrane vesicles is measured in the absence or presence of an H(+) electrochemical gradient (Deltamicro(H(+))) by utilizing ligand protection against alkylation. Right-side-out or inside-out membrane vesicles containing LacY with a single cysteine residue at position 148 exhibit K(D) values for lactose or beta-d-galactopyranosyl 1-thio-beta-d-galactopyranoside of approximately 1.0 mM or 40 microM, respectively, and no systematic change is observed in the presence of Deltamicro(H(+)) under conditions in which there is little or no accumulation of ligand. The results are consistent with a mechanism in which the major effect of Deltamicro(H(+)) on sugar accumulation is caused by an increased rate of deprotonation on the inner face of the membrane, leading to an increase in the rate of return of the unloaded symporter to the outer face of the membrane.
Collapse
Affiliation(s)
- Lan Guan
- Howard Hughes Medical Institute, Department of Physiology, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1662, USA
| | | |
Collapse
|
28
|
Abstract
YidC of Echerichia coli, a member of the conserved Alb3/Oxa1/YidC family, is postulated to be important for biogenesis of membrane proteins. Here, we use as a model the lactose permease (LacY), a membrane transport protein with a known three-dimensional structure, to determine whether YidC plays a role in polytopic membrane protein insertion and/or folding. Experiments in vivo and with an in vitro transcription/translation/insertion system demonstrate that YidC is not necessary for insertion per se, but plays an important role in folding of LacY. By using the in vitro system and two monoclonal antibodies directed against conformational epitopes, LacY is shown to bind the antibodies poorly in YidC-depleted membranes. Moreover, LacY also folds improperly in proteoliposomes prepared without YidC. However, when the proteoliposomes are supplemented with purified YidC, LacY folds correctly. The results indicate that YidC plays a primary role in folding of LacY into its final tertiary conformation via an interaction that likely occurs transiently during insertion into the lipid phase of the membrane.
Collapse
Affiliation(s)
- Shushi Nagamori
- 5-748 Macdonald Research Laboratories, Rm. 6720, P.O. Box 951662, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|
29
|
Elbaz Y, Steiner-Mordoch S, Danieli T, Schuldiner S. In vitro synthesis of fully functional EmrE, a multidrug transporter, and study of its oligomeric state. Proc Natl Acad Sci U S A 2004; 101:1519-24. [PMID: 14755055 PMCID: PMC341767 DOI: 10.1073/pnas.0306533101] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
EmrE is a small multidrug transporter from Escherichia coli that provides a unique model for the study of polytopic membrane proteins. Here, we show its synthesis in a cell-free system in a fully functional form. The detergent-solubilized protein binds substrates with high affinity and, when reconstituted into proteoliposomes, transports substrate in a Deltamicro(H)(+)-dependent fashion. Here, we used the cell-free system to study the oligomeric properties of EmrE. EmrE functions as an oligomer, but the size of the functional oligomer has not been established unequivocally. Coexpression of two plasmids in the cell-free system allowed demonstration of functional complementation and pull-down experiments confirmed that the basic functional unit is the dimer. An additional interaction between dimers has been detected by using crosslinking between unique Cys residues. This finding implies the existence of a dimer of dimers.
Collapse
Affiliation(s)
- Yael Elbaz
- Protein Expression Facility, Wolfson Foundation Center for Applied Structural Biology, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|