1
|
Wynsberghe JV, Vanakker OM. Significance of Premature Vertebral Mineralization in Zebrafish Models in Mechanistic and Pharmaceutical Research on Hereditary Multisystem Diseases. Biomolecules 2023; 13:1621. [PMID: 38002303 PMCID: PMC10669475 DOI: 10.3390/biom13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Zebrafish are increasingly becoming an important model organism for studying the pathophysiological mechanisms of human diseases and investigating how these mechanisms can be effectively targeted using compounds that may open avenues to novel treatments for patients. The zebrafish skeleton has been particularly instrumental in modeling bone diseases as-contrary to other model organisms-the lower load on the skeleton of an aquatic animal enables mutants to survive to early adulthood. In this respect, the axial skeletons of zebrafish have been a good read-out for congenital spinal deformities such as scoliosis and degenerative disorders such as osteoporosis and osteoarthritis, in which aberrant mineralization in humans is reflected in the respective zebrafish models. Interestingly, there have been several reports of hereditary multisystemic diseases that do not affect the vertebral column in human patients, while the corresponding zebrafish models systematically show anomalies in mineralization and morphology of the spine as their leading or, in some cases, only phenotype. In this review, we describe such examples, highlighting the underlying mechanisms, the already-used or potential power of these models to help us understand and amend the mineralization process, and the outstanding questions on how and why this specific axial type of aberrant mineralization occurs in these disease models.
Collapse
Affiliation(s)
- Judith Van Wynsberghe
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| | - Olivier M Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Gelli R, Pucci V, Ridi F, Baglioni P. A study on biorelevant calciprotein particles: Effect of stabilizing agents on the formation and crystallization mechanisms. J Colloid Interface Sci 2022; 620:431-441. [DOI: 10.1016/j.jcis.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022]
|
3
|
Rudloff S, Jahnen-Dechent W, Huynh-Do U. Tissue chaperoning—the expanded functions of fetuin-A beyond inhibition of systemic calcification. Pflugers Arch 2022; 474:949-962. [PMID: 35403906 PMCID: PMC8995415 DOI: 10.1007/s00424-022-02688-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023]
Abstract
AbstractTraditionally, fetuin-A embodies the prototype anti-calcification protein in the blood, preventing cardiovascular calcification. Low serum fetuin-A is generally associated with mineralization dysbalance and enhanced mortality in end stage renal disease. Recent evidence indicates that fetuin-A is a crucial factor moderating tissue inflammation and fibrosis, as well as a systemic indicator of acute inflammatory disease. Here, the expanded function of fetuin-A is discussed in the context of mineralization and inflammation biology. Unbalanced depletion of fetuin-A in this context may be the critical event, triggering a vicious cycle of progressive calcification, inflammation, and tissue injury. Hence, we designate fetuin-A as tissue chaperone and propose the potential use of exogenous fetuin-A as prophylactic agent or emergency treatment in conditions that are associated with acute depletion of endogenous protein.
Collapse
Affiliation(s)
- Stefan Rudloff
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen, University Medical Faculty, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Uyen Huynh-Do
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland.
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland.
| |
Collapse
|
4
|
Hariri E, Kassis N, Iskandar JP, Schurgers LJ, Saad A, Abdelfattah O, Bansal A, Isogai T, Harb SC, Kapadia S. Vitamin K 2-a neglected player in cardiovascular health: a narrative review. Open Heart 2021; 8:openhrt-2021-001715. [PMID: 34785587 PMCID: PMC8596038 DOI: 10.1136/openhrt-2021-001715] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Vitamin K2 serves an important role in cardiovascular health through regulation of calcium homeostasis. Its effects on the cardiovascular system are mediated through activation of the anti-calcific protein known as matrix Gla protein. In its inactive form, this protein is associated with various markers of cardiovascular disease including increased arterial stiffness, vascular and valvular calcification, insulin resistance and heart failure indices which ultimately increase cardiovascular mortality. Supplementation of vitamin K2 has been strongly associated with improved cardiovascular outcomes through its modification of systemic calcification and arterial stiffness. Although its direct effects on delaying the progression of vascular and valvular calcification is currently the subject of multiple randomised clinical trials, prior reports suggest potential improved survival among cardiac patients with vitamin K2 supplementation. Strengthened by its affordability and Food and Drug Adminstration (FDA)-proven safety, vitamin K2 supplementation is a viable and promising option to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Essa Hariri
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Nicholas Kassis
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Jean-Pierre Iskandar
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Leon J Schurgers
- Biochemistry, Maastricht University CARIM School for Cardiovascular Diseases, Maastricht, The Netherlands
| | - Anas Saad
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Omar Abdelfattah
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA.,Department of Cardiovascular Medicine, Morristown Medical Center, Morristown, New Jersey, USA
| | - Agam Bansal
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Toshiaki Isogai
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Serge C Harb
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Samir Kapadia
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Cleland TP, Wang Z, Wang B, Picu CR, Vashishth D. Mechano-chemical regulation of bat wing bones for flight. J Mech Behav Biomed Mater 2021; 124:104809. [PMID: 34517171 DOI: 10.1016/j.jmbbm.2021.104809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 04/26/2021] [Accepted: 08/31/2021] [Indexed: 11/15/2022]
Abstract
Distal phalanges in bat wings have been hypothesized to be cartilaginous to allow for flight. We provide new evidence on how bat wing development might facilitate flight though protein-based regulation of bone mineralization and lead to more deflection at phalanx than humerus. Between Pteropus poliocephalus and Pteropus hypomelanus, two large bat species, we detected 112 proteins including 11 associated with mineralization and analyzed their distribution between the wing bones. Here, in contrast to previous reports, we found no cartilage-specific proteins and demonstrate that distal phalanges in bat wings are in fact low density bone that contain collagen I (the main constituent of bone's organic matrix) and proteins associated with mineralization in bone such as osteomodulin, bone-specific protein osteocalcin. The functional relevance of these changes was explored by measuring changes in mineral (crystal sizes, packing and density), material (Young's modulus and hardness) and structural characteristics. Consistent with changes in proteins associated with mineralization, mineral crystal thickness and alignment decreased from humerus to phalanges, and the mineral platelets were less densely packed along the wing length. Crystal thickness was negatively correlated with proteins associated with inhibition of mineralization as well as with two types of small leucine-rich proteoglycans, indicating the mineral growth and maturity is down regulated by these proteins independent of mineral quantity. The Young's modulus decreased across the wing and was significantly correlated with bone mineral density. Thus, the results from two bat species, studied here, demonstrate progressive alterations in bone mineralization occur in concert with the changes in secretion of bone regulatory proteins along the wing length. This altered mineralization together with structural changes serve to lighten the limb bone and optimize biomechanical properties conducive to flight.
Collapse
Affiliation(s)
- Timothy P Cleland
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Zehai Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Bowen Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Catalin R Picu
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
6
|
Ishida K, Ashizawa N, Morikane S, Kurita N, Kobashi S, Iwanaga T. Assessment of calciprotein particle formation by AUC of the absorbance change: effect of FYB-931, a novel bisphosphonate compound. J Pharm Pharmacol 2021; 73:947-955. [PMID: 33882129 DOI: 10.1093/jpp/rgab019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/24/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Ectopic calcification such as vascular calcification, involves the formation of calciprotein particle (CPP), that is, colloidal particle of calcium phosphate bound to serum protein. In this study, a novel parameter for CPP formation was introduced, thereby the effect of FYB-931, a bisphosphonate compound was evaluated. METHODS CPP formation in rat serum was assessed by the area under the curve (AUC) of the change in absorbance over time, and the commonly used T50, as indices. In vivo, the rats were treated with vitamin D3 to induce vascular calcification and then intravenously administered FYB-931 or etidronate thrice weekly for 2 weeks. KEY FINDINGS In vitro, FYB-931 was the most potent inhibitor of CPP formation and it also inhibited the maximum response of CPP formation at higher concentrations. The AUC of the change in absorbance provided obvious dose-dependency, while T50 did not. FYB-931 dose-dependently prevented aortic calcification in vivo as well as CPP formation ex vivo more potently than etidronate. AUC showed a stronger correlation with the degree of aortic calcification than T50. CONCLUSIONS The AUC in CPP formation can be an alternative parameter that reflects calcification. Based on the findings, FYB-931 has potential as an anti-calcifying agent.
Collapse
Affiliation(s)
- Koichi Ishida
- Research Laboratories 2, Fuji Yakuhin Co., Ltd., Saitama, Saitama Prefecture, Japan
| | - Naoki Ashizawa
- Research Laboratories 2, Fuji Yakuhin Co., Ltd., Saitama, Saitama Prefecture, Japan
| | - Shota Morikane
- Research Laboratories 2, Fuji Yakuhin Co., Ltd., Saitama, Saitama Prefecture, Japan
| | - Naoki Kurita
- Tokyo Headquarters, Fuji Yakuhin Co., Ltd., Chiyoda-ku, Tokyo Prefecture, Japan
| | - Seiichi Kobashi
- Research Laboratories 1, Fuji Yakuhin Co., Ltd., Saitama, Saitama Prefecture, Japan
| | - Takashi Iwanaga
- Research Laboratories 2, Fuji Yakuhin Co., Ltd., Saitama, Saitama Prefecture, Japan
| |
Collapse
|
7
|
Kutikhin AG, Feenstra L, Kostyunin AE, Yuzhalin AE, Hillebrands JL, Krenning G. Calciprotein Particles: Balancing Mineral Homeostasis and Vascular Pathology. Arterioscler Thromb Vasc Biol 2021; 41:1607-1624. [PMID: 33691479 PMCID: PMC8057528 DOI: 10.1161/atvbaha.120.315697] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anton G. Kutikhin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Lian Feenstra
- Department of Pathology and Medical Biology, Division of Pathology (L.F., J.-L.H.), University Medical Center Groningen, University of Groningen, the Netherlands
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology (L.F., G.K.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Alexander E. Kostyunin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Arseniy E. Yuzhalin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology (L.F., J.-L.H.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology (L.F., G.K.), University Medical Center Groningen, University of Groningen, the Netherlands
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726 GN, Groningen, the Netherlands (G.K.)
| |
Collapse
|
8
|
Turner ME, White CA, Taylor SM, Neville K, Rees-Milton K, Hopman WM, Adams MA, Anastassiades T, Holden RM. Secreted Phosphoprotein 24 is a Biomarker of Mineral Metabolism. Calcif Tissue Int 2021; 108:354-363. [PMID: 33481052 DOI: 10.1007/s00223-020-00783-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
The 24 kD form of secreted phosphoprotein (SPP-24), a cytokine-binding bone matrix protein with various truncated C-terminal products, is primarily synthesized by the liver. SPP-24 shares homology with fetuin-A, a potent vascular and soft tissue calcification inhibitor and SPP-24 is one component of calciprotein particles (CPPs), a circulating fetuin-mineral complex. The limited molecular evidence to date suggests that SPP-24 may also function as an inhibitor of bone formation and ectopic vascular calcification, potentially through bone morphogenic protein 2 (BMP-2) and Wnt-signaling mediated actions. The C-terminal products of SPP-24 bind to BMP-2 and attenuate BMP-2-induced bone formation. The aim of this study was to assess circulating SPP-24 in relation to kidney function and in concert with markers of mineral metabolism in humans. SPP-24 was measured in the serum of total of 192 subjects using ELISA-based measurements. Subjects were participants of one of two cohorts: (1) mGFR Cohort (n = 80) was participants of a study of measured GFR (mGFR) using inulin urinary clearance, recruited mostly from a chronic kidney disease clinic with low-range kidney function (eGFR 38.7 ± 25.0 mL/min/1.73 m2) and (2) CaMOS Cohort (n = 112) was a subset of randomly selected, community-dwelling participants of year 10 of the Canadian Multicentre Osteoporosis Study with eGFR in the normal range of 75.0 ± 15.9 mL/min/1.73 m2. In the combined cohort, the mean SPP-24 was 167.7 ± 101.1 ng/mL (range 33.4-633.6 ng/mL). The mean age was 66.5 ± 11.3, 57.1% female and mean eGFR (CKD-EPI) was 59.9 ± 27.0 mL/min/1.73 m2 (range 8-122 mL/min/1.73 m2). There was a strong inverse correlation between SPP-24 and eGFR (R = - 0.58, p < 0.001) that remained after adjustment for age. Following adjustment for age, eGFR, and sex, SPP-24 was significantly associated with phosphate (R = - 0.199), PTH (R = 0.298), and the Wnt-signaling inhibitor Dickkopf-related protein 1 (R = - 0.156). The results of this study indicate that SPP-24 is significantly altered by kidney function and is the first human data linking levels of SPP-24 to other biomarkers involved in mineral metabolism. Whether there is a role for circulating SPP-24 in bone formation and ectopic mineralization requires further study.
Collapse
Affiliation(s)
- Mandy E Turner
- Department of Biomedical and Molecular Sciences, Queen's University, 3048C Etherington Hall, Kingston, ON, K7L 3V6, Canada
| | - Christine A White
- Department of Medicine, Queen's University, Kingston, ON, K7L 3V6, Canada
| | - Sarah M Taylor
- Department of Biomedical and Molecular Sciences, Queen's University, 3048C Etherington Hall, Kingston, ON, K7L 3V6, Canada
| | - Kathryn Neville
- Department of Biomedical and Molecular Sciences, Queen's University, 3048C Etherington Hall, Kingston, ON, K7L 3V6, Canada
| | - Karen Rees-Milton
- Department of Medicine, Queen's University, Kingston, ON, K7L 3V6, Canada
| | - Wilma M Hopman
- KGH Research Institute, Kingston Health Sciences Centre, Kingston, ON, K7L 3V6, Canada
- Department of Public Health Sciences, Queen's University, Kingston, ON, K7L 3V6, Canada
| | - Michael A Adams
- Department of Biomedical and Molecular Sciences, Queen's University, 3048C Etherington Hall, Kingston, ON, K7L 3V6, Canada
| | - Tassos Anastassiades
- Department of Biomedical and Molecular Sciences, Queen's University, 3048C Etherington Hall, Kingston, ON, K7L 3V6, Canada
- Department of Medicine, Queen's University, Kingston, ON, K7L 3V6, Canada
| | - Rachel M Holden
- Department of Biomedical and Molecular Sciences, Queen's University, 3048C Etherington Hall, Kingston, ON, K7L 3V6, Canada.
- Department of Medicine, Queen's University, Kingston, ON, K7L 3V6, Canada.
| |
Collapse
|
9
|
Structural Biology of Calcium Phosphate Nanoclusters Sequestered by Phosphoproteins. CRYSTALS 2020. [DOI: 10.3390/cryst10090755] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biofluids that contain stable calcium phosphate nanoclusters sequestered by phosphopeptides make it possible for soft and hard tissues to co-exist in the same organism with relative ease. The stability diagram of a solution of nanocluster complexes shows how the minimum concentration of phosphopeptide needed for stability increases with pH. In the stable region, amorphous calcium phosphate cannot precipitate. Nevertheless, if the solution is brought into contact with hydroxyapatite, the crystalline phase will grow at the expense of the nanocluster complexes. The physico-chemical principles governing the formation, composition, size, structure, and stability of the complexes are described. Examples are given of complexes formed by casein, osteopontin, and recombinant phosphopeptides. Application of these principles and properties to blood serum, milk, urine, and resting saliva is described to show that under physiological conditions they are in the stable region of their stability diagram and so cannot cause soft tissue calcification. Stimulated saliva, however, is in the metastable region, consistent with its role in tooth remineralization. Destabilization of biofluids, with consequential ill-effects, can occur when there is a failure of homeostasis, such as an increase in pH without a balancing increase in the concentration of sequestering phosphopeptides.
Collapse
|
10
|
Jahnen-Dechent W, Büscher A, Köppert S, Heiss A, Kuro-O M, Smith ER. Mud in the blood: the role of protein-mineral complexes and extracellular vesicles in biomineralisation and calcification. J Struct Biol 2020; 212:107577. [PMID: 32711043 DOI: 10.1016/j.jsb.2020.107577] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022]
Abstract
Protein-mineral interaction is known to regulate biomineral stability and morphology. We hypothesise that fluid phases produce highly dynamic protein-mineral complexes involved in physiology and pathology of biomineralisation. Here, we specifically focus on calciprotein particles, complexes of vertebrate mineral-binding proteins and calcium phosphate present in the systemic circulation and abundant in extracellular fluids - hence the designation of the ensuing protein-mineral complexes as "mud in the blood". These complexes exist amongst other extracellular particles that we collectively refer to as "the particle zoo".
Collapse
Affiliation(s)
- Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany.
| | - Andrea Büscher
- Helmholtz-Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Sina Köppert
- Helmholtz-Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Alexander Heiss
- The Research Institute for Precious Metals and Metals Chemistry (fem), Schwaebisch Gmuend, Germany
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| |
Collapse
|
11
|
Bavendiek J, Maurer P, Gräber S, Pasch A, Schomburg WK, Jahnen-Dechent W. Rapid calcification propensity testing in blood using a temperature controlled microfluidic polymer chip. PLoS One 2020; 15:e0230493. [PMID: 32255786 PMCID: PMC7138308 DOI: 10.1371/journal.pone.0230493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/02/2020] [Indexed: 11/19/2022] Open
Abstract
Phosphate toxicity is a major threat to cardiovascular health in chronic kidney disease. It is associated with oxidative stress, inflammation and the accumulation of calcium phosphate commonly known as calcification in soft tissues leading to functional disorders of blood vessels. An improved calcification propensity test for the assessment of phosphate toxicity was developed, which measures the velocity of calcium phosphate mineralization from colloidal precursors in vitro. This so called T50 test measures the transformation from a primary into a secondary form of nanosized colloidal plasma protein-calcium phosphate particles known as calciprotein particles. The T50 test in its previous form required a temperature controlled nephelometer and several hours of continuous measurement, which precluded rapid bed side testing. We miniaturized the test using microfluidic polymer chips produced by ultrasonic hot embossing. A cartridge holder contained a laser diode for illumination, light dependent resistor for detection and a Peltier element for thermo control. Increasing the assay temperature from 37°C to 75°C reduced the T50 test time 36-fold from 381 ± 10 min at 37°C to 10.5 ± 0.3 min at 75°C. Incorporating sputtered micro mirrors into the chip design increased the effective light path length, and improved signal-to-noise ratio 9-fold. The speed and reproducibility of the T50 chip-based assay run at 75°C suggest that it may be suitable for rapid measurements, preferably in-line in a dialyser or in a portable microfluidic analytic device with the chip inserted as a disposable cartridge.
Collapse
Affiliation(s)
| | | | - Steffen Gräber
- Biointerface Laboratory, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Clinics, Aachen, Germany
| | - Andreas Pasch
- Calciscon AG, Nidau; Lindenhofspital, Bern, Switzerland; Institute for Physiology and Pathopysiology, Johannes Kepler University, Linz, Austria
| | | | - Willi Jahnen-Dechent
- Biointerface Laboratory, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Clinics, Aachen, Germany
- * E-mail:
| |
Collapse
|
12
|
Research Models for Studying Vascular Calcification. Int J Mol Sci 2020; 21:ijms21062204. [PMID: 32210002 PMCID: PMC7139511 DOI: 10.3390/ijms21062204] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Calcification of the vessel wall contributes to high cardiovascular morbidity and mortality. Vascular calcification (VC) is a systemic disease with multifaceted contributing and inhibiting factors in an actively regulated process. The exact underlying mechanisms are not fully elucidated and reliable treatment options are lacking. Due to the complex pathophysiology, various research models exist evaluating different aspects of VC. This review aims to give an overview of the cell and animal models used so far to study the molecular processes of VC. Here, in vitro cell culture models of different origins, ex vivo settings using aortic tissue and various in vivo disease-induced animal models are summarized. They reflect different aspects and depict the (patho)physiologic mechanisms within the VC process.
Collapse
|
13
|
Herrmann M, Babler A, Moshkova I, Gremse F, Kiessling F, Kusebauch U, Nelea V, Kramann R, Moritz RL, McKee MD, Jahnen-Dechent W. Lumenal calcification and microvasculopathy in fetuin-A-deficient mice lead to multiple organ morbidity. PLoS One 2020; 15:e0228503. [PMID: 32074120 PMCID: PMC7029858 DOI: 10.1371/journal.pone.0228503] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022] Open
Abstract
The plasma protein fetuin-A mediates the formation of protein-mineral colloids known as calciprotein particles (CPP)-rapid clearance of these CPP by the reticuloendothelial system prevents errant mineral precipitation and therefore pathological mineralization (calcification). The mutant mouse strain D2,Ahsg-/- combines fetuin-A deficiency with the calcification-prone DBA/2 genetic background, having a particularly severe compound phenotype of microvascular and soft tissue calcification. Here we studied mechanisms leading to soft tissue calcification, organ damage and death in these mice. We analyzed mice longitudinally by echocardiography, X-ray-computed tomography, analytical electron microscopy, histology, mass spectrometry proteomics, and genome-wide microarray-based expression analyses of D2 wildtype and Ahsg-/- mice. Fetuin-A-deficient mice had calcified lesions in myocardium, lung, brown adipose tissue, reproductive organs, spleen, pancreas, kidney and the skin, associated with reduced growth, cardiac output and premature death. Importantly, early-stage calcified lesions presented in the lumen of the microvasculature suggesting precipitation of mineral containing complexes from the fluid phase of blood. Genome-wide expression analysis of calcified lesions and surrounding (not calcified) tissue, together with morphological observations, indicated that the calcification was not associated with osteochondrogenic cell differentiation, but rather with thrombosis and fibrosis. Collectively, these results demonstrate that soft tissue calcification can start by intravascular mineral deposition causing microvasculopathy, which impacts on growth, organ function and survival. Our study underscores the importance of fetuin-A and related systemic regulators of calcified matrix metabolism to prevent cardiovascular disease, especially in dysregulated mineral homeostasis.
Collapse
Affiliation(s)
- Marietta Herrmann
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Anne Babler
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Irina Moshkova
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Felix Gremse
- Helmholtz Institute for Biomedical Engineering, Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Fabian Kiessling
- Helmholtz Institute for Biomedical Engineering, Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Ulrike Kusebauch
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Valentin Nelea
- Faculty of Dentistry, Faculty of Medicine (Dept. of Anatomy and Cell Biology), McGill University, Montreal, Quebec, Canada
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University Hospital, Aachen, Germany
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Marc D. McKee
- Faculty of Dentistry, Faculty of Medicine (Dept. of Anatomy and Cell Biology), McGill University, Montreal, Quebec, Canada
| | - Willi Jahnen-Dechent
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
14
|
Bjørklund G, Svanberg E, Dadar M, Card DJ, Chirumbolo S, Harrington DJ, Aaseth J. The Role of Matrix Gla Protein (MGP) in Vascular Calcification. Curr Med Chem 2020; 27:1647-1660. [PMID: 30009696 DOI: 10.2174/0929867325666180716104159] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 01/07/2023]
Abstract
Matrix Gla protein (MGP) is a vitamin K-dependent protein, which is synthesized in bone and many other mesenchymal cells, which is also highly expressed by vascular smooth muscle cells (VSMCs) and chondrocytes. Numerous studies have confirmed that MGP acts as a calcification-inhibitor although the mechanism of action is still not fully understood. The modulation of tissue calcification by MGP is potentially regulated in several ways including direct inhibition of calcium-phosphate precipitation, the formation of matrix vesicles (MVs), the formation of apoptotic bodies (ABs), and trans-differentiation of VSMCs. MGP occurs as four species, i.e. fully carboxylated (cMGP), under-carboxylated, i.e. poorly carboxylated (ucMGP), phosphorylated (pMGP), and non-phosphorylated (desphospho, dpMGP). ELISA methods are currently available that can detect the different species of MGP. The expression of the MGP gene can be regulated via various mechanisms that have the potential to become genomic biomarkers for the prediction of vascular calcification (VC) progression. VC is an established risk factor for cardiovascular disease and is particularly prevalent in those with chronic kidney disease (CKD). The specific action of MGP is not yet clearly understood but could be involved with the functional inhibition of BMP-2 and BMP-4, by blocking calcium crystal deposition and shielding the nidus from calcification.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Erik Svanberg
- Department of Medicine, Solleftea Hospital, Solleftea, Sweden
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - David J Card
- Human Nutristasis Unit, Viapath, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Dominic J Harrington
- Human Nutristasis Unit, Viapath, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Jan Aaseth
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway
- Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| |
Collapse
|
15
|
Răduț R, Crăciun AM, Silaghi CN. BONE MARKERS IN ARTHROPATHIES. Acta Clin Croat 2019; 58:716-725. [PMID: 32595257 PMCID: PMC7314293 DOI: 10.20471/acc.2019.58.04.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bone endures a lifelong course of construction and destruction, with bone marker (BM) molecules released during this cycle. The field of measuring BM levels in synovial fluid and peripheral blood is a cardinal part of bone research within modern clinical medicine and has developed extensively in the last years. The purpose of our work was to convey an up-to-date overview on synovial fluid and serum BMs in the most common arthropathies.
Collapse
Affiliation(s)
| | - Alexandra M Crăciun
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian N Silaghi
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Zhang J, Ma Z, Yan K, Wang Y, Yang Y, Wu X. Matrix Gla Protein Promotes the Bone Formation by Up-Regulating Wnt/β-Catenin Signaling Pathway. Front Endocrinol (Lausanne) 2019; 10:891. [PMID: 31920993 PMCID: PMC6933527 DOI: 10.3389/fendo.2019.00891] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023] Open
Abstract
Objective: Studies suggest that matrix Gla protein (MGP) is associated with osteoporosis. However, the precise mechanism through which MGP regulates bone metabolism is not fully understood. The purpose of this study was to clarify the role of MGP in bone metabolism. Methods: The MGP gene in MG63 cell line was knocked down using shRNA. Cell Counting Kit-8 assay was used to detect the proliferation of MG63 cells. Moreover, the differentiation and mineralization of MG63 cells were measured through alkaline phosphatase staining and Alizarin Red S staining. Western blotting and quantitative reverse transcription-polymerase chain reaction were conducted to detect the protein and mRNA levels of components of the Wnt/β-catenin signaling pathway, such as Wnt3a, β-catenin, and Runx2. Transgenic (MGP+) mice were used to detect the effects of MGP in vivo. Results: The Cell Counting Kit-8 assay suggested that upregulated MGP could promote the proliferation of MG63 cells, whereas its downregulation inhibited proliferation. The alkaline phosphatase assay and Alizarin Red S staining showed that overexpressed MGP led to prominently upregulated differentiation and mineralization of MG63 cells. Conversely, knockdown of MGP decreased the levels of differentiation and mineralization. Western blotting and quantitative reverse transcription-polymerase chain reaction showed that overexpression of MGP upregulated Wnt3a, β-catenin, and Runx2. In contrast, knocking down MGP reduced their transcriptional levels. In vivo, overexpression of MGP inhibited the decrease in bone mineral density induced via ovariectomy in the femur, and significantly prevented bone volume fraction, trabecular number, BV/TV, and TbTh to decrease. In addition, it increased the levels of estradiol in sera. Conclusion: The findings of this study suggest that the promotion of osteoblast proliferation, differentiation, and mineralization by MGP may be a mechanism to prevent osteoporosis. Furthermore, the results show that MGP promoted the osteogenic effects via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Endocrinology and Metabolism, The Second Attached Hospital of Nanchang University, Nanchang, China
- Department of Endocrinology and Metabolism, Heyuan People's Hospital, Heyuan, China
| | - Zhenrong Ma
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Kang Yan
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Yong Wang
- Department of Forensic Medicine, School of Basic Medical Science, Central South University, Changsha, China
| | - Ya Yang
- Department of Endocrinology and Metabolism, The Second Attached Hospital of Nanchang University, Nanchang, China
- *Correspondence: Ya Yang
| | - Xiang Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Xiang Wu
| |
Collapse
|
17
|
Martel J, Wu CY, Peng HH, Young JD. Mineralo-organic nanoparticles in health and disease: an overview of recent findings. Nanomedicine (Lond) 2018; 13:1787-1793. [DOI: 10.2217/nnm-2018-0108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We observed earlier that mineralo-organic nanoparticles form in human body fluids when the concentrations of calcium, carbonate and phosphate exceed saturation. The particles have been shown to represent mineral precursors in developing bones and teeth as well as in ectopic calcification and kidney stones. Recent studies suggest that the mineral particles may also be involved in other physiological processes, including immune tolerance against the gut microbiota and food antigens. We review here the involvement of mineralo-organic nanoparticles in physiological and pathological processes and discuss recent findings that reveal novel and unexpected roles for these particles in the human body.
Collapse
Affiliation(s)
- Jan Martel
- Laboratory of Nanomaterials, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Cheng-Yeu Wu
- Laboratory of Nanomaterials, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsin-Hsin Peng
- Laboratory of Nanomaterials, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan
- Laboratory Animal Center, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - John D Young
- Laboratory of Nanomaterials, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Laboratory of Cellular Physiology & Immunology, Rockefeller University, New York, NY 10021, USA
| |
Collapse
|
18
|
Barrett H, O'Keeffe M, Kavanagh E, Walsh M, O'Connor EM. Is Matrix Gla Protein Associated with Vascular Calcification? A Systematic Review. Nutrients 2018; 10:E415. [PMID: 29584693 PMCID: PMC5946200 DOI: 10.3390/nu10040415] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 12/19/2022] Open
Abstract
Specific patient cohorts are at increased risk of vascular calcification. Functional matrix-gla protein (MGP), a tissue-derived vitamin K dependent protein, is reported to be an important inhibitor of vascular calcification and may have clinical potential to modify the progression of vascular calcification through regulation of functional MGP fractions. This systematic review examines twenty-eight studies which assess the relationship between circulating protein expressions of MGP species and vascular calcification in different arterial beds. The included studies examined participants with atherosclerosis, chronic kidney disease (CKD), diabetes, healthy participants, vitamin K supplementation, measured plasma vitamin K levels and vitamin K antagonist usage. The current review reports conflicting results regarding MGP fractions with respect to local calcification development indicating that a multifaceted relationship exists between the MGP and calcification. A primary concern regarding the studies in this review is the large degree of variability in the calcification location assessed and the fraction of MGP measured. This review suggests that different underlying molecular mechanisms can accelerate local disease progression within the vasculature, and specific circulating fractions of MGP may be influenced differently depending on the local disease states related to vascular calcification development. Further studies examining the influence of non-functional MGP levels, with respect to specific calcified arterial beds, are warranted.
Collapse
Affiliation(s)
- Hilary Barrett
- Centre for Applied Biomedical Engineering Research (CABER), School of Engineering, Bernal Institute, University of Limerick, Limerick V94 F858, UK.
| | - Mary O'Keeffe
- School of Natural Sciences and Department of Biological Sciences, University of Limerick, Limerick V94 F858, UK.
| | - Eamon Kavanagh
- Department of Vascular Surgery, University Hospital Limerick, Limerick V94 F858, UK.
| | - Michael Walsh
- Centre for Applied Biomedical Engineering Research (CABER), School of Engineering, Bernal Institute, University of Limerick, Limerick V94 F858, UK.
- Health Research Institute (HRI), University of Limerick, Limerick V94 F858, UK.
| | - Eibhlís M O'Connor
- School of Natural Sciences and Department of Biological Sciences, University of Limerick, Limerick V94 F858, UK.
- Health Research Institute (HRI), University of Limerick, Limerick V94 F858, UK.
- Alimentary Pharmabiotic Centre, Microbiome Institute, University College Cork, Cork T12 YN60, UK.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Blood is a biological fluid, which controls the precipitation of calcium and phosphate and transports mineral debris. This review presents and discusses the current concepts and novel assessment methods of systemic calcification propensity in blood. RECENT FINDINGS Calcium and phosphate combine with calcification-inhibiting proteins, mainly fetuin-A, to form amorphous calcium phosphate-containing primary calciprotein particles (CPPs). These nanosized mineral-protein clusters undergo spontaneous transformation to secondary CPP, which contain crystalline calcium phosphate. Two recently developed methods assess complementary aspects of the calcification propensity of serum. The CPP-fetuin-A method determines the amount of sedimentable fetuin-A, whereas the T50-Test determines the transformation time point T50 from amorphous to crystalline CPPs in artificially supersaturated serum.Clinical studies in renal patients have already demonstrated close associations of the CPP-fetuin-A method with all-cause mortality, severity of coronary calcification and aortic stiffness, and of the T50-Test with cardiovascular and all-cause mortality, renal graft failure and aortic stiffening. SUMMARY Systemic calcification propensity can be assessed by two novel methods providing complementary information about the status and performance of the humoral calcification-regulating system in serum. These tests may help guide better patient care in the future with the use of more individualized therapies.
Collapse
|
20
|
Viegas CSB, Santos L, Macedo AL, Matos AA, Silva AP, Neves PL, Staes A, Gevaert K, Morais R, Vermeer C, Schurgers L, Simes DC. Chronic Kidney Disease Circulating Calciprotein Particles and Extracellular Vesicles Promote Vascular Calcification: A Role for GRP (Gla-Rich Protein). Arterioscler Thromb Vasc Biol 2018; 38:575-587. [PMID: 29301790 DOI: 10.1161/atvbaha.117.310578] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/15/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Inhibition of mineral crystal formation is a crucial step in ectopic calcification. Serum calciprotein particles (CPPs) have been linked to chronic kidney disease (CKD) calcification propensity, but additional knowledge is required to understand their function, assemblage, and composition. The role of other circulating nanostructures, such as extracellular vesicles (EVs) in vascular calcification is currently unknown. Here, we investigated the association of GRP (Gla-rich protein) with circulating CPP and EVs and the role of CKD CPPs and EVs in vascular calcification. APPROACH AND RESULTS Biological CPPs and EVs were isolated from healthy and CKD patients and comparatively characterized using ultrastructural, analytic, molecular, and immuno-based techniques. Our results show that GRP is a constitutive component of circulating CPPs and EVs. CKD stage 5 serum CPPs and EVs are characterized by lower levels of fetuin-A and GRP, and CPPs CKD stage 5 have increased mineral maturation, resembling secondary CPP particles. Vascular smooth muscle cell calcification assays reveal that CPPs CKD stage 5 and EVs CKD stage 5 are taken up by vascular smooth muscle cells and induce vascular calcification by promoting cell osteochondrogenic differentiation and inflammation. These effects were rescued by incubation of CPPs CKD stage 5 with γ-carboxylated GRP. In vitro, formation and maturation of basic calcium phosphate crystals was highly reduced in the presence of γ-carboxylated GRP, fetuin-A, and MGP (matrix gla protein), and a similar antimineralization system was identified in vivo. CONCLUSIONS Uremic CPPs and EVs are important players in the mechanisms of widespread calcification in CKD. We propose a major role for cGRP as inhibitory factor to prevent calcification at systemic and tissue levels.
Collapse
Affiliation(s)
- Carla S B Viegas
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Lúcia Santos
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Anjos L Macedo
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - António A Matos
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Ana P Silva
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Pedro L Neves
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - An Staes
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Kris Gevaert
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Rute Morais
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Cees Vermeer
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Leon Schurgers
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands
| | - Dina C Simes
- From the Centre of Marine Sciences (C.S.B.V., L.S., D.C.S.), GenoGla Diagnostics, Centre of Marine Sciences (C.S.B.V., D.C.S.), and Department of Biomedical Sciences and Medicine (A.P.S., P.L.N.), University of Algarve, Faro, Portugal; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal (A.L.M., R.M.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal (A.A.M.); Nephrology Department, Centro Hospitalar do Algarve, Faro, Portugal (A.P.S., P.L.N.); VIB-UGent Center for Medical Biotechnology Center and UGent Department of Biochemistry, Ghent, Belgium (A.S., K.G.); and R&D Group VitaK (C.V.) and Department of Biochemistry - Vascular Aspects, Faculty of Medicine, Health and Life Science (L.S.), Maastricht University, The Netherlands.
| |
Collapse
|
21
|
Mehrsai A, Guitynavard F, Nikoobakht MR, Gooran S, Ahmadi A. The relationship between serum and urinary Fetuin-A levels and kidney stone formation among kidney stone patients. Cent European J Urol 2017; 70:394-399. [PMID: 29410892 PMCID: PMC5791390 DOI: 10.5173/ceju.2017.873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 12/29/2022] Open
Abstract
Introduction Mineralization inhibitors are required to prevent the precipitation of minerals and inhibit the formation of kidney stones and other ectopic calcifications. In laboratory studies, Fetuin-A as a glycoprotein has inhibited hydroxyapatite precipitation in calcium and phosphate supersaturated solutions; however, information about patients with kidney stones is limited. The aim of this study was to investigate the association of serum and urinary Fetuin-A levels with calcium oxalate kidney stones. Material and methods In this case-control study, 30 patients with kidney stones and 30 healthy individuals without any history of urolithiasis who were referred to the urology ward of Sina Hospital of Tehran, Iran, in 2015 were entered into the study. All patients underwent computerized tomography scans. After collecting demographic information, serum and urine levels of Fetuin-A and some other calcification inhibitors and promoters, were measured and compared using T-test, Mann-Whitney and logistic regression between the two study groups. Results Patients with kidney stones, on average, had lower levels of Serum Fetuin-A (1522.27 ±755.39 vs. 1914.64 ±733.76 μg/ml; P = 0.046) as well as lower levels of Urine Fetuin-A (944.62 ±188.5 vs. 1409.68 ±295.26 μg/ml; P <0.001). Multivariate logistic analysis showed that urinary calcium and serum creatinine are the risk factors and Fetuin-A is a urinary protective factor for kidney stones. Conclusions PFC Our study showed that patients with kidney stones had lower serum and urinary levels of Fetuin-A. In the logistic regression model, urinary Fetuin-A was reported as a protective factor for kidney stones.
Collapse
Affiliation(s)
- Abdolrasoul Mehrsai
- Urology Research Center, Sina Hospital,Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Guitynavard
- Urology Research Center, Sina Hospital,Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shahram Gooran
- Urology Research Center, Sina Hospital,Tehran University of Medical Sciences, Tehran, Iran
| | - Ayat Ahmadi
- Urology Research Center, Sina Hospital,Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Smith ER, Hewitson TD, Cai MMX, Aghagolzadeh P, Bachtler M, Pasch A, Holt SG. A novel fluorescent probe-based flow cytometric assay for mineral-containing nanoparticles in serum. Sci Rep 2017; 7:5686. [PMID: 28720774 PMCID: PMC5515983 DOI: 10.1038/s41598-017-05474-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/30/2017] [Indexed: 12/20/2022] Open
Abstract
Calciprotein particles, nanoscale aggregates of insoluble mineral and binding proteins, have emerged as potential mediators of phosphate toxicity in patients with Chronic Kidney Disease. Although existing immunochemical methods for their detection have provided compelling data, these approaches are indirect, lack specificity and are subject to a number of other technical and theoretical shortcomings. Here we have developed a rapid homogeneous fluorescent probe-based flow cytometric method for the detection and quantitation of individual mineral-containing nanoparticles in human and animal serum. This method allows the discrimination of membrane-bound from membrane-free particles and different mineral phases (amorphous vs. crystalline). Critically, the method has been optimised for use on a conventional instrument, without the need for manual hardware adjustments. Using this method, we demonstrate a consistency in findings across studies of Chronic Kidney Disease patients and commonly used uraemic animal models. These studies demonstrate that renal dysfunction is associated with the ripening of calciprotein particles to the crystalline state and reveal bone metabolism and dietary mineral as important modulators of circulating levels. Flow cytometric analysis of calciprotein particles may enhance our understanding of mineral handling in kidney disease and provide a novel indicator of therapeutic efficacy for interventions targeting Chronic Kidney Disease-Mineral Bone Disorder.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia. .,Department of Medicine - Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.
| | - Tim D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine - Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael M X Cai
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine - Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Matthias Bachtler
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Andreas Pasch
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine - Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Kapustin AN, Schoppet M, Schurgers LJ, Reynolds JL, McNair R, Heiss A, Jahnen-Dechent W, Hackeng TM, Schlieper G, Harrison P, Shanahan CM. Prothrombin Loading of Vascular Smooth Muscle Cell-Derived Exosomes Regulates Coagulation and Calcification. Arterioscler Thromb Vasc Biol 2017; 37:e22-e32. [PMID: 28104608 DOI: 10.1161/atvbaha.116.308886] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/28/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The drug warfarin blocks carboxylation of vitamin K-dependent proteins and acts as an anticoagulant and an accelerant of vascular calcification. The calcification inhibitor MGP (matrix Gla [carboxyglutamic acid] protein), produced by vascular smooth muscle cells (VSMCs), is a key target of warfarin action in promoting calcification; however, it remains unclear whether proteins in the coagulation cascade also play a role in calcification. APPROACH AND RESULTS Vascular calcification is initiated by exosomes, and proteomic analysis revealed that VSMC exosomes are loaded with Gla-containing coagulation factors: IX and X, PT (prothrombin), and proteins C and S. Tracing of Alexa488-labeled PT showed that exosome loading occurs by direct binding to externalized phosphatidylserine (PS) on the exosomal surface and by endocytosis and recycling via late endosomes/multivesicular bodies. Notably, the PT Gla domain and a synthetic Gla domain peptide inhibited exosome-mediated VSMC calcification by preventing nucleation site formation on the exosomal surface. PT was deposited in the calcified vasculature, and there was a negative correlation between vascular calcification and the levels of circulating PT. In addition, we found that VSMC exosomes induced thrombogenesis in a tissue factor-dependent and PS-dependent manner. CONCLUSIONS Gamma-carboxylated coagulation proteins are potent inhibitors of vascular calcification suggesting warfarin action on these factors also contributes to accelerated calcification in patients receiving this drug. VSMC exosomes link calcification and coagulation acting as novel activators of the extrinsic coagulation pathway and inducers of calcification in the absence of Gla-containing inhibitors.
Collapse
MESH Headings
- Aged
- Anticoagulants/adverse effects
- Blood Coagulation/drug effects
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Endocytosis
- Endosomes/metabolism
- Exosomes/drug effects
- Exosomes/metabolism
- Extracellular Matrix Proteins/metabolism
- Female
- Humans
- Male
- Middle Aged
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Peptides/pharmacology
- Phosphatidylserines/metabolism
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Transport
- Prothrombin/metabolism
- Signal Transduction
- Vascular Calcification/chemically induced
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/prevention & control
- Warfarin/adverse effects
- Matrix Gla Protein
Collapse
Affiliation(s)
- Alexander N Kapustin
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Michael Schoppet
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Leon J Schurgers
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Joanne L Reynolds
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Rosamund McNair
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Alexander Heiss
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Willi Jahnen-Dechent
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Tilman M Hackeng
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Georg Schlieper
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Paul Harrison
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Catherine M Shanahan
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.).
| |
Collapse
|
24
|
Liu Y, Zhang L, Ni Z, Qian J, Fang W. Calcium Phosphate Crystals from Uremic Serum Promote Osteogenic Differentiation in Human Aortic Smooth Muscle Cells. Calcif Tissue Int 2016; 99:543-555. [PMID: 27473581 DOI: 10.1007/s00223-016-0182-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/21/2016] [Indexed: 11/25/2022]
Abstract
Recent study demonstrated that calcium phosphate (CaP) crystals isolated from high phosphate medium were a key contributor to arterial calcification. The present study further investigated the effects of CaP crystals induced by uremic serum on calcification of human aortic smooth muscle cells. This may provide a new insight for the development of uremic cardiovascular calcification. We tested the effects of uremic serum or normal serum on cell calcification. Calcification was visualized by staining and calcium deposition quantified. Expression of various bone-calcifying genes was detected by real-time PCR, and protein levels were quantified by western blotting or enzyme-linked immunosorbent assays. Pyrophosphate was used to investigate the effects of CaP crystals' inhibition. Finally, CaP crystals were separated from uremic serum to determine its specific pro-calcification effects. Uremic serum incubation resulted in progressively increased calcification staining and increased calcium deposition in HASMCs after 4, 8 and 12 days (P vs 0 day <0.001 for all). Compared to cells incubated in control serum, uremic serum significantly induced the mRNA expression of bone morphogenetic factor-2, osteopontin and RUNX2, and increased their protein levels as well (P < 0.05 for all). Inhibition of CaP crystals with pyrophosphate incubation prevented calcium deposition and bone-calcifying gene over-expression increased by uremic serum. CaP crystals, rather than the rest of uremic serum, were responsible for these effects. Uremic serum accelerates arterial calcification by mediating osteogenic differentiation. This effect might be mainly attributed to the CaP crystal content.
Collapse
Affiliation(s)
- Yaorong Liu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China
| | - Lin Zhang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China
| | - Jiaqi Qian
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China
| | - Wei Fang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
25
|
Schweighofer N, Aigelsreiter A, Trummer O, Graf-Rechberger M, Hacker N, Kniepeiss D, Wagner D, Stiegler P, Trummer C, Pieber T, Obermayer-Pietsch B, Müller H. Direct comparison of regulators of calcification between bone and vessels in humans. Bone 2016; 88:31-38. [PMID: 27108945 DOI: 10.1016/j.bone.2016.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/30/2015] [Accepted: 04/16/2016] [Indexed: 01/16/2023]
Abstract
Calcification is not only physiologically present in bone but is a main pathophysiological process in vasculature, favouring cardiovascular diseases. Our aim was to investigate changes in the expression of calcification regulators during vascular calcification in bone and vasculature. Levels of gene expression of osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL), osteopontin (OPN), matrix gla protein (MGP), bone sialoprotein (BSP), SMAD6, and runt-related transcription factor 2 (RUNX2) were determined in bone, aorta, and external iliac artery tissue samples of transplant donors. Histological stages of atherosclerosis (AS) in vessels are defined as "no changes", "intima thickening", or "intima calcification". Patients' bone samples were subgrouped accordingly. We demonstrate that in vessels BSP and OPN expression significantly increased during intima thickening and decreased during intima calcification, whereas the expression of regulators of calcification did not significantly change in bone during intima thickening and intima calcification. At the stage of intima thickening, MGP, OPG, and SMAD6 expression and at stage of intima calcification only MGP expression was lower in bone than in vessel. The expression of BSP and RANKL was regulated in opposite ways in bone and vessels, whereas the expression of MGP, OC, RUNX2, and OPN was regulated in a tissue-specific manner. Our study is the first direct comparison of gene expression changes during AS progression in bone and vessels. Our results indicate that changes in the expression of regulators of calcification in the vessel wall as well as in bone occur early in the calcification process, even prior to deposition of calcium/phosphate precipitation.
Collapse
Affiliation(s)
- N Schweighofer
- Department of Internal Medicine, Divison of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - A Aigelsreiter
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria
| | - O Trummer
- Department of Internal Medicine, Divison of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - M Graf-Rechberger
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria
| | - N Hacker
- Department of Internal Medicine, Divison of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - D Kniepeiss
- Department of Surgery, Division of Transplantation Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036 Graz, Austria
| | - D Wagner
- Department of Surgery, Division of Transplantation Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036 Graz, Austria
| | - P Stiegler
- Department of Surgery, Division of Transplantation Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036 Graz, Austria
| | - C Trummer
- Department of Internal Medicine, Divison of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - T Pieber
- Department of Internal Medicine, Divison of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; Joanneum Research Health, Elisabethstrasse 5, 8010 Graz, Austria
| | - B Obermayer-Pietsch
- Department of Internal Medicine, Divison of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - H Müller
- Department of Surgery, Division of Transplantation Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036 Graz, Austria
| |
Collapse
|
26
|
Formation and characteristics of biomimetic mineralo-organic particles in natural surface water. Sci Rep 2016; 6:28817. [PMID: 27350595 PMCID: PMC4923871 DOI: 10.1038/srep28817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/08/2016] [Indexed: 01/21/2023] Open
Abstract
Recent studies have shown that nanoparticles exist in environmental water but the formation, characteristics and fate of such particles remain incompletely understood. We show here that surface water obtained from various sources (ocean, hot springs, and soil) produces mineralo-organic particles that gradually increase in size and number during incubation. Seawater produces mineralo-organic particles following several cycles of filtration and incubation, indicating that this water possesses high particle-seeding potential. Electron microscopy observations reveal round, bacteria-like mineral particles with diameters of 20 to 800 nm, which may coalesce and aggregate to form mineralized biofilm-like structures. Chemical analysis of the particles shows the presence of a wide range of chemical elements that form mixed mineral phases dominated by calcium and iron sulfates, silicon and aluminum oxides, sodium carbonate, and iron sulfide. Proteomic analysis indicates that the particles bind to proteins of bacterial, plant and animal origins. When observed under dark-field microscopy, mineral particles derived from soil-water show biomimetic morphologies, including large, round structures similar to cells undergoing division. These findings have important implications not only for the recognition of biosignatures and fossils of small microorganisms in the environment but also for the geochemical cycling of elements, ions and organic matter in surface water.
Collapse
|
27
|
Apoptosis-mediated endothelial toxicity but not direct calcification or functional changes in anti-calcification proteins defines pathogenic effects of calcium phosphate bions. Sci Rep 2016; 6:27255. [PMID: 27251104 PMCID: PMC4890115 DOI: 10.1038/srep27255] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023] Open
Abstract
Calcium phosphate bions (CPB) are biomimetic mineralo-organic nanoparticles which represent a physiological mechanism regulating the function, transport and disposal of calcium and phosphorus in the human body. We hypothesised that CPB may be pathogenic entities and even a cause of cardiovascular calcification. Here we revealed that CPB isolated from calcified atherosclerotic plaques and artificially synthesised CPB are morphologically and chemically indistinguishable entities. Their formation is accelerated along with the increase in calcium salts-phosphates/serum concentration ratio. Experiments in vitro and in vivo showed that pathogenic effects of CPB are defined by apoptosis-mediated endothelial toxicity but not by direct tissue calcification or functional changes in anti-calcification proteins. Since the factors underlying the formation of CPB and their pathogenic mechanism closely resemble those responsible for atherosclerosis development, further research in this direction may help us to uncover triggers of this disease.
Collapse
|
28
|
Detection and characterization of mineralo-organic nanoparticles in human kidneys. Sci Rep 2015; 5:15272. [PMID: 26497088 PMCID: PMC4620493 DOI: 10.1038/srep15272] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
Ectopic calcification is associated with various human diseases, including atherosclerosis, cancer, chronic kidney disease, and diabetes mellitus. Although mineral nanoparticles have been detected in calcified blood vessels, the nature and role of these particles in the human body remain unclear. Here we show for the first time that human kidney tissues obtained from end-stage chronic kidney disease or renal cancer patients contain round, multilamellar mineral particles of 50 to 1,500 nm, whereas no particles are observed in healthy controls. The mineral particles are found mainly in the extracellular matrix surrounding the convoluted tubules, collecting ducts and loops of Henle as well as within the cytoplasm of tubule-delineating cells, and consist of polycrystalline calcium phosphate similar to the mineral found in bones and ectopic calcifications. The kidney mineral nanoparticles contain several serum proteins that inhibit ectopic calcification in body fluids, including albumin, fetuin-A, and apolipoprotein A1. Since the mineralo-organic nanoparticles are found not only within calcified deposits but also in areas devoid of microscopic calcifications, our observations indicate that the nanoparticles may represent precursors of calcification and renal stones in humans.
Collapse
|
29
|
Wu Q, Xiao DM, Fan WF, Ye XW, Niu JY, Gu Y. Effect of serum fibroblast growth factor-23, matrix Gla protein and Fetuin-A in predicting osteoporosis in maintenance hemodialysis patients. Ther Apher Dial 2014; 18:427-33. [PMID: 25196492 DOI: 10.1111/1744-9987.12194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 01/02/2014] [Indexed: 01/08/2023]
Abstract
This study is aimed at exploring the role of serum fibroblast growth factor-23 (FGF-23), matrix Gla (MGP) and Fetuin-A in the calcium-phosphate metabolism and estimate the value of serum FGF-23, MGP and Fetuin-A levels in predicting osteoporosis in maintenance hemodialysis (MHD) patients. This study included 64 patients who receive hemodialysis in our hospital. The serum FGF-23, MGP and Fetuin-A were analyzed by enzyme-linked immunosorbent assay (ELlSA). Bone mineral density (BMD) at the femoral neck was measured by dual-energy X-ray absorptiometry. The 64 patients (30 males, 34 females, 60.6 ± 11.3 years of age) received an average of 6.88 ± 2.94 years of dialysis. Body mass index (BMI), Kt/V, dialysis vintage, patient age, serum levels of FGF-23, Fetuin-A, bone isoenzyme of alkaline phosphatase (ALP-B), and calcium were different in statistical significance among the three groups of patients in terms of normal bone mass (N = 10), osteopenia (N = 24), or osteoporosis (N = 30). BMI, Kt/V, ALP-B, dialysis vintage and serum Fetuin-A level were identified as independent variables of femoral neck BMD by stepwise multiple regression analysis. The area under ROC curve showed that serum Fetuin-A was useful for identifying osteoporosis in MHD patients. The cutoff value corresponding to the highest Youden's index was serum Fetuin-A ≤ 89 μg/mL, which was defined as the optimal predictor of osteoporosis. Its sensitivity/specificity was 71%/77.8%. The incidence of osteoporosis is high in MHD patients. Serum Fetuin-A level is closely correlated with osteoporosis and it may serve as a predictor of osteoporosis.
Collapse
Affiliation(s)
- Qing Wu
- Division of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
30
|
Paloian NJ, Giachelli CM. A current understanding of vascular calcification in CKD. Am J Physiol Renal Physiol 2014; 307:F891-900. [PMID: 25143458 DOI: 10.1152/ajprenal.00163.2014] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD) have significant cardiovascular morbidity and mortality that is in part due to the development of vascular calcification. Vascular calcification is an active, highly regulated process that shares many similarities with normal bone formation. New discoveries related to extracellular vesicles, microRNAs, and calciprotein particles continue to reveal the mechanisms that are involved in the initiation and progression of vascular calcification in CKD. Further innovations in these fields are critical for the development of biomarkers and therapeutic options for patients with CKD and ESRD.
Collapse
Affiliation(s)
- Neil J Paloian
- Division of Nephrology, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; and
| | | |
Collapse
|
31
|
A review of the biology of calcium phosphate sequestration with special reference to milk. ACTA ACUST UNITED AC 2014; 95:3-14. [PMID: 25632319 PMCID: PMC4302223 DOI: 10.1007/s13594-014-0177-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/05/2014] [Accepted: 06/17/2014] [Indexed: 11/04/2022]
Abstract
In milk, a stable fluid is formed in which sequestered nanoclusters of calcium phosphate are substructures in casein micelles. As a result, calcium and phosphate concentrations in milk can be far in excess of their solubility. Variations of calcium, phosphate and casein concentrations in milks, both within and among species, are mainly due to the formation of the nanocluster complexes. Caseins evolved from tooth and bone proteins well before the evolution of lactation. It has therefore been suggested that the role of caseins in milk is an adaptation of an antecedent function in the control of some aspect of biomineralisation. There is new evidence that nanocluster-type complexes are also present in blood serum and, by implication, in many other closely related biofluids. Because such fluids are stable but nevertheless supersaturated with respect to the bone and tooth mineral hydroxyapatite, they allow soft and mineralised tissues to co-exist in the same organism with relative ease. An appreciable concentration of nanocluster complexes exists in fresh saliva. Such saliva may stabilise tooth mineral and help to repair demineralised lesions. In the extracellular matrix of bone, nanocluster complexes may be involved in directing the amorphous calcium phosphate to intrafibrillar spaces in collagen where they can mature into oriented apatite crystals. Thus, evidence is accumulating that calcium phosphate sequestration by phosphopeptides to form equilibrium complexes, first observed in milk, is more generally important in the control of physiological calcification.
Collapse
|
32
|
Martel J, Peng HH, Young D, Wu CY, Young JD. Of nanobacteria, nanoparticles, biofilms and their role in health and disease: facts, fancy and future. Nanomedicine (Lond) 2014; 9:483-99. [DOI: 10.2217/nnm.13.221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nanobacteria have been at the center of a major scientific controversy in recent years owing to claims that they represent not only the smallest living microorganisms on earth but also new emerging pathogens associated with several human diseases. We and others have carefully examined these claims and concluded that nanobacteria are in fact nonliving mineralo-organic nanoparticles (NPs) that form spontaneously in body fluids. We have shown that these mineral particles possess intriguing biomimetic properties that include the formation of cell- and tissue-like morphologies and the possibility to grow, proliferate and propagate by subculture. Similar mineral NPs (bions) have now been found in both physiological and pathological calcification processes and they appear to represent precursors of physiological calcification cycles, which may at times go awry in disease conditions. Furthermore, by functioning at the nanoscale, these mineralo-organic NPs or bions may shed light on the fate of nanomaterials in the body, from both nanotoxicological and nanopathological perspectives.
Collapse
Affiliation(s)
- Jan Martel
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
| | - Hsin-Hsin Peng
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
| | - David Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Primordia Institute of New Sciences & Medicine, Florham Park, NJ 07932, USA
| | - Cheng-Yeu Wu
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Research Center of Bacterial Pathogenesis, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
| | - John D Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Laboratory of Cellular Physiology & Immunology, The Rockefeller University, New York, NY 10021, USA
- Biochemical Engineering Research Center, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan
| |
Collapse
|
33
|
Holt C, Lenton S, Nylander T, Sørensen ES, Teixeira SC. Mineralisation of soft and hard tissues and the stability of biofluids. J Struct Biol 2014; 185:383-96. [DOI: 10.1016/j.jsb.2013.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/29/2013] [Accepted: 11/30/2013] [Indexed: 02/04/2023]
|
34
|
Willems BAG, Vermeer C, Reutelingsperger CPM, Schurgers LJ. The realm of vitamin K dependent proteins: shifting from coagulation toward calcification. Mol Nutr Food Res 2014; 58:1620-35. [PMID: 24668744 DOI: 10.1002/mnfr.201300743] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/27/2013] [Accepted: 01/01/2014] [Indexed: 12/20/2022]
Abstract
In the past few decades vitamin K has emerged from a single-function "haemostasis vitamin" to a "multi-function vitamin." The use of vitamin K antagonists (VKA) inevitably showed that the inhibition was not restricted to vitamin K dependent coagulation factors but also synthesis of functional extrahepatic vitamin K dependent proteins (VKDPs), thereby eliciting undesired side effects. Vascular calcification is one of the recently revealed detrimental effects of VKA. The discovery that VKDPs are involved in vascular calcification has propelled our mechanistic understanding of this process and has opened novel avenues for diagnosis and treatment. This review addresses mechanisms of VKDPs and their significance for physiological and pathological calcification.
Collapse
Affiliation(s)
- Brecht A G Willems
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands; VitaK BV, Maastricht University, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
35
|
Balakrishnan L, Nirujogi RS, Ahmad S, Bhattacharjee M, Manda SS, Renuse S, Kelkar DS, Subbannayya Y, Raju R, Goel R, Thomas JK, Kaur N, Dhillon M, Tankala SG, Jois R, Vasdev V, Ramachandra Y, Sahasrabuddhe NA, Prasad TK, Mohan S, Gowda H, Shankar S, Pandey A. Proteomic analysis of human osteoarthritis synovial fluid. Clin Proteomics 2014; 11:6. [PMID: 24533825 PMCID: PMC3942106 DOI: 10.1186/1559-0275-11-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/06/2014] [Indexed: 12/30/2022] Open
Abstract
Background Osteoarthritis is a chronic musculoskeletal disorder characterized mainly by progressive degradation of the hyaline cartilage. Patients with osteoarthritis often postpone seeking medical help, which results in the diagnosis being made at an advanced stage of cartilage destruction. Sustained efforts are needed to identify specific markers that might help in early diagnosis, monitoring disease progression and in improving therapeutic outcomes. We employed a multipronged proteomic approach, which included multiple fractionation strategies followed by high resolution mass spectrometry analysis to explore the proteome of synovial fluid obtained from osteoarthritis patients. In addition to the total proteome, we also enriched glycoproteins from synovial fluid using lectin affinity chromatography. Results We identified 677 proteins from synovial fluid of patients with osteoarthritis of which 545 proteins have not been previously reported. These novel proteins included ADAM-like decysin 1 (ADAMDEC1), alanyl (membrane) aminopeptidase (ANPEP), CD84, fibulin 1 (FBLN1), matrix remodelling associated 5 (MXRA5), secreted phosphoprotein 2 (SPP2) and spondin 2 (SPON2). We identified 300 proteins using lectin affinity chromatography, including the glycoproteins afamin (AFM), attractin (ATRN), fibrillin 1 (FBN1), transferrin (TF), tissue inhibitor of metalloproteinase 1 (TIMP1) and vasorin (VSN). Gene ontology analysis confirmed that a majority of the identified proteins were extracellular and are mostly involved in cell communication and signaling. We also confirmed the expression of ANPEP, dickkopf WNT signaling pathway inhibitor 3 (DKK3) and osteoglycin (OGN) by multiple reaction monitoring (MRM) analysis of osteoarthritis synovial fluid samples. Conclusions We present an in-depth analysis of the synovial fluid proteome from patients with osteoarthritis. We believe that the catalog of proteins generated in this study will further enhance our knowledge regarding the pathophysiology of osteoarthritis and should assist in identifying better biomarkers for early diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Subramanian Shankar
- Department of Internal Medicine, Armed Forces Medical College, Pune, Maharashtra 411040, India.
| | | |
Collapse
|
36
|
Wu YX, Li CY, Deng YL. Patients with nephrolithiasis had lower fetuin-A protein level in urine and renal tissue. Urolithiasis 2013; 42:29-37. [DOI: 10.1007/s00240-013-0613-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 10/12/2013] [Indexed: 01/17/2023]
|
37
|
Zhao KW, Murray SS, Murray EJB. Secreted phosphoprotein-24 kDa (Spp24) attenuates BMP-2-stimulated Smad 1/5 phosphorylation and alkaline phosphatase induction and was purified in a protective complex with alpha2 -Macroglobulins From Serum. J Cell Biochem 2013; 114:378-87. [PMID: 22949401 DOI: 10.1002/jcb.24376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/20/2012] [Indexed: 01/16/2023]
Abstract
Secreted phosphoprotein-24 kDa (Spp24) binds cytokines of the bone morphogenetic protein/transforming growth factor-β (BMP/TGFβ) superfamily and is one of the most abundant serum phosphoproteins synthesized by the liver. Little is known about how Spp24 binding affects BMP signal transduction and osteoblastic differentiation or how this labile protein is transported from the liver to remote tissues, such as bone. When Spp24 was administered to W-20-17 mesenchymal stem cells with rhBMP-2, short-term Smad1/5 phosphorylation was inhibited, intermediate-term alkaline phosphatase (ALP) induction was blunted, and long-term mineralization was unaffected. This supports the hypothesis that Spp24 proteolysis restricts the duration of its regulatory effects, but offers no insight into how Spp24 is transported intact from the liver to bone. When Spp24 was immunopurified from serum and subjected to native PAGE and Western blotting, a high molecular weight band of >500 kDa was found. Under reducing SDS-PAGE, a 24 kDa band corresponding to monomeric Spp24 was liberated, suggesting that Spp24 is bound to a complex linked by disulfide bonds. However, such a complex cannot be disrupted by 60 mM EDTA under non-reducing condition or in purification buffers containing 600 mM NaCl and 0.1% Tween-20 at pH 2.7-8.5. LC-MS/MS analysis of affinity-purified, non-reducing SDS-PAGE separated, and trypsin digested bands showed that the Spp24 was present in a complex with three α(2) -macroglobulins (α(2) -macroglobulin [α(2) M], pregnancy zone protein [PZP] and complement C3 [C3]), as well as ceruloplasmin and the protease inhibitor anti-thrombin III (Serpin C1), which may protect Spp24 from proteolysis.
Collapse
Affiliation(s)
- Ke-Wei Zhao
- Geriatric Research, Education and Clinical Center, Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA 91343, USA
| | | | | |
Collapse
|
38
|
Basset C, Averseng O, Ferron PJ, Richaud N, Hagège A, Pible O, Vidaud C. Revision of the biodistribution of uranyl in serum: is fetuin-A the major protein target? Chem Res Toxicol 2013; 26:645-53. [PMID: 23527557 DOI: 10.1021/tx400048u] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Uranium is a natural actinide present as uranyl U(VI) species in aqueous environments. Its toxicity is considered to be chemical rather than radiotoxicological. Whatever the route of entry, uranyl reaches the blood, is partly eliminated via the kidneys, and accumulated in the bones. In serum, its speciation mainly involves carbonate and proteins. Direct identification of labile uranyl-protein complexes is extremely difficult because of the complexity of this matrix. Thus, until now the biodistribution of the metal in serum has not been described, and therefore, little is known about the metal transport mechanisms leading to bone accumulation. A rapid screening method based on a surface plasmon resonance (SPR) technique was used to determine the apparent affinities for U(VI) of the major serum proteins. A first biodistribution of uranyl was obtained by ranking the proteins according to the criteria of both their serum concentrations and affinities for this metal. Despite its moderate concentration in serum, fetuin-A (FETUA) was shown to exhibit an apparent affinity within the 30 nM range and to carry more than 80% of the metal. This protein involved in bone mineralization aroused interest in characterizing the U(VI) and FETUA interaction. Using complementary chromatographic and spectroscopic approaches, we demonstrated that the protein can bind 3 U(VI) at different binding sites exhibiting Kd from ∼30 nM to 10 μM. Some structural modifications and functional properties of FETUA upon uranyl complexation were also controlled. To our knowledge, this article presents the first identification of a uranyl carrier involved in bone metabolism along with the characterization of its metal binding sites.
Collapse
Affiliation(s)
- Christian Basset
- CEA/DSV/iBEB/SBTN , Laboratoire d'Etude des Protéines Cibles, BP 17171 30 207 Bagnols sur Cèze Cédex, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Herrmann M, Kinkeldey A, Jahnen-Dechent W. Fetuin-A Function in Systemic Mineral Metabolism. Trends Cardiovasc Med 2012; 22:197-201. [DOI: 10.1016/j.tcm.2012.07.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Seto J, Busse B, Gupta HS, Schäfer C, Krauss S, Dunlop JWC, Masic A, Kerschnitzki M, Zaslansky P, Boesecke P, Catalá-Lehnen P, Schinke T, Fratzl P, Jahnen-Dechent W. Accelerated growth plate mineralization and foreshortened proximal limb bones in fetuin-A knockout mice. PLoS One 2012; 7:e47338. [PMID: 23091616 PMCID: PMC3473050 DOI: 10.1371/journal.pone.0047338] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/10/2012] [Indexed: 12/27/2022] Open
Abstract
The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix - a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth.
Collapse
Affiliation(s)
- Jong Seto
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Himadri S. Gupta
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Cora Schäfer
- Helmholtz Institute of Biomedical Engineering, Biointerface Laboratory, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Stefanie Krauss
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - John W. C. Dunlop
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Admir Masic
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Michael Kerschnitzki
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Paul Zaslansky
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Peter Boesecke
- Beamline ID2, European Synchrotron Radiation Facility, Grenoble, France
| | - Philip Catalá-Lehnen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Willi Jahnen-Dechent
- Helmholtz Institute of Biomedical Engineering, Biointerface Laboratory, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
41
|
Pasch A, Farese S, Gräber S, Wald J, Richtering W, Floege J, Jahnen-Dechent W. Nanoparticle-based test measures overall propensity for calcification in serum. J Am Soc Nephrol 2012; 23:1744-52. [PMID: 22956818 DOI: 10.1681/asn.2012030240] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vascular and soft tissue calcification contributes to cardiovascular morbidity and mortality in both the general population and CKD. Because calcium and phosphate serum concentrations are near supersaturation, the balance of inhibitors and promoters critically influences the development of calcification. An assay that measures the overall propensity for calcification to occur in serum may have clinical use. Here, we describe a nanoparticle-based assay that detects, in the presence of artificially elevated calcium and phosphate concentrations, the spontaneous transformation of spherical colloidal primary calciprotein particles (CPPs) to elongate crystalline secondary CPPs. We used characteristics of this transition to describe the intrinsic capacity of serum to inhibit the precipitation of calcium and phosphate. Using this assay, we found that both the sera of mice deficient in fetuin-A, a serum protein that inhibits calcification, and the sera of patients on hemodialysis have reduced intrinsic properties to inhibit calcification. In summary, we developed a nanoparticle-based test that measures the overall propensity for calcification in serum. The clinical use of the test requires evaluation in a prospective study.
Collapse
Affiliation(s)
- Andreas Pasch
- Department of Nephrology and Hypertension, University Hospital and University of Bern, Inselspital, 3010 Bern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
42
|
Herrmann M, Schäfer C, Heiss A, Gräber S, Kinkeldey A, Büscher A, Schmitt MM, Bornemann J, Nimmerjahn F, Herrmann M, Helming L, Gordon S, Jahnen-Dechent W. Clearance of Fetuin-A–Containing Calciprotein Particles Is Mediated by Scavenger Receptor-A. Circ Res 2012; 111:575-84. [DOI: 10.1161/circresaha.111.261479] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Marietta Herrmann
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Cora Schäfer
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Alexander Heiss
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Steffen Gräber
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Anne Kinkeldey
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Andrea Büscher
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Martin M.N. Schmitt
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Jörg Bornemann
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Falk Nimmerjahn
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Martin Herrmann
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Laura Helming
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Siamon Gordon
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Willi Jahnen-Dechent
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| |
Collapse
|
43
|
Abstract
Fetuin was first isolated from bovine serum in 1944. It is now most commonly known as either fetuin-A or alpha-2-HS-glycoprotein (AHSG), the protein product of Ahsg gene. A prominent feature of this protein is the functional diversity exerted in human physiology and pathophysiology. Fetuin-A plays a role in bone metabolism, metabolic disorders such as insulin resistance and diabetes mellitus (DM), and central nervous system (CNS) disorders such as ischemic stroke (IS) and neurodegenerative diseases. In addition, emerging evidence suggests involvement of fetuin-A in the cardiovascular system. However, there are many discordant findings on the associations between fetuin-A and vascular diseases. In other words, it is unknown whether fetuin-A is an exacerbating or a protective factor in the cardiovascular system. One reason for the seemingly inconsistent behavior is the dual functionality of fetuin-A in vascular diseases where it can act as an atherogenic factor or as a vascular calcification inhibitor. In addition, the existence of confounding factors such as DM and renal dysfunction can veil the primary association between fetuin-A and clinical parameters. Considering these issues, we discuss the role of fetuin-A for atherosclerosis and vascular calcification in this review.
Collapse
Affiliation(s)
- Katsuhito Mori
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | | | | |
Collapse
|
44
|
Smith ER, Ford ML, Tomlinson LA, Rajkumar C, McMahon LP, Holt SG. Phosphorylated fetuin-A-containing calciprotein particles are associated with aortic stiffness and a procalcific milieu in patients with pre-dialysis CKD. Nephrol Dial Transplant 2011; 27:1957-66. [PMID: 22105144 DOI: 10.1093/ndt/gfr609] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Vascular stiffening occurs in normal ageing and is accelerated in chronic kidney disease (CKD). Vascular calcification contributes to this stiffening and to the high incidence of vascular morbidity and mortality in this population. A network of inhibitors work in concert to reduce mineralization risk in extra-osseous tissue. Fetuin-A is an important systemic inhibitor of ectopic calcification. A fraction of the total circulating fetuin-A interacts with mineral ions to form stable colloidal complexes, calciprotein particles (CPP), preventing deposition. We sought to assess whether CPP fetuin-A levels were associated with procalcific factors and aortic stiffness in a cohort of patients with Stages 3 and 4 CKD. METHODS We measured fetuin-A CPP levels, serum inflammatory markers [C-reactive protein (CRP), interleukin-6, tumour necrosis factor-α], oxidized low-density lipoprotein (oxLDL), bone morphogenetic protein-2 (BMP-2) and -7 (BMP-7) and aortic pulse wave velocity (APWV) in a cohort of 200 CKD patients. Serum measurements were also made in 78 healthy controls. CPP fetuin-A phosphorylation was characterized by phosphate-affinity gel chromatography. RESULTS Fetuin-A-containing CPPs were only detectable in the serum of CKD patients. Inflammatory markers, oxLDL and BMP-2 levels were all significantly higher in the CKD than control subjects. CPP fetuin-A levels were independently associated with serum phosphate, high-sensitivity C-reactive protein, oxLDL, BMP-2/7 ratio and inversely with estimated glomerular filtration rate (model R(2) = 0.51). After adjusting for confounders, CPP fetuin-A levels were independently associated with APWV. Only phosphorylated fetuin-A was present in serum CPP. CONCLUSION Increased CPP fetuin-A levels reflect an increasingly procalcific milieu and are associated with increased aortic stiffness in patients with pre-dialysis CKD.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Clinical Biochemistry and Immunology, Brighton and Sussex University Hospitals NHS Trust, Brighton, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Schlieper G, Krüger T, Heiss A, Jahnen-Dechent W. A red herring in vascular calcification: 'nanobacteria' are protein-mineral complexes involved in biomineralization. Nephrol Dial Transplant 2011; 26:3436-9. [PMID: 21965584 DOI: 10.1093/ndt/gfr521] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Biomineralization at pathological extraosseous sites (i.e. vasculature and soft tissues) is associated with increased morbidity and mortality. So-called 'nanobacteria' have been described as pathogenic agents causing many diseases including calcification. Initially, their appearance, and having a content consisting of nucleic acids plus proteins and properties of growing structures, suggested that they were living organisms. However, it could be demonstrated that the so-called nanobacteria were in fact mineralizing nanoparticles that contain mineral and non-mineral compounds, that these particles bind to charged molecules and that supersaturation enables in vitro growth of these nanoparticles. Recent data indicate that nanoparticles consisting of protein-mineral complexes can be seen both in vitro and in vivo as precursors of matrix calcification.
Collapse
|
46
|
Abstract
The final step of biomineralization is a chemical precipitation reaction that occurs spontaneously in supersaturated or metastable salt solutions. Genetic programs direct precursor cells into a mineralization-competent state in physiological bone formation (osteogenesis) and in pathological mineralization (ectopic mineralization or calcification). Therefore, all tissues not meant to mineralize must be actively protected against chance precipitation of mineral. Fetuin-A is a liver-derived blood protein that acts as a potent inhibitor of ectopic mineralization. Monomeric fetuin-A protein binds small clusters of calcium and phosphate. This interaction results in the formation of prenucleation cluster-laden fetuin-A monomers, calciprotein monomers, and considerably larger aggregates of protein and mineral calciprotein particles. Both monomeric and aggregate forms of fetuin-A mineral accrue acidic plasma protein including albumin, thus stabilizing supersaturated and metastable mineral ion solutions as colloids. Hence, fetuin-A is a mineral carrier protein and a systemic inhibitor of pathological mineralization complementing local inhibitors that act in a cell-restricted or tissue-restricted fashion. Fetuin-A deficiency is associated with soft tissue calcification in mice and humans.
Collapse
|
47
|
Martel J, Young D, Young A, Wu CY, Chen CD, Yu JS, Young JD. Comprehensive proteomic analysis of mineral nanoparticles derived from human body fluids and analyzed by liquid chromatography-tandem mass spectrometry. Anal Biochem 2011; 418:111-25. [PMID: 21741946 DOI: 10.1016/j.ab.2011.06.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 05/09/2011] [Accepted: 06/16/2011] [Indexed: 12/21/2022]
Abstract
Mineralo-protein nanoparticles (NPs) formed spontaneously in the body have been associated with ectopic calcifications seen in atherosclerosis, chronic degenerative diseases, and kidney stone formation. Synthetic NPs are also known to become coated with proteins when they come in contact with body fluids. Identifying the proteins found in NPs should help unravel how NPs are formed in the body and how NPs in general, be they synthetic or naturally formed, interact within the body. Here, we developed a proteomic approach based on liquid chromatography (LC) and tandem mass spectrometry (MS/MS) to determine the protein composition of carbonate-apatite NPs derived from human body fluids (serum, urine, cerebrospinal fluid, ascites, pleural effusion, and synovial fluid). LC-MS/MS provided not only an efficient and comprehensive determination of the protein constituents, but also a semiquantitative ranking of the identified proteins. Notably, the identified NP proteins mirrored the protein composition of the contacting body fluids, with albumin, fetuin-A, complement C3, α-1-antitrypsin, prothrombin, and apolipoproteins A1 and B-100 being consistently associated with the particles. Since several coagulation factors, calcification inhibitors, complement proteins, immune regulators, protease inhibitors, and lipid/molecule carriers can all become NP constituents, our results suggest that mineralo-protein complexes may interface with distinct biochemical pathways in the body depending on their protein composition. We propose that LC-MS/MS be used to characterize proteins found in both synthetic and natural NPs.
Collapse
Affiliation(s)
- Jan Martel
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
48
|
Peng HH, Martel J, Lee YH, Ojcius DM, Young JD. Serum-derived nanoparticles: de novo generation and growth in vitro, and internalization by mammalian cells in culture. Nanomedicine (Lond) 2011; 6:643-58. [PMID: 21506688 DOI: 10.2217/nnm.11.24] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM While nanoparticles (NPs) have been shown to form spontaneously in body fluids such as serum, the possible implications of these NPs for cell cultures that use supporting media containing serum remain unclear. To understand the de novo formation of NPs, we delineated their growth characteristics, chemical composition and interaction with cells in culture. MATERIALS & METHODS Serum-derived particles were analyzed using a combination of dynamic light scattering, turbidity measurements, spectroscopic techniques and optical/electron microscopies. RESULTS NPs were found in serum and in serum-containing medium and they increased in size and number during incubation. The mineral particles, consisting mainly of calcium carbonate phosphate bound to organics such as proteins, underwent an amorphous-to-crystalline transformation with time. Serum-derived particles were internalized by the cells tested, eventually reaching lysosomal compartments. CONCLUSION The spontaneous formation of serum-derived NPs and their internalization by cells may have overlooked effects on cultured cells in vitro as well as potential pathophysiological consequences in vivo.
Collapse
Affiliation(s)
- Hsin-Hsin Peng
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
| | | | | | | | | |
Collapse
|
49
|
Hamano T, Matsui I, Mikami S, Tomida K, Fujii N, Imai E, Rakugi H, Isaka Y. Fetuin-mineral complex reflects extraosseous calcification stress in CKD. J Am Soc Nephrol 2010; 21:1998-2007. [PMID: 20947626 DOI: 10.1681/asn.2009090944] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fetuin-A is an important inhibitor of extraosseous calcification, but some of the studies that used ELISAs did not identify a significant relationship between serum fetuin-A levels and vascular calcification in patients with chronic kidney disease (CKD). Here, we used centrifugation to separate a fetuin-mineral complex (FMC) composed of fetuin-A, fibrinogen, fibronectin-1, and calcium from the serum of hemodialysis patients. In addition, we analyzed serum fetuin-A levels of 73 patients with diabetes and CKD (predialysis) after centrifugation. Fetuin-A concentrations were significantly lower in supernatants than in serum from patients at any stage of CKD, indicating systemic circulation of FMC in these patients. With greater severity of CKD, the contribution of FMC to total fetuin-A increased. Despite the absence of a correlation between serum fetuin-A and coronary artery calcification scores (CACS), supernatant fetuin-A negatively correlated with CACS and the extent to which centrifugation reduced fetuin-A (reduction ratio [RR]) positively correlated with CACS. In a longitudinal study of 12 hemodialysis patients with secondary hyperparathyroidism, parathyroidectomy and cinacalcet therapy each significantly reduced the RR without changing supernatant fetuin-A levels after 1 month, suggesting a reduction in FMC. Moreover, the magnitude of cinacalcet-induced reduction in parathyroid hormone correlated with the decrease in RR but not with changes in serum or supernatant fetuin-A. These data suggest that a quantitative measure of FMC, not supernatant or serum fetuin-A as measured in previous studies, reflects extraosseous calcification stress.
Collapse
Affiliation(s)
- Takayuki Hamano
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wallin R, Schurgers LJ, Loeser RF. Biosynthesis of the vitamin K-dependent matrix Gla protein (MGP) in chondrocytes: a fetuin-MGP protein complex is assembled in vesicles shed from normal but not from osteoarthritic chondrocytes. Osteoarthritis Cartilage 2010; 18:1096-103. [PMID: 20510384 DOI: 10.1016/j.joca.2010.05.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Mineralization has been observed in osteoarthritic cartilage but the mechanisms are incompletely understood. Vitamin K is an essential cofactor in post-translational modification of proteins where specific Glu residues become modified to Ca(++) binding gamma-carboxyglutamic acid residues (Gla). One such protein, matrix Gla protein (MGP), is a known mineralization inhibitor. This study determined if synthesis of MGP and formation of a fetuin-MGP protein complex was altered in chondrocytes and vesicles from osteoarthritis (OA) cartilage. METHODS Chondrocytes and vesicles were isolated from normal and OA human articular cartilage and lysates prepared. Specific antibodies were used in immunoblotting to detect the mature fully gamma-carboxylated form of MGP (cMGP) and non-gamma-carboxylated MGP (ucMGP) as well as fetuin and MGP-fetuin complexes. gamma-carboxylase activity was measured by (14)CO(2) incorporation into the carboxylase peptide substrate FLEEL. Immunocytochemistry was used to examine fetuin in cartilage sections and uptake of biotin-labeled fetuin by isolated chondrocytes. RESULTS Chondrocytes and vesicles from osteoarthritic tissue produced significantly less cMGP compared to those from normal cartilage. This correlated with significantly less vitamin K-dependent gamma-carboxylase enzyme activity in OA chondrocytes. Fetuin was found to be present in articular cartilage and cultured chondrocytes were capable of fetuin uptake. A fetuin-MGP complex was identified in normal chondrocytes and in vesicles shed from these cells but not in OA cells or vesicles. CONCLUSIONS The absence of cMGP and of the cMGP-fetuin complex in OA cells and OA vesicles may be an important mechanism for increased mineralization of osteoarthritic cartilage.
Collapse
Affiliation(s)
- R Wallin
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|