1
|
Sankhala RS, Lokareddy RK, Begum S, Pumroy RA, Gillilan RE, Cingolani G. Three-dimensional context rather than NLS amino acid sequence determines importin α subtype specificity for RCC1. Nat Commun 2017; 8:979. [PMID: 29042532 PMCID: PMC5645467 DOI: 10.1038/s41467-017-01057-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022] Open
Abstract
Active nuclear import of Ran exchange factor RCC1 is mediated by importin α3. This pathway is essential to generate a gradient of RanGTP on chromatin that directs nucleocytoplasmic transport, mitotic spindle assembly and nuclear envelope formation. Here we identify the mechanisms of importin α3 selectivity for RCC1. We find this isoform binds RCC1 with one order of magnitude higher affinity than the generic importin α1, although the two isoforms share an identical NLS-binding groove. Importin α3 uses its greater conformational flexibility to wedge the RCC1 β-propeller flanking the NLS against its lateral surface, preventing steric clashes with its Armadillo-core. Removing the β-propeller, or inserting a linker between NLS and β-propeller, disrupts specificity for importin α3, demonstrating the structural context rather than NLS sequence determines selectivity for isoform 3. We propose importin α3 evolved to recognize topologically complex NLSs that lie next to bulky domains or are masked by quaternary structures.Importin α3 facilitates the nuclear transport of the Ran guanine nucleotide exchange factor RCC1. Here the authors reveal the molecular basis for the selectivity of RCC1 for importin α3 vs the generic importin α1 and discuss the evolution of importin α isoforms.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA, 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA, 19107, USA
| | - Salma Begum
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA, 19107, USA
| | - Ruth A Pumroy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA, 19107, USA.,Department of Biochemistry, University of Utah, 15N Medical Drive East, Salt Lake City, UT, 84112-5650, USA
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY, 14853, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA, 19107, USA. .,Institute of Biomembranes and Bioenergetics, National Research Council, Via Amendola 165/A, Bari, 70126, Italy.
| |
Collapse
|
2
|
Wu W, Sankhala RS, Florio TJ, Zhou L, Nguyen NLT, Lokareddy RK, Cingolani G, Panté N. Synergy of two low-affinity NLSs determines the high avidity of influenza A virus nucleoprotein NP for human importin α isoforms. Sci Rep 2017; 7:11381. [PMID: 28900157 PMCID: PMC5595889 DOI: 10.1038/s41598-017-11018-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/17/2017] [Indexed: 11/26/2022] Open
Abstract
The influenza A virus nucleoprotein (NP) is an essential multifunctional protein that encapsidates the viral genome and functions as an adapter between the virus and the host cell machinery. NPs from all strains of influenza A viruses contain two nuclear localization signals (NLSs): a well-studied monopartite NLS1 and a less-characterized NLS2, thought to be bipartite. Through site-directed mutagenesis and functional analysis, we found that NLS2 is also monopartite and is indispensable for viral infection. Atomic structures of importin α bound to two variants of NLS2 revealed NLS2 primarily binds the major-NLS binding site of importin α, unlike NLS1 that associates with the minor NLS-pocket. Though peptides corresponding to NLS1 and NLS2 bind weakly to importin α, the two NLSs synergize in the context of the full length NP to confer high avidity for importin α7, explaining why the virus efficiently replicates in the respiratory tract that exhibits high levels of this isoform. This study, the first to functionally characterize NLS2, demonstrates NLS2 plays an important and unexpected role in influenza A virus infection. We propose NLS1 and NLS2 form a bipartite NLS in trans, which ensures high avidity for importin α7 while preventing non-specific binding to viral RNA.
Collapse
Affiliation(s)
- Wei Wu
- University of British Columbia, Department of Zoology, Vancouver, British Columbia, V6T1Z4, Canada
| | - Rajeshwer S Sankhala
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Tyler J Florio
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Lixin Zhou
- University of British Columbia, Department of Zoology, Vancouver, British Columbia, V6T1Z4, Canada
| | - Nhan L T Nguyen
- University of British Columbia, Department of Zoology, Vancouver, British Columbia, V6T1Z4, Canada
| | - Ravi K Lokareddy
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Gino Cingolani
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA. .,Institute of Biomembranes and Bioenergetics, National Research Council, Via Amendola 165/A, 70126, Bari, Italy.
| | - Nelly Panté
- University of British Columbia, Department of Zoology, Vancouver, British Columbia, V6T1Z4, Canada.
| |
Collapse
|
3
|
Sankhala RS, Lokareddy RK, Cingolani G. Divergent Evolution of Nuclear Localization Signal Sequences in Herpesvirus Terminase Subunits. J Biol Chem 2016; 291:11420-33. [PMID: 27033706 DOI: 10.1074/jbc.m116.724393] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 11/06/2022] Open
Abstract
The tripartite terminase complex of herpesviruses assembles in the cytoplasm of infected cells and exploits the host nuclear import machinery to gain access to the nucleus, where capsid assembly and genome-packaging occur. Here we analyzed the structure and conservation of nuclear localization signal (NLS) sequences previously identified in herpes simplex virus 1 (HSV-1) large terminase and human cytomegalovirus (HCMV) small terminase. We found a monopartite NLS at the N terminus of large terminase, flanking the ATPase domain, that is conserved only in α-herpesviruses. In contrast, small terminase exposes a classical NLS at the far C terminus of its helical structure that is conserved only in two genera of the β-subfamily and absent in α- and γ-herpesviruses. In addition, we predicted a classical NLS in the third terminase subunit that is partially conserved among herpesviruses. Bioinformatic analysis revealed that both location and potency of NLSs in terminase subunits evolved more rapidly than the rest of the amino acid sequence despite the selective pressure to keep terminase gene products active and localized in the nucleus. We propose that swapping NLSs among terminase subunits is a regulatory mechanism that allows different herpesviruses to regulate the kinetics of terminase nuclear import, reflecting a mechanism of virus:host adaptation.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Ravi K Lokareddy
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Gino Cingolani
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and Institute of Biomembranes and Bioenergetics, National Research Council, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
4
|
Kralt A, Jagalur NB, van den Boom V, Lokareddy RK, Steen A, Cingolani G, Fornerod M, Veenhoff LM. Conservation of inner nuclear membrane targeting sequences in mammalian Pom121 and yeast Heh2 membrane proteins. Mol Biol Cell 2015; 26:3301-12. [PMID: 26179916 PMCID: PMC4569319 DOI: 10.1091/mbc.e15-03-0184] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/08/2015] [Indexed: 12/23/2022] Open
Abstract
This study examines whether active transport to the inner nuclear membrane, as shown for yeast membrane proteins Heh1 and Heh2, is conserved in metazoans. In support of this, the nuclear localization signal of metazoan Pom121 shares biochemical, structural, and functional properties with those of Heh1 and Heh2, and a Heh2-derived reporter protein targets to the inner membrane in Hek293T cells. Endoplasmic reticulum–synthesized membrane proteins traffic through the nuclear pore complex (NPC) en route to the inner nuclear membrane (INM). Although many membrane proteins pass the NPC by simple diffusion, two yeast proteins, ScSrc1/ScHeh1 and ScHeh2, are actively imported. In these proteins, a nuclear localization signal (NLS) and an intrinsically disordered linker encode the sorting signal for recruiting the transport factors for FG-Nup and RanGTP-dependent transport through the NPC. Here we address whether a similar import mechanism applies in metazoans. We show that the (putative) NLSs of metazoan HsSun2, MmLem2, HsLBR, and HsLap2β are not sufficient to drive nuclear accumulation of a membrane protein in yeast, but the NLS from RnPom121 is. This NLS of Pom121 adapts a similar fold as the NLS of Heh2 when transport factor bound and rescues the subcellular localization and synthetic sickness of Heh2ΔNLS mutants. Consistent with the conservation of these NLSs, the NLS and linker of Heh2 support INM localization in HEK293T cells. The conserved features of the NLSs of ScHeh1, ScHeh2, and RnPom121 and the effective sorting of Heh2-derived reporters in human cells suggest that active import is conserved but confined to a small subset of INM proteins.
Collapse
Affiliation(s)
- Annemarie Kralt
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands
| | - Noorjahan B Jagalur
- Departments of Biochemistry and Pediatric Oncology, Erasmus MC/Sophia, 3015 CN Rotterdam, Netherlands
| | - Vincent van den Boom
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, Netherlands
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Anton Steen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Maarten Fornerod
- Departments of Biochemistry and Pediatric Oncology, Erasmus MC/Sophia, 3015 CN Rotterdam, Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands )
| |
Collapse
|
5
|
Lokareddy RK, Hapsari RA, van Rheenen M, Pumroy RA, Bhardwaj A, Steen A, Veenhoff LM, Cingolani G. Distinctive Properties of the Nuclear Localization Signals of Inner Nuclear Membrane Proteins Heh1 and Heh2. Structure 2015; 23:1305-1316. [PMID: 26051712 DOI: 10.1016/j.str.2015.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 01/13/2023]
Abstract
Targeting of ER-synthesized membrane proteins to the inner nuclear membrane (INM) has long been explained by the diffusion-retention model. However, several INM proteins contain non-classical nuclear localization signal (NLS) sequences, which, in a few instances, have been shown to promote importin α/β- and Ran-dependent translocation to the INM. Here, using structural and biochemical methods, we show that yeast INM proteins Heh2 and Src1/Heh1 contain bipartite import sequences that associate intimately with the minor NLS-binding pocket of yeast importin α and unlike classical NLSs efficiently displace the IBB domain in the absence of importin β. In vivo, the intimate interactions at the minor NLS-binding pocket make the h2NLS highly efficient at recruiting importin α at the ER and drive INM localization of endogenous Heh2. Thus, h1/h2NLSs delineate a novel class of super-potent, IBB-like membrane protein NLSs, distinct from classical NLSs found in soluble cargos and of general interest in biology.
Collapse
Affiliation(s)
- Ravi K Lokareddy
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10 Street, Philadelphia, PA 19107, USA
| | - Rizqiya A Hapsari
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Zernike Institute for Advanced Materials, Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Mathilde van Rheenen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ruth A Pumroy
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10 Street, Philadelphia, PA 19107, USA
| | - Anshul Bhardwaj
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10 Street, Philadelphia, PA 19107, USA
| | - Anton Steen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Gino Cingolani
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10 Street, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Lieu KG, Shim EH, Wang J, Lokareddy RK, Tao T, Cingolani G, Zambetti GP, Jans DA. The p53-induced factor Ei24 inhibits nuclear import through an importin β-binding-like domain. ACTA ACUST UNITED AC 2014; 205:301-12. [PMID: 24821838 PMCID: PMC4018778 DOI: 10.1083/jcb.201304055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The etoposide-induced protein Ei24 was initially identified as a p53-responsive, proapoptotic factor, but no clear function has been described. Here, we use a nonbiased proteomics approach to identify members of the importin (IMP) family of nuclear transporters as interactors of Ei24 and characterize an IMPβ-binding-like (IBBL) domain within Ei24. We show that Ei24 can bind specifically to IMPβ1 and IMPα2, but not other IMPs, and use a mutated IMPβ1 derivative to show that Ei24 binds to the same site on IMPβ1 as the IMPα IBB. Ectopic expression of Ei24 reduced the extent of IMPβ1- or IMPα/β1-dependent nuclear protein import specifically, whereas specific alanine substitutions within the IBBL abrogated this activity. Induction of endogenous Ei24 expression through etoposide treatment similarly inhibited nuclear import in a mouse embryonic fibroblast model. Thus, Ei24 can bind specifically to IMPβ1 and IMPα2 to impede their normal role in nuclear import, shedding new light on the cellular functions of Ei24 and its tumor suppressor role.
Collapse
Affiliation(s)
- Kim G Lieu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Chang CW, Couñago RM, Williams SJ, Bodén M, Kobe B. Distinctive conformation of minor site-specific nuclear localization signals bound to importin-α. Traffic 2013; 14:1144-54. [PMID: 23910026 DOI: 10.1111/tra.12098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 11/30/2022]
Abstract
Nuclear localization signals (NLSs) contain one or two clusters of basic residues and are recognized by the import receptor importin-α. There are two NLS-binding sites (major and minor) on importin-α and the major NLS-binding site is considered to be the primary binding site. Here, we used crystallographic and biochemical methods to investigate the binding between importin-α and predicted 'minor site-specific' NLSs: four peptide library-derived peptides, and the NLS from mouse RNA helicase II/Guα. The crystal structures reveal that these atypical NLSs indeed preferentially bind to the minor NLS-binding site. Unlike previously characterized NLSs, the C-terminal residues of these NLSs form an α-helical turn, stabilized by internal H-bond and cation-π interactions between the aromatic residues from the NLSs and the positively charged residues from importin-α. This helical turn sterically hinders binding at the major NLS-binding site, explaining the minor-site preference. Our data suggest the sequence RXXKR[K/X][F/Y/W]XXAF as the optimal minor NLS-binding site-specific motif, which may help identify novel proteins with atypical NLSs.
Collapse
Affiliation(s)
- Chiung-Wen Chang
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld, 4072, Australia; Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld, 4072, Australia
| | | | | | | | | |
Collapse
|
8
|
Wu F, Wang S, Xing J, Li M, Zheng C. Characterization of nuclear import and export signals determining the subcellular localization of WD repeat-containing protein 42A (WDR42A). FEBS Lett 2012; 586:1079-85. [PMID: 22500989 DOI: 10.1016/j.febslet.2012.02.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 02/04/2023]
Abstract
WD repeat-containing protein 42A (WDR42A) is a member of the WD40-repeat proteins. Here, we investigated the localization pattern of WDR42A in living cells. By mutational analysis, a nuclear localization signal, 114PRRRVQRKR122, was for the first time determined. The dominant negative, co-immunoprecipitation and GST pull-down results further demonstrated that the nuclear import of WDR42A was mediated by karyopherin-α1/β1 in conjunction with the GTPase Ran. Additionally, a nuclear export signal, 39IEVEASDLSLSL50, was verified to be a functional NES, which mediated the nuclear export through Chromosome Region Maintenance 1 dependent pathway. All these data suggest WDR42A is a nucleocytoplasmic shuttling protein.
Collapse
Affiliation(s)
- Fuqing Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuchang, Wuhan, China
| | | | | | | | | |
Collapse
|
9
|
Nardozzi JD, Lott K, Cingolani G. Phosphorylation meets nuclear import: a review. Cell Commun Signal 2010; 8:32. [PMID: 21182795 PMCID: PMC3022542 DOI: 10.1186/1478-811x-8-32] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/23/2010] [Indexed: 12/18/2022] Open
Abstract
Phosphorylation is the most common and pleiotropic modification in biology, which plays a vital role in regulating and finely tuning a multitude of biological pathways. Transport across the nuclear envelope is also an essential cellular function and is intimately linked to many degeneration processes that lead to disease. It is therefore not surprising that phosphorylation of cargos trafficking between the cytoplasm and nucleus is emerging as an important step to regulate nuclear availability, which directly affects gene expression, cell growth and proliferation. However, the literature on phosphorylation of nucleocytoplasmic trafficking cargos is often confusing. Phosphorylation, and its mirror process dephosphorylation, has been shown to have opposite and often contradictory effects on the ability of cargos to be transported across the nuclear envelope. Without a clear connection between attachment of a phosphate moiety and biological response, it is difficult to fully understand and predict how phosphorylation regulates nucleocytoplasmic trafficking. In this review, we will recapitulate clue findings in the field and provide some general rules on how reversible phosphorylation can affect the nuclear-cytoplasmic localization of substrates. This is only now beginning to emerge as a key regulatory step in biology.
Collapse
Affiliation(s)
- Jonathan D Nardozzi
- Dept, of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
10
|
Bhardwaj A, Cingolani G. Conformational selection in the recognition of the snurportin importin beta binding domain by importin beta. Biochemistry 2010; 49:5042-7. [PMID: 20476751 DOI: 10.1021/bi100292y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural flexibility of beta-karyopherins is critical to mediate the interaction with transport substrates, nucleoporins, and the GTPase Ran. In this paper, we provide structural evidence that the molecular recognition of the transport adaptor snurportin by importin beta follows the population selection mechanism. We have captured two drastically different conformations of importin beta bound to the snurportin importin beta binding domain trapped in the same crystallographic asymmetric unit. We propose the population selection may be a general mechanism used by beta-karyopherins to recognize transport substrates.
Collapse
Affiliation(s)
- Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
11
|
Mannherz HG, Hannappel E. The beta-thymosins: intracellular and extracellular activities of a versatile actin binding protein family. ACTA ACUST UNITED AC 2009; 66:839-51. [PMID: 19405116 DOI: 10.1002/cm.20371] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The beta-thymosins are N-terminally acetylated peptides of about 5 kDa molecular mass and composed of about 40-44 amino acid residues. The first member of the family, thymosin beta4, was initially isolated from thymosin fraction 5, prepared in five steps from calf thymus. Thymosin beta4 was supposed to be specifically produced and released by the thymic gland and to possess hormonal activities modulating the immune response. Various paracrine effects have indeed been reported for these peptides such as cardiac protection, angiogenesis, stimulation of wound healing, and hair growth. Besides these paracrine effects, it was noted that beta-thymosins occur in high concentration in the cytoplasm of many eukaryotic cells and bind to the cytoskeletal component actin. Subsequently it became apparent from in vitro experiments that they preferentially bind to monomeric (G-)actin and stabilize it in its monomeric form. Due to this ability the beta-thymosins are the main intracellular actin sequestering factor, i.e., they posses the ability to remove monomeric actin from the dynamic assembly and disassembly processes of the actin cytoskeleton that constantly occur in activated cells. In this review we will concentrate on the intracellular activity and localization of the beta-thymosins, i.e., their modulating effect on the actin cytoskeleton.
Collapse
Affiliation(s)
- Hans Georg Mannherz
- Department of Anatomy and Embryology, Ruhr-University, D-44780 Bochum, Germany.
| | | |
Collapse
|
12
|
Jovanovic-Talisman T, Tetenbaum-Novatt J, McKenney AS, Zilman A, Peters R, Rout MP, Chait BT. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature 2008; 457:1023-7. [PMID: 19098896 DOI: 10.1038/nature07600] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 10/29/2008] [Indexed: 11/09/2022]
Abstract
Nuclear pore complexes (NPCs) act as effective and robust gateways between the nucleus and the cytoplasm, selecting for the passage of particular macromolecules across the nuclear envelope. NPCs comprise an elaborate scaffold that defines a approximately 30 nm diameter passageway connecting the nucleus and the cytoplasm. This scaffold anchors proteins termed 'phenylalanine-glycine' (FG)-nucleoporins, the natively disordered domains of which line the passageway and extend into its lumen. Passive diffusion through this lined passageway is hindered in a size-dependent manner. However, transport factors and their cargo-bound complexes overcome this restriction by transient binding to the FG-nucleoporins. To test whether a simple passageway and a lining of transport-factor-binding FG-nucleoporins are sufficient for selective transport, we designed a functionalized membrane that incorporates just these two elements. Here we demonstrate that this membrane functions as a nanoselective filter, efficiently passing transport factors and transport-factor-cargo complexes that specifically bind FG-nucleoporins, while significantly inhibiting the passage of proteins that do not. This inhibition is greatly enhanced when transport factor is present. Determinants of selectivity include the passageway diameter, the length of the nanopore region coated with FG-nucleoporins, the binding strength to FG-nucleoporins, and the antagonistic effect of transport factors on the passage of proteins that do not specifically bind FG-nucleoporins. We show that this artificial system faithfully reproduces key features of trafficking through the NPC, including transport-factor-mediated cargo import.
Collapse
Affiliation(s)
- Tijana Jovanovic-Talisman
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Zachariae U, Grubmüller H. Importin-beta: structural and dynamic determinants of a molecular spring. Structure 2008; 16:906-15. [PMID: 18547523 DOI: 10.1016/j.str.2008.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 03/06/2008] [Accepted: 03/06/2008] [Indexed: 11/18/2022]
Abstract
The beta-karyopherin/RanGTP system constitutes the largest known family of cellular cargo transporters. The flexibility of the karyopherin transport receptors is the key to their versatility in binding cargoes of different shape and size. Despite strong binding of the Ran complex, the comparably low energy associated with GTP hydrolysis suffices to drive dissociation and fuel the transport cycle. Here, we elucidate the drastic structural dynamics of the prototypic karyopherin, importin-beta, and show that its flexibility also solves this energetic puzzle. Our nonequilibrium atomistic simulations reveal fast conformational changes, validated by small-angle X-ray scattering data, and unusually large structural fluctuations. The characteristic dynamic patterns of importin-beta and the observed unfolding pathway of the IBB domain suggest a cooperative mechanism of importin-beta function in the nucleus. We propose a molecular model in which the stored energy and structural dynamics account for an exchange pathway that explains the high observed rates of nucleocytoplasmic transport. Karyopherins utilize a mechanism of entropy/enthalpy control that might be a general feature of highly flexible proteins involved in protein-protein interactions.
Collapse
Affiliation(s)
- Ulrich Zachariae
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | |
Collapse
|
14
|
Süel KE, Cansizoglu AE, Chook YM. Atomic resolution structures in nuclear transport. Methods 2006; 39:342-55. [PMID: 16938467 PMCID: PMC3471385 DOI: 10.1016/j.ymeth.2006.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 06/28/2006] [Indexed: 11/17/2022] Open
Abstract
There are currently at least 53 structures of components of nuclear transport in the Protein Databank. In addition to providing critical insights into molecular mechanisms of nuclear transport, these atomic resolution structures provide a large body of information that could guide biochemical and cell biological analyses involving nuclear transport proteins. This paper catalogs 53 crystal and NMR structures of nuclear transport proteins, with the emphasis on providing information useful for mutagenesis and overexpression of recombinant proteins.
Collapse
Affiliation(s)
| | | | - Yuh Min Chook
- Corresponding author. Fax: +1 214 645 6166. (Y.M. Chook)
| |
Collapse
|
15
|
Ruan C, Yang Z, Hallowita N, Rodgers MT. Cation−π Interactions with a Model for the Side Chain of Tryptophan: Structures and Absolute Binding Energies of Alkali Metal Cation−Indole Complexes†. J Phys Chem A 2005; 109:11539-50. [PMID: 16354046 DOI: 10.1021/jp053830d] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Threshold collision-induced dissociation techniques are employed to determine bond dissociation energies (BDEs) of mono- and bis-complexes of alkali metal cations, Li+, Na+, K+, Rb+, and Cs+, with indole, C8H7N. The primary and lowest energy dissociation pathway in all cases is endothermic loss of an intact indole ligand. Sequential loss of a second indole ligand is observed at elevated energies for the bis-complexes. Density functional theory calculations at the B3LYP/6-31G level of theory are used to determine the structures, vibrational frequencies, and rotational constants of these complexes. Theoretical BDEs are determined from single point energy calculations at the MP2(full)/6-311+G(2d,2p) level using the B3LYP/6-31G* geometries. The agreement between theory and experiment is very good for all complexes except Li+ (C8H7N), where theory underestimates the strength of the binding. The trends in the BDEs of these alkali metal cation-indole complexes are compared with the analogous benzene and naphthalene complexes to examine the influence of the extended pi network and heteroatom on the strength of the cation-pi interaction. The Na+ and K+ binding affinities of benzene, phenol, and indole are also compared to those of the aromatic amino acids, phenylalanine, tyrosine, and tryptophan to elucidate the factors that contribute to the binding in complexes to the aromatic amino acids. The nature of the binding and trends in the BDEs of cation-pi complexes between alkali metal cations and benzene, phenol, and indole are examined to help understand nature's preference for engaging tryptophan over phenylalanine and tyrosine in cation-pi interactions in biological systems.
Collapse
Affiliation(s)
- Chunhai Ruan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
16
|
Nevo R, Brumfeld V, Elbaum M, Hinterdorfer P, Reich Z. Direct discrimination between models of protein activation by single-molecule force measurements. Biophys J 2005; 87:2630-4. [PMID: 15454457 PMCID: PMC1304681 DOI: 10.1529/biophysj.104.041889] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The limitations imposed on the analyses of complex chemical and biological systems by ensemble averaging can be overcome by single-molecule experiments. Here, we used a single-molecule technique to discriminate between two generally accepted mechanisms of a key biological process--the activation of proteins by molecular effectors. The two mechanisms, namely induced-fit and population-shift, are normally difficult to discriminate by ensemble approaches. As a model, we focused on the interaction between the nuclear transport effector, RanBP1, and two related complexes consisting of the nuclear import receptor, importin beta, and the GDP- or GppNHp-bound forms of the small GTPase, Ran. We found that recognition by the effector proceeds through either an induced-fit or a population-shift mechanism, depending on the substrate, and that the two mechanisms can be differentiated by the data.
Collapse
Affiliation(s)
- Reinat Nevo
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
17
|
Abstract
Nuclear pore complexes (NPCs) mediate the active transport of large substrates and allow the passive diffusion of small molecules into the nucleus of eukaryotic cells. The EMBO Workshop on the Mechanisms of Nuclear Transport focused on NPCs and on the soluble nucleocytoplasmic transport machinery. This meeting, organized by Valérie Doye (Institut Curie, Paris) and Ed Hurt (University of Heidelberg), was held within view of Mount Etna at Taormina, Sicily (November 1-5, 2003). Presentations emphasized the dynamic properties of the nuclear trafficking machinery, and demonstrated the continuity of nuclear transport with processes in the nucleus and cytoplasm.
Collapse
Affiliation(s)
- Maureen A Powers
- Department of Cell Biology, Emory University School of Medicine, 455 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA.
| | | |
Collapse
|
18
|
Affiliation(s)
- Murray Stewart
- MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, UK.
| |
Collapse
|