1
|
Thi Phuong HB, Huy BL, Van KN, Thi ND, Thi TB, Thi Hai YN, Thanh TB, Xuan HL, Thi Thanh BN. Reducing Self-Assembly by Increasing Net Charge: Effect on Biological Activity of Mastoparan C. ACS Med Chem Lett 2024; 15:69-75. [PMID: 38229756 PMCID: PMC10788938 DOI: 10.1021/acsmedchemlett.3c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024] Open
Abstract
The ability of amphipathic peptides to arrange themselves in aqueous solutions, known as self-assembly, has been found to reduce the effectiveness of these peptides in interacting with cell membranes. Therefore, minimizing their tendency to self-assemble could be a potential strategy for enhancing the pharmacological properties of antimicrobial peptides (AMPs). To explore this idea, this study prepared a series of natural peptides mastoparan C (MPC) with increased net charge and hydrophilicity via alanine-to-lysine substitution and investigated the impact on the biological activity. The preliminary data suggested the influence of both the overall positive charge and the position of a lysine residue on the self-assembly of MPC and its derivatives. Besides, the analogue MPC-A5K,A8K displayed higher anticancer activity and comparable antimicrobial activity with significantly lower hemolysis than MPC. Hence, reducing self-assembly by expanding the cationic area could be a promising approach for developing potent and selective AMPs.
Collapse
Affiliation(s)
- Hai Bui Thi Phuong
- Faculty
of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
- Faculty
of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Binh Le Huy
- Center
for High Technology Development, Vietnam
Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi 11307, Vietnam
- School
of Chemical Engineering - Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi 11615, Vietnam
| | - Khanh Nguyen Van
- VNU
University of Medicine and Pharmacy, 144 Xuan Thuy, Cau Giay, Hanoi 11310., Vietnam
| | - Ngan Dang Thi
- VNU
University of Medicine and Pharmacy, 144 Xuan Thuy, Cau Giay, Hanoi 11310., Vietnam
| | - Thuong Bui Thi
- VNU
University of Medicine and Pharmacy, 144 Xuan Thuy, Cau Giay, Hanoi 11310., Vietnam
| | - Yen Nguyen Thi Hai
- VNU
University of Medicine and Pharmacy, 144 Xuan Thuy, Cau Giay, Hanoi 11310., Vietnam
| | - Tung Bui Thanh
- VNU
University of Medicine and Pharmacy, 144 Xuan Thuy, Cau Giay, Hanoi 11310., Vietnam
| | - Huy Luong Xuan
- Faculty
of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
| | - Binh Nguyen Thi Thanh
- VNU
University of Medicine and Pharmacy, 144 Xuan Thuy, Cau Giay, Hanoi 11310., Vietnam
| |
Collapse
|
2
|
Gasu EN, Mensah JK, Borquaye LS. Computer-aided design of proline-rich antimicrobial peptides based on the chemophysical properties of a peptide isolated from Olivancillaria hiatula. J Biomol Struct Dyn 2023; 41:8254-8275. [PMID: 36218088 DOI: 10.1080/07391102.2022.2131626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/27/2022] [Indexed: 10/17/2022]
Abstract
The chemophysical properties of a peptide isolated from Olivancillaria hiatula were combined with computational tools to design new antimicrobial peptides (AMPs). The in silico peptide design utilized arbitrary sequence shuffling, AMP sequence prediction and alignments such that putative sequences mimicked those of proline-rich AMPs (PrAMPs) and were potentially active against bacteria. Molecular modelling and docking experiments were used to monitor peptide binding to some intracellular targets like bacteria ribosome, DnaK and LasR. Peptide candidates were tested in vitro for antibacterial and antivirulence activities. Chemophysical studies of peptide extract suggested hydrophobic, acidic and proline-rich peptide properties. The amino acid signature of the extract matched that of AMPs that inhibit intracellular targets. Two of the designed PrAMP peptides (OhPrP-3 and OhPrP-5) had high affinity for the ribosome and DnaK. OhPrP-1, 2 and 4 also had favorable interactions with the biomolecular targets investigated. Peptides had bactericidal activity at the minimum inhibitory concentration against Pseudomonas aeruginosa. The designed peptides docked strongly to LasR suggesting possible interference with quorum sensing, and this was corroborated by in vitro data where sub-inhibitory doses of all peptides reduced pyocyanin and pyoverdine expression. The designed peptides can be further studied for the development of new anti-infective agents.
Collapse
Affiliation(s)
- Edward Ntim Gasu
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - John Kenneth Mensah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lawrence Sheringham Borquaye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
3
|
Phuong HBT, Tran VA, Ngoc KN, Huu VN, Thu HN, Van MC, Thi HP, Hong MN, Tran HT, Xuan HL. Effect of substituting glutamine with lysine on structural and biological properties of antimicrobial peptide Polybia-MP1. Amino Acids 2023; 55:881-890. [PMID: 37300579 DOI: 10.1007/s00726-023-03276-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/05/2023] [Indexed: 06/12/2023]
Abstract
The natural antimicrobial peptide Polybia-MP1 is a promising candidate for developing new treatment therapy for infection and cancer. It showed broad-spectrum antimicrobial and anticancer activity with high safety on healthy cells. However, previous sequence modification usually resulted in at least one of two consequences: a notable increase in hemolytic activity or a considerable decrease in activity against Gram-negative bacteria and cancer cells. Herein, a new approach was applied by replacing the amino acid Glutamine at position 12 with Lysine and generating the MP1-Q12K analog. Our preliminary data suggested an enhancement in antibacterial and antifungal activity, whereas the anticancer and hemolytic activity of the two peptides were comparable. Moreover, MP1-Q12K was found to be less self-assembly than Polybia-MP1, which further supports the enhancement of antimicrobial properties. Hence, this study provides new information regarding the structure-activity relationships of Polybia-MP1 and support for the development of potent, selective antimicrobial peptides.
Collapse
Affiliation(s)
| | - Van Anh Tran
- Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam
| | | | - Viet Nguyen Huu
- Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam
| | - Hang Ngo Thu
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Mao Can Van
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hue Pham Thi
- Bioresource Research Center, Phenikaa University, Hanoi, 12116, Vietnam
| | - Minh Nguyen Hong
- Bioresource Research Center, Phenikaa University, Hanoi, 12116, Vietnam
| | - Hiep Tuan Tran
- Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam.
| | - Huy Luong Xuan
- Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam.
- Phenikaa Institute for Advanced Study (PIAS), Phenikaa University, Hanoi, 12116, Vietnam.
| |
Collapse
|
4
|
You Y, Liu H, Zhu Y, Zheng H. Rational design of stapled antimicrobial peptides. Amino Acids 2023; 55:421-442. [PMID: 36781451 DOI: 10.1007/s00726-023-03245-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
The global increase in antimicrobial drug resistance has dramatically reduced the effectiveness of traditional antibiotics. Structurally diverse antibiotics are urgently needed to combat multiple-resistant bacterial infections. As part of innate immunity, antimicrobial peptides have been recognized as the most promising candidates because they comprise diverse sequences and mechanisms of action and have a relatively low induction rate of resistance. However, because of their low chemical stability, susceptibility to proteases, and high hemolytic effect, their usage is subject to many restrictions. Chemical modifications such as D-amino acid substitution, cyclization, and unnatural amino acid modification have been used to improve the stability of antimicrobial peptides for decades. Among them, a side-chain covalent bridge modification, the so-called stapled peptide, has attracted much attention. The stapled side-chain bridge stabilizes the secondary structure, induces protease resistance, and increases cell penetration and biological activity. Recent progress in computer-aided drug design and artificial intelligence methods has also been used in the design of stapled antimicrobial peptides and has led to the successful discovery of many prospective peptides. This article reviews the possible structure-activity relationships of stapled antimicrobial peptides, the physicochemical properties that influence their activity (such as net charge, hydrophobicity, helicity, and dipole moment), and computer-aided methods of stapled peptide design. Antimicrobial peptides under clinical trial: Pexiganan (NCT01594762, 2012-05-07). Omiganan (NCT02576847, 2015-10-13).
Collapse
Affiliation(s)
- YuHao You
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - HongYu Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - YouZhuo Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
5
|
Anticancer peptides mechanisms, simple and complex. Chem Biol Interact 2022; 368:110194. [PMID: 36195187 DOI: 10.1016/j.cbi.2022.110194] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
Peptide therapy has started since 1920s with the advent of insulin application, and now it has emerged as a new approach in treatment of diseases including cancer. Using anti-cancer peptides (ACPs) is a promising way of cancer therapy as ACPs are continuing to be approved and arrived at major pharmaceutical markets. Traditional cancer treatments face different problems like intensive adverse effects to patient's body, cell resistance to conventional chemical drugs and in some worse cases the occurrence of cell multidrug resistance (MDR) of cancerous tissues against chemotherapy. On the other hand, there are some benefits conceived for peptides usage in treatment of diseases specifically cancer, as these compounds present favorable characteristics such as smaller size, high activity, low immunogenicity, good biocompatibility in vivo, convenient and rapid way of synthesis, amenable to sequence modification and revision and there is no limitation for the type of cargo they carry. It is possible to achieve an optimum molecular and functional structure of peptides based on previous experience and bank of peptide motif data which may result in novel peptide design. Bioactive peptides are able to form pores in cell membrane and induce necrosis or apoptosis of abnormal cells. Moreover, recent researches have focused on the tumor recognizing peptide motifs with the ability to permeate to cancerous cells with the aim of cancer treatment at earlier stages. In this strategy the most important factors for addressing cancer are choosing peptides with easy accessibility to tumor cell without cytotoxicity effect towards normal cells. The peptides must also meet acceptable pharmacokinetic requirements. In this review, the characteristics of peptides and cancer cells are discussed. The various mechanisms of peptides' action proposed against cancer cells make the next part of discussion. It will be followed by giving information on peptides application, various methods of peptide designing along with introducing various databases. Future aspects of peptides for employing in area of cancer treatment come as conclusion at the end.
Collapse
|
6
|
Memariani M, Memariani H, Poursafavi Z, Baseri Z. Anti-fungal Effects and Mechanisms of Action of Wasp Venom-Derived Peptide Mastoparan-VT1 Against Candida albicans. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Antimicrobial Contribution of Chitosan Surface-Modified Nanoliposomes Combined with Colistin against Sensitive and Colistin-Resistant Clinical Pseudomonas aeruginosa. Pharmaceutics 2020; 13:pharmaceutics13010041. [PMID: 33396760 PMCID: PMC7824406 DOI: 10.3390/pharmaceutics13010041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
Colistin is a re-emergent antibiotic peptide used as a last resort in clinical practice to overcome multi-drug resistant (MDR) Gram-negative bacterial infections. Unfortunately, the dissemination of colistin-resistant strains has increased in recent years and is considered a public health problem worldwide. Strategies to reduce resistance to antibiotics such as nanotechnology have been applied successfully. In this work, colistin was characterized physicochemically by surface tension measurements. Subsequently, nanoliposomes coated with highly deacetylated chitosan were prepared with and without colistin. The nanoliposomes were characterized using dynamic light scattering and zeta potential measurements. Both physicochemical parameters fluctuated relatively to the addition of colistin and/or polymer. The antimicrobial activity of formulations increased by four-fold against clinical isolates of susceptible Pseudomona aeruginosa but did not have antimicrobial activity against multidrug-resistant (MDR) bacteria. Interestingly, the free coated nanoliposomes exhibited the same antibacterial activity in both sensitive and MDR strains. Finally, the interaction of colistin with phospholipids was characterized using molecular dynamics (MD) simulations and determined that colistin is weakly associated with micelles constituted by zwitterionic phospholipids.
Collapse
|
8
|
Memariani H, Memariani M, Robati RM, Nasiri S, Abdollahimajd F, Baseri Z, Moravvej H. Anti-Staphylococcal and cytotoxic activities of the short anti-microbial peptide PVP. World J Microbiol Biotechnol 2020; 36:174. [PMID: 33083940 DOI: 10.1007/s11274-020-02948-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/08/2020] [Indexed: 01/25/2023]
Abstract
Over the past years, short anti-microbial peptides have drawn growing attention in the research and trade literature because they are usually capable of killing a broad spectrum of pathogens by employing unique mechanisms of action. This study aimed to evaluate the anti-bacterial effects of a previously designed peptide named PVP towards the clinical strains of methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Secondary structure, cytotoxicity, and membrane-permeabilizing effects of the peptide were also assessed. PVP had a tendency to adopt alpha-helical conformation based upon structural predictions and circular dichroism spectroscopy (in 50% trifluoroethanol). The peptide showed MIC values ranging from 1 to 16 µg/mL against 10 strains of MRSA. In contrast to ciprofloxacin and gentamicin, PVP at sub-lethal concentration (1 µg/mL) did not provoke the development of peptide resistance after 14 serial passages. Remarkably, 1 h of exposure to 4 × MBC of PVP (8 µg/mL) was sufficient for total bacterial clearance, whereas 4 × MBC of vancomycin (8 µg/mL) failed to totally eradicate bacterial cells, even after 8 h. PVP showed negligible cytotoxicity against human dermal fibroblasts at concentrations required to kill the MRSA strains. The results of flow cytometric analysis and fluorescence microscopy revealed that PVP caused bacterial membrane permeabilization, eventually culminating in cell death. Owing to the potent anti-bacterial activity, fast bactericidal kinetics, and negligible cytotoxicity, PVP has the potential to be used as a candidate antibiotic for the topical treatment of MRSA infections.
Collapse
Affiliation(s)
- Hamed Memariani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Memariani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Mahmoud Robati
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Nasiri
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zohre Baseri
- Department of Pathology and Laboratory Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamideh Moravvej
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Nichols PJ, Falconer I, Griffin A, Mant C, Hodges R, McKnight CJ, Vögeli B, Vugmeyster L. Deuteration of nonexchangeable protons on proteins affects their thermal stability, side-chain dynamics, and hydrophobicity. Protein Sci 2020; 29:1641-1654. [PMID: 32356390 DOI: 10.1002/pro.3878] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/10/2020] [Accepted: 04/26/2020] [Indexed: 11/06/2022]
Abstract
We have investigated the effect of deuteration of non-exchangeable protons on protein global thermal stability, hydrophobicity, and local flexibility using well-known thermostable model systems such as the villin headpiece subdomain (HP36) and the third immunoglobulin G-binding domain of protein G (GB3). Reversed-phase high-performance liquid chromatography (RP-HPLC) measurements as a function of temperature probe global thermal stability in the presence of acetonitrile, while differential scanning calorimetry determines thermal stability in solution. Both indicate small but measurable changes in the order of several degrees. RP-HPLC also permitted quantification of the effect of deuteration of just three core phenylalanine side chains of HP36. NMR dynamics investigation has focused on methyl axes motions using cross-correlated relaxation measurements. The analysis of order parameters provided a complex picture indicating that deuteration generally increases motional amplitudes of sub-nanosecond motion in GB3 but decreases those in HP36. Combined with earlier dynamics measurements at Cα -Cβ sites and backbone sites of GB3, which probed slower time scales, the results point to the need to probe multiple atoms in the protein and variety of time scales to the discern the full complexity of the effects of deuteration on dynamics.
Collapse
Affiliation(s)
- Parker J Nichols
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Isaac Falconer
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado, USA.,Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Aaron Griffin
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado, USA
| | - Colin Mant
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Robert Hodges
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Christopher J McKnight
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado, USA
| |
Collapse
|
10
|
Mant CT, Jiang Z, Gera L, Davis T, Nelson KL, Bevers S, Hodges RS. De Novo Designed Amphipathic α-Helical Antimicrobial Peptides Incorporating Dab and Dap Residues on the Polar Face To Treat the Gram-Negative Pathogen, Acinetobacter baumannii. J Med Chem 2019; 62:3354-3366. [PMID: 30848594 DOI: 10.1021/acs.jmedchem.8b01785] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have designed de novo and synthesized ten 26-residue D-conformation amphipathic α-helical cationic antimicrobial peptides (AMPs), seven with "specificity determinants", which provide specificity for prokaryotic cells over eukaryotic cells. The ten AMPs contain five or six positively charged residues (d-Arg, d-Lys, d-Orn, l-Dab, or l-Dap) on the polar face to understand their role in hemolytic activity against human red blood cells and antimicrobial activity against seven Acinetobacter baumannii strains, resistant to polymyxin B and colistin, and 20 A. baumannii worldwide isolates from 2016 and 2017 with antibiotic resistance to 18 different antibiotics. AMPs with specificity determinants and with l-Dab and l-Dap residues on the polar face have essentially no hemolytic activity at 1000 μg/mL (380 μM), showing for the first time the importance of these unusual amino acid residues in solving long-standing hemolysis issues of AMPs. Specificity determinants maintained excellent antimicrobial activity in the presence of human sera.
Collapse
Affiliation(s)
- Colin T Mant
- Department of Biochemistry and Molecular Genetics, School of Medicine , University of Colorado , Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Ziqing Jiang
- Department of Biochemistry and Molecular Genetics, School of Medicine , University of Colorado , Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Lajos Gera
- Department of Biochemistry and Molecular Genetics, School of Medicine , University of Colorado , Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Tim Davis
- Department of Biochemistry and Molecular Genetics, School of Medicine , University of Colorado , Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | | | - Shaun Bevers
- Department of Biochemistry and Molecular Genetics, School of Medicine , University of Colorado , Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Robert S Hodges
- Department of Biochemistry and Molecular Genetics, School of Medicine , University of Colorado , Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| |
Collapse
|
11
|
Evaluation of the Antimicrobial Activity of Cationic Peptides Loaded in Surface-Modified Nanoliposomes against Foodborne Bacteria. Int J Mol Sci 2019; 20:ijms20030680. [PMID: 30764495 PMCID: PMC6386929 DOI: 10.3390/ijms20030680] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 01/03/2023] Open
Abstract
Bacteria are a common group of foodborne pathogens presenting public health issues with a large economic burden for the food industry. Our work focused on a solution to this problem by evaluating antibiotic activity against two bacteria (Listeria monocytogenes and Escherichia coli) of relevance in the field of foodstuffs. We used two approaches: (i) structural modification of the antimicrobial peptides and (ii) nano-vehiculisation of the modified peptides into polymer-coated liposomes. To achieve this, two antimicrobial peptides, herein named ‘peptide +2′ and ‘peptide +5′ were synthesised using the solid phase method. The physicochemical characterisation of the peptides was carried out using measurements of surface tension and dynamic light scattering. Additionally, nanoliposomes were elaborated by the ethanol injection method and coated with a cationic polymer (Eudragit E-100) through the layer-by-layer process. Liposome characterisation, in terms of size, polydispersity and zeta potential, was undertaken using dynamic light scattering. The results show that the degree of hydrophilic modification in the peptide leads to different characteristics of amphipathicity and subsequently to different physicochemical behaviour. On the other hand, antibacterial activity against both bacteria was slightly altered after modifying peptide sequence. Nonetheless, after the encapsulation of the peptides into polymer-coated nano-liposomes, the antibacterial activity increased approximately 2000-fold against that of L. monocytogenes.
Collapse
|
12
|
Neuhaus CS, Gabernet G, Steuer C, Root K, Hiss JA, Zenobi R, Schneider G. Simulated Molecular Evolution for Anticancer Peptide Design. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Claudia S. Neuhaus
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Gisela Gabernet
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Christian Steuer
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Katharina Root
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Jan A. Hiss
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
13
|
Neuhaus CS, Gabernet G, Steuer C, Root K, Hiss JA, Zenobi R, Schneider G. Simulated Molecular Evolution for Anticancer Peptide Design. Angew Chem Int Ed Engl 2019; 58:1674-1678. [DOI: 10.1002/anie.201811215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/01/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Claudia S. Neuhaus
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Gisela Gabernet
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Christian Steuer
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Katharina Root
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Jan A. Hiss
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
14
|
Yin L, Agustinus AS, Yuvienco C, Minashima T, Schnabel NL, Kirsch T, Montclare JK. Engineered Coiled-Coil Protein for Delivery of Inverse Agonist for Osteoarthritis. Biomacromolecules 2018; 19:1614-1624. [PMID: 29601728 DOI: 10.1021/acs.biomac.8b00158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) results from degenerative and abnormal function of joints, with localized biochemistry playing a critical role in its onset and progression. As high levels of all- trans retinoic acid (ATRA) in synovial fluid have been identified as a contributive factor to OA, the synthesis of de novo antagonists for retinoic acid receptors (RARs) has been exploited to interrupt the mechanism of ATRA action. BMS493, a pan-RAR inverse agonist, has been reported as an effective inhibitor of ATRA signaling pathway; however, it is unstable and rapidly degrades under physiological conditions. We employed an engineered cartilage oligomeric matrix protein coiled-coil (CccS) protein for the encapsulation, protection, and delivery of BMS493. In this study, we determine the binding affinity of CccS to BMS493 and the stimulator, ATRA, via competitive binding assay, in which ATRA exhibits approximately 5-fold superior association with CccS than BMS493. Interrogation of the structure of CccS indicates that ATRA causes about 10% loss in helicity, while BMS493 did not impact the structure. Furthermore, CccS self-assembles into nanofibers when bound to BMS493 or ATRA as expected, displaying 11-15 nm in diameter. Treatment of human articular chondrocytes in vitro reveals that CccS·BMS493 demonstrates a marked improvement in efficacy in reducing the mRNA levels of matrix metalloproteinase-13 (MMP-13), one of the main proteases responsible for the degradation of the extracellular cartilage matrix compared to BMS493 alone in the presence of ATRA, interleukin-1 beta (IL-1β), or IL-1 β together with ATRA. These results support the feasibility of utilizing coiled-coil proteins as drug delivery vehicles for compounds of relatively limited bioavailability for the potential treatment of OA.
Collapse
Affiliation(s)
- Liming Yin
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | - Albert S Agustinus
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | - Carlo Yuvienco
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | | | - Nicole L Schnabel
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | | | - Jin K Montclare
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States.,Department of Chemistry , New York University , New York , New York 10003 , United States.,Department of Biomaterials , NYU College of Dentistry , New York , New York 10010 , United States.,Department of Biochemistry , SUNY Downstate Medical Center , Brooklyn , New York 11203 , United States
| |
Collapse
|
15
|
Retro analog concept: comparative study on physico-chemical and biological properties of selected antimicrobial peptides. Amino Acids 2017; 49:1755-1771. [PMID: 28756544 PMCID: PMC5602100 DOI: 10.1007/s00726-017-2473-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/20/2017] [Indexed: 01/03/2023]
Abstract
Increasing drug resistance of common pathogens urgently needs discovery of new effective molecules. Antimicrobial peptides are believed to be one of the possible solutions of this problem. One of the approaches for improvement of biological properties is reversion of the sequence (retro analog concept). This research is based on investigation of antimicrobial activity against Gram-positive, Gram-negative bacteria, and fungi, hemolysis of erythrocytes, interpretation of the circular dichroism spectra, measurement of counter-ion content, and assessment of the peptide hydrophobicity and self-assembly using reversed-phase chromatography. The experiments were conducted using the following peptides: aurein 1.2, CAMEL, citropin 1.1, omiganan, pexiganan, temporin A, and their retro analogs. Among the compounds studied, only retro omiganan showed an enhanced antimicrobial and a slightly increased hemolytic activity as compared to parent molecule. Moreover, retro pexiganan exhibited high activity towards Klebsiella pneumoniae, whereas pexiganan was in general more or equally active against the rest of tested microorganisms. Furthermore, the determined activity was closely related to the peptide hydrophobicity. In general, the reduced hemolytic activity correlates with lower antimicrobial activity. The tendency to self-association and helicity fraction in SDS seems to be correlated. The normalized RP-HPLC—temperature profiles of citropin 1.1 and aurein 1.2, revealed an enhanced tendency to self-association than that of their retro analogs.
Collapse
|
16
|
Jiang Z, Mant CT, Vasil M, Hodges RS. Role of positively charged residues on the polar and non-polar faces of amphipathic α-helical antimicrobial peptides on specificity and selectivity for Gram-negative pathogens. Chem Biol Drug Des 2017. [PMID: 28636788 DOI: 10.1111/cbdd.13058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have designed de novo and synthesized eight 26-residue all D-conformation amphipathic α-helical cationic antimicrobial peptides (AMPs), four with "specificity determinants" which provide specificity for prokaryotic cells over eukaryotic cells and four AMPs without specificity determinants. The eight AMPs contain six positively charged Lys residues on the polar face in four different arrangements to understand the role of these residues have on antimicrobial activity against 14 Acinetobacter baumannii strains, seven of which were resistant to polymyxin B and colistin; six diverse Pseudomonas aeruginosa strains and 17 Staphylococcus aureus strains, nine of which were methicillin-sensitive, and eight of which were methicillin-resistant. The four AMPs without specificity determinants are extremely hemolytic. In contrast, the four AMPs with specificity determinants had dramatic improvements in therapeutic indices showing the importance of specificity determinants in removing eukaryotic cell toxicity. The specificity determinants combined with the location of positively charged residues on the polar face provide Gram-negative pathogen selectivity between A. baumannii and S. aureus. Specificity determinants maintain excellent antimicrobial activity in the presence of human sera, whereas the AMPs without specificity determinants were inactive. This study clearly shows the potential of amphipathic α-helical AMPs with specificity determinants as therapeutics to replace existing antibiotics.
Collapse
Affiliation(s)
- Ziqing Jiang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Colin T Mant
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Michael Vasil
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Robert S Hodges
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
17
|
Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy. Sci Rep 2016; 6:29145. [PMID: 27363513 PMCID: PMC4929710 DOI: 10.1038/srep29145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/13/2016] [Indexed: 01/10/2023] Open
Abstract
In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers.
Collapse
|
18
|
Plácido A, de Oliveira Farias EA, Marani MM, Vasconcelos AG, Mafud AC, Mascarenhas YP, Eiras C, Leite JR, Delerue-Matos C. Layer-by-layer films containing peptides of the Cry1Ab16 toxin from Bacillus thuringiensis for potential biotechnological applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:832-41. [DOI: 10.1016/j.msec.2016.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/26/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023]
|
19
|
Dai M, Frezzo JA, Sharma E, Chen R, Singh N, Yuvienco C, Caglar E, Xiao S, Saxena A, Montclare JK. Engineered Protein Polymer-Gold Nanoparticle Hybrid Materials for Small Molecule Delivery. JOURNAL OF NANOMEDICINE & NANOTECHNOLOGY 2016; 7:356. [PMID: 27081576 PMCID: PMC4828936 DOI: 10.4172/2157-7439.1000356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have fabricated protein polymer-gold nanoparticle (P-GNP) nanocomposites that exhibit enhanced binding and delivery properties of the small hydrophobic molecule drug, curcumin, to the model breast cancer cell line, MCF-7. These hybrid biomaterials are constructed via in situ GNP templated-synthesis with genetically engineered histidine tags. The P-GNP nanocomposites exhibit enhanced small molecule loading, sustained release and increased uptake by MCF-7 cells. When compared to the proteins polymers alone, the P-GNPs demonstrate a greater than 7-fold increase in curcumin binding, a nearly 50% slower release profile and more than 2-fold increase in cellular uptake of curcumin. These results suggest that P-GNP nanocomposites serve as promising candidates for drug delivery vehicles.
Collapse
Affiliation(s)
- Min Dai
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - JA Frezzo
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - E Sharma
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - R Chen
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - N Singh
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - C Yuvienco
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - E Caglar
- Department of Biology, Brooklyn College and Graduate Center, City University of New York, Brooklyn, New York 11210, USA
| | - S Xiao
- Department of Biology, Brooklyn College and Graduate Center, City University of New York, Brooklyn, New York 11210, USA
| | - A Saxena
- Department of Biology, Brooklyn College and Graduate Center, City University of New York, Brooklyn, New York 11210, USA
| | - JK Montclare
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, USA
- Department of Chemistry, New York University, New York, New York 10003, USA
- Department of Biochemistry, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| |
Collapse
|
20
|
Yi T, Sun S, Huang Y, Chen Y. Prokaryotic expression and mechanism of action of α-helical antimicrobial peptide A20L using fusion tags. BMC Biotechnol 2015; 15:69. [PMID: 26238108 PMCID: PMC4523955 DOI: 10.1186/s12896-015-0189-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 07/24/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Antimicrobial peptides have become important candidates as new antibiotics against resistant bacterial strains. However, the major industrial manufacture of antimicrobial peptides is chemical synthesis with high costs and in relatively small scale. The Ub-tag and SUMO-tag are useful for increasing the yield of enzymes and other proteins in expression system. In this study, antimicrobial peptide A20L (KWKSFLKTFKSAKKTVLHTLLKAISS), a derivative of V13K in the previous study is used as a template to be expressed in different Ub-tag and human SUMO tag systems to compare the prokaryotic expression approaches of antimicrobial peptide. The antibacterial mechanism of action and membrane specificity of A20L was further studied. METHODS We fused the Ub and SUMO1/2/3/4 with A20L to construct expression plasmids. Ub-A20L and SUMO1/2/34 gene sequences were inserted into the pHUE plasmids and pET-28b+ plasmids, respectively, to construct pHUE-A20L plasmids and pET-28b+-SUMO1/2/3/4-A20L plasmids. These plasmids were transformed into E. coli Rosetta (DE3) and induced with IPTG to express Ub-A20L and SUMO1/2/3/4 fusion proteins. The recombinant proteins were found in the soluble fraction after being over expressed in E. coli Rosetta (DE3). Antibacterial and hemolytic activities and membrane permeabilization ability of A20L were determined. Peptide structure was also studied by circular dichroism experiments. RESULTS A20L (KWKSFLKTFKSAKKTVLHTLLKAISS) was successfully expressed by fusion with an ubiquitin tag (Ub-tag) and human SUMO tags (SUMO1/2/3/4-tags). A20L exhibited antimicrobial activity against various Gram-negative and Gram-positive bacteria. Based on the hemolytic activity against human red blood cells, A20L showed good specificity against bacteria. The circular dichroism experiments illustrated that A20L was transferred into an α-helical structure in the presence of hydrophobic environment. The antibacterial mechanism of action and membrane specificity of A20L was further studied using membrane permeabilization experiments and tryptophan fluorescence and quenching experiments in liposomes. CONCLUSIONS The Ub-tag and human SUMO-tags represent good alternatives to chemical synthesis for the industrial production of antimicrobial peptides with low costs and high yields. The antibacterial mechanism of action of A20L was proved as membrane disruption. A20L showed stronger specificity on liposomes mimicking bacterial membrane than those mimicking eukaryotic cell membrane, which is consistent with the biological activity studies.
Collapse
Affiliation(s)
- Tonghui Yi
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin St., Changchun, Jilin, 130012, P. R. China. .,School of Life Sciences, Jilin University, Changchun, China.
| | - Shiyu Sun
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin St., Changchun, Jilin, 130012, P. R. China. .,School of Life Sciences, Jilin University, Changchun, China.
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin St., Changchun, Jilin, 130012, P. R. China. .,National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China. .,School of Life Sciences, Jilin University, Changchun, China.
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin St., Changchun, Jilin, 130012, P. R. China. .,National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China. .,School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
21
|
Mai XT, Huang J, Tan J, Huang Y, Chen Y. Effects and mechanisms of the secondary structure on the antimicrobial activity and specificity of antimicrobial peptides. J Pept Sci 2015; 21:561-8. [PMID: 25826179 DOI: 10.1002/psc.2767] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/02/2015] [Accepted: 02/10/2015] [Indexed: 11/05/2022]
Abstract
A 15-mer cationic α-helical antimicrobial peptide HPRP-A1 was used as the parent peptide to study the effects of peptide secondary structure on the biophysical properties and biological activities. Without changing the amino acid composition of HPRP-A1, we designed two α-helical peptides with either higher or lower helicity compared with the parent peptide, a β-sheet peptide and a random coiled peptide using de novo design approach. The secondary structures were confirmed by circular dichroism spectroscopy. The three α-helical peptides exhibited comparable antibacterial activities, but their hemolytic activity varied from extreme hemolysis to no hemolysis, which is correlated with their helicity. The β-sheet peptide shows poor antibacterial and strong hemolytic activities. More interestingly, the random coil peptide shows no antibacterial activity against Gram-negative bacteria, weak antibacterial activity against Gram-positive bacteria, and extremely weak hemolytic activity. Bacterial membrane permeabilization was also testified on peptides with different secondary structures. Tryptophan fluorescence experiment revealed that the peptide binding preference to the lipid vesicles for mimicking the prokaryotic or eukaryotic membranes was consistent with their biological activities. With the de novo design approach, we proved that it is important to maintain certain contents of amphipathic secondary structure for a desirable biological activity. We believe that the de novo design approach of relocation of the amino acids within a template sequence could be an effective approach in optimizing the specificity of an antimicrobial peptide.
Collapse
Affiliation(s)
- Xuan-thanh Mai
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, Jilin, 130012, China.,School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jinfeng Huang
- School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Juanjuan Tan
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, Jilin, 130012, China.,School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, Jilin, 130012, China.,School of Life Sciences, Jilin University, Changchun, 130012, China.,National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, Jilin, 130012, China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, Jilin, 130012, China.,School of Life Sciences, Jilin University, Changchun, 130012, China.,National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
22
|
Yi T, Huang Y, Chen Y. Prokaryotic expression and antimicrobial mechanism of XPF-St7-derived α-helical peptides. J Pept Sci 2014; 21:46-52. [DOI: 10.1002/psc.2722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Tonghui Yi
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education; Jilin University; Changchun China
- School of Life Sciences; Jilin University; Changchun China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education; Jilin University; Changchun China
- National Engineering Laboratory for AIDS Vaccine; Jilin University; Changchun China
- School of Life Sciences; Jilin University; Changchun China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education; Jilin University; Changchun China
- National Engineering Laboratory for AIDS Vaccine; Jilin University; Changchun China
- School of Life Sciences; Jilin University; Changchun China
| |
Collapse
|
23
|
Tan J, Huang J, Huang Y, Chen Y. Effects of single amino acid substitution on the biophysical properties and biological activities of an amphipathic α-helical antibacterial peptide against Gram-negative bacteria. Molecules 2014; 19:10803-17. [PMID: 25061725 PMCID: PMC6271477 DOI: 10.3390/molecules190810803] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/06/2014] [Accepted: 07/16/2014] [Indexed: 01/10/2023] Open
Abstract
An antimicrobial peptide, known as V13K, was utilized as the framework to study the effects of charge, hydrophobicity and helicity on the biophysical properties and biological activities of α-helical peptides. Six amino acids (Lys, Glu, Gly, Ser, Ala, and Leu) were individually used to substitute the original hydrophobic valine at the selected sixteenth location on the non-polar face of V13K. The results showed that the single amino acid substitutions changed the hydrophobicity of peptide analogs as monitored by RP-HPLC, but did not cause significant changes on peptide secondary structures both in a benign buffer and in a hydrophobic environment. The biological activities of the analogs exhibited a hydrophobicity-dependent behavior. The mechanism of peptide interaction with the outer membrane and cytoplasmic membrane of Gram-negative bacteria was investigated. We demonstrated that this single amino acid substitution method has valuable potential for the rational design of antimicrobial peptides with enhanced activities.
Collapse
Affiliation(s)
- Juanjuan Tan
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Jinfeng Huang
- School of Life Sciences, Northeast Normal University, Changchun 130012, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China.
| |
Collapse
|
24
|
Huang Y, He L, Li G, Zhai N, Jiang H, Chen Y. Role of helicity of α-helical antimicrobial peptides to improve specificity. Protein Cell 2014; 5:631-42. [PMID: 24805306 PMCID: PMC4130925 DOI: 10.1007/s13238-014-0061-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/03/2014] [Indexed: 11/26/2022] Open
Abstract
A major barrier to the use of antimicrobial peptides as antibiotics is the toxicity or ability to lyse eukaryotic cells. In this study, a 26-residue amphipathic α-helical antimicrobial peptide A12L/A20L (Ac-KWKSFLKTFKSLKKTVLHTLLKAISS-amide) was used as the framework to design a series of D- and L-diastereomeric peptides and study the relationships of helicity and biological activities of α-helical antimicrobial peptides. Peptide helicity was measured by circular dichroism spectroscopy and demonstrated to correlate with the hydrophobicity of peptides and the numbers of D-amino acid substitutions. Therapeutic index was used to evaluate the selectivity of peptides against prokaryotic cells. By introducing D-amino acids to replace the original L-amino acids on the non-polar face or the polar face of the helix, the hemolytic activity of peptide analogs have been significantly reduced. Compared to the parent peptide, the therapeutic indices were improved of 44-fold and 22-fold against Gram-negative and Gram-positive bacteria, respectively. In addition, D- and L-diastereomeric peptides exhibited lower interaction with zwitterionic eukaryotic membrane and showed the significant membrane damaging effect to bacterial cells. Helicity was proved to play a crucial role on peptide specificity and biological activities. By simply replacing the hydrophobic or the hydrophilic amino acid residues on the non-polar or the polar face of these amphipathic derivatives of the parent peptide with D-amino acids, we demonstrated that this method could have excellent potential for the rational design of antimicrobial peptides with enhanced specificity.
Collapse
Affiliation(s)
- Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012 China
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, 130012 China
- School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Liyan He
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012 China
| | - Guirong Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012 China
| | - Naicui Zhai
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012 China
- The First Hospital, Jilin University, Changchun, 130021 China
| | - Hongyu Jiang
- The First Hospital, Jilin University, Changchun, 130021 China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012 China
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, 130012 China
- School of Life Sciences, Jilin University, Changchun, 130012 China
| |
Collapse
|
25
|
Jiang Z, Vasil AI, Vasil ML, Hodges RS. "Specificity Determinants" Improve Therapeutic Indices of Two Antimicrobial Peptides Piscidin 1 and Dermaseptin S4 Against the Gram-negative Pathogens Acinetobacter baumannii and Pseudomonas aeruginosa. Pharmaceuticals (Basel) 2014; 7:366-91. [PMID: 24670666 PMCID: PMC4014698 DOI: 10.3390/ph7040366] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 11/16/2022] Open
Abstract
A new class of antimicrobial agents with lower rates of resistance and different targets is urgently needed because of the rapidly increasing resistance to classical antibiotics. Amphipathic cationic α-helical antimicrobial peptides (AMPs) represent such a class of compounds. In our previous studies, using a 26-residue de novo designed antimicrobial peptide, we proposed the concept of “specificity determinant(s)”: positively charged residue(s) in the center of the non-polar face of AMPs that could decrease hemolytic activity/toxicity but increase or maintain the same level of antimicrobial activity to increase dramatically the therapeutic index. In the current study, we used d-enantiomers of two AMPs, Piscidin 1 isolated from fish and dermaseptin S4 isolated from frog. We substituted different positions in the center of the hydrophobic face with one or two lysine residue(s) (one or two “specificity determinant(s)”). This simple modification not only maintained or improved antimicrobial activity against Gram-negative pathogens Acinetobacter baumannii (11 strains) and Pseudomonas aeruginosa (6 strains), but also dramatically decreased hemolytic activity of human red blood cells, as predicted. Therapeutic indices improved by 55-fold and 730-fold for piscidin 1 (I9K) and dermaseptin S4 (L7K, A14K), respectively, against A. baumannii. Similarly, the therapeutic indices improved 32-fold and 980-fold for piscidin 1 (I9K) and dermaseptin S4 (L7K, A14K), respectively, against P. aeruginosa.
Collapse
Affiliation(s)
- Ziqing Jiang
- Department of Biochemistry & Molecular Genetics, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Adriana I Vasil
- Department of Microbiology, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Michael L Vasil
- Department of Microbiology, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Robert S Hodges
- Department of Biochemistry & Molecular Genetics, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
26
|
Abraham T, Prenner EJ, Lewis RNAH, Mant CT, Keller S, Hodges RS, McElhaney RN. Structure-activity relationships of the antimicrobial peptide gramicidin S and its analogs: aqueous solubility, self-association, conformation, antimicrobial activity and interaction with model lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1420-9. [PMID: 24388950 DOI: 10.1016/j.bbamem.2013.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/10/2013] [Accepted: 12/24/2013] [Indexed: 11/28/2022]
Abstract
GS10 [cyclo-(VKLdYPVKLdYP)] is a synthetic analog of the naturally occurring antimicrobial peptide gramicidin (GS) in which the two positively charged ornithine (Orn) residues are replaced by two positively charged lysine (Lys) residues and the two less polar aromatic phenylalanine (Phe) residues are replaced by the more polar tyrosine (Tyr) residues. In this study, we examine the effects of these seemingly conservative modifications to the parent GS molecule on the physical properties of the peptide, and on its interactions with lipid bilayer model and biological membranes, by a variety of biophysical techniques. We show that although GS10 retains the largely β-sheet conformation characteristic of GS, it is less structured in both water and membrane-mimetic solvents. GS10 is also more water soluble and less hydrophobic than GS, as predicted, and also exhibits a reduced tendency for self-association in aqueous solution. Surprisingly, GS10 associates more strongly with zwitterionic and anionic phospholipid bilayer model membranes than does GS, despite its greater water solubility, and the presence of anionic phospholipids and cholesterol (Chol) modestly reduces the association of both GS10 and GS to these model membranes. The strong partitioning of both peptides into lipid bilayers is driven by a large favorable entropy change opposed by a much smaller unfavorable enthalpy change. However, GS10 is also less potent than GS at inducing inverted cubic phases in phospholipid bilayer model membranes and at inhibiting the growth of the cell wall-less bacterium Acholeplasma laidlawii B. These results are discussed in terms of the comparative antibiotic and hemolytic activities of these peptides.
Collapse
Affiliation(s)
- Thomas Abraham
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Elmar J Prenner
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ruthven N A H Lewis
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Colin T Mant
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrodinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Robert S Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Ronald N McElhaney
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
27
|
Simulative and experimental investigation on the cleavage site that generates the soluble human LOX-1. Arch Biochem Biophys 2013; 540:9-18. [PMID: 24113299 DOI: 10.1016/j.abb.2013.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/11/2013] [Accepted: 10/01/2013] [Indexed: 12/30/2022]
Abstract
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a scavenger receptor that mediates the recognition, the binding and internalization of ox-LDL. A truncated soluble form of LOX-1 (sLOX-1) has been identified that, at elevated levels, has been associated to acute coronary syndrome. Human sLOX-1 is the extracellular part of membrane LOX-1 which is cleaved in the NECK domain with a mechanism that has not yet been identified. Purification of human sLOX-1 has been carried out to experimentally identify the cleavage site region within the NECK domain. Molecular modelling and classical molecular dynamics simulation techniques have been used to characterize the structural and dynamical properties of the LOX-1 NECK domain in the presence and absence of the CTLD recognition region, taking into account the obtained proteolysis results. The simulative data indicate that the NECK domain is stabilized by the coiled-coil heptad repeat motif along the simulations, shows a definite flexibility pattern and is characterized by specific electrostatic potentials. The detection of a mobile inter-helix space suggests an explanation for the in vivo susceptibility of the NECK domain to the proteolytic cleavage, validating the assumption that the NECK domain sequence is composed of a coiled-coil motif destabilized in specific regions of functional significance.
Collapse
|
28
|
Comparison on effect of hydrophobicity on the antibacterial and antifungal activities of α-helical antimicrobial peptides. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4884-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Dai M, Haghpanah J, Singh N, Roth EW, Liang A, Tu RS, Montclare JK. Artificial Protein Block Polymer Libraries Bearing Two SADs: Effects of Elastin Domain Repeats. Biomacromolecules 2011; 12:4240-6. [DOI: 10.1021/bm201083d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Min Dai
- Department
of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
| | - Jennifer Haghpanah
- Department
of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
| | - Navjot Singh
- Department
of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
| | - Eric W. Roth
- Skirball Institute Image Core
Facility, New York University Medical Center, New York, New York 10016, United States
| | - Alice Liang
- Skirball Institute Image Core
Facility, New York University Medical Center, New York, New York 10016, United States
| | - Raymond S. Tu
- Department of Chemical Engineering, City College of New York, New York, New York 10031,
United States
| | - Jin Kim Montclare
- Department
of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
- Department
of Biochemistry, SUNY Downstate Medical Center, Brooklyn, New York 11203,
United States
| |
Collapse
|
30
|
Li GR, He LY, Liu XY, Liu AP, Huang YB, Qiu C, Zhang XY, Xu JQ, Yang W, Chen YX. Rational design of peptides with anti-HCV/HIV activities and enhanced specificity. Chem Biol Drug Des 2011; 78:835-43. [PMID: 21801309 DOI: 10.1111/j.1747-0285.2011.01201.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lack of vaccines for HCV and HIV makes the antiviral drug development urgently needed. The recently identified HCV NS5A-derived virucidal peptide (C5A) demonstrated a wide spectrum of activities against viruses. In this study, the C5A sequence SWLRDIWDWICEVLSDFK was utilized as the framework to study the effect of the modulation of peptide helicity and hydrophobicity on its anti-HCV and anti-HIV activities. Peptide helicity and hydrophobicity were altered by substitutions of varying amino acids on the non-polar face of C5A. Peptide hydrophobicity has been proved to play a crucial role in peptide anti-HCV or anti-HIV activities. Peptide helicity was relatively independent with antiviral activity. However, peptide analogs with dimerized structure in an aqueous medium while maintaining the ability to be induced into a more helical structure in a hydrophobic environment may tend to show comparable or improved antiviral activity and specificity to C5A. By modulating peptide helicity and hydrophobicity, we improved the specificity of C5A against HCV and HIV by 23- and 69-fold, respectively, in terms of the ratio of hemolytic activity to antiviral activity. We demonstrated that obtained by de novo design approach, peptide I6L/I10L/V13L may be a promising candidate as a new anti-HCV and anti-HIV therapeutic.
Collapse
Affiliation(s)
- Gui-Rong Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Huang J, Hao D, Chen Y, Xu Y, Tan J, Huang Y, Li F, Chen Y. Inhibitory effects and mechanisms of physiological conditions on the activity of enantiomeric forms of an α-helical antibacterial peptide against bacteria. Peptides 2011; 32:1488-95. [PMID: 21664394 DOI: 10.1016/j.peptides.2011.05.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/25/2011] [Accepted: 05/25/2011] [Indexed: 12/16/2022]
Abstract
Enantiomeric amphipathic α-helical antibacterial peptides were synthesized and their biophysical and biological properties under different physiological conditions were studied. In the absence of physiological factors, the L- and D-peptides exhibited similar antimicrobial activities against a broad spectrum of bacteria, even against clinical isolates with resistance to traditional antibiotics. However, in the presence of NaCl, CaCl₂ or human serum albumin (HSA) at physiological concentrations, the enantiomers revealed bacterium-species dependent attenuations in antibacterial activity. In the presence of salts the electrostatic interaction between the peptides and the biomembrane was inhibited. Salts, especially CaCl₂ weakened the ability of the peptides to permeabilize the outer membrane of Gram-negative bacteria, as determined by a 1-N-phenylnaphthylamine uptake assay. HSA exhibited variable inhibitory effects on the activity of the peptides when incubated with different bacterial strains. The peptides showed different binding association abilities to HSA at different molar ratios, regardless of their chirality, resulting in reduced peptide biological activity. The D-peptide performed better than its L-enantiomer in all conditions tested because of its resistance to proteolysis, and may therefore represent a promising candidate for development as a therapeutic agent.
Collapse
Affiliation(s)
- Jinfeng Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, Jilin 130012, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Jiang Z, Higgins MP, Whitehurst J, Kisich KO, Voskuil MI, Hodges RS. Anti-tuberculosis activity of α-helical antimicrobial peptides: de novo designed L- and D-enantiomers versus L- and D-LL-37. Protein Pept Lett 2011; 18:241-52. [PMID: 20858205 DOI: 10.2174/092986611794578288] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 09/06/2010] [Indexed: 11/22/2022]
Abstract
With the emergence of multi-drug resistant (MDR) and extensively drug resistant (XDR) Mycobacterium tuberculosis (Mtb), a new class of antimycobacterial agents with very different modes of action compared to classical antibiotics, are urgently needed. In this study, a series of 26-residue, amphipathic, α-helical antimicrobial peptides consisting of all D-amino acid residues and synthetic human L-LL37 (L-enantiomer) and D-LL37 (D-enantiomer) were investigated against M. tuberculosis susceptible strain (H37Rv) and a clinical multi-drug resistant strain (Vertulo). Minimal inhibitory concentrations (MICs) were determined through a peptide killing assay. D5, the most active analog against M. tuberculosis had a MIC value of 11.2 μM (35.2 μg/ml) against H37Rv strain and 15.6 μM (49 μg/ml) against the MDR strain. Peptide D1 had similar activity as D5 against the MDR strain (57 μg/mL), a 9-fold improvement in hemolytic activity and a 7.4-fold better therapeutic index compared to D5. Surprisingly, LL37 enantiomers showed little to no activity compared to the de-novo designed α-helical antimicrobial peptides.
Collapse
Affiliation(s)
- Ziqing Jiang
- Department of Biochemistry & Molecular Genetics, University of Colorado, School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
33
|
Jiang Z, Vasil AI, Gera L, Vasil ML, Hodges RS. Rational design of α-helical antimicrobial peptides to target Gram-negative pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: utilization of charge, 'specificity determinants,' total hydrophobicity, hydrophobe type and location as design parameters to improve the therapeutic ratio. Chem Biol Drug Des 2011; 77:225-40. [PMID: 21219588 DOI: 10.1111/j.1747-0285.2011.01086.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rapidly growing problem of increased resistance to classical antibiotics makes the development of new classes of antimicrobial agents with lower rates of resistance urgent. Amphipathic cationic α-helical antimicrobial peptides have been proposed as a potential new class of antimicrobial agents. The goal of this study was to take a broad-spectrum, 26-residue, antimicrobial peptide in the all-D conformation, peptide D1 (K13) with excellent biologic properties and address the question of whether a rational design approach could be used to enhance the biologic properties if the focus was on Gram-negative pathogens only. To test this hypothesis, we used 11 and 6 diverse strains of Acinetobacter baumannii and Pseudomonas aeruginosa, respectively. We optimized the number and location of positively charged residues on the polar face, the number, location, and type of hydrophobe on the non-polar face and varied the number of 'specificity determinants' in the center of the non-polar face from 1 to 2 to develop four new antimicrobial peptides. We demonstrated not only improvements in antimicrobial activity, but also dramatic reductions in hemolytic activity and unprecedented improvements in therapeutic indices. Compared to our original starting peptide D1 (V13), peptide D16 had a 746-fold improvement in hemolytic activity (i.e. decrease), maintained antimicrobial activity, and improved the therapeutic indices by 1305-fold and 895-fold against A. baumannii and P. aeruginosa, respectively. The resulting therapeutic indices for D16 were 3355 and 895 for A. baumannii and P. aeruginosa, respectively. D16 is an ideal candidate for commercialization as a clinical therapeutic to treat Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Ziqing Jiang
- Department of Biochemistry & Molecular Genetics, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
34
|
Huang YB, Wang XF, Wang HY, Liu Y, Chen Y. Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol Cancer Ther 2011; 10:416-26. [PMID: 21252288 DOI: 10.1158/1535-7163.mct-10-0811] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, the hydrophobicity of a 26-residue α-helical peptide (peptide P) was altered to study the effects of peptide hydrophobicity on the mechanism of action of cationic anticancer peptides. Hydrophobicity of the nonpolar face of the peptides was shown to correlate with peptide helicity. The self-association ability of peptides in aqueous environment, determined by the reversed-phase high performance liquid chromatography temperature profiling, showed strong influence on anticancer activity. The peptide analogues with greater hydrophobicity showed stronger anticancer activity determined by IC(50) values with a necrotic-like membrane disruption mechanism. Peptide analogues exhibited high specificity against cancer cells and much higher anticancer activity than widely-used anticancer chemical drugs. The mechanism of action of anticancer peptides was also investigated. The hydrophobicity of peptides plays a crucial role in the mechanism of action against cancer cells, which could present a way, using a de novo design approach, to create anticancer peptides as potential therapeutics in clinical practices.
Collapse
Affiliation(s)
- Yi-Bing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Rm. 244, No. 3 Tang Ao-qing Bldg., 2699 Qianjin St., Changchun, Jilin, China
| | | | | | | | | |
Collapse
|
35
|
Kirwan JP, Hodges RS. Critical interactions in the stability control region of tropomyosin. J Struct Biol 2010; 170:294-306. [PMID: 20144718 DOI: 10.1016/j.jsb.2010.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/28/2010] [Accepted: 01/28/2010] [Indexed: 11/16/2022]
Abstract
Our laboratory has recently described a stability control region in the two-stranded alpha-helical coiled-coil alpha-tropomyosin that accounts for overall protein stability but is not required for folding (Hodges et al., 2009). We have used a synthetic peptide approach to investigate three stability control sites within the stability control region (residues 97-118). Two of the sites, electrostatic cluster 1 (97-104, EELDRAQE) and electrostatic cluster 2 (112-118, KLEEAEK), feature sequences with unusually high charge density and the potential to form multiple intrachain and interchain salt bridges (ionic attractions). A third site (105-111, RLATALQ) features an e position Leu residue, an arrangement known previously to enhance coiled-coil stability modestly. A native peptide and seven peptide analogs of the tropomyosin sequence 85-119 were prepared by Fmoc solid-phase peptide synthesis. Thermal stability measurements by circular dichroism (CD) spectroscopy revealed the following T(m) values for the native peptide and three key analogs: 52.9 degrees C (Native), 46.0 degrees C (R101A), 45.3 degrees C (K112A/K118A), and 27.9 degrees C (L110A). The corresponding DeltaT(m) values for the analogs, relative to the native peptide, are -6.9 degrees C, -7.6 degrees C, and -25.0 degrees C, respectively. The dramatic contribution to stability made by L110e is three times greater than the contribution of either electrostatic cluster 1 or 2, likely resulting from a novel hydrophobic interaction not previously observed. These thermal stability results were corroborated by temperature profiling analyses using reversed-phase high-performance liquid chromatography (RP-HPLC). We believe that the combined contributions of the interactions within the three stability control sites are responsible for the effect of the stability control region in tropomyosin, with the Leu110e contribution being most critical.
Collapse
Affiliation(s)
- J Paul Kirwan
- Program in Structural Biology and Biophysics, Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | | |
Collapse
|
36
|
Gunasekar SK, Asnani M, Limbad C, Haghpanah JS, Hom W, Barra H, Nanda S, Lu M, Montclare JK. N-Terminal Aliphatic Residues Dictate the Structure, Stability, Assembly, and Small Molecule Binding of the Coiled-Coil Region of Cartilage Oligomeric Matrix Protein. Biochemistry 2009; 48:8559-67. [DOI: 10.1021/bi900534r] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Susheel K. Gunasekar
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201
| | - Mukta Asnani
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201
| | - Chandani Limbad
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201
| | - Jennifer S. Haghpanah
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201
| | - Wendy Hom
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201
| | - Hanna Barra
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201
| | - Soumya Nanda
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201
| | - Min Lu
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021
| | - Jin Kim Montclare
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201
- Department of Biochemistry, SUNY-Downstate Medical Center, Brooklyn, New York 11203
| |
Collapse
|
37
|
Jiang Z, Kullberg BJ, van der Lee H, Vasil AI, Hale JD, Mant CT, Hancock REW, Vasil ML, Netea MG, Hodges RS. Effects of hydrophobicity on the antifungal activity of alpha-helical antimicrobial peptides. Chem Biol Drug Des 2009; 72:483-95. [PMID: 19090916 DOI: 10.1111/j.1747-0285.2008.00728.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We utilized a series of analogs of D-V13K (a 26-residue amphipathic alpha-helical antimicrobial peptide, denoted D1) to compare and contrast the role of hydrophobicity on antifungal and antibacterial activity to the results obtained previously with Pseudomonas aeruginosa strains. Antifungal activity for zygomycota fungi decreased with increasing hydrophobicity (D-V13K/A12L/A20L/A23L, denoted D4, the most hydrophobic analog was sixfold less active than D1, the least hydrophobic analog). In contrast, antifungal activity for ascomycota fungi increased with increasing hydrophobicity (D4, the most hydrophobic analog was fivefold more active than D1). Hemolytic activity is dramatically affected by increasing hydrophobicity with peptide D4 being 286-fold more hemolytic than peptide D1. The therapeutic index for peptide D1 is 1569-fold and 62-fold better for zygomycota fungi and ascomycota fungi, respectively, compared with peptide D4. To reduce the hemolytic activity of peptide D4 and improve/maintain the antifungal activity of D4, we substituted another lysine residue in the center of the non-polar face (V16K) to generate D5 (D-V13K/V16K/A12L/A20L/A23L). This analog D5 decreased hemolytic activity by 13-fold, enhanced antifungal activity to zygomycota fungi by 16-fold and improved the therapeutic index by 201-fold compared with D4 and represents a unique approach to control specificity while maintaining high hydrophobicity in the two hydrophobic segments on the non-polar face of D5.
Collapse
Affiliation(s)
- Ziqing Jiang
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado-Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mant CT, Kovacs JM, Kim HM, Pollock DD, Hodges RS. Intrinsic amino acid side-chain hydrophilicity/hydrophobicity coefficients determined by reversed-phase high-performance liquid chromatography of model peptides: comparison with other hydrophilicity/hydrophobicity scales. Biopolymers 2009; 92:573-95. [PMID: 19795449 PMCID: PMC2792893 DOI: 10.1002/bip.21316] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An accurate determination of the intrinsic hydrophilicity/hydrophobicity of amino acid side-chains in peptides and proteins is fundamental in understanding many area of research, including protein folding and stability, peptide and protein function, protein-protein interactions and peptide/protein oligomerization, as well as the design of protocols for purification and characterization of peptides and proteins. Our definition of intrinsic hydrophilicity/hydrophobicity of side-chains is the maximum possible hydrophilicity/hydrophobicity of side-chains in the absence of any nearest-neighbor effects and/or any conformational effects of the polypeptide chain that prevent full expression of side-chain hydrophilicity/hydrophobicity. In this review, we have compared an experimentally derived intrinsic side-chain hydrophilicity/hydrophobicity scale generated from RP-HPLC retention behavior of de novo designed synthetic model peptides at pH 2 and pH 7 with other RP-HPLC-derived scales, as well as scales generated from classic experimental and calculation-based methods of octanol/water partitioning of Nalpha-acetyl-amino-acid amides or free energy of transfer of free amino acids. Generally poor correlation was found with previous RP-HPLC-derived scales, likely due to the random nature of the peptide mixtures in terms of varying peptide size, conformation and frequency of particular amino acids. In addition, generally poor correlation with the classical approaches served to underline the importance of the presence of a polypeptide backbone when generating intrinsic values. We have shown that the intrinsic scale determined here is in full agreement with the structural characteristics of amino acid side-chains.
Collapse
Affiliation(s)
- Colin T. Mant
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - James M. Kovacs
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Hyun-Min Kim
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - David D. Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Robert S. Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
39
|
Jiang Z, Vasil AI, Hale JD, Hancock REW, Vasil ML, Hodges RS. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Biopolymers 2008; 90:369-83. [PMID: 18098173 DOI: 10.1002/bip.20911] [Citation(s) in RCA: 343] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In our previous study, we utilized a 26-residue amphipathic alpha-helical antimicrobial peptide L-V13K (Chen et al., Antimicrob Agents Chemother 2007, 51, 1398-1406) as the framework to study the effects of peptide hydrophobicity on the mechanism of its antimicrobial action. In this study, we explored the effects of net charge and the number of positively charged residues on the hydrophilic/polar face of L-V13K on its biological activity (antimicrobial and hemolytic) and biophysical properties (hydrophobicity, amphipathicity, helicity, and peptide self-association). The net charge of V13K analogs at pH 7 varied between -5 and +10 and the number of positively charged residues varied from 1 to 10. The minimal inhibitory concentrations (MIC) against six strains of Pseudomonas aeruginosa as well as other gram-negative and gram-positive bacteria were determined along with the maximal peptide concentration that produces no hemolysis of human red blood cells (MHC). Our results show that the number of positively charged residues on the polar face and net charge are both important for both antimicrobial activity and hemolytic activity. The most dramatic observation is the sharp transition of hemolytic activity on increasing one positive charge on the polar face of V13K i.e., the change from +8 to +9 resulted in greater than 32-fold increase in hemolytic activity (250 microg/ml to <7.8 microg/ml, respectively).
Collapse
Affiliation(s)
- Ziqing Jiang
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abraham T, Marwaha S, Kobewka DM, Lewis RN, Prenner EJ, Hodges RS, McElhaney RN. The relationship between the binding to and permeabilization of phospholipid bilayer membranes by GS14dK4, a designed analog of the antimicrobial peptide gramicidin S. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2089-98. [PMID: 17686454 PMCID: PMC3251618 DOI: 10.1016/j.bbamem.2007.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 06/20/2007] [Accepted: 06/22/2007] [Indexed: 11/28/2022]
Abstract
The cationic beta-sheet cyclic tetradecapeptide cyclo[VKLdKVdYPLKVKLdYP] (GS14dK(4)) is a diastereomeric lysine ring-size analog of the potent naturally occurring antimicrobial peptide gramicidin S (GS) which exhibits enhanced antimicrobial but markedly reduced hemolytic activity compared to GS itself. We have previously studied the binding of GS14dK(4) to various phospholipid bilayer model membranes using isothermal titration calorimetry [Abraham, T. et al. (2005) Biochemistry 44, 2103-2112]. In the present study, we compare the ability of GS14dK(4) to bind to and disrupt these same phospholipid model membranes by employing a fluorescent dye leakage assay to determine the ability of this peptide to permeabilize large unilamellar vesicles. We find that in general, the ability of GS14dK(4) to bind to and to permeabilize phospholipid bilayers of different compositions are not well correlated. In particular, the binding affinity of GS14dK(4) varies markedly with the charge and to some extent with the polar headgroup structure of the phospholipid and with the cholesterol content of the model membrane. Specifically, this peptide binds much more tightly to anionic than to zwitterionic phospholipids and much less tightly to cholesterol-containing than to cholesterol-free model membranes. In addition, the maximum extent of binding of GS14dK(4) can also vary considerably with phospholipid composition in a parallel fashion. In contrast, the ability of this peptide to permeabilize phospholipid vesicles is only weakly dependent on phospholipid charge, polar headgroup structure or cholesterol content. We provide tentative explanations for the observed lack of a correlation between the affinity and extent of GS14dK(4) binding to, and degree of disruption of the structure and integrity of, phospholipid bilayers membranes. We also present evidence that the lack of correlation between these two parameters may be a general phenomenon among antimicrobial peptides. Finally, we demonstrate that the affinity of binding of GS14dK4 to various phospholipid bilayer membranes is much more strongly correlated with the antimicrobial and hemolytic activities of this peptide than with its effect on the rate and extent of dye leakage in these model membrane systems.
Collapse
Affiliation(s)
- Thomas Abraham
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Seema Marwaha
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Daniel M. Kobewka
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | | - Elmar J. Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Robert S. Hodges
- Department of Biochemistry and Molecular Genetics, The University of Colorado Health Sciences Center at Fitzsimons, Aurora, CO 80045, USA
| | - Ronald N. McElhaney
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada T6G 2H7
- Corresponding author. Tel.: (780) 492-2413; fax: (780) 492-0095.
| |
Collapse
|
41
|
Lewis RNAH, Liu F, Krivanek R, Rybar P, Hianik T, Flach CR, Mendelsohn R, Chen Y, Mant CT, Hodges RS, McElhaney RN. Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes. Biochemistry 2007; 46:1042-54. [PMID: 17240988 PMCID: PMC3246638 DOI: 10.1021/bi061891b] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of the hydrophobicity and the distribution of hydrophobic residues on the surfaces of some designed alpha-helical transmembrane peptides (acetyl-K2-L(m)-A(n)-K2-amide, where m + n = 24) on their solution behavior and interactions with phospholipids were examined. We find that although these peptides exhibit strong alpha-helix forming propensities in water, membrane-mimetic media, and lipid model membranes, the stability of the helices decreases as the Leu content decreases. Also, their binding to reversed phase high-performance liquid chromatography columns is largely determined by their hydrophobicity and generally decreases with decreases in the Leu/Ala ratio. However, the retention of these peptides by such columns is also affected by the distribution of hydrophobic residues on their helical surfaces, being further enhanced when peptide helical hydrophobic moments are increased by clustering hydrophobic residues on one side of the helix. This clustering of hydrophobic residues also increases peptide propensity for self-aggregation in aqueous media and enhances partitioning of the peptide into lipid bilayer membranes. We also find that the peptides LA3LA2 [acetyl-K2-(LAAALAA)3LAA-K2-amide] and particularly LA6 [acetyl-K2-(LAAAAAA)3LAA-K2-amide] associate less strongly with and perturb the thermotropic phase behavior of phosphatidylcholine bilayers much less than peptides with higher L/A ratios. These results are consistent with free energies calculated for the partitioning of these peptides between water and phospholipid bilayers, which suggest that LA3LA2 has an equal tendency to partition into water and into the hydrophobic core of phospholipid model membranes, whereas LA6 should strongly prefer the aqueous phase. We conclude that for alpha-helical peptides of this type, Leu/Ala ratios of greater than 7/17 are required for stable transmembrane associations with phospholipid bilayers.
Collapse
Affiliation(s)
- R. N. A. H. Lewis
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - F. Liu
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - R. Krivanek
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina, 842 48 Bratislava, Slovakia
| | - P. Rybar
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina, 842 48 Bratislava, Slovakia
| | - T. Hianik
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina, 842 48 Bratislava, Slovakia
| | - C. R. Flach
- Department of Chemistry, Rutgers University, Newark, New Jersey 01102
| | - R. Mendelsohn
- Department of Chemistry, Rutgers University, Newark, New Jersey 01102
| | - Y. Chen
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center at Fitzsimons, Aurora, Colorado 80045
| | - C. T. Mant
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center at Fitzsimons, Aurora, Colorado 80045
| | - R. S. Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center at Fitzsimons, Aurora, Colorado 80045
| | - R. N. McElhaney
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
- To whom correspondence should be addressed. Telephone: (780) 492-2413. Fax: (780) 492-0095.
| |
Collapse
|
42
|
Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Chemother 2006; 51:1398-406. [PMID: 17158938 PMCID: PMC1855469 DOI: 10.1128/aac.00925-06] [Citation(s) in RCA: 544] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, the 26-residue amphipathic alpha-helical antimicrobial peptide V13KL (Y. Chen et al., J. Biol. Chem. 2005, 280:12316-12329, 2005) was used as the framework to study the effects of peptide hydrophobicity on the mechanism of action of antimicrobial peptides. Hydrophobicity was systematically decreased or increased by replacing leucine residues with less hydrophobic alanine residues or replacing alanine residues with more hydrophobic leucine residues on the nonpolar face of the helix, respectively. Hydrophobicity of the nonpolar face of the amphipathic helix was demonstrated to correlate with peptide helicity (measured by circular dichroism spectroscopy) and self-associating ability (measured by reversed-phase high-performance liquid chromatography temperature profiling) in aqueous environments. Higher hydrophobicity was correlated with stronger hemolytic activity. In contrast, there was an optimum hydrophobicity window in which high antimicrobial activity could be obtained. Decreased or increased hydrophobicity beyond this window dramatically decreased antimicrobial activity. The decreased antimicrobial activity at high peptide hydrophobicity can be explained by the strong peptide self-association which prevents the peptide from passing through the cell wall in prokaryotic cells, whereas increased peptide self-association had no effect on peptide access to eukaryotic membranes.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Biomolecular Structure MS 8101, P.O. Box 6511, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
43
|
Chen Y, Vasil AI, Rehaume L, Mant CT, Burns JL, Vasil ML, Hancock REW, Hodges RS. Comparison of biophysical and biologic properties of alpha-helical enantiomeric antimicrobial peptides. Chem Biol Drug Des 2006; 67:162-73. [PMID: 16492164 PMCID: PMC3252236 DOI: 10.1111/j.1747-0285.2006.00349.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In our previous study (Chen et al. J Biol Chem 2005, 280:12316-12329), we utilized an alpha-helical antimicrobial peptide V(681) as the framework to study the effects of peptide hydrophobicity, amphipathicity, and helicity on biologic activities where we obtained several V(681) analogs with dramatic improvement in peptide therapeutic indices against gram-negative and gram-positive bacteria. In the present study, the D-enantiomers of three peptides--V(681), V13A(D) and V13K(L) were synthesized to compare biophysical and biologic properties with their enantiomeric isomers. Each D-enantiomer was shown by circular dichroism spectroscopy to be a mirror image of the corresponding L-isomer in benign conditions and in the presence of 50% trifluoroethanol. L- and D-enantiomers exhibited equivalent antimicrobial activities against a diverse group of Pseudomonas aeruginosa clinical isolates, various gram-negative and gram-positive bacteria and a fungus. In addition, L- and D-enantiomeric peptides were equally active in their ability to lyse human red blood cells. The similar activity of L- and D-enantiomeric peptides on prokaryotic or eukaryotic cell membranes suggests that there are no chiral receptors and the cell membrane is the sole target for these peptides. Peptide D-V13K(D) showed significant improvements in the therapeutic indices compared with the parent peptide V(681) by 53-fold against P. aeruginosa strains, 80-fold against gram-negative bacteria, 69-fold against gram-positive bacteria, and 33-fold against Candida albicans. The excellent stability of D-enantiomers to trypsin digestion (no proteolysis by trypsin) compared with the rapid breakdown of the L-enantiomers highlights the advantage of the D-enantiomers and their potential as clinical therapeutics.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Biomolecular Structure MS 8101, PO Box 6511, Aurora, CO 80045, USA
| | - Adriana I. Vasil
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Linda Rehaume
- Department of Microbiology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Colin T. Mant
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Biomolecular Structure MS 8101, PO Box 6511, Aurora, CO 80045, USA
| | - Jane L. Burns
- Infectious Diseases Section, Children's Hospital and Regional Medical Center, University of Washington, Seattle, WA 98109, USA
| | - Michael L. Vasil
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Robert E. W. Hancock
- Department of Microbiology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Robert S. Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Biomolecular Structure MS 8101, PO Box 6511, Aurora, CO 80045, USA
- Corresponding author: Robert S. Hodges,
| |
Collapse
|
44
|
Abraham T, Lewis RNAH, Hodges RS, McElhaney RN. Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes. Biochemistry 2005; 44:2103-12. [PMID: 15697236 PMCID: PMC3245835 DOI: 10.1021/bi048077d] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The binding of the positively charged antimicrobial peptide cyclo[VKLdKVdYPLKVKLdYP] (GS14dK4) to various lipid bilayer model membranes was investigated using isothermal titration calorimetry. GS14dK4 is a diastereomeric lysine ring-size analogue of the naturally occurring antimicrobial peptide gramicidin S which exhibits enhanced antimicrobial and markedly reduced hemolytic activities compared with GS itself. Large unilamellar vesicles composed of various zwitterionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphorylcholine [POPC]) and anionic phospholipids {1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(glycerol)] [POPG] and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phosphoserine] [POPS]}, with or without cholesterol, were used as model membrane systems. Dynamic light scattering results indicate the absence of any peptide-induced major alteration in vesicle size or vesicle fusion under our experimental conditions. The binding of GS14dK4 is significantly influenced by the surface charge density of the phospholipid bilayer and by the presence of cholesterol. Specifically, a significant reduction in the degree of binding occurs when three-fourths of the anionic lipid molecules are replaced with zwitterionic POPC molecules. No measurable binding occurs to cholesterol-containing zwitterionic vesicles, and a dramatic drop in binding is observed in the cholesterol-containing anionic POPG and POPS membranes, indicating that the presence of cholesterol markedly reduces the affinity of this peptide for phospholipid bilayers. The binding isotherms can be described quantitatively by a one-site binding model. The measured endothermic binding enthalpy (DeltaH) varies dramatically (+6.3 to +26.5 kcal/mol) and appears to be inversely related to the order of the phospholipid bilayer system. However, the negative free energy (DeltaG) of binding remains relatively constant (-8.5 to -11.5 kcal/mol) for all lipid membranes examined. The relatively small variation of negative free energy of peptide binding together with a pronounced variation of positive enthalpy produces an equally strong variation of TDeltaS (+16.2 to +35.0 kcal/mol), indicating that GS14dK4 binding to phospholipids bilayers is primarily entropy driven.
Collapse
|
45
|
Chen Y, Mant CT, Farmer SW, Hancock REW, Vasil ML, Hodges RS. Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 2005; 280:12316-29. [PMID: 15677462 PMCID: PMC1393284 DOI: 10.1074/jbc.m413406200] [Citation(s) in RCA: 473] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, the 26-residue peptide sequence Ac-KWKSFLKTFKSAVKTVLHTALKAISS-amide (V681) was utilized as the framework to study the effects of peptide hydrophobicity/hydrophilicity, amphipathicity, and helicity (induced by single amino acid substitutions in the center of the polar and nonpolar faces of the amphipathic helix) on biological activities. The peptide analogs were also studied by temperature profiling in reversed-phase high performance liquid chromatography, from 5 to 80 degrees C, to evaluate the self-associating ability of the molecules in solution, another important parameter in understanding peptide antimicrobial and hemolytic activities. A higher ability to self-associate in solution was correlated with weaker antimicrobial activity and stronger hemolytic activity of the peptides. Biological studies showed that strong hemolytic activity of the peptides generally correlated with high hydrophobicity, high amphipathicity, and high helicity. In most cases, the D-amino acid substituted peptides possessed an enhanced average antimicrobial activity compared with L-diastereomers. The therapeutic index of V681 was improved 90- and 23-fold against Gram-negative and Gram-positive bacteria, respectively. By simply replacing the central hydrophobic or hydrophilic amino acid residue on the nonpolar or the polar face of these amphipathic derivatives of V681 with a series of selected D-/L-amino acids, we demonstrated that this method has excellent potential for the rational design of antimicrobial peptides with enhanced activities.
Collapse
Affiliation(s)
- Yuxin Chen
- From the Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at Fitzsimons, Aurora, Colorado 80045, the
| | - Colin T. Mant
- From the Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at Fitzsimons, Aurora, Colorado 80045, the
| | - Susan W. Farmer
- Department of Microbiology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, and the
| | - Robert E. W. Hancock
- Department of Microbiology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, and the
| | - Michael L. Vasil
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, Aurora, Colorado 80045
| | - Robert S. Hodges
- From the Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at Fitzsimons, Aurora, Colorado 80045, the
- || To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at Fitzsimons, Biomolecular Structure MS 8101, P. O. Box 6511, Aurora, CO 80045. Tel.: 303-724-3253; Fax: 303-724-3249; E-mail:
| |
Collapse
|
46
|
Jandera P, Blomberg LG, Lundanes E. Controlling the retention in capillary LC with solvents, temperature, and electric fields. J Sep Sci 2004; 27:1402-18. [PMID: 15638149 DOI: 10.1002/jssc.200401852] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Once a suitable stationary phase and column dimensions have been selected, the retention in liquid chromatography (LC) is traditionally adjusted by controlling the mobile phase composition. Solvent gradients enable achievement of good separation selectivity while decreasing the separation time as compared to isocratic elution. Capillary columns allow use of other programming parameters, i.e. temperature and applied electric fields, in addition to solvent gradient elution. This paper presents a review of programmed separation techniques in miniaturized LC, including retention modeling and method transfer from the conventional to micro- and capillary scales. The impact of miniaturized instrumentation on retention and the limitations of capillary LC are discussed. Special attention is focused on the gradient dwell volume effects, which are more important in micro-LC techniques than in conventional analytical LC and may cause significant increase in the time of analysis, unless special instrumentation and (or) pre-column flow-splitting is used. The influence of temperature upon retention is also discussed, and applications where the temperature has been actively used for retention control in capillary LC are included together with the instrumentation utilized. Finally the possibilities of additional selectivity control by applying an electric field over a packed capillary LC column are discussed.
Collapse
Affiliation(s)
- Pavel Jandera
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice Nám Cs legii 565, CZ 532 10 Pardubice, Czech Republic
| | | | | |
Collapse
|
47
|
Prenner EJ, Kiricsi M, Jelokhani-Niaraki M, Lewis RNAH, Hodges RS, McElhaney RN. Structure-activity relationships of diastereomeric lysine ring size analogs of the antimicrobial peptide gramicidin S: mechanism of action and discrimination between bacterial and animal cell membranes. J Biol Chem 2004; 280:2002-11. [PMID: 15542606 PMCID: PMC3251617 DOI: 10.1074/jbc.m406509200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structure-activity relationships were examined in seven gramicidin S analogs in which the ring-expanded analog GS14 [cyclo-(VKLKVdYPLKVKLdYP)] is modified by enantiomeric inversions of its lysine residues. The conformation, amphiphilicity, and self-association propensity of these peptides were investigated by circular dichroism spectroscopy and reversed phase high performance liquid chromatography. (31)P nuclear magnetic resonance spectroscopic and dye leakage experiments were performed to evaluate the capacity of these peptides to induce inverse nonlamellar phases in, and to permeabilize phospholipid bilayers; their growth inhibitory activity against the cell wall-less mollicute Acholeplasma laidlawii B was also examined. The amount and stability of beta-sheet structure, effective hydrophobicity, propensity for self-association in water, ability to disrupt the organization of phospholipid bilayers, and ability to inhibit A. laidlawii B growth are strongly correlated with the facial amphiphilicity of these GS14 analogs. Also, the magnitude of the parameters segregate these peptides into three groups, consisting of GS14, the four single inversion analogs, and the two multiple inversion analogs. The capacity of these peptides to differentiate between bacterial and animal cell membranes exhibits a biphasic relationship with peptide amphiphilicity, suggesting that there may only be a narrow range of peptide amphiphilicity within which it is possible to achieve the dual therapeutic requirements of high antibiotic effectiveness and low hemolytic activity. These results were rationalized by considering how the physiochemical properties of these GS14 analogs are likely to be reflected in their partitioning into lipid bilayer membranes.
Collapse
Affiliation(s)
- Elmar J. Prenner
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Monika Kiricsi
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Masood Jelokhani-Niaraki
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ruthven N. A. H. Lewis
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Robert S. Hodges
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at Fitzsimons, Aurora, Colorado 80045
| | - Ronald N. McElhaney
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- To whom correspondence should be addressed: Dept. of Biochemistry, University of Alberta, Medical Sciences Bldg., Alberta T6G 2H7, Canada. Tel.: 780-492-2413; Fax: 780-492-0095,
| |
Collapse
|
48
|
Popa TV, Mant CT, Chen Y, Hodges RS. Capillary zone electrophoresis of α-helical diastereomeric peptide pairs with anionic ion-pairing reagents. J Chromatogr A 2004; 1043:113-22. [PMID: 15317419 DOI: 10.1016/j.chroma.2004.04.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study uses an unique capillary electrophoresis (CE) approach, that we have termed ion-interaction capillary zone electrophoresis (II-CZE), for the separation of diastereomeric peptide pairs where a single site in the centre of the non-polar face of an 18-residue amphipathic alpha-helical peptide is substituted by the 19 L- or D-amino acids. Through the addition of perfluorinated acids at very high concentrations (up to 400 mM), such concentration levels not having been used previously in chromatography or CE, to the background electrolyte (pH 2.0), we have been able to achieve baseline resolution of all 19 diastereomeric peptide pairs with an uncoated capillary. Since each diastereomeric peptide pair has the same sequence, identical mass-to-charge ratio and identical intrinsic hydrophobicity, such a separation by CZE has previously been considered theoretically impossible. Excellent resolution was achieved due to maximum advantage being taken of even subtle disruption of peptide structure/conformation (due to the presence of D-amino acids) of the non-polar face of the amphipathic alpha-helix and its interaction with the hydrophobic anionic ion-pairing reagents. In addition, due to the excellent resolution of diastereomeric peptide pairs by this novel CZE approach, we have also been able to separate a mixture of these closely-related alpha-helical peptides.
Collapse
Affiliation(s)
- Traian V Popa
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | |
Collapse
|