1
|
Sin YY, Cameron RT, Schepers M, MacLeod R, Wright TA, Paes D, van den Hove D, Willems E, Vanmierlo T, Prickaerts J, Blair CM, Baillie GS. Beta-amyloid interacts with and activates the long-form phosphodiesterase PDE4D5 in neuronal cells to reduce cAMP availability. FEBS Lett 2024; 598:1591-1604. [PMID: 38724485 DOI: 10.1002/1873-3468.14902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 07/09/2024]
Abstract
Inhibition of the cyclic-AMP degrading enzyme phosphodiesterase type 4 (PDE4) in the brains of animal models is protective in Alzheimer's disease (AD). We show for the first time that enzymes from the subfamily PDE4D not only colocalize with beta-amyloid (Aβ) plaques in a mouse model of AD but that Aβ directly associates with the catalytic machinery of the enzyme. Peptide mapping suggests that PDE4D is the preferential PDE4 subfamily for Aβ as it possesses a unique binding site. Intriguingly, exogenous addition of Aβ to cells overexpressing the PDE4D5 longform caused PDE4 activation and a decrease in cAMP. We suggest a novel mechanism where PDE4 longforms can be activated by Aβ, resulting in the attenuation of cAMP signalling to promote loss of cognitive function in AD.
Collapse
Affiliation(s)
- Yuan Yan Sin
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| | - Ryan T Cameron
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| | - Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Ruth MacLeod
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| | - Tom A Wright
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| | - Dean Paes
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Daniel van den Hove
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Emily Willems
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Connor M Blair
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| |
Collapse
|
2
|
Wang Y, Zhang Y, Li Y, Huang J. Elevated PDE4C level serves as a candidate diagnostic biomarker and correlates with poor survival in thyroid carcinoma. Sci Rep 2024; 14:6813. [PMID: 38514754 PMCID: PMC10957934 DOI: 10.1038/s41598-024-57533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
Thyroid carcinoma (THCA) is the most common endocrine cancer. Phosphodiesterase (PDE) 4 enzyme family, as specific regulator of cyclic adenosine monophosphate, may play a important role in THCA. However, few studies on PDE4 enzyme family in THCA have been reported yet. Therefore, this study aimed to systematically analyze the changes of PDE4 enzyme family in THCA, and look for potential target for THCA therapy. We systematically analyzed the expression differences, prognostic value, genetic alteration, methylation modification, and the correlation with tumor immune microenvironment of PDE4 family in THCA using several public databases, including TCGA, GEO, GSCA, TNMplot, cBioPortal, DiseaseMeth and TIMER. Besides, functional enrichment analysis and protein-protein interaction (PPI) network of PDE4 family was investigated using Metascape and STRING databases. The expression levels of PDE4A, PDE4B and PDE4D were down-regulated in THCA patients at different cancer stages, while the expression level of PDE4C was significantly up-regulated. Moreover, THCA patients with higher PDE4C expression had shorter progress free survival compared with those with lower PDE4C expression. The low genomic alteration frequencies and mildly increased methylation levels of PDE4 family were found in THCA patients. Except for PDE4A, the expression levels of PDE4B, PDE4C and PDE4D could affect many immune cells infiltration during THCA progression. Four PDE4 subtypes were all enriched in cAMP catabolic process. Nevertheless, PDE4C was not enriched in the cAMP binding signal pathway, and PDE4B was not enriched in the G alphas signaling events. Notably, PDE4C participated in cAMP metabolic process by regulating adenylate cyclases (ADCYs), which involved ADCY1, ADCY5, ADCY6, ADCY8 and ADCY9. The findings of this study provide a partial basis for the role of PDE4 family in the occurrence and development of THCA. In addition, this study also suggested that PDE4C might be a potential prognostic marker of THCA, which could serve as a reference for future basic and clinical research.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yongsheng Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yanyan Li
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Jing Huang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Yang X, Long F, Jia W, Zhang M, Su G, Liao M, Zeng Z, Chen W, Chen J. Artesunate inhibits PDE4 leading to intracellular cAMP accumulation, reduced ERK/MAPK signaling, and blockade of influenza A virus vRNP nuclear export. Antiviral Res 2023; 215:105635. [PMID: 37192683 DOI: 10.1016/j.antiviral.2023.105635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
Influenza A viruses (IAV) have been a major cause of mortality. Given the potential for future deadly pandemics, effective drugs are needed for the treatment of severe influenzas, such as those caused by H5N1 IAV. The anti-malaria drugs artemisinin and its derivates, including artesunate (AS), have been reported to have broad antiviral activities. Here, we showed AS's antiviral activity against H5N1, H1N1, H3N2 and oseltamivir-resistant influenza A(H1N1)virus in vitro. Moreover, we showed that AS treatment significantly protected mice from lethal challenges with H1N1 and H5N1 IAV. Strikingly, the combination of AS and peramivir treatment significantly improved survival outcomes compared to their monotherapy with either AS or peramivir. Furthermore, we demonstrated mechanistically that AS affected the later stages of IAV replication and limited nuclear export of viral ribonucleoprotein (vRNP) complexes. In A549 cells, we demonstrated for the first time that AS treatment induced cAMP accumulation via inhibiting PDE4, and consequently reduced ERK phosphorylation and blocked IAV vRNP export, and thus suppressed IAV replication. These AS's effects were reversed by the pre-treatment with a cAMP inhibitor SQ22536. Our findings suggest that AS could serve as a novel IAV inhibitor by interfering vRNP nuclear export to prevent and treat IAV infection.
Collapse
Affiliation(s)
- Xia Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Feixiang Long
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Weixin Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Mingxin Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Guanming Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
4
|
Campolo F, Assenza MR, Venneri MA, Barbagallo F. Once upon a Testis: The Tale of Cyclic Nucleotide Phosphodiesterase in Testicular Cancers. Int J Mol Sci 2023; 24:ijms24087617. [PMID: 37108780 PMCID: PMC10146088 DOI: 10.3390/ijms24087617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Phosphodiesterases are key regulators that fine tune the intracellular levels of cyclic nucleotides, given their ability to hydrolyze cAMP and cGMP. They are critical regulators of cAMP/cGMP-mediated signaling pathways, modulating their downstream biological effects such as gene expression, cell proliferation, cell-cycle regulation but also inflammation and metabolic function. Recently, mutations in PDE genes have been identified and linked to human genetic diseases and PDEs have been demonstrated to play a potential role in predisposition to several tumors, especially in cAMP-sensitive tissues. This review summarizes the current knowledge and most relevant findings regarding the expression and regulation of PDE families in the testis focusing on PDEs role in testicular cancer development.
Collapse
Affiliation(s)
- Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Rita Assenza
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Barbagallo
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| |
Collapse
|
5
|
Herrmann FE, Hesslinger C, Wollin L, Nickolaus P. BI 1015550 is a PDE4B Inhibitor and a Clinical Drug Candidate for the Oral Treatment of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:838449. [PMID: 35517783 PMCID: PMC9065678 DOI: 10.3389/fphar.2022.838449] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
The anti-inflammatory and immunomodulatory abilities of oral selective phosphodiesterase 4 (PDE4) inhibitors enabled the approval of roflumilast and apremilast for use in chronic obstructive pulmonary disease and psoriasis/psoriatic arthritis, respectively. However, the antifibrotic potential of PDE4 inhibitors has not yet been explored clinically. BI 1015550 is a novel PDE4 inhibitor showing a preferential enzymatic inhibition of PDE4B. In vitro, BI 1015550 inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor-α (TNF-α) and phytohemagglutinin-induced interleukin-2 synthesis in human peripheral blood mononuclear cells, as well as LPS-induced TNF-α synthesis in human and rat whole blood. In vivo, oral BI 1015550 shows potent anti-inflammatory activity in mice by inhibiting LPS-induced TNF-α synthesis ex vivo and in Suncus murinus by inhibiting neutrophil influx into bronchoalveolar lavage fluid stimulated by nebulized LPS. In Suncus murinus, PDE4 inhibitors induce emesis, a well-known gastrointestinal side effect limiting the use of PDE4 inhibitors in humans, and the therapeutic ratio of BI 1015550 appeared to be substantially improved compared with roflumilast. Oral BI 1015550 was also tested in two well-known mouse models of lung fibrosis (induced by either bleomycin or silica) under therapeutic conditions, and appeared to be effective by modulating various model-specific parameters. To better understand the antifibrotic potential of BI 1015550 in vivo, its direct effect on human fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) was investigated in vitro. BI 1015550 inhibited transforming growth factor-β-stimulated myofibroblast transformation and the mRNA expression of various extracellular matrix proteins, as well as basic fibroblast growth factor plus interleukin-1β-induced cell proliferation. Nintedanib overall was unremarkable in these assays, but interestingly, the inhibition of proliferation was synergistic when it was combined with BI 1015550, leading to a roughly 10-fold shift of the concentration–response curve to the left. In summary, the unique preferential inhibition of PDE4B by BI 1015550 and its anticipated improved tolerability in humans, plus its anti-inflammatory and antifibrotic potential, suggest BI 1015550 to be a promising oral clinical candidate for the treatment of IPF and other fibro-proliferative diseases.
Collapse
Affiliation(s)
| | | | - Lutz Wollin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
6
|
Rich TC, Leavesley SJ, Brandon AP, Evans CA, Raju SV, Wagener BM. Phosphodiesterase 4 mediates interleukin-8-induced heterologous desensitization of the β 2 -adrenergic receptor. FASEB J 2021; 35:e21946. [PMID: 34555226 DOI: 10.1096/fj.202002712rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening illness characterized by decreased alveolar-capillary barrier function, pulmonary edema consisting of proteinaceous fluid, and inhibition of net alveolar fluid transport responsible for resolution of pulmonary edema. There is currently no pharmacotherapy that has proven useful to prevent or treat ARDS, and two trials using beta-agonist therapy to treat ARDS demonstrated no effect. Prior studies indicated that IL-8-induced heterologous desensitization of the beta2-adrenergic receptor (β2 -AR) led to decreased beta-agonist-induced mobilization of cyclic adenosine monophosphate (cAMP). Interestingly, phosphodiesterase (PDE) 4 inhibitors have been used in human airway diseases characterized by low intracellular cAMP levels and increases in specific cAMP hydrolyzing activity. Therefore, we hypothesized that PDE4 would mediate IL-8-induced heterologous internalization of the β2 -AR and that PDE4 inhibition would restore beta-agonist-induced functions. We determined that CINC-1 (a functional IL-8 analog in rats) induces internalization of β2 -AR from the cell surface, and arrestin-2, PDE4, and β2 -AR form a complex during this process. Furthermore, we determined that cAMP associated with the plasma membrane was adversely affected by β2 -AR heterologous desensitization. Additionally, we determined that rolipram, a PDE4 inhibitor, reversed CINC-1-induced derangements of cAMP and also caused β2 -AR to successfully recycle back to the cell surface. Finally, we demonstrated that rolipram could reverse CINC-1-mediated inhibition of beta-agonist-induced alveolar fluid clearance in a murine model of trauma-shock. These results indicate that PDE4 plays a role in CINC-1-induced heterologous internalization of the β2 -AR; PDE4 inhibition reverses these effects and may be a useful adjunct in particular ARDS patients.
Collapse
Affiliation(s)
- Thomas C Rich
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, USA.,Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| | - Silas J Leavesley
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, USA.,Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.,Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, Alabama, USA
| | - Angela P Brandon
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cilina A Evans
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - S Vamsee Raju
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brant M Wagener
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Critical Care Medicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
Wang S, Xie Y, Huo YW, Li Y, Abel PW, Jiang H, Zou X, Jiao HZ, Kuang X, Wolff DW, Huang YG, Casale TB, Panettieri RA, Wei T, Cao Z, Tu Y. Airway relaxation mechanisms and structural basis of osthole for improving lung function in asthma. Sci Signal 2020; 13:13/659/eaax0273. [PMID: 33234690 DOI: 10.1126/scisignal.aax0273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Overuse of β2-adrenoceptor agonist bronchodilators evokes receptor desensitization, decreased efficacy, and an increased risk of death in asthma patients. Bronchodilators that do not target β2-adrenoceptors represent a critical unmet need for asthma management. Here, we characterize the utility of osthole, a coumarin derived from a traditional Chinese medicine, in preclinical models of asthma. In mouse precision-cut lung slices, osthole relaxed preconstricted airways, irrespective of β2-adrenoceptor desensitization. Osthole administered in murine asthma models attenuated airway hyperresponsiveness, a hallmark of asthma. Osthole inhibited phosphodiesterase 4D (PDE4D) activity to amplify autocrine prostaglandin E2 signaling in airway smooth muscle cells that eventually triggered cAMP/PKA-dependent relaxation of airways. The crystal structure of the PDE4D complexed with osthole revealed that osthole bound to the catalytic site to prevent cAMP binding and hydrolysis. Together, our studies elucidate a specific molecular target and mechanism by which osthole induces airway relaxation. Identification of osthole binding sites on PDE4D will guide further development of bronchodilators that are not subject to tachyphylaxis and would thus avoid β2-adrenoceptor agonist resistance.
Collapse
Affiliation(s)
- Sheng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Yan-Wu Huo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Li
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Peter W Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Haihong Jiang
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Hai-Zhan Jiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Kuang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dennis W Wolff
- Kansas City University of Medicine and Biosciences-Joplin, Joplin, MO 64804, USA
| | - You-Guo Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Thomas B Casale
- Department of Internal Medicine, University of South Florida School of Medicine, Tampa, FL 33612, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA.
| |
Collapse
|
8
|
Dominant-Negative Attenuation of cAMP-Selective Phosphodiesterase PDE4D Action Affects Learning and Behavior. Int J Mol Sci 2020; 21:ijms21165704. [PMID: 32784895 PMCID: PMC7460819 DOI: 10.3390/ijms21165704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/26/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
PDE4 cyclic nucleotide phosphodiesterases reduce 3′, 5′ cAMP levels in the CNS and thereby regulate PKA activity and the phosphorylation of CREB, fundamental to depression, cognition, and learning and memory. The PDE4 isoform PDE4D5 interacts with the signaling proteins β-arrestin2 and RACK1, regulators of β2-adrenergic and other signal transduction pathways. Mutations in PDE4D in humans predispose to acrodysostosis, associated with cognitive and behavioral deficits. To target PDE4D5, we developed mice that express a PDE4D5-D556A dominant-negative transgene in the brain. Male transgenic mice demonstrated significant deficits in hippocampus-dependent spatial learning, as assayed in the Morris water maze. In contrast, associative learning, as assayed in a fear conditioning assay, appeared to be unaffected. Male transgenic mice showed augmented activity in prolonged (2 h) open field testing, while female transgenic mice showed reduced activity in the same assay. Transgenic mice showed no demonstrable abnormalities in prepulse inhibition. There was also no detectable difference in anxiety-like behavior, as measured in the elevated plus-maze. These data support the use of a dominant-negative approach to the study of PDE4D5 function in the CNS and specifically in learning and memory.
Collapse
|
9
|
Understanding PDE4's function in Alzheimer's disease; a target for novel therapeutic approaches. Biochem Soc Trans 2020; 47:1557-1565. [PMID: 31642904 PMCID: PMC6824677 DOI: 10.1042/bst20190763] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022]
Abstract
Phosphodiesterases (PDEs) have long been considered as targets for the treatment of Alzheimer's disease (AD) and a substantial body of evidence suggests that one sub-family from the super-family of PDEs, namely PDE4D, has particular significance in this context. This review discusses the role of PDE4 in the orchestration of cAMP response element binding signaling in AD and outlines the benefits of targeting PDE4D specifically. We examine the limited available literature that suggests PDE4 expression does not change in AD brains together with reports that show PDE4 inhibition as an effective treatment in this age-related neurodegenerative disease. Actually, aging induces changes in PDE4 expression/activity in an isoform and brain-region specific manner that proposes a similar complexity in AD brains. Therefore, a more detailed account of AD-related alterations in cellular/tissue location and the activation status of PDE4 is required before novel therapies can be developed to target cAMP signaling in this disease.
Collapse
|
10
|
Blokland A, Heckman P, Vanmierlo T, Schreiber R, Paes D, Prickaerts J. Phosphodiesterase Type 4 Inhibition in CNS Diseases. Trends Pharmacol Sci 2019; 40:971-985. [DOI: 10.1016/j.tips.2019.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
|
11
|
Methods to Investigate Arrestins in Complex with Phosphodiesterases. Methods Mol Biol 2019. [PMID: 30919351 DOI: 10.1007/978-1-4939-9158-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The many functions of β-arrestin proteins in the desensitization of G-protein-coupled receptors have been well characterized; however, the discovery that this scaffold protein could actually recruit phosphodiesterases (PDEs) to the site of cAMP synthesis changed the way researchers thought about the static nature of precisely localized cAMP hydrolysis by anchored PDEs. Before this discovery, the compartmentalization of cAMP gradients formed by the activation of specific receptors was generally understood to be underpinned by highly localized pools of specific PDEs that were anchored by large static anchors such as A-kinase-anchoring proteins (AKAPs). Such anchors acted to position cAMP effector proteins such as protein kinase A (PKA) and exchange protein directly activated by cAMP (EPAC) in places that would allow cAMP concentrations to breach their activation threshold only when a specific receptor activation occurred. In this arrangement PDEs acted as local "sinks" for cAMP and this enforced receptor-specific function by allowing the correct activation of a distinct pool of cAMP effectors in precise localizations. The discovery that β-arrestin could shuttle cAMP hydrolyzing activity to the membrane shortly after receptor activation added to the complexity of this process by restricting cAMP diffusion into the cell interior for some receptors. This chapter describes the methods used to identify, confirm, and test the function of PDE-β-arrestin complexes.
Collapse
|
12
|
Huang H, Xie M, Gao L, Zhang W, Zhu X, Wang Y, Li W, Wang R, Chen K, Boutjdir M, Chen L. Rolipram, a PDE4 Inhibitor, Enhances the Inotropic Effect of Rat Heart by Activating SERCA2a. Front Pharmacol 2019; 10:221. [PMID: 30967774 PMCID: PMC6439224 DOI: 10.3389/fphar.2019.00221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
This study was designed to investigate the hemodynamic effect of rolipram, a phosphodiesterase type 4 (PDE4) inhibitor, in normal rat hearts both in vivo and in vitro and its underlying mechanism. The pressure-volume loop, isolated heart, and Ca2+ transients triggered by field stimulation or caffeine were used to analyze the hemodynamic mechanism of rolipram. The results demonstrated that rolipram (3 mg/kg, ip) significantly increased the in vivo rat heart contractility by enhancing stroke work, cardiac output, stroke volume, end-systolic volume, end-diastolic volume, end-systolic pressure, heart rate, ejection fraction, peak rate of rise of left pressure (+dp/dtmax), the slopes of end-systolic pressure-volume relationship (slope of ESPVR) named as left ventricular end-systolic elastance, and reduced the slopes of end-diastolic pressure-volume relationship (slope of EDPVR). Meanwhile, the systolic blood pressure, diastolic blood pressure, and pulse pressure were significantly enhanced by rolipram. Also, rolipram deviated normal ventricular-arterial coupling without changing the arterial elastance. Furthermore, rolipram (0.1, 1, 10 μM) also exerted positive inotropic effect in isolated rat hearts by increasing the left ventricular development pressure, and +dp/dtmax in non-paced and paced modes. Rolipram (10 μM) increased the SERCA2a activity, Ca2+ content, and Ca2+ leak rate without changing diastolic Ca2+ level. Rolipram had significant positive inotropic effect with less effect on peripheral vascular elastance and its underlying mechanism was mediated by increasing SERCA2a activity. PDE4 inhibition by rolipram resulted in a positive inotropic effect and might serve as a target for developing agents for the treatment of heart failure in clinical settings.
Collapse
Affiliation(s)
- Huili Huang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Xie
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Gao
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenhui Zhang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojia Zhu
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuwei Wang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongrong Wang
- Dalian Institute of Chemical Physics, Dalian, China.,Chinese Academy of Sciences Biomedical Innovation Institute of China Medical City, Taizhou, China
| | - Kesu Chen
- Department of Respiratory, Inpatient Wards for Senior Cadres, Nanjing General Hospital of Nanjing Military Command Region, Nanjing, China
| | - Mohamed Boutjdir
- VA New York Harbor Healthcare System, New York, NY, United States.,State University of New York Downstate Medical Center, New York, NY, United States.,NYU School of Medicine, New York, NY, United States
| | - Long Chen
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Institute of Chinese Medicine of Taizhou China Medical City, Taizhou, China
| |
Collapse
|
13
|
Matera MG, Page C, Rinaldi B. β2-Adrenoceptor signalling bias in asthma and COPD and the potential impact on the comorbidities associated with these diseases. Curr Opin Pharmacol 2018; 40:142-146. [PMID: 29763833 DOI: 10.1016/j.coph.2018.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/09/2018] [Accepted: 04/20/2018] [Indexed: 10/16/2022]
Abstract
Inhaled selective β2-agonists are the most widely used treatment for obstructive airway diseases. The classical mechanism of action of these drugs is considered as their ability to activate β2-adrenergic receptors (β2-AR) on airway smooth muscle leading to G-protein activation and subsequent generation of c-AMP causing bronchodilation. However, there is now growing evidence to suggest that binding of β2-agonists to β2-AR is pleotropically coupled to many intracellular pathways whereby depending on the state of the β2-AR when activated, a subset of different intracellular responses can be triggered. This is called biased agonism (or functional selectivity) and this type of activity has now been observed with different types of G protein-coupled receptor (GPCR), not just β2-AR. Accordingly, drug efficacy for many agonists binding to GPCRs can no longer be solely described in terms of a single relationship between binding of a ligand to a receptor and the subsequent magnitude of the cellular response, but is often far more complex reflecting a specific complement of signals following binding of a ligand to its receptor. These differences in responses depending on what state the receptor is in when the ligand binds to it can subsequently influence the intracellular signalling that in turn can influence the efficacy of β2-AR ligands. Such findings suggest that in the future it may be possible to develop new synthetic β2-agonists that could preferentially confine their activity in stabilizing/activating the receptor to a certain conformation which could lead to improved drugs either to reduce adverse responses or to avoid drugs that activate certain conformations of the receptors that may lead to tolerance or desensitization following repeated activation.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Barbara Rinaldi
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
| |
Collapse
|
14
|
Fertig BA, Baillie GS. PDE4-Mediated cAMP Signalling. J Cardiovasc Dev Dis 2018; 5:jcdd5010008. [PMID: 29385021 PMCID: PMC5872356 DOI: 10.3390/jcdd5010008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 12/20/2022] Open
Abstract
cAMP is the archetypal and ubiquitous second messenger utilised for the fine control of many cardiovascular cell signalling systems. The ability of cAMP to elicit cell surface receptor-specific responses relies on its compartmentalisation by cAMP hydrolysing enzymes known as phosphodiesterases. One family of these enzymes, PDE4, is particularly important in the cardiovascular system, where it has been extensively studied and shown to orchestrate complex, localised signalling that underpins many crucial functions of the heart. In the cardiac myocyte, cAMP activates PKA, which phosphorylates a small subset of mostly sarcoplasmic substrate proteins that drive β-adrenergic enhancement of cardiac function. The phosphorylation of these substrates, many of which are involved in cardiac excitation-contraction coupling, has been shown to be tightly regulated by highly localised pools of individual PDE4 isoforms. The spatial and temporal regulation of cardiac signalling is made possible by the formation of macromolecular “signalosomes”, which often include a cAMP effector, such as PKA, its substrate, PDE4 and an anchoring protein such as an AKAP. Studies described in the present review highlight the importance of this relationship for individual cardiac PKA substrates and we provide an overview of how this signalling paradigm is coordinated to promote efficient adrenergic enhancement of cardiac function. The role of PDE4 also extends to the vascular endothelium, where it regulates vascular permeability and barrier function. In this distinct location, PDE4 interacts with adherens junctions to regulate their stability. These highly specific, non-redundant roles for PDE4 isoforms have far reaching therapeutic potential. PDE inhibitors in the clinic have been plagued with problems due to the active site-directed nature of the compounds which concomitantly attenuate PDE activity in all highly localised “signalosomes”.
Collapse
|
15
|
Hansen RT, Zhang HT. The Past, Present, and Future of Phosphodiesterase-4 Modulation for Age-Induced Memory Loss. ADVANCES IN NEUROBIOLOGY 2018; 17:169-199. [PMID: 28956333 DOI: 10.1007/978-3-319-58811-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The purpose of this chapter is to highlight the state of progress for phosphodiesterase-4 (PDE4) modulation as a potential therapeutic for psychiatric illness, and to draw attention to particular hurdles and obstacles that must be overcome in future studies to develop PDE4-mediated therapeutics. Pathological and non-pathological related memory loss will be the focus of the chapter; however, we will at times also touch upon other psychiatric illnesses like anxiety and depression. First, we will provide a brief background of PDE4, and the rationale for its extensive study in cognition. Second, we will explore fundamental differences in individual PDE4 subtypes, and then begin to address differences between pathological and non-pathological aging. Alterations of cAMP/PDE4 signaling that occur within normal vs. pathological aging, and the potential for PDE4 modulation to combat these alterations within each context will be described. Finally, we will finish the chapter with obstacles that have hindered the field, and future studies and alternative viewpoints that need to be addressed. Overall, we hope this chapter will demonstrate the incredible complexity of PDE4 signaling in the brain, and will be useful in forming a strategy to develop future PDE4-mediated therapeutics for psychiatric illnesses.
Collapse
Affiliation(s)
- Rolf T Hansen
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-9137, USA
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Institute of Pharmacology, Taishan Medical University, Taian, 271016, China.
| |
Collapse
|
16
|
The cyclic AMP phosphodiesterase 4D5 (PDE4D5)/receptor for activated C-kinase 1 (RACK1) signalling complex as a sensor of the extracellular nano-environment. Cell Signal 2017; 35:282-289. [PMID: 28069443 DOI: 10.1016/j.cellsig.2017.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 01/15/2023]
Abstract
The cyclic AMP and protein kinase C (PKC) signalling pathways regulate a wide range of cellular processes that require tight control, including cell proliferation and differentiation, metabolism and inflammation. The identification of a protein complex formed by receptor for activated C kinase 1 (RACK1), a scaffold protein for protein kinase C (PKC), and the cyclic AMP-specific phosphodiesterase, PDE4D5, demonstrates a potential mechanism for crosstalk between these two signalling routes. Indeed, RACK1-bound PDE4D5 is activated by PKCα, providing a route through which the PKC pathway can control cellular cyclic AMP levels. Although RACK1 does not appear to affect the intracellular localisation of PDE4D5, it does afford structural stability, providing protection against denaturation, and increases the susceptibility of PDE4D5 to inhibition by cyclic AMP-elevating pharmaceuticals, such as rolipram. In addition, RACK1 can recruit PDE4D5 and PKC to intracellular protein complexes that control diverse cellular functions, including activated G protein-coupled receptors (GPCRs) and integrins clustered at focal adhesions. Through its ability to regulate local cyclic AMP levels in the vicinity of these multimeric receptor complexes, the RACK1/PDE4D5 signalling unit therefore has the potential to modify the quality of incoming signals from diverse extracellular cues, ranging from neurotransmitters and hormones to nanometric topology. Indeed, PDE4D5 and RACK1 have been found to form a tertiary complex with integrin-activated focal adhesion kinase (FAK), which localises to cellular focal adhesion sites. This supports PDE4D5 and RACK1 as potential regulators of cell adhesion, spreading and migration through the non-classical exchange protein activated by cyclic AMP (EPAC1)/Rap1 signalling route.
Collapse
|
17
|
Bolger GB. The PDE4 cAMP-Specific Phosphodiesterases: Targets for Drugs with Antidepressant and Memory-Enhancing Action. ADVANCES IN NEUROBIOLOGY 2017; 17:63-102. [PMID: 28956330 DOI: 10.1007/978-3-319-58811-7_4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The PDE4 cyclic nucleotide phosphodiesterases are essential regulators of cAMP abundance in the CNS through their ability to regulate PKA activity, the phosphorylation of CREB, and other important elements of signal transduction. In pre-clinical models and in early-stage clinical trials, PDE4 inhibitors have been shown to have antidepressant and memory-enhancing activity. However, the development of clinically-useful PDE4 inhibitors for CNS disorders has been limited by variable efficacy and significant side effects. Recent structural studies have greatly enhanced our understanding of the molecular configuration of PDE4 enzymes, especially the "long" PDE4 isoforms that are abundant in the CNS. The new structural data provide a rationale for the development of a new generation of PDE4 inhibitors that specifically act on long PDE4 isoforms. These next generation PDE4 inhibitors may also be capable of targeting the interactions of select long forms with their "partner" proteins, such as RACK1, β-arrestin, and DISC1. They would therefore have the ability to affect cAMP levels in specific cellular compartments and target localized cellular functions, such as synaptic plasticity. These new agents might also be able to target PDE4 populations in select regions of the CNS that are implicated in learning and memory, affect, and cognition. Potential therapeutic uses of these agents could include affective disorders, memory enhancement, and neurogenesis.
Collapse
Affiliation(s)
- Graeme B Bolger
- Departments of Medicine and Pharmacology, University of Alabama at Birmingham, 1720 2nd Avenue South, NP 2501, Birmingham, AL, 35294-3300, USA.
| |
Collapse
|
18
|
Bolger GB. RACK1 and β-arrestin2 attenuate dimerization of PDE4 cAMP phosphodiesterase PDE4D5. Cell Signal 2016; 28:706-12. [PMID: 26257302 PMCID: PMC4744576 DOI: 10.1016/j.cellsig.2015.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/05/2015] [Indexed: 01/14/2023]
Abstract
PDE4 family cAMP-selective cyclic nucleotide phosphodiesterases are important in the regulation of cAMP abundance in numerous systems, and thereby play an important role in the regulation of PKA and EPAC activity and the phosphorylation of CREB. We have used the yeast 2-hybrid system to demonstrate recently that long PDE4 isoforms form homodimers, consistent with data obtained recently by structural studies. The long PDE4 isoform PDE4D5 interacts selectively with β-arrestin2, implicated in the regulation of G-protein-coupled receptors and other cell signaling components, and also with the β-propeller protein RACK1. In the present study, we use 2-hybrid approaches to demonstrate that RACK1 and β-arrestin2 inhibit the dimerization of PDE4D5. We also show that serine-to-alanine mutations at PKA and ERK1/2 phosphorylation sites on PDE4D5 detectably ablate dimerization. Conversely, phospho-mimic serine-to-aspartate mutations at the MK2 and oxidative stress kinase sites ablate dimerization. Analysis of PDE4D5 that is locked into the dimeric configuration by the formation of a trans disulfide bond between Ser261 and Ser602 shows that RACK1 interacts strongly with both the monomeric and dimeric forms, but that β-arrestin2 interacts exclusively with the monomeric form. This is consistent with the concept that β-arrestin2 can preferentially recruit the monomeric, or "open," form of PDE4D5 to β2-adrenergic receptors, where it can regulate cAMP signaling.
Collapse
Affiliation(s)
- Graeme B Bolger
- Departments of Medicine and Pharmacology, University of Alabama at Birmingham, Birmingham AL 35294, USA.
| |
Collapse
|
19
|
Wehbi VL, Taskén K. Molecular Mechanisms for cAMP-Mediated Immunoregulation in T cells - Role of Anchored Protein Kinase A Signaling Units. Front Immunol 2016; 7:222. [PMID: 27375620 PMCID: PMC4896925 DOI: 10.3389/fimmu.2016.00222] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
The cyclic AMP/protein kinase A (cAMP/PKA) pathway is one of the most common and versatile signal pathways in eukaryotic cells. A-kinase anchoring proteins (AKAPs) target PKA to specific substrates and distinct subcellular compartments providing spatial and temporal specificity for mediation of biological effects channeled through the cAMP/PKA pathway. In the immune system, cAMP is a potent negative regulator of T cell receptor-mediated activation of effector T cells (Teff) acting through a proximal PKA/Csk/Lck pathway anchored via a scaffold consisting of the AKAP Ezrin holding PKA, the linker protein EBP50, and the anchoring protein phosphoprotein associated with glycosphingolipid-enriched microdomains holding Csk. As PKA activates Csk and Csk inhibits Lck, this pathway in response to cAMP shuts down proximal T cell activation. This immunomodulating pathway in Teff mediates clinically important responses to regulatory T cell (Treg) suppression and inflammatory mediators, such as prostaglandins (PGs), adrenergic stimuli, adenosine, and a number of other ligands. A major inducer of T cell cAMP levels is PG E2 (PGE2) acting through EP2 and EP4 prostanoid receptors. PGE2 plays a crucial role in the normal physiological control of immune homeostasis as well as in inflammation and cancer immune evasion. Peripherally induced Tregs express cyclooxygenase-2, secrete PGE2, and elicit the immunosuppressive cAMP pathway in Teff as one tumor immune evasion mechanism. Moreover, a cAMP increase can also be induced by indirect mechanisms, such as intercellular transfer between T cells. Indeed, Treg, known to have elevated levels of intracellular cAMP, may mediate their suppressive function by transferring cAMP to Teff through gap junctions, which we speculate could also be regulated by PKA/AKAP complexes. In this review, we present an updated overview on the influence of cAMP-mediated immunoregulatory mechanisms acting through localized cAMP signaling and the therapeutical increasing prospects of AKAPs disruptors in T-cell immune function.
Collapse
Affiliation(s)
- Vanessa L. Wehbi
- Nordic EMBL Partnership, Centre for Molecular Medicine Norway, Oslo University Hospital, University of Oslo, Oslo, Norway
- Jebsen Inflammation Research Centre, Oslo University Hospital, Oslo, Norway
- Biotechnology Centre, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Kjetil Taskén
- Nordic EMBL Partnership, Centre for Molecular Medicine Norway, Oslo University Hospital, University of Oslo, Oslo, Norway
- Jebsen Inflammation Research Centre, Oslo University Hospital, Oslo, Norway
- Biotechnology Centre, Oslo University Hospital, University of Oslo, Oslo, Norway
- Jebsen Centre for Cancer Immunotherapy, Oslo University Hospital, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
20
|
Bolger GB, Bizzi MF, Pinheiro SV, Trivellin G, Smoot L, Accavitti MA, Korbonits M, Ribeiro-Oliveira A. cAMP-specific PDE4 phosphodiesterases and AIP in the pathogenesis of pituitary tumors. Endocr Relat Cancer 2016; 23:419-31. [PMID: 27267386 PMCID: PMC4901527 DOI: 10.1530/erc-15-0205] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/18/2016] [Indexed: 12/27/2022]
Abstract
PDE4 cyclic nucleotide phosphodiesterases regulate cAMP abundance in cells and therefore regulate numerous processes, including cell growth and differentiation. The rat PDE4A5 isoform (human homolog PDE4A4) interacts with the AIP protein (also called XAP2 or ARA-9). Germline mutations in AIP occur in approximately 20% of patients with Familial Isolated Pituitary Adenoma (FIPA) and 20% of childhood-onset simplex somatotroph adenomas. We therefore examined the protein expression of PDE4A4 and the closely related isoform PDE4A8 in normal human pituitary tissue and in pituitary adenomas. PDE4A4 had low expression in normal pituitary but was significantly overexpressed in somatotroph, lactotroph, corticotroph and clinically nonfunctioning gonadotroph adenomas (P<0.0001 for all subtypes). Likewise, PDE4A8 was expressed in normal pituitary and was also significantly overexpressed in the adenoma subtypes (P<0.0001 for all). Among the different adenoma subtypes, corticotroph and lactotroph adenomas were the highest and lowest expressed for PDE4A4, respectively, whereas the opposite was observed for PDE4A8. Naturally occurring oncogenic variants in AIP were shown by a two-hybrid assay to disrupt the ability of AIP to interact with PDE4A5. A reverse two-hybrid screen identified numerous additional variants in the tetratricopeptide repeat (TPR) region of AIP that also disrupted its ability to interact with PDE4A5. The expression of PDE4A4 and PDE4A8 in normal pituitary, their increased expression in adenomatous pituitary cells where AIP is meant to participate, and the disruption of the PDE4A4-AIP interaction by AIP mutants may play a role in pituitary tumorigenesis.
Collapse
Affiliation(s)
- Graeme B Bolger
- Department of MedicineUniversity of Alabama at Birmingham, Birmingham, Alabama, USA Department of PharmacologyUniversity of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mariana F Bizzi
- Department of Internal MedicineFederal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio V Pinheiro
- Department of PediatricsFederal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giampaolo Trivellin
- Center for EndocrinologyWilliam Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Lisa Smoot
- Department of MedicineUniversity of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mary-Ann Accavitti
- Department of Microbiology and ImmunologyUniversity of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Márta Korbonits
- Center for EndocrinologyWilliam Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Antonio Ribeiro-Oliveira
- Department of Internal MedicineFederal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
21
|
Location, location, location: PDE4D5 function is directed by its unique N-terminal region. Cell Signal 2016; 28:701-5. [PMID: 26808969 DOI: 10.1016/j.cellsig.2016.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Bolger GB, Dunlop AJ, Meng D, Day JP, Klussmann E, Baillie GS, Adams DR, Houslay MD. Dimerization of cAMP phosphodiesterase-4 (PDE4) in living cells requires interfaces located in both the UCR1 and catalytic unit domains. Cell Signal 2014; 27:756-69. [PMID: 25546709 PMCID: PMC4371794 DOI: 10.1016/j.cellsig.2014.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 12/16/2014] [Indexed: 02/08/2023]
Abstract
PDE4 family cAMP phosphodiesterases play a pivotal role in determining compartmentalised cAMP signalling through targeted cAMP breakdown. Expressing the widely found PDE4D5 isoform, as both bait and prey in a yeast 2-hybrid system, we demonstrated interaction consistent with the notion that long PDE4 isoforms form dimers. Four potential dimerization sites were uncovered using a scanning peptide array approach, where a recombinant purified PDE4D5 fusion protein was used to probe a 25-mer library of overlapping peptides covering the entire PDE4D5 sequence. Key residues involved in PDE4D5 dimerization were defined using a site-directed mutagenesis programme directed by an alanine scanning peptide array approach. Critical residues stabilising PDE4D5 dimerization were defined within the regulatory UCR1 region found in long, but not short, PDE4 isoforms, namely the Arg173, Asn174 and Asn175 (DD1) cluster. Disruption of the DD1 cluster was not sufficient, in itself, to destabilise PDE4D5 homodimers. Instead, disruption of an additional interface, located on the PDE4 catalytic unit, was also required to convert PDE4D5 into a monomeric form. This second dimerization site on the conserved PDE4 catalytic unit is dependent upon a critical ion pair interaction. This involves Asp463 and Arg499 in PDE4D5, which interact in a trans fashion involving the two PDE4D5 molecules participating in the homodimer. PDE4 long isoforms adopt a dimeric state in living cells that is underpinned by two key contributory interactions, one involving the UCR modules and one involving an interface on the core catalytic domain. We propose that short forms do not adopt a dimeric configuration because, in the absence of the UCR1 module, residual engagement of the remaining core catalytic domain interface provides insufficient free energy to drive dimerization. The functioning of PDE4 long and short forms is thus poised to be inherently distinct due to this difference in quaternary structure. In a yeast 2-hybrid system we show that long PDE4 isoforms dimerize. Scanning peptide array and mutagenesis located two dimerization surfaces. One surface maps to the regulatory UCR1 region found only in long forms. A second locates to the core catalytic domain. PDE4 long and short forms differ in quaternary structure.
Collapse
Affiliation(s)
- Graeme B Bolger
- Departments of Medicine and Pharmacology, University of Alabama, Birmingham, AL 35294, USA
| | - Allan J Dunlop
- Institute of Cardiovascular and Medical Science, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Dong Meng
- Institute of Cardiovascular and Medical Science, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Jon P Day
- Institute of Cardiovascular and Medical Science, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Enno Klussmann
- Max Delbrueck Center for Molecular Medicine, German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - George S Baillie
- Institute of Cardiovascular and Medical Science, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Miles D Houslay
- Institute of Pharmaceutical Sciences, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
23
|
Weninger S, Van Craenenbroeck K, Cameron RT, Vandeput F, Movsesian MA, Baillie GS, Lefebvre RA. Phosphodiesterase 4 interacts with the 5-HT4(b) receptor to regulate cAMP signaling. Cell Signal 2014; 26:2573-82. [PMID: 25101859 DOI: 10.1016/j.cellsig.2014.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/28/2014] [Accepted: 07/28/2014] [Indexed: 12/14/2022]
Abstract
Phosphodiesterase (PDE) 3 and PDE4, which degrade cyclic adenosine monophosphate (cAMP), are important regulators of 5-hydroxytryptamine (5-HT) 4 receptor signaling in cardiac tissue. Therefore, we investigated whether they interact with the 5-HT4(b) receptor, and whether A-kinase anchoring proteins (AKAPs), scaffolding proteins that bind to the regulatory subunit of protein kinase A (PKA) and contribute to the spacial-temporal control of cAMP signaling, are involved in the regulation of 5-HT4(b) receptor signaling. By measuring PKA activity in the absence and presence of PDE3 and PDE4 inhibitiors, we found that constitutive signaling of the overexpressed HA-tagged 5-HT4(b) receptor in HEK293 cells is regulated predominantly by PDE4, with a secondary role for PDE3 that is unmasked in the presence of PDE4 inhibition. Overexpressed PDE4D3 and PDE3A1, and to a smaller extent PDE4D5 co-immunoprecipitate constitutively with the 5-HT4(b) receptor. PDE activity measurements in immunoprecipitates of the 5-HT4(b) receptor confirm the association of PDE4D3 with the receptor and provide evidence that the activity of this PDE may be increased upon receptor stimulation with 5-HT. A possible involvement of AKAPs in 5-HT4(b) receptor signaling was uncovered in experiments using the St-Ht31 inhibitor peptide, which disrupts the interaction of AKAPs with PKA. However, St-Ht31 did not influence 5-HT4(b) receptor-stimulated PKA activity, and endogenous AKAP79 and gravin were not found in immunoprecipitates of the 5-HT4(b) receptor. In conclusion, we found that both PDE3A1 and PDE4D3 are integrated into complexes that contain the 5-HT4(b) receptor and may thereby regulate 5-HT4(b) receptor-mediated signaling.
Collapse
Affiliation(s)
- S Weninger
- Heymans Institute of Pharmacology, Ghent University, De Pintelaan 185, Ghent 9000, Belgium
| | - K Van Craenenbroeck
- Laboratory for Eukaryotic Gene Expression and Signal Transduction, Ghent University, Proeftuinstraat 86, Ghent 9000, Belgium
| | - R T Cameron
- Institute of Cardiovascular and Medical Science, University of Glasgow, Office 534, Wolfson-Link Building, Glasgow G12 8QQ, UK
| | - F Vandeput
- Cardiovascular Medicine Division, VA Salt Lake City Health Care System and University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - M A Movsesian
- Cardiovascular Medicine Division, VA Salt Lake City Health Care System and University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - G S Baillie
- Institute of Cardiovascular and Medical Science, University of Glasgow, Office 534, Wolfson-Link Building, Glasgow G12 8QQ, UK
| | - R A Lefebvre
- Heymans Institute of Pharmacology, Ghent University, De Pintelaan 185, Ghent 9000, Belgium.
| |
Collapse
|
24
|
Kim KH, Jun YW, Park Y, Lee JA, Suh BC, Lim CS, Lee YS, Kaang BK, Jang DJ. Intracellular membrane association of the Aplysia cAMP phosphodiesterase long and short forms via different targeting mechanisms. J Biol Chem 2014; 289:25797-811. [PMID: 25077971 DOI: 10.1074/jbc.m114.572222] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phosphodiesterases (PDEs) play key roles in cAMP compartmentalization, which is required for intracellular signaling processes, through specific subcellular targeting. Previously, we showed that the long and short forms of Aplysia PDE4 (ApPDE4), which are localized to the membranes of distinct subcellular organelles, play key roles in 5-hydroxytryptamine-induced synaptic facilitation in Aplysia sensory and motor synapses. However, the molecular mechanism of the isoform-specific distinct membrane targeting was not clear. In this study, we further investigated the molecular mechanism of the membrane targeting of the ApPDE4 long and short forms. We found that the membrane targeting of the long form was mediated by hydrophobic interactions, mainly via 16 amino acids at the N-terminal region, whereas the short form was targeted solely to the plasma membrane, mainly by nonspecific electrostatic interactions between their N termini and the negatively charged lipids such as the phosphatidylinositol polyphosphates PI4P and PI(4,5)P2, which are embedded in the inner leaflet of the plasma membrane. Moreover, oligomerization of the long or short form by interaction of their respective upstream conserved region domains, UCR1 and UCR2, enhanced their plasma membrane targeting. These results suggest that the long and short forms of ApPDE4 are distinctly targeted to intracellular membranes through their direct association with the membranes via hydrophobic and electrostatic interactions, respectively.
Collapse
Affiliation(s)
- Kun-Hyung Kim
- From the Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, 386, Gajang-dong, Sangju-si, Kyungbuk 742-711, Korea
| | - Yong-Woo Jun
- From the Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, 386, Gajang-dong, Sangju-si, Kyungbuk 742-711, Korea
| | - Yongsoo Park
- the Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jin-A Lee
- the Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, 461-6, Jeonmin-dong, Yuseong-gu, Daejeon 305-811, Korea
| | - Byung-Chang Suh
- the Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea
| | - Chae-Seok Lim
- the Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-747, Korea, and
| | - Yong-Seok Lee
- the Department of Life Science, College of Natural Science, Chung-Ang University, Seoul 156-756, Korea
| | - Bong-Kiun Kaang
- the Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-747, Korea, and
| | - Deok-Jin Jang
- From the Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, 386, Gajang-dong, Sangju-si, Kyungbuk 742-711, Korea,
| |
Collapse
|
25
|
Sheppard CL, Lee LCY, Hill EV, Henderson DJP, Anthony DF, Houslay DM, Yalla KC, Cairns LS, Dunlop AJ, Baillie GS, Huston E, Houslay MD. Mitotic activation of the DISC1-inducible cyclic AMP phosphodiesterase-4D9 (PDE4D9), through multi-site phosphorylation, influences cell cycle progression. Cell Signal 2014; 26:1958-74. [PMID: 24815749 DOI: 10.1016/j.cellsig.2014.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
In Rat-1 cells, the dramatic decrease in the levels of both intracellular cyclic 3'5' adenosine monophosphate (cyclic AMP; cAMP) and in the activity of cAMP-activated protein kinase A (PKA) observed in mitosis was paralleled by a profound increase in cAMP hydrolyzing phosphodiesterase-4 (PDE4) activity. The decrease in PKA activity, which occurs during mitosis, was attributable to PDE4 activation as the PDE4 selective inhibitor, rolipram, but not the phosphodiesterase-3 (PDE3) inhibitor, cilostamide, specifically ablated this cell cycle-dependent effect. PDE4 inhibition caused Rat-1 cells to move from S phase into G2/M more rapidly, to transit through G2/M more quickly and to remain in G1 for a longer period. Inhibition of PDE3 elicited no observable effects on cell cycle dynamics. Selective immunopurification of each of the four PDE4 sub-families identified PDE4D as being selectively activated in mitosis. Subsequent analysis uncovered PDE4D9, an isoform whose expression can be regulated by Disrupted-In-Schizophrenia 1 (DISC1)/activating transcription factor 4 (ATF4) complex, as the sole PDE4 species activated during mitosis in Rat-1 cells. PDE4D9 becomes activated in mitosis through dual phosphorylation at Ser585 and Ser245, involving the combined action of ERK and an unidentified 'switch' kinase that has previously been shown to be activated by H2O2. Additionally, in mitosis, PDE4D9 also becomes phosphorylated at Ser67 and Ser81, through the action of MK2 (MAPKAPK2) and AMP kinase (AMPK), respectively. The multisite phosphorylation of PDE4D9 by all four of these protein kinases leads to decreased mobility (band-shift) of PDE4D9 on SDS-PAGE. PDE4D9 is predominantly concentrated in the perinuclear region of Rat-1 cells but with a fraction distributed asymmetrically at the cell margins. Our investigations demonstrate that the diminished levels of cAMP and PKA activity that characterise mitosis are due to enhanced cAMP degradation by PDE4D9. PDE4D9, was found to locate primarily not only in the perinuclear region of Rat-1 cells but also at the cell margins. We propose that the sequestration of PDE4D9 in a specific complex together with AMPK, ERK, MK2 and the H2O2-activatable 'switch' kinase allows for its selective multi-site phosphorylation, activation and regulation in mitosis.
Collapse
Affiliation(s)
- Catherine L Sheppard
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Louisa C Y Lee
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Elaine V Hill
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - David J P Henderson
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Diana F Anthony
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Daniel M Houslay
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Krishna C Yalla
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Lynne S Cairns
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Allan J Dunlop
- Institute of Neuroscience and Psychology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Elaine Huston
- Institute of Pharmaceutical Science, King's College London, 5th Floor, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Miles D Houslay
- Institute of Pharmaceutical Science, King's College London, 5th Floor, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
26
|
Abstract
Many G-protein-coupled receptors trigger the synthesis of cAMP in order to transduce signals from the membrane into the cell cytoplasm. As stimulation of each receptor type results in a specific physiological outcome, compartmentalization of proteins that make, break, and are activated by cAMP underpin receptor-specific responses. Until 2002, it was thought that static compartmentalization of phosphodiesterase 4 (PDE4), conferred by N-terminal targeting sequences, was one way to shape intricate cAMP gradients that formed after receptor activation. Discovery of the PDE4-β-arrestin complex represented a major breakthrough in cAMP signaling, as it spurred the initial realization that PDE4s could be transported to sites of high cAMP to orchestrate destruction of the second messenger at the same time as the receptor's signal to the G-protein is silenced. This chapter charts the scientific process that led to the discovery and characterization of the PDE4-β-arrestin interaction and discusses the known functions of this signaling complex.
Collapse
|
27
|
Targeting protein-protein interactions within the cyclic AMP signaling system as a therapeutic strategy for cardiovascular disease. Future Med Chem 2013; 5:451-64. [PMID: 23495691 DOI: 10.4155/fmc.12.216] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cAMP signaling system can trigger precise physiological cellular responses that depend on the fidelity of many protein-protein interactions, which act to bring together signaling intermediates at defined locations within cells. In the heart, cAMP participates in the fine control of excitation-contraction coupling, hence, any disregulation of this signaling cascade can lead to cardiac disease. Due to the ubiquitous nature of the cAMP pathway, general inhibitors of cAMP signaling proteins such as PKA, EPAC and PDEs would act non-specifically and universally, increasing the likelihood of serious 'off target' effects. Recent advances in the discovery of peptides and small molecules that disrupt the protein-protein interactions that underpin cellular targeting of cAMP signaling proteins are described and discussed.
Collapse
|
28
|
Kim KH, Jun YW, Lee JA, Jang DJ. Identification of N-terminal amino acids of ApPDE4 involved in targeting to plasma membrane and cellular morphological change by expression of N-terminal peptide. ANALYTICAL SCIENCE AND TECHNOLOGY 2013. [DOI: 10.5806/ast.2013.26.1.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Lipina TV, Fletcher PJ, Lee FH, Wong AHC, Roder JC. Disrupted-in-schizophrenia-1 Gln31Leu polymorphism results in social anhedonia associated with monoaminergic imbalance and reduction of CREB and β-arrestin-1,2 in the nucleus accumbens in a mouse model of depression. Neuropsychopharmacology 2013; 38:423-36. [PMID: 23011268 PMCID: PMC3547193 DOI: 10.1038/npp.2012.197] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 12/28/2022]
Abstract
Disrupted-in-schizophrenia-1 (DISC1) is associated with mental disorders, including major depression. We previously showed that DISC1-Q31L mutant mice have depression-like behaviors and can therefore be used to study neurobiological mechanisms of depression and antidepressant (AD) medication action. First, we found reduced levels of dopamine, serotonin and norepinephrine in the nucleus accumbens (NAC) of DISC1-Q31L mutants. Next, we assessed social-conditioned place preference as a reward-dependent task and the capacity of distinct ADs to correct impaired social behavior in DISC1-Q31L mice. Bupropion, but not fluoxetine or desipramine, was able to correct deficient social facilitation, social reward, and social novelty in DISC1-Q31L mutants, whereas all three ADs were able to improve social motivation and behavioral despair in DISC1-Q31L mutants. Furthermore, we sought to correlate social anhedonia with molecular and cellular features including dendritic spine density, β-arrestin-1,2, and cAMP-response-element-binding protein (CREB) in the NAC as biomarkers related to depression and the DISC1 pathway. DISC1-Q31L mutants showed reduced levels of β-arrestin-1,2, CREB, and spine density in the NAC, further supporting the construct validity of the genetic model. Bupropion induced the greatest effect on CREB in DISC1-Q31L mutants, whereas all studied ADs corrected the reduced levels of β-arrestin-1,2 and modestly ameliorated deficient spine density in this brain region. Overall, we find neurobiological changes accompanying social anhedonia in the NAC of DISC1-Q31L mutant mice, consistent with a role for DISC1 in regulating social reward as an endophenotype of depression.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Centre of Neurodevelopment and Cognitive Functions, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Frankie H Lee
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Albert HC Wong
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - John C Roder
- Centre of Neurodevelopment and Cognitive Functions, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Billington CK, Hall IP. Novel cAMP signalling paradigms: therapeutic implications for airway disease. Br J Pharmacol 2012; 166:401-10. [PMID: 22013890 DOI: 10.1111/j.1476-5381.2011.01719.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Since its discovery over 50 years ago, cAMP has been the archetypal second messenger introducing students to the concept of cell signalling at the simplest level. As explored in this review, however, there are many more facets to cAMP signalling than the path from Gs-coupled receptor to adenylyl cyclase (AC) to cAMP to PKA to biological effect. After a brief description of this canonical cAMP signalling pathway, a snapshot is provided of the novel paradigms of cAMP signalling. As in the airway the cAMP pathway relays the major bronchorelaxant signal and as such is the target for frontline therapy for asthma and COPD, particular emphasis is given to airway disease and therapy. Areas discussed include biased agonism, continued signalling following internalization, modulation of cAMP by AC, control of cAMP degradation, cAMP and calcium crosstalk, Epac-mediated signalling and finally the implications of altered genotypes will be considered. LINKED ARTICLES This article is part of a themed section on Novel cAMP Signalling Paradigms. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-2.
Collapse
Affiliation(s)
- Charlotte K Billington
- Division of Therapeutics and Molecular Medicine, Nottingham Respiratory Biomedical Research Unit, The University of Nottingham, Nottingham, UK.
| | | |
Collapse
|
31
|
Local termination of 3'-5'-cyclic adenosine monophosphate signals: the role of A kinase anchoring protein-tethered phosphodiesterases. J Cardiovasc Pharmacol 2012; 58:345-53. [PMID: 21654331 DOI: 10.1097/fjc.0b013e3182214f2b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A kinase anchoring proteins (AKAPs) belong to a family of functionally related proteins capable of binding protein kinase A (PKA) and tether it to relevant targets. In this way, AKAPs organize macromolecular complexes to segregate PKA activity and retain signal specificity. In the heart, AKAP-PKA interaction is central to the regulation of cardiac contractility. Phosphodiesterases belong to a large superfamily of enzymes that degrade 3'-5'-cyclic adenosine monophosphate (cAMP). They possess diverse catalytic properties and multiple regulatory mechanisms and control the duration and amplitude of the cAMP signal, including its propagation in space. AKAPs, together with PKA, can also assemble phosphodiesterases thereby providing a means to locally control cAMP dynamics at the level of single macromolecular complexes. This allows for the fine tuning of the cAMP response to the specific demands of the cell.
Collapse
|
32
|
Halls ML. Constitutive formation of an RXFP1-signalosome: a novel paradigm in GPCR function and regulation. Br J Pharmacol 2012; 165:1644-1658. [PMID: 21557732 DOI: 10.1111/j.1476-5381.2011.01470.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The classical second messenger cAMP is important in diverse physiological processes, where its spatial and temporal compartmentalization allows precise control over multiple cellular events. Within this context, G-protein-coupled receptors (GPCRs) govern specialized pools of cAMP, which are functionally specific for the unique cellular effects attributed to a particular system. The relaxin receptor, RXFP1, is a GPCR that exerts pleiotropic physiological effects including a potent anti-fibrotic response, increased cancer metastases, and has efficacy as a vasodilator in heart failure. On a cellular level, relaxin stimulation of RXFP1 results in the activation of multiple G-protein pathways affecting cAMP accumulation. Specificity and diversity in the cAMP signal generated by RXFP1 is controlled by differential G-protein coupling dependent upon the background of cellular expression, and cAMP compartmentalization. Further complexity in cAMP signalling results from the constitutive assembly of an RXFP1-signalosome, which specifically responds to low concentrations of relaxin, and activates a distinct cAMP pathway. The RXFP1-signalosome is a higher-order protein complex that facilitates receptor sensitivity to attomolar concentration of peptide, exhibits constitutive activity and dual coupling to G-proteins and β-arrestins and reveals a concentration-biased agonism mediated by relaxin. The specific and directed formation of GPCR-centered signalosomes allows an even greater spatial and temporal control of cAMP, thus rationalizing the considerable physiological scope of this ubiquitous second messenger.
Collapse
Affiliation(s)
- Michelle L Halls
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Bjørgo E, Moltu K, Taskén K. Phosphodiesterases as targets for modulating T-cell responses. Handb Exp Pharmacol 2011:345-63. [PMID: 21695648 DOI: 10.1007/978-3-642-17969-3_15] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The cAMP-protein kinase A (PKA) signaling pathway is strongly involved in the regulation and modulation of immune responses, and cAMP is the most potent and acute inhibitor of T-cell activation. Thus, cAMP levels in the cell must be tightly regulated. Cyclic AMP-specific phosphodiesterases (PDEs) provide the only mechanism for degrading cAMP in cells, thereby functioning as key regulators of signaling. To obtain a complete immune response with optimal cytokine production and T-cell proliferation, ligation of both the T-cell receptor (TCR) and the CD28 receptor is required. However, engagement of the TCR in primary T cells is followed by rapid cAMP production in lipid rafts and activation of the cAMP- PKA-Csk pathway inhibiting proximal T-cell signaling. In contrast, TCR/CD28 costimulation leads to the recruitment of a PDE4/β-arrestin complex to rafts in a phosphatidylinositol 3-kinase (PI3K)-dependent manner, resulting in the downregulation of cAMP levels. Thus, the activities of both PKA and PDE4 seem to be important for regulation of TCR-induced signaling and T-cell function. The use of selective inhibitors has revealed that PDEs are important drug targets in several diseases with an inflammatory component where immune function is important such as asthma, chronic obstructive pulmonary disease (COPD), cardiovascular diseases, and neurological disorders. PDEs are also interesting drug targets in immunosuppression following transplantation and for modulation of immune responses.
Collapse
Affiliation(s)
- Elisa Bjørgo
- The Biotechnology Centre of Oslo and Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 1125, Blindern 0317, Oslo, Norway
| | | | | |
Collapse
|
34
|
Sin YY, Edwards HV, Li X, Day JP, Christian F, Dunlop AJ, Adams DR, Zaccolo M, Houslay MD, Baillie GS. Disruption of the cyclic AMP phosphodiesterase-4 (PDE4)-HSP20 complex attenuates the β-agonist induced hypertrophic response in cardiac myocytes. J Mol Cell Cardiol 2011; 50:872-83. [PMID: 21334344 DOI: 10.1016/j.yjmcc.2011.02.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/10/2011] [Accepted: 02/10/2011] [Indexed: 01/06/2023]
Abstract
The small heat shock protein HSP20 is known to be cardioprotective during times of stress and the mechanism underlying its protective abilities depends on its phosphorylation on Ser16 by PKA (protein kinase A). Although the external stimuli that trigger Ser16 phosphorylation have been well studied, the events that modulate spatial and temporal control of this modification remain to be clarified. Here, we report that inhibition of cAMP phosphodiesterase-4 (PDE4) induces the phosphorylation of HSP20 in resting cardiac myocytes and augments its phosphorylation by PKA following β-adrenergic stimulation. Moreover, using peptide array technology, in vitro binding studies, co-immunoprecipitation techniques and immunocytochemistry, we show that HSP20 binds directly to PDE4 within a region of the conserved catalytic domain. We also show that FRET-based, genetically-encoded cAMP reporters anchored to HSP20 exhibit a larger response to PDE4 inhibition compared to free cytosolic cAMP reporters, suggesting that the interaction with PDE4 is crucial in modulating the highly localised pool of cAMP to which HSP20 is exposed. Using information gleaned from peptide array analyses, we developed a cell-permeable peptide that serves to inhibit the interaction of PDE4 with HSP20. Disruption of the HSP20-PDE4 complex, using this peptide, suffices to induce phosphorylation of HSP20 by PKA and to protect against the hypertrophic response measured in neonatal cardiac myocytes following chronic β-adrenergic stimulation.
Collapse
Affiliation(s)
- Y Y Sin
- Molecular Pharmacology Group, Wolfson Link and Davidson Buildings, Institute for Psychology and Neurosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gurney ME, Burgin AB, Magnusson OT, Stewart LJ. Small molecule allosteric modulators of phosphodiesterase 4. Handb Exp Pharmacol 2011:167-92. [PMID: 21695640 DOI: 10.1007/978-3-642-17969-3_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors have shown benefit in human clinical trials but dosing is limited by tolerability, particularly because of emesis. Novel cocrystal structures of PDE4 catalytic units with their regulatory domains together with bound inhibitors have revealed three different PDE4 conformers that can be exploited in the design of novel therapeutic agents. The first is an open conformer, which has been employed in the traditional approach to the design of competitive PDE4 inhibitors. The second is an asymmetric dimer in which a UCR2 regulatory helix from one monomer is placed in a closed conformation over the opposite active site in the PDE4 dimer (trans-capping). Only one active site can be closed by an inhibitor at a time with the consequence that compounds exploiting this conformer only partially inhibit PDE4 enzymatic activity while retaining potency in cellular and in vivo models. By placing an intrinsic ceiling on the magnitude of PDE4 inhibition, such compounds may better maintain spatial and temporal patterning of signaling in cAMP microdomains with consequent improved tolerability. The third is a symmetric PDE4 conformer in which helices from the C-terminal portion of the catalytic unit cap both active sites (cis-capping). We propose that dual-gating of PDE4 activity may be further fine tuned by accessory proteins that recognize open or closed conformers of PDE4 regulatory helices.
Collapse
|
36
|
Interaction with receptor for activated C-kinase 1 (RACK1) sensitizes the phosphodiesterase PDE4D5 towards hydrolysis of cAMP and activation by protein kinase C. Biochem J 2010; 432:207-16. [PMID: 20819076 PMCID: PMC2973232 DOI: 10.1042/bj20101010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have previously identified the PKC (protein kinase C)-anchoring protein RACK1 (receptor for activated C-kinase 1), as a specific binding partner for the cAMP-specific phosphodiesterase PDE4D5, suggesting a potential site for cross-talk between the PKC and cAMP signalling pathways. In the present study we found that elevation of intracellular cAMP, with the β2-adrenoceptor agonist isoproterenol (isoprenaline), led to activation of PDE4 enzymes in the particulate and soluble fractions of HEK (human embryonic kidney)-293 cells. In contrast activation of PDE4D5, with isoproterenol and the PKC activator PMA, was restricted to the particulate fraction, where it interacts with RACK1; however, RACK1 is dispensable for anchoring PDE4D5 to the particulate fraction. Kinetic studies demonstrated that RACK1 alters the conformation of particulate-associated PDE4D5 so that it more readily interacts with its substrate cAMP and with rolipram, a PDE4 inhibitor that specifically targets the active site of the enzyme. Interaction with RACK1 was also essential for PKC-dependent and ERK (extracellular-signal-regulated kinase)-independent phosphorylation (on Ser126), and activation of PDE4D5 in response to PMA and isoproterenol, both of which trigger the recruitment of PKCα to RACK1. Together these results reveal novel signalling cross-talk, whereby RACK1 mediates PKC-dependent activation of PDE4D5 in the particulate fraction of HEK-293 cells in response to elevations in intracellular cAMP.
Collapse
|
37
|
Mokni W, Keravis T, Etienne-Selloum N, Walter A, Kane MO, Schini-Kerth VB, Lugnier C. Concerted regulation of cGMP and cAMP phosphodiesterases in early cardiac hypertrophy induced by angiotensin II. PLoS One 2010; 5:e14227. [PMID: 21151982 PMCID: PMC2997062 DOI: 10.1371/journal.pone.0014227] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/12/2010] [Indexed: 12/13/2022] Open
Abstract
Left ventricular hypertrophy leads to heart failure and represents a high risk leading to premature death. Cyclic nucleotides (cAMP and cGMP) play a major role in heart contractility and cyclic nucleotide phosphodiesterases (PDEs) are involved in different stages of advanced cardiac diseases. We have investigated their contributions in the very initial stages of left ventricular hypertrophy development. Wistar male rats were treated over two weeks by chronic infusion of angiotensin II using osmotic mini-pumps. Left cardiac ventricles were used as total homogenates for analysis. PDE1 to PDE5 specific activities and protein and mRNA expressions were explored. Rats developed arterial hypertension associated with a slight cardiac hypertrophy (+24%). cAMP-PDE4 activity was specifically increased while cGMP-PDE activities were broadly increased (+130% for PDE1; +76% for PDE2; +113% for PDE5) and associated with increased expressions for PDE1A, PDE1C and PDE5A. The cGMP-PDE1 activation by Ca2+/CaM was reduced. BNP expression was increased by 3.5-fold, while NOX2 expression was reduced by 66% and AMP kinase activation was increased by 64%. In early cardiac hypertrophy induced by angiotensin II, all specific PDE activities in left cardiac ventricles were increased, favoring an increase in cGMP hydrolysis by PDE1, PDE2 and PDE5. Increased cAMP hydrolysis was related to PDE4. We observed the establishment of two cardioprotective mechanisms and we suggest that these mechanisms could lead to increase intracellular cGMP: i) increased expression of BNP could increase “particulate” cGMP pool; ii) increased activation of AMPK, subsequent to increase in PDE4 activity and 5′AMP generation, could elevate “soluble” cGMP pool by enhancing NO bioavailability through NOX2 down-regulation. More studies are needed to support these assumptions. Nevertheless, our results suggest a potential link between PDE4 and AMPK/NOX2 and they point out that cGMP-PDEs, especially PDE1 and PDE2, may be interesting therapeutic targets in preventing cardiac hypertrophy.
Collapse
Affiliation(s)
- Walid Mokni
- CNRS UMR 7213, Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Jang DJ, Park SW, Lee JA, Lee C, Chae YS, Park H, Kim MJ, Choi SL, Lee N, Kim H, Kaang BK. N termini of apPDE4 isoforms are responsible for targeting the isoforms to different cellular membranes. Learn Mem 2010; 17:469-79. [PMID: 20813835 DOI: 10.1101/lm.1899410] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phosphodiesterases (PDEs) are known to play a key role in the compartmentalization of cAMP signaling; however, the molecular mechanisms underlying intracellular localization of different PDE isoforms are not understood. In this study, we have found that each of the supershort, short, and long forms of apPDE4 showed distinct localization in the cytoplasm, plasma membrane, and both plasma membrane and presynaptic terminals, respectively. The N-terminal 20 amino acids of the long form of apPDE4 were involved in presynaptic terminal targeting by binding to several lipids. In addition, the N terminus of the short form of apPDE4 bound to several lipids including phosphoinositols, thereby targeting the plasma membrane. Overexpression of the long and the short forms, but not the supershort form attenuated 5-HT-induced membrane hyperexcitability. Finally, the knockdown of apPDE4s in sensory neurons impaired both short-term and long-term facilitation. Thus, these results suggest that apPDE4s can participate in the regulation of cAMP signaling through specific subcellular localization by means of lipid binding activities.
Collapse
Affiliation(s)
- Deok-Jin Jang
- National Creative Research Initiative Center for Memory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Halls ML, Cooper DMF. Sub-picomolar relaxin signalling by a pre-assembled RXFP1, AKAP79, AC2, beta-arrestin 2, PDE4D3 complex. EMBO J 2010; 29:2772-87. [PMID: 20664520 PMCID: PMC2924647 DOI: 10.1038/emboj.2010.168] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 07/01/2010] [Indexed: 12/17/2022] Open
Abstract
Biochemical studies suggest that G-protein-coupled receptors (GPCRs) achieve exquisite signalling specificity by forming selective complexes, termed signalosomes. Here, using cAMP biosensors in single cells, we uncover a pre-assembled, constitutively active GPCR signalosome, that couples the relaxin receptor, relaxin family peptide receptor 1 (RXFP1), to cAMP following receptor stimulation with sub-picomolar concentrations of peptide. The physiological effects of relaxin, a pleiotropic hormone with therapeutic potential in cancer metastasis and heart failure, are generally attributed to local production of the peptide, that occur in response to sub-micromolar concentrations. The highly sensitive signalosome identified here provides a regulatory mechanism for the extremely low levels of relaxin that circulate. The signalosome includes requisite Galpha(s), Gbetagamma and adenylyl cyclase 2 (AC2); AC2 is functionally coupled to RXFP1 through AKAP79 binding to helix 8 of the receptor; activation of AC2 is tonically opposed by protein kinase A (PKA)-activated PDE4D3, scaffolded through a beta-arrestin 2 interaction with Ser(704) of the receptor C-terminus. This elaborate, pre-assembled, ligand-independent GPCR signalosome represents a new paradigm in GPCR signalling and provides a mechanism for the distal actions of low circulating levels of relaxin.
Collapse
Affiliation(s)
- Michelle L Halls
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
40
|
Bjørgo E, Taskén K. Novel mechanism of signaling by CD28. Immunol Lett 2010; 129:1-6. [PMID: 20123110 DOI: 10.1016/j.imlet.2010.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
Ligation of both the T cell receptor (TCR) and the CD28 receptor is required for full T cell activation to occur. Engagement of the TCR in primary T cells is followed by rapid cAMP production in lipid rafts and activation of the cAMP-protein kinase A (PKA)-Csk pathway inhibiting proximal T cell signaling. However, CD28 stimulation leads to recruitment of a beta-arrestin/phosphodiesterase-4 (PDE4) complex to rafts, resulting in down-regulation of cAMP levels. Thus, the activities of both PKA and PDE4 seem to be important for regulation of TCR-induced signaling and T cell function. This review will focus on the novel mechanism whereby CD28 through PI3K regulates recruitment of a PKB/beta-arrestin/PDE4 complex thereby allowing a complete T cell activation to proceed.
Collapse
Affiliation(s)
- Elisa Bjørgo
- The Biotechnology Centre of Oslo and Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, P.O. Box 1125, Blindern, N-0317 Oslo, Norway
| | | |
Collapse
|
41
|
Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol 2010; 28:63-70. [DOI: 10.1038/nbt.1598] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 12/04/2009] [Indexed: 12/25/2022]
|
42
|
Regulation of amygdalar PKA by beta-arrestin-2/phosphodiesterase-4 complex is critical for fear conditioning. Proc Natl Acad Sci U S A 2009; 106:21918-23. [PMID: 19955404 DOI: 10.1073/pnas.0906941106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Beta-arrestins, key regulators of receptor signaling, are highly expressed in the central nervous system, but their roles in brain physiology are largely unknown. Here we show that beta-arrestin-2 is critically involved in the formation of associative fear memory and amygdalar synaptic plasticity. In response to fear conditioning, beta-arrestin-2 translocates to amygdalar membrane where it interacts with PDE-4, a cAMP-degrading enzyme, to inhibit PKA activation. Arrb2(-/-) mice exhibit impaired conditioned fear memory and long-term potentiation at the lateral amygdalar synapses. Moreover, expression of the beta-arrestin-2 in the lateral amygdala of Arrb2(-/-) mice, but not its mutant form that is incapable of binding PDE-4, restores basal PKA activity and rescues conditioned fear memory. Taken together, our data demonstrate that the feedback regulation of amygdalar PKA activation by beta-arrestin-2 and PDE-4 complex is critical for the formation of conditioned fear memory.
Collapse
|
43
|
Ong WK, Gribble FM, Reimann F, Lynch MJ, Houslay MD, Baillie GS, Furman BL, Pyne NJ. The role of the PDE4D cAMP phosphodiesterase in the regulation of glucagon-like peptide-1 release. Br J Pharmacol 2009; 157:633-44. [PMID: 19371330 PMCID: PMC2707975 DOI: 10.1111/j.1476-5381.2009.00194.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/09/2008] [Accepted: 01/13/2009] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Increases in intracellular cyclic AMP (cAMP) augment the release/secretion of glucagon-like peptide-1 (GLP-1). As cAMP is hydrolysed by cAMP phosphodiesterases (PDEs), we determined the role of PDEs and particularly PDE4 in regulating GLP-1 release. EXPERIMENTAL APPROACH GLP-1 release, PDE expression and activity were investigated using rats and GLUTag cells, a GLP-1-releasing cell line. The effects of rolipram, a selective PDE4 inhibitor both in vivo and in vitro and stably overexpressed catalytically inactive PDE4D5 (D556A-PDE4D5) mutant in vitro on GLP-1 release were investigated. KEY RESULTS Rolipram (1.5 mg x kg(-1) i.v.) increased plasma GLP-1 concentrations approximately twofold above controls in anaesthetized rats and enhanced glucose-induced GLP-1 release in GLUTag cells (EC(50) approximately 1.2 nmol x L(-1)). PDE4D mRNA transcript and protein were detected in GLUTag cells using RT-PCR with gene-specific primers and Western blotting with a specific PDE4D antibody respectively. Moreover, significant PDE activity was inhibited by rolipram in GLUTag cells. A GLUTag cell clone (C1) stably overexpressing the D556A-PDE4D5 mutant, exhibited elevated intracellular cAMP levels and increased basal and glucose-induced GLP-1 release compared with vector-transfected control cells. A role for intracellular cAMP/PKA in enhancing GLP-1 release in response to overexpression of D556A-PDE4D5 mutant was demonstrated by the finding that the PKA inhibitor H89 reduced both basal and glucose-induced GLP-1 release by 37% and 39%, respectively, from C1 GLUTag cells. CONCLUSIONS AND IMPLICATIONS PDE4D may play an important role in regulating intracellular cAMP linked to the regulation of GLP-1 release.
Collapse
Affiliation(s)
- W K Ong
- Strathclyde Institute of Pharmacy, Cell Biology Group, University of Strathclyde, Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Meng D, Lynch MJ, Huston E, Beyermann M, Eichhorst J, Adams DR, Klussmann E, Klusmann E, Houslay MD, Baillie GS. MEK1 binds directly to betaarrestin1, influencing both its phosphorylation by ERK and the timing of its isoprenaline-stimulated internalization. J Biol Chem 2009; 284:11425-35. [PMID: 19153083 PMCID: PMC2670148 DOI: 10.1074/jbc.m806395200] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 01/12/2009] [Indexed: 01/14/2023] Open
Abstract
betaArrestin is a multifunctional signal scaffold protein. Using SPOT immobilized peptide arrays, coupled with scanning alanine substitution and mutagenesis, we show that the MAPK kinase, MEK1, interacts directly with betaarrestin1. Asp(26) and Asp(29) in the N-terminal domain of betaarrestin1 are critical for its binding to MEK1, whereas Arg(47) and Arg(49) in the N-terminal domain of MEK1 are critical for its binding to betaarrestin1. Wild-type FLAG-tagged betaarrestin1 co-immunopurifies with MEK1 in HEKB2 cells, whereas the D26A/D29A mutant does not. ERK-dependent phosphorylation at Ser(412) was compromised in the D26A/D29A-betaarrestin1 mutant. A cell-permeable, 25-mer N-stearoylated betaarrestin1 peptide that encompassed the N-domain MEK1 binding site blocked betaarrestin1/MEK1 association in HEK cells and recapitulated the altered phenotype seen with the D26A/D29A-betaarrestin1 in compromising the ERK-dependent phosphorylation of betaarrestin1. In addition, the MEK disruptor peptide promoted the ability of betaarrestin1 to co-immunoprecipitate with endogenous c-Src and clathrin, facilitating the isoprenaline-stimulated internalization of the beta(2)-adrenergic receptor.
Collapse
Affiliation(s)
- Dong Meng
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, Wolfson Building, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li X, Baillie GS, Houslay MD. Mdm2 directs the ubiquitination of beta-arrestin-sequestered cAMP phosphodiesterase-4D5. J Biol Chem 2009; 284:16170-16182. [PMID: 19372219 DOI: 10.1074/jbc.m109.008078] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Beta-arrestin plays a key role in regulating beta2-adrenoreceptor signaling by interdicting activation of adenylyl cyclase and selectively sequestering cAMP phosphodiesterase-4D5 (PDE4D5) for delivery of an active cAMP degrading system to the site of cAMP synthesis. Here we show that the beta-agonist, isoprenaline, triggers the rapid and transient ubiquitination of PDE4D5 in primary cardiomyocytes, mouse embryo fibroblasts, and HEK293B2 cells constitutively expressing beta2-adrenoceptors. Reconstitution analyses in beta-arrestin1/2 double knockout cells plus small interference RNA knockdown studies indicate that a beta-arrestin-scaffolded pool of the E3-ubiquitin ligase, Mdm2, mediates PDE4D5 ubiquitination. Critical for this is the ubiquitin-interacting motif located in the extreme C terminus of PDE4D5, which is specific to the PDE4D sub-family. In vitro ubiquitination [corrected] of a PDE4D5 spot-immobilized peptide array, followed by a mutagenesis strategy, showed that PDE4D5 ubiquitination occurs at Lys-48, Lys-53, and Lys-78, which are located within its isoform-specific N-terminal region, as well as at Lys-140 located within its regulatory UCR1 module. We suggest that mono-ubiquitination at Lys-140 primes PDE4D5 for a subsequent cascade of polyubiquitination occurring within its isoform-specific N-terminal region at Lys-48, Lys-53, and Lys-78. PDE4D5 interacts with a non-ubiquitinated beta-arrestin sub-population that is likely to be protected from Mdm2-mediated ubiquitination due to steric hindrance caused by sequestered PDE4D5. Ubiquitination of PDE4D5 elicits an increase in the fraction of PDE4D5 sequestered by beta-arrestin in cells, thereby contributing to the fidelity of PDE4D5-beta-arrestin interaction, as well as decreasing the fraction of PDE4D5 sequestered by the scaffolding protein, RACK1.
Collapse
Affiliation(s)
- Xiang Li
- From Neuroscience and Molecular Pharmacology, Wolfson and Davidson Buildings, Faculty of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - George S Baillie
- From Neuroscience and Molecular Pharmacology, Wolfson and Davidson Buildings, Faculty of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Miles D Houslay
- From Neuroscience and Molecular Pharmacology, Wolfson and Davidson Buildings, Faculty of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom.
| |
Collapse
|
46
|
Baillie GS. Compartmentalized signalling: spatial regulation of cAMP by the action of compartmentalized phosphodiesterases. FEBS J 2009; 276:1790-9. [PMID: 19243430 DOI: 10.1111/j.1742-4658.2009.06926.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
cAMP is the original second messenger that is synthesized in response to a number of extracellular stimuli. Recent advances in cAMP reporter technology have given an insight into how cAMP signals retain their specificity. Spatial and temporal cAMP dynamics are regulated by discretely positioned phosphodiesterases that act as sinks to create simultaneous, multiple cAMP gradients in many cellular locations. Such gradients are sampled within microdomains that contain anchored cAMP effector proteins. Compartmentalization of proteins that produce, degrade and are activated by cAMP is crucial for the specificity of action required for normal cell function.
Collapse
Affiliation(s)
- George S Baillie
- Division of Neuroscience and Molecular Pharmacology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
47
|
Terrenoire C, Houslay MD, Baillie GS, Kass RS. The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J Biol Chem 2009; 284:9140-6. [PMID: 19218243 DOI: 10.1074/jbc.m805366200] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cardiac I(Ks) potassium channel is a macromolecular complex consisting of alpha-(KCNQ1) and beta-subunits (KCNE1) and the A kinase-anchoring protein (AKAP) Yotiao (AKAP-9), which recruits protein kinase A) and protein phosphatase 1 to the channel. Here, we have tested the hypothesis that specific cAMP phosphodiesterase (PDE) isoforms of the PDE4D family that are expressed in the heart are also part of the I(Ks) signaling complex and contribute to its regulation by cAMP. PDE4D isoforms co-immunoprecipitated with I(Ks) channels in hearts of mice expressing the I(Ks) channel. In myocytes isolated from these mice, I(Ks) was increased by pharmacological PDE inhibition. PDE4D3, but not PDE4D5, co-immunoprecipitated with the I(Ks) channel only in Chinese hamster ovary cells co-expressing AKAP-9, and PDE4D3, but not PDE4D5, co-immunoprecipitated with AKAP-9. Functional experiments in Chinese hamster ovary cells expressing AKAP-9 and either PDE4D3 or PDE4D5 isoforms revealed modulation of the I(Ks) response to cAMP by PDE4D3 but not PDE4D5. We conclude that PDE4D3, like protein kinase A and protein phosphatase 1, is recruited to the I(Ks) channel via AKAP-9 and contributes to its critical regulation by cAMP.
Collapse
Affiliation(s)
- Cecile Terrenoire
- Department of Pharmacology, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | |
Collapse
|
48
|
Afzal F, Andressen KW, Mørk HK, Aronsen JM, Sjaastad I, Dahl CP, Skomedal T, Levy FO, Osnes JB, Qvigstad E. 5-HT4
-elicited positive inotropic response is mediated by cAMP and regulated by PDE3 in failing rat and human cardiac ventricles. Br J Pharmacol 2009. [DOI: 10.1038/bjp.2008.339 [pii]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
49
|
Rao YJ, Xi L. Pivotal effects of phosphodiesterase inhibitors on myocyte contractility and viability in normal and ischemic hearts. Acta Pharmacol Sin 2009; 30:1-24. [PMID: 19060915 DOI: 10.1038/aps.2008.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Phosphodiesterases (PDEs) are enzymes that degrade cellular cAMP and cGMP and are thus essential for regulating the cyclic nucleotides. At least 11 families of PDEs have been identified, each with a distinctive structure, activity, expression, and tissue distribution. The PDE type-3, -4, and -5 (PDE3, PDE4, PDE5) are localized to specific regions of the cardiomyocyte, such as the sarcoplasmic reticulum and Z-disc, where they are likely to influence cAMP/cGMP signaling to the end effectors of contractility. Several PDE inhibitors exhibit remarkable hemodynamic and inotropic properties that may be valuable to clinical practice. In particular, PDE3 inhibitors have potent cardiotonic effects that can be used for short-term inotropic support, especially in situations where adrenergic stimulation is insufficient. Most relevant to this review, PDE inhibitors have also been found to have cytoprotective effects in the heart. For example, PDE3 inhibitors have been shown to be cardioprotective when given before ischemic attack, whereas PDE5 inhibitors, which include three widely used erectile dysfunction drugs (sildenafil, vardenafil and tadalafil), can induce remarkable cardioprotection when administered either prior to ischemia or upon reperfusion. This article provides an overview of the current laboratory and clinical evidence, as well as the cellular mechanisms by which the inhibitors of PDE3, PDE4 and PDE5 exert their beneficial effects on normal and ischemic hearts. It seems that PDE inhibitors hold great promise as clinically applicable agents that can improve cardiac performance and cell survival under critical situations, such as ischemic heart attack, cardiopulmonary bypass surgery, and heart failure.
Collapse
|
50
|
Afzal F, Andressen KW, Mørk HK, Aronsen JM, Sjaastad I, Dahl CP, Skomedal T, Levy FO, Osnes JB, Qvigstad E. 5-HT4-elicited positive inotropic response is mediated by cAMP and regulated by PDE3 in failing rat and human cardiac ventricles. Br J Pharmacol 2008; 155:1005-14. [PMID: 18846035 DOI: 10.1038/bjp.2008.339] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE The left ventricle in failing hearts becomes sensitive to 5-HT parallelled by appearance of functional G(s)-coupled 5-HT(4) receptors. Here, we have explored the regulatory functions of phosphodiesterases in the 5-HT(4) receptor-mediated functional effects in ventricular muscle from failing rat and human heart. EXPERIMENTAL APPROACH Extensive myocardial infarctions were induced by coronary artery ligation in Wistar rats. Contractility was measured in left ventricular papillary muscles of rat, 6 weeks after surgery and in left ventricular trabeculae from explanted human hearts. cAMP was quantified by RIA. KEY RESULTS In papillary muscles from postinfarction rat hearts, 5-HT(4) stimulation exerted positive inotropic and lusitropic effects and increased cAMP. The inotropic effect was increased by non-selective PDE inhibition (IBMX, 10 microM) and selective inhibition of PDE3 (cilostamide, 1 microM), but not of PDE2 (EHNA, 10 microM) or PDE4 (rolipram, 10 microM). Combined PDE3 and PDE4 inhibition enhanced inotropic responses beyond the effect of PDE3 inhibition alone, increased the sensitivity to 5-HT, and also revealed an inotropic response in control (sham-operated) rat ventricle. Lusitropic effects were increased only during combined PDE inhibition. In failing human ventricle, the 5-HT(4) receptor-mediated positive inotropic response was regulated by PDEs in a manner similar to that in postinfarction rat hearts. CONCLUSIONS AND IMPLICATIONS 5-HT(4) receptor-mediated positive inotropic responses in failing rat ventricle were cAMP-dependent. PDE3 was the main PDE regulating this response and involvement of PDE4 was disclosed by concomitant inhibition of PDE3 in both postinfarction rat and failing human hearts. 5-HT, PDE3 and PDE4 may have pathophysiological functions in heart failure.
Collapse
Affiliation(s)
- F Afzal
- Department of Pharmacology, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|