1
|
Ramos KS, Bojang P, Bowers E. Role of long interspersed nuclear element-1 in the regulation of chromatin landscapes and genome dynamics. Exp Biol Med (Maywood) 2021; 246:2082-2097. [PMID: 34304633 PMCID: PMC8524765 DOI: 10.1177/15353702211031247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
LINE-1 retrotransposon, the most active mobile element of the human genome, is subject to tight regulatory control. Stressful environments and disease modify the recruitment of regulatory proteins leading to unregulated activation of LINE-1. The activation of LINE-1 influences genome dynamics through altered chromatin landscapes, insertion mutations, deletions, and modulation of cellular plasticity. To date, LINE-1 retrotransposition has been linked to various cancer types and may in fact underwrite the genetic basis of various other forms of chronic human illness. The occurrence of LINE-1 polymorphisms in the human population may define inter-individual differences in susceptibility to disease. This review is written in honor of Dr Peter Stambrook, a friend and colleague who carried out highly impactful cancer research over many years of professional practice. Dr Stambrook devoted considerable energy to helping others live up to their full potential and to navigate the complexities of professional life. He was an inspirational leader, a strong advocate, a kind mentor, a vocal supporter and cheerleader, and yes, a hard critic and tough friend when needed. His passionate stand on issues, his witty sense of humor, and his love for humanity have left a huge mark in our lives. We hope that that the knowledge summarized here will advance our understanding of the role of LINE-1 in cancer biology and expedite the development of innovative cancer diagnostics and treatments in the ways that Dr Stambrook himself had so passionately envisioned.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX 77030, USA
| | - Pasano Bojang
- University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Emma Bowers
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
2
|
Nohara K, Nakabayashi K, Okamura K, Suzuki T, Suzuki S, Hata K. Gestational arsenic exposure induces site-specific DNA hypomethylation in active retrotransposon subfamilies in offspring sperm in mice. Epigenetics Chromatin 2020; 13:53. [PMID: 33267854 PMCID: PMC7709384 DOI: 10.1186/s13072-020-00375-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/12/2020] [Indexed: 01/26/2023] Open
Abstract
Background Environmental impacts on a fetus can disrupt germ cell development leading to epimutations in mature germ cells. Paternal inheritance of adverse health effects through sperm epigenomes, including DNA methylomes, has been recognized in human and animal studies. However, the impacts of gestational exposure to a variety of environmental factors on the germ cell epigenomes are not fully investigated. Arsenic, a naturally occurring contaminant, is one of the most concerning environmental chemicals, that is causing serious health problems, including an increase in cancer, in highly contaminated areas worldwide. We previously showed that gestational arsenic exposure of pregnant C3H mice paternally induces hepatic tumor increase in the second generation (F2). In the present study, we have investigated the F1 sperm DNA methylomes genome-widely by one-base resolution analysis using a reduced representation bisulfite sequencing (RRBS) method. Results We have clarified that gestational arsenic exposure increases hypomethylated cytosines in all the chromosomes and they are significantly overrepresented in the retrotransposon LINEs and LTRs, predominantly in the intergenic regions. Closer analyses of detailed annotated DNA sequences showed that hypomethylated cytosines are especially accumulated in the promoter regions of the active full-length L1MdA subfamily in LINEs, and 5′LTRs of the active IAPE subfamily in LTRs. This is the first report that has identified the specific positions of methylomes altered in the retrotransposon elements by environmental exposure, by genome-wide methylome analysis. Conclusion Lowered DNA methylation potentially enhances L1MdA retrotransposition and cryptic promoter activity of 5′LTR for coding genes and non-coding RNAs. The present study has illuminated the environmental impacts on sperm DNA methylome establishment that can lead to augmented retrotransposon activities in germ cells and can cause harmful effects in the following generation.
Collapse
Affiliation(s)
- Keiko Nohara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan.
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kazuyuki Okamura
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Takehiro Suzuki
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Shigekatsu Suzuki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| |
Collapse
|
3
|
Del Re B, Giorgi G. Long INterspersed element-1 mobility as a sensor of environmental stresses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:465-493. [PMID: 32144842 DOI: 10.1002/em.22366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Long INterspersed element (LINE-1, L1) retrotransposons are the most abundant transposable elements in the human genome, constituting approximately 17%. They move by a "copy-paste" mechanism, involving reverse transcription of an RNA intermediate and insertion of its cDNA copy at a new site in the genome. L1 retrotransposition (L1-RTP) can cause insertional mutations, alter gene expression, transduce exons, and induce epigenetic dysregulation. L1-RTP is generally repressed; however, a number of observations collected over about 15 years revealed that it can occur in response to environmental stresses. Moreover, emerging evidence indicates that L1-RTP can play a role in the onset of several neurological and oncological diseases in humans. In recent years, great attention has been paid to the exposome paradigm, which proposes that health effects of an environmental factor should be evaluated considering both cumulative environmental exposures and the endogenous processes resulting from the biological response. L1-RTP could be an endogenous process considered for this application. Here, we summarize the current understanding of environmental factors that can affect the retrotransposition of human L1 elements. Evidence indicates that L1-RTP alteration is triggered by numerous and various environmental stressors, such as chemical agents (heavy metals, carcinogens, oxidants, and drugs), physical agents (ionizing and non-ionizing radiations), and experiential factors (voluntary exercise, social isolation, maternal care, and environmental light/dark cycles). These data come from in vitro studies on cell lines and in vivo studies on transgenic animals: future investigations should be focused on physiologically relevant models to gain a better understanding of this topic.
Collapse
Affiliation(s)
- Brunella Del Re
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianfranco Giorgi
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Hassanin AAI, Tavera-Garcia M, Moorthy B, Zhou GD, Ramos KS. Lung genotoxicity of benzo(a)pyrene in vivo involves reactivation of LINE-1 retrotransposon and early reprogramming of oncogenic regulatory networks. Am J Physiol Lung Cell Mol Physiol 2019; 317:L816-L822. [PMID: 31596105 DOI: 10.1152/ajplung.00304.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several lines of evidence have implicated long interspersed nuclear element-1 (LINE-1) retroelement in the onset and progression of lung cancer. Retrotransposition-dependent mechanisms leading to DNA mobilization give rise to insertion mutations and DNA deletions, whereas retrotransposition-independent mechanisms disrupt epithelial programming and differentiation. Previous work by our group established that tobacco carcinogens such as benzo(a)pyrene (BaP) reactivate LINE-1 in bronchial epithelial cells through displacement of nucleosome remodeling and deacetylase (NuRD) corepressor complexes and interference with retinoblastoma-regulated epigenetic signaling. Whether LINE-1 in coordination with other genes within its regulatory network contributes to the in vivo genotoxic response to BaP remains largely unknown. Evidence is presented here that intratracheal instillation of ORFeusLSL mice with BaP alone or in combination with adenovirus (adeno)-CRE recombinase is genotoxic to the lung and associated with activation of the human LINE-1 transgene present in these mice. LINE-1 reactivation modulated the expression of genes involved in oncogenic signaling, and these responses were most pronounced in female mice compared with males and synergized by adeno-CRE recombinase. This is the first report linking LINE-1 and genes within its oncogenic regulatory network with early sexually dimorphic responses of the lung in vivo.
Collapse
Affiliation(s)
- A A I Hassanin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine, Tucson, Arizona.,Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - M Tavera-Garcia
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - B Moorthy
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - G D Zhou
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas
| | - K S Ramos
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine, Tucson, Arizona.,Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas
| |
Collapse
|
5
|
Bojang P, Ramos KS. Epigenetic reactivation of LINE-1 retrotransposon disrupts NuRD corepressor functions and induces oncogenic transformation in human bronchial epithelial cells. Mol Oncol 2018; 12:1342-1357. [PMID: 29845737 PMCID: PMC6068357 DOI: 10.1002/1878-0261.12329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 01/16/2023] Open
Abstract
Long interspersed nuclear element‐1 (LINE‐1 or L1) reactivation is linked to poor prognosis in non‐small‐cell lung carcinoma (NSCLC), but the molecular bases of this response remain largely unknown. In this report, we show that challenge of human bronchial epithelial cells (HBECs) with the lung carcinogen, benzo(a)pyrene (BaP), shifted the L1 promoter from a heterochromatic to euchromatic state through disassembly of the nucleosomal and remodeling deacetylase (NuRD) complex. Carcinogen challenge was also associated with partial displacement of constituent proteins from the nuclear to the cytoplasmic compartment. Disruption of NuRD corepression by genetic ablation or carcinogen treatment correlated with accumulation of L1 mRNA and proteins. Mi2β bound directly to the L1 promoter to effect retroelement silencing, and this response required the DNA‐ and ATPase‐binding domains of Mi2β. Sustained expression of L1 in HBECs was tumorigenic in a human–SCID mouse xenograft model, giving rise to tumors that regressed over time. Together, these results show that functional modulation of the NuRD constituent proteins is a critical molecular event in the activation of L1 retrotransposon. L1 expression creates a microenvironment in HBECs that is conducive to neoplasia and malignant transformation.
Collapse
Affiliation(s)
- Pasano Bojang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Kenneth S Ramos
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine, Tucson, AZ, USA.,Center for Applied Genetics and Genomic Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| |
Collapse
|
6
|
Vieira-da-Silva A, Adega F, Guedes-Pinto H, Chaves R. LINE-1 distribution in six rodent genomes follow a species-specific pattern. J Genet 2016; 95:21-33. [PMID: 27019429 DOI: 10.1007/s12041-015-0595-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
L1 distribution in mammal's genomes is yet a huge riddle. However, these repetitive sequences were already found in all chromosomic regions, and in general, they seem to be nonrandomly distributed in the genome. It also seems that after insertion and when they are not deleterious, they are always involved in dynamic processes occurring on that particular chromosomic region. Furthermore, it seems that large-scale genome rearrangements and L1 activity and accumulation are somehow interconnected. In the present study, we analysed L1 genomic distribution in Tatera gambiana (Muridae, Gerbillinae), Acomys sp. (Muridae, Deomyinae), Cricetomys sp. (Nesomyidae, Cricetomyinae), Microtus arvalis (Cricetidae, Arvicolinae), Phodopus roborovskii and P. sungorus (Cricetidae, Cricetinae). All the species studied here seems to exhibit a species-specific pattern.Possible mechanisms, and processes involved in L1 distribution and preferential accumulation in certain regions are di scussed.
Collapse
Affiliation(s)
- A Vieira-da-Silva
- Department of Genetics and Biotechnology (DGB), Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trάs-os-Montes and Alto Douro (UTAD), 5001, 801 Vila Real,
| | | | | | | |
Collapse
|
7
|
Montoya-Durango DE, Ramos KA, Bojang P, Ruiz L, Ramos IN, Ramos KS. LINE-1 silencing by retinoblastoma proteins is effected through the nucleosomal and remodeling deacetylase multiprotein complex. BMC Cancer 2016; 16:38. [PMID: 26810492 PMCID: PMC4727354 DOI: 10.1186/s12885-016-2068-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long Interspersed Nuclear Element-1 (L1) is an oncogenic mammalian retroelement silenced early in development via tightly controlled epigenetic mechanisms. We have previously shown that the regulatory region of human and murine L1s interact with retinoblastoma (RB) proteins to effect retroelement silencing. The present studies were conducted to identify the corepressor complex responsible for RB-mediated silencing of L1. METHODS Chromatin immunoprecipitation and silencing RNA technology were used to identify the repressor complex that silences L1 in human and murine cells. RESULTS Components of the Nucleosomal and Remodeling Deacetylase (NuRD) multiprotein complex specifically enriched the L1 5'-untranslated DNA sequence in human and murine cells. Genetic ablation of RB proteins in murine cells destabilized interactions within the NuRD macromolecular complex and mediated nuclear rearrangement of Mi2-β, an ATP-dependent helicase subunit with nucleosome remodeling activity. Depletion of Mi2-β, RbAP46 and HDAC2 reduced the repressor activity of the NuRD complex and reactivated a synthetic L1 reporter in human cells. Epigenetic reactivation of L1 in RB-null cells by DNA damage was markedly enhanced compared to wild type cells. CONCLUSIONS RB proteins stabilize interactions of the NuRD corepressor complex within the L1 promoter to effect L1 silencing. L1 retroelements may serve as a scaffold on which RB builds heterochromatic regions that regulate chromatin function.
Collapse
Affiliation(s)
- Diego E Montoya-Durango
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Kenneth A Ramos
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Pasano Bojang
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, 85721, USA.
| | - Lorell Ruiz
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Irma N Ramos
- Department of Health Promotion Sciences, University of Arizona College of Public Health, Tucson, AZ, 85721, USA.
| | - Kenneth S Ramos
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, 85721, USA.
| |
Collapse
|
8
|
Bojang P, Roberts RA, Anderton MJ, Ramos KS. Reprogramming of the HepG2 genome by long interspersed nuclear element-1. Mol Oncol 2013; 7:812-25. [PMID: 23648019 DOI: 10.1016/j.molonc.2013.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 10/26/2022] Open
Abstract
Long Interspersed Nuclear Element-1 (LINE-1 or L1) is an autonomous, mobile element within the human genome that transposes via a "copy and paste" mechanism and relies upon L1-encoded endonuclease and reverse transcriptase (RT) activities to compromise genome integrity. L1 has been implicated in various forms of cancer, but its role in the regulation of the oncogenic phenotype is not understood. The present studies were conducted to evaluate mechanisms of genetic regulatory control in HepG2 cells by human L1, or a D702Y mutant deficient in RT activity, and their influence on cellular phenotype. Forced expression of synthetic L1 ORF1p and ORF2p was associated with formation of cytoplasmic foci and minor association with the nuclear compartment. While de novo L1 mobilizations were only identified in cells expressing wild type L1, and were absent in the D702Y mutant, changes in gene expression profiles involved RT dependent as well as RT independent mechanisms. Synthetic L1 altered the expression of 24 in silico predicted genetic targets; ten of which showed RT-dependence, ten RT-independence, and four reciprocal regulatory control by both wild type and RT mutant. Of five targets examined, only VCAM1 and PTPRB colocalized with newly retrotransposed wild type L1. Biological discretization to partition patterns of gene expression into unique frequencies identified adhesion, inflammation, and cellular metabolism as key processes targeted for molecular interference with disruption of epithelial-to-mesenchymal programming seen irrespective of the RT phenotype. These findings establish L1 as a key regulator of genome plasticity and EMT via mechanisms independent of RT activity.
Collapse
Affiliation(s)
- Pasano Bojang
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
9
|
The Intersection of Genetics and Epigenetics: Reactivation of Mammalian LINE-1 Retrotransposons by Environmental Injury. ENVIRONMENTAL EPIGENOMICS IN HEALTH AND DISEASE 2013. [DOI: 10.1007/978-3-642-23380-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Goldstone HMH, Tokunaga S, Schlezinger JJ, Goldstone JV, Stegeman JJ. EZR1: a novel family of highly expressed retroelements induced by TCDD and regulated by a NF-κB-like factor in embryos of zebrafish (Danio rerio). Zebrafish 2012; 9:15-25. [PMID: 22356696 DOI: 10.1089/zeb.2011.0722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Transcript profiling using a zebrafish heart cDNA library previously revealed abundant expressed sequence tags (ESTs) upregulated in zebrafish embryos treated with the aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Here, we identify those ESTs as LTR-containing retroelements termed EZR1 (Expressed-Zebrafish-Retroelement group 1). EZR1 is highly redundant in the genome and includes canonical long terminal repeats (LTRs) flanking an integrase-like open reading frame and a region similar to retroviral envelope protein genes. EZR1 sequences lack reverse transcriptase, RNase H, or protease, indicating retrotransposition would be nonautonomous. No AHR binding motifs were found in the EZR1 promoter region. A putative NF-κB-binding site was found, and TCDD-treated zebrafish embryos had significantly increased levels of nuclear protein(s) binding to this sequence. Protein-EZR1 DNA complex formation was partially competed by a mammalian consensus κB sequence, consistent with NF-κB-like activation contributing to increased protein binding to this site. Mobility of the TCDD-induced protein-EZR1 complex differed from that of authentic NF-κB protein bound to the consensus κB site. The results suggest that EZR1 is regulated by interaction with NF-κB or NF-κB-like protein(s) different from the NF-κB protein binding to the consensus κB site. The nature of the NF-κB-like protein and the relationship between EZR1 induction and cardiovascular toxicity caused by TCDD warrant further investigation.
Collapse
Affiliation(s)
- Heather M H Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | | | | | | | | |
Collapse
|
11
|
Montoya-Durango DE, Ramos KS. HPV E7 viral oncoprotein disrupts transcriptional regulation of L1Md retrotransposon. FEBS Lett 2011; 586:102-6. [PMID: 22172279 DOI: 10.1016/j.febslet.2011.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 01/01/2023]
Abstract
Murine L1Md-A5 retrotransposon is a redox-inducible element regulated by Nrf-2/JunD and E2F/Rb-binding sites within its promoter (5'-UTR). Because the human papillomavirus (HPV) oncoprotein E7 interacts with retinoblastoma (pRb) and members of the AP1 family, studies were conducted to examine functional interactions between HPV E7, pRb, and histone deacetylase 2 (HDAC2) in the regulation of L1Md-A5. Using a transient heterologous transcription system we found that HPV E7 alone, or in combination with HDAC2, disrupted pRb-mediated L1MdA-5 transactivation. HPV E7 also ablated the transcriptional response of L1Md-A5 to genotoxic stress, but did not interfere with basal activity. We conclude that HPV E7 associates with proteins involved in the assembly of macromolecular complexes that regulate antioxidant and E2F/Rb sites within L1MdA-5 to regulate biological activity.
Collapse
Affiliation(s)
- Diego E Montoya-Durango
- Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
12
|
Montoya-Durango DE, Ramos KS. Retinoblastoma family of proteins and chromatin epigenetics: a repetitive story in a few LINEs. Biomol Concepts 2011; 2:233-45. [DOI: 10.1515/bmc.2011.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/31/2011] [Indexed: 12/20/2022] Open
Abstract
AbstractThe retinoblastoma (RB) protein family in mammals is composed of three members: pRB (or RB1), p107, and p130. Although these proteins do not directly bind DNA, they associate with the E2F family of transcription factors which function as DNA sequence-specific transcription factors. RB proteins alter gene transcription via direct interference with E2F functions, as well as recruitment of transcriptional repressors and corepressors that silence gene expression through DNA and histone modifications. E2F/RB complexes shape the chromatin landscape through recruitment to CpG-rich regions in the genome, thus making E2F/RB complexes function as local and global regulators of gene expression and chromatin dynamics. Recruitment of E2F/pRB to the long interspersed nuclear element (LINE1) promoter enhances the role that RB proteins play in genome-wide regulation of heterochromatin. LINE1 elements are dispersed throughout the genome and therefore recruitment of RB to the LINE1 promoter suggests that LINE1 could serve as the scaffold on which RB builds up heterochromatic regions that silence and shape large stretches of chromatin. We suggest that mutations in RB function might lead to global rearrangement of heterochromatic domains with concomitant retrotransposon reactivation and increased genomic instability. These novel roles for RB proteins open the epigenetic-based way for new pharmacological treatments of RB-associated diseases, namely inhibitors of histone and DNA methylation, as well as histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Diego E. Montoya-Durango
- 1Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kenneth S. Ramos
- 1Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
13
|
Teneng I, Montoya-Durango DE, Quertermous JL, Lacy ME, Ramos KS. Reactivation of L1 retrotransposon by benzo(a)pyrene involves complex genetic and epigenetic regulation. Epigenetics 2011; 6:355-67. [PMID: 21150308 DOI: 10.4161/epi.6.3.14282] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Benzo(a)pyrene (BaP), is an environmental pollutant present in tobacco smoke and a byproduct of fossil fuel combustion which likely contributes to the tumorigenic processes in human cancers including lung and esophageal. Long Interspersed Nuclear Element-1 (LINE-1) or L1 is a mobile element within the mammalian genome that propagates via a "copy-and-paste" mechanism using reverse transcriptase and RNA intermediates. L1 is strongly expressed during early embryogenesis and then silenced as cells initiate differentiation programming. Although the complex transcriptional control mechanisms of L1 are not well understood, L1 reactivation has been described in several human cancers and following exposure of mouse or human cells to BaP. In this study we investigated the molecular mechanisms and epigenetic events that regulate L1 reactivation following BaP exposure. We show that challenge of HeLa cells with BaP induces early enrichment of the transcriptionally-active chromatin markers histone H3 trimethylated at lysine 4 (H3K4Me3) and histone H3 acetylated at lysine 9 (H3K9Ac), and reduces association of DNA methyltransferase-1 (DNMT1) with the L1 promoter. These changes are followed by proteasome-dependent decreases in cellular DNMT1 expression and sustained reduction of cytosine methylation within the L1 promoter CpG island. Pharmacological inhibition of the proteasome signaling pathway with the inhibitor MG132 blocks degradation of DNMT1 and alters BaP-mediated histone epigenetic modifications. We conclude that genetic reactivation of L1 by BaP involves an ordered cascade of epigenetic events that begin with nucleosomal histone modifications and is completed with alterations in DNMT1 recruitment to the L1 promoter and reduced DNA methylation of CpG islands.
Collapse
Affiliation(s)
- Ivo Teneng
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville, KY, USA
| | | | | | | | | |
Collapse
|
14
|
Rouchka E, Montoya-Durango DE, Stribinskis V, Ramos K, Kalbfleisch T. Assessment of genetic variation for the LINE-1 retrotransposon from next generation sequence data. BMC Bioinformatics 2010; 11 Suppl 9:S12. [PMID: 21044359 PMCID: PMC2967742 DOI: 10.1186/1471-2105-11-s9-s12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background In humans, copies of the Long Interspersed Nuclear Element 1 (LINE-1) retrotransposon comprise 21% of the reference genome, and have been shown to modulate expression and produce novel splice isoforms of transcripts from genes that span or neighbor the LINE-1 insertion site. Results In this work, newly released pilot data from the 1000 Genomes Project is analyzed to detect previously unreported full length insertions of the retrotransposon LINE-1. By direct analysis of the sequence data, we have identified 22 previously unreported LINE-1 insertion sites within the sequence data reported for a mother/father/daughter trio. Conclusions It is demonstrated here that next generation sequencing data, as well as emerging high quality datasets from individual genome projects allow us to assess the amount of heterogeneity with respect to the LINE-1 retrotransposon amongst humans, and provide us with a wealth of testable hypotheses as to the impact that this diversity may have on the health of individuals and populations.
Collapse
Affiliation(s)
- Eric Rouchka
- Computer Engineering and Computer Science Department, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
15
|
Lee SH, Cho SY, Shannon MF, Fan J, Rangasamy D. The impact of CpG island on defining transcriptional activation of the mouse L1 retrotransposable elements. PLoS One 2010; 5:e11353. [PMID: 20613872 PMCID: PMC2894050 DOI: 10.1371/journal.pone.0011353] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 05/20/2010] [Indexed: 12/31/2022] Open
Abstract
Background L1 retrotransposable elements are potent insertional mutagens responsible for the generation of genomic variation and diversification of mammalian genomes, but reliable estimates of the numbers of actively transposing L1 elements are mostly nonexistent. While the human and mouse genomes contain comparable numbers of L1 elements, several phylogenetic and L1Xplore analyses in the mouse genome suggest that 1,500–3,000 active L1 elements currently exist and that they are still expanding in the genome. Conversely, the human genome contains only 150 active L1 elements. In addition, there is a discrepancy among the nature and number of mouse L1 elements in L1Xplore and the mouse genome browser at the UCSC and in the literature. To date, the reason why a high copy number of active L1 elements exist in the mouse genome but not in the human genome is unknown, as are the potential mechanisms that are responsible for transcriptional activation of mouse L1 elements. Methodology/Principal Findings We analyzed the promoter sequences of the 1,501 potentially active mouse L1 elements retrieved from the GenBank and L1Xplore databases and evaluated their transcription factors binding sites and CpG content. To this end, we found that a substantial number of mouse L1 elements contain altered transcription factor YY1 binding sites on their promoter sequences that are required for transcriptional initiation, suggesting that only a half of L1 elements are capable of being transcriptionally active. Furthermore, we present experimental evidence that previously unreported CpG islands exist in the promoters of the most active TF family of mouse L1 elements. The presence of sequence variations and polymorphisms in CpG islands of L1 promoters that arise from transition mutations indicates that CpG methylation could play a significant role in determining the activity of L1 elements in the mouse genome. Conclusions A comprehensive analysis of mouse L1 promoters suggests that the number of transcriptionally active elements is significantly lower than the total number of full-length copies from the three active mouse L1 families. Like human L1 elements, the CpG islands and potentially the transcription factor YY1 binding sites are likely to be required for transcriptional initiation of mouse L1 elements.
Collapse
Affiliation(s)
- Sung-Hun Lee
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Soo-Young Cho
- Division of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - M. Frances Shannon
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Jun Fan
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Danny Rangasamy
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
16
|
Abstract
Advances in the science of toxicogenomics have opened the door to major advances in our understanding of the molecular basis of environmental pathogenesis and the role of environmental factors in human disease. This report summarizes major findings in the laboratory defining the molecular basis of L1 retroelement activation in mammalian cells and the architecture of gene regulatory networks involved in phenotypic control.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Department of Biochemistry and Molecular Biology & Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA.
| |
Collapse
|
17
|
Montoya-Durango DE, Liu Y, Teneng I, Kalbfleisch T, Lacy ME, Steffen MC, Ramos KS. Epigenetic control of mammalian LINE-1 retrotransposon by retinoblastoma proteins. Mutat Res 2009; 665:20-8. [PMID: 19427507 DOI: 10.1016/j.mrfmmm.2009.02.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 02/20/2009] [Accepted: 02/23/2009] [Indexed: 02/07/2023]
Abstract
Long interspersed nuclear elements (LINEs or L1 elements) are targeted for epigenetic silencing during early embryonic development and remain inactive in most cells and tissues. Here we show that E2F-Rb family complexes participate in L1 elements epigenetic regulation via nucleosomal histone modifications and recruitment of histone deacetylases (HDACs) HDAC1 and HDAC2. Our experiments demonstrated that (i) Rb and E2F interact with human and mouse L1 elements, (ii) L1 elements are deficient in both heterochromatin-associated histone marks H3 tri methyl K9 and H4 tri methyl K20 in Rb family triple knock out (Rb, p107, and p130) fibroblasts (TKO), (iii) L1 promoter exhibits increased histone H3 acetylation in the absence of HDAC1 and HDAC2 recruitment, (iv) L1 expression in TKO fibroblasts is upregulated compared to wild type counterparts, (v) L1 expression increases in the presence of the HDAC inhibitor TSA. On the basis of these findings we propose a model in which L1 sequences throughout the genome serve as centers for heterochromatin formation in an Rb family-dependent manner. As such, Rb proteins and L1 elements may play key roles in heterochromatin formation beyond pericentromeric chromosomal regions. These findings describe a novel mechanism of L1 reactivation in mammalian cells mediated by failure of corepressor protein recruitment by Rb, loss of histone epigenetic marks, heterochromatin formation, and increased histone H3 acetylation.
Collapse
Affiliation(s)
- Diego E Montoya-Durango
- Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, University of Louisville School of Medicine Health Sciences Center, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The present study was conducted to evaluate the contextual specificity of long interspersed nuclear element-1 (LINE-1 or L1) activation by cellular stress and the role of the aryl hydrocarbon receptor (AHR) transcription factor and oxidative stress in the gene activation response. Activation of the AHR by the genotoxic carcinogen benzo(a)pyrene (BaP) increased L1 expression in human cervical carcinoma (HeLa) cells, human microvascular endothelial cells (HMEC), mouse vascular smooth muscle cells (mVSMC) and mouse embryonic kidney cells (mK4). In contrast, challenge with a different AHR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), or UV irradiation (10-20 J/m(2)), induced L1 only in HeLa cells. Transactivation of the mouse L1Md-A5 promoter was observed in all cell types challenged with BaP, while TCDD was without effect, and UV only activated L1 in HeLa cells. Genetic and pharmacological experiments implicated the AHR and oxidative stress as contextual determinants of L1 inducibility by cellular stress.
Collapse
Affiliation(s)
- Ivo Teneng
- Department of Biochemistry and Molecular Biology, and Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | |
Collapse
|
19
|
Ramos KS, He Q, Kalbfleisch T, Montoya-Durango DE, Teneng I, Stribinskis V, Brun M. Computational and biological inference of gene regulatory networks of the LINE-1 retrotransposon. Genomics 2007; 90:176-85. [PMID: 17521869 PMCID: PMC2065750 DOI: 10.1016/j.ygeno.2007.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 01/21/2023]
Abstract
Computational approaches were used to define structural and functional determinants of a putative genetic regulatory network of murine LINE-1 (long interspersed nuclear element-1), an active mammalian retrotransposon that uses RNA intermediates to populate new sites throughout the genome. Polymerase (RNA) II polypeptide E AI845735 and mouse DNA homologous to Drosophila per fragment M12039 were identified as primary attractors. siRNA knockdown of the aryl hydrocarbon receptor NM_013464 modulated gene expression within the network, including LINE-1, Sgpl1, Sdcbp, and Mgst1. Genes within the network did not exhibit physical proximity and instead were dispersed throughout the genome. The potential impact of individual members of the network on the global dynamical behavior of LINE-1 was examined from a theoretical and empirical framework.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Rempala GA, Ramos KS, Kalbfleisch T, Teneng I. Validation of a mathematical model of gene transcription in aggregated cellular systems: application to l1 retrotransposition. J Comput Biol 2007; 14:339-49. [PMID: 17563315 DOI: 10.1089/cmb.2006.0125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present a methodology aimed at partial validation and accuracy-precision assessment of a mathematical model of gene transcription at the cellular level. The method is based on the analysis of time-series measurements aggregated over a large number of cells. Such measurements are typically obtained via reverse transcriptase-polymerase chain reaction (RT-PCR) experiments. The validation procedure presented herein uses as an example data on L1 retrotransposon gene in HeLa cells. The procedure compares model predicted values with the RT-PCR data for L1 by means of the standard Bayesian statistical techniques with the help of modern Markov-Chain Monte-Carlo methodology.
Collapse
Affiliation(s)
- Grzegorz A Rempala
- Department of Mathematics, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | | | |
Collapse
|
21
|
Ramos KS, Partridge CR, Teneng I. Genetic and molecular mechanisms of chemical atherogenesis. Mutat Res 2007; 621:18-30. [PMID: 17433375 DOI: 10.1016/j.mrfmmm.2006.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 12/12/2006] [Accepted: 12/13/2006] [Indexed: 01/19/2023]
Abstract
Injury to the cellular components of the vascular wall and blood by endogenous and exogenous chemicals has been associated with atherosclerosis in humans and experimental systems. The genetic and molecular mechanisms responsible for initiation and promotion of atherosclerotic changes include modulation of extracellular matrix-integrin axis, genes involved in the regulation of growth and differentiation and possibly, genomic stability. This review summarizes seminal studies over the past 20 years that shed light on critical gene-gene and gene-environment interactions mediating the atherogenic response to chemical injury.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, United States.
| | | | | |
Collapse
|
22
|
Singh AV, Rouchka EC, Rempala GA, Bastian CD, Knudsen TB. Integrative database management for mouse development: Systems and concepts. ACTA ACUST UNITED AC 2007; 81:1-19. [PMID: 17539026 DOI: 10.1002/bdrc.20089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cells in the developing embryo must integrate complex signals from the genome and environment to make decisions about their behavior or fate. The ability to understand the fundamental biology of the decision-making process, and how these decisions may go awry during abnormal development, requires a systems biology paradigm. Presently, the ability to build models with predictive capability in birth defects research is constrained by an incomplete understanding of the fundamental parameters underlying embryonic susceptibility, sensitivity, and vulnerability. Key developmental milestones must be parameterized in terms of system structure and dynamics, the relevant control methods, and the overall design logic of metabolic and regulatory networks. High-content data from genome-based studies provide some comprehensive coverage of these operational processes but a key research challenge is data integration. Analysis can be facilitated by data management resources and software to reveal the structure and function of bionetwork motifs potentially associated with an altered developmental phenotype. Borrowing from applied mathematics and artificial intelligence, we conceptualize a system that can help address the new challenges posed by the transformation of birth defects research into a data-driven science.
Collapse
Affiliation(s)
- Amar V Singh
- Department of Molecular, Cellular, and Craniofacial Biology, School of Dentistry, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | |
Collapse
|
23
|
Rempala GA, Ramos KS, Kalbfleisch T. A stochastic model of gene transcription: an application to L1 retrotransposition events. J Theor Biol 2006; 242:101-16. [PMID: 16624324 DOI: 10.1016/j.jtbi.2006.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 02/04/2006] [Accepted: 02/07/2006] [Indexed: 10/24/2022]
Abstract
A simplified mathematical model of gene transcription is presented based on a system of coupled chemical reactions and a corresponding set of stochastic equations similar to those used in enzyme kinetics theory. The quasi-stationary distribution for the model is derived and its usefulness illustrated with an example of model parameters estimation using sparse time course data on L1 retrotransposon expression kinetics. The issue of model validation is also discussed and a simple validation procedure for the estimated model is devised. The procedure compares model predicted values with the laboratory data via the standard Bayesian techniques with the help of modern Markov-Chain Monte-Carlo methodology.
Collapse
Affiliation(s)
- Grzegorz A Rempala
- Department of Mathematics, University of Louisville, Louisville, KY 40292, USA.
| | | | | |
Collapse
|
24
|
Stribinskis V, Ramos KS. Activation of human long interspersed nuclear element 1 retrotransposition by benzo(a)pyrene, an ubiquitous environmental carcinogen. Cancer Res 2006; 66:2616-20. [PMID: 16510580 DOI: 10.1158/0008-5472.can-05-3478] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Long interspersed nuclear elements [LINE-1 (L1)] are abundant retrotransposons in mammalian genomes that remain silent under most conditions. Cellular stress signals activate L1, but the molecular mechanisms controlling L1 activation remain unclear. Evidence is presented here that benzo(a)pyrene (BaP), an environmental hydrocarbon metabolized by mammalian cytochrome P450s to reactive carcinogenic intermediates, increases L1 retrotransposition in HeLa cells. Increased retrotransposition is mediated by up-regulation of L1 RNA levels, increased L1 cDNA synthesis, and stable genomic integration. Activation of L1 is dependent on the ability of BaP to cause DNA damage because it is absent in HeLa cells challenged with nongenotoxic hydrocarbon carcinogens. Thus, the mutations and genomic instability observed in human populations exposed to genotoxic environmental hydrocarbons may involve epigenetic activation of mobile elements dispersed throughout the human genome.
Collapse
Affiliation(s)
- Vilius Stribinskis
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | |
Collapse
|
25
|
Taruscio D, Mantovani A. Factors regulating endogenous retroviral sequences in human and mouse. Cytogenet Genome Res 2005; 105:351-62. [PMID: 15237223 DOI: 10.1159/000078208] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 12/23/2003] [Indexed: 11/19/2022] Open
Abstract
Endogenous retroviruses (ERVs) are stably integrated in the genome of vertebrates and inherited as Mendelian genes. The several human ERV (HERV) families and related elements represent up to 5-8% of the DNA of our species. ERVs may be involved in the regulation of adjacent genomic loci, especially promoting the tissue-specific expression of genes; some HERVs may have functional roles, e.g., coding for the placental fusogenic protein, syncytin. This paper reviews the growing evidence about factors that may modulate ERVs, including: cell and tissue types (with special attention to placenta and germ cells), processes related to differentiation and aging, cytokines, agents that disrupt cell functions (e.g., DNA hypomethylating agents) and steroids. Special attention is given to HERVs, due to their possible involvement in autoimmunity and reproduction, as well as altered expression in some cancer types; moreover, different HERV families may deserve specific attention, due to remarkable differences concerning, e.g., expression in tissues. A comparison with factors interacting with murine ERV-related sequences indicates that the mouse may be a useful model for studying some patterns of HERV regulation. Overall, the available evidence identifies the diverse, potential interactions with endogenous or exogenous factors as a promising field for investigating the roles of ERVs in physiology and disease.
Collapse
Affiliation(s)
- D Taruscio
- National Centre on Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|