1
|
Guo SW. Cancer-associated mutations in endometriosis: shedding light on the pathogenesis and pathophysiology. Hum Reprod Update 2020; 26:423-449. [PMID: 32154564 DOI: 10.1093/humupd/dmz047] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Endometriosis is a benign gynaecological disease. Thus, it came as a complete surprise when it was reported recently that the majority of deep endometriosis lesions harbour somatic mutations and a sizeable portion of them contain known cancer-associated mutations (CAMs). Four more studies have since been published, all demonstrating the existence of CAMs in different subtypes of endometriosis. While the field is still evolving, the confirmation of CAMs has raised many questions that were previously overlooked. OBJECTIVE AND RATIONALE A comprehensive overview of CAMs in endometriosis has been produced. In addition, with the recently emerged understanding of the natural history of endometriotic lesions as well as CAMs in normal and apparently healthy tissues, this review attempts to address the following questions: Why has there been such a wild discrepancy in reported mutation frequencies? Why does ectopic endometrium have a higher mutation rate than that of eutopic endometrium? Would the presence of CAMs in endometriotic lesions increase the risk of cancer to the bearers? Why do endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart? What clinical implications, if any, do the CAMs have for the bearers? Do these CAMs tell us anything about the pathogenesis and/or pathophysiology of endometriosis? SEARCH METHODS The PubMed database was searched, from its inception to September 2019, for all papers in English using the term 'endometriosis and CAM', 'endometriosis and cancer-driver mutation', 'somatic mutations', 'fibrosis', 'fibrosis and epigenetic', 'CAMs and tumorigenesis', 'somatic mutation and normal tissues', 'oestrogen receptor and fibrosis', 'oxidative stress and fibrosis', 'ARID1A mutation', and 'Kirsten rat sarcoma mutation and therapeutics'. All retrieved papers were read and, when relevant, incorporated into the review results. OUTCOMES Seven papers that identified CAMs in endometriosis using various sequencing methods were retrieved, and their results were somewhat different. Yet, it is apparent that those using microdissection techniques and more accurate sequencing methods found more CAMs, echoing recent discoveries that apparently healthy tissues also harbour CAMs as a result of the replicative aging process. Hence endometriotic lesions, irrespective of subtype, if left intact, would generate CAMs as part of replicative aging, oxidative stress and perhaps other factors yet to be identified and, in some rare cases, develop cancer. The published data still are unable to paint a clear picture on pathogenesis of endometriosis. However, since endometriotic epithelial cells have a higher turnover than their stromal counterpart due to cyclic bleeding, and since the endometriotic stromal component can be formed by refresh influx of mesenchymal cells through epithelial-mesenchymal transition, endothelial-mesenchymal transition, mesothelial-mesenchymal transition and other processes as well as recruitment of bone-marrow-derived stem cells and outflow due to smooth muscle metaplasia, endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart. The epithelial and stromal cellular components develop in a dependent and co-evolving manner. Genes involved in CAMs are likely to be active players in lesional fibrogenesis, and hyperestrogenism and oxidative stress are likely drivers of both CAMs and fibrogenesis. Finally, endometriotic lesions harbouring CAMs would conceivably be more refractory to medical treatment, due, in no small part, to their high fibrotic content and reduced vascularity and cellularity. WIDER IMPLICATIONS The accumulating data on CAMs in endometriosis have shed new light on the pathogenesis and pathophysiology of endometriosis. They also suggest new challenges in management. The distinct yet co-evolving developmental trajectories of endometriotic stroma and epithelium underscore the importance of the lesional microenvironment and ever-changing cellular identity. Mutational profiling of normal endometrium from women of different ages and reproductive history is needed in order to gain a deeper understanding of the pathogenesis. Moreover, one area that has conspicuously received scant attention is the epigenetic landscape of ectopic, eutopic and normal endometrium.
Collapse
Affiliation(s)
- Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| |
Collapse
|
2
|
JunD/AP-1 Antagonizes the Induction of DAPK1 To Promote the Survival of v-Src-Transformed Cells. J Virol 2016; 91:JVI.01925-16. [PMID: 27795443 DOI: 10.1128/jvi.01925-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/07/2016] [Indexed: 01/01/2023] Open
Abstract
The increase in AP-1 activity is a hallmark of cell transformation by tyrosine kinases. Previously, we reported that blocking AP-1 using the c-Jun dominant negative mutant TAM67 induced senescence, adipogenesis, or apoptosis in v-Src-transformed chicken embryo fibroblasts (CEFs) whereas inhibition of JunD by short hairpin RNA (shRNA) specifically induced apoptosis. To investigate the role of AP-1 in Src-mediated transformation, we undertook a gene profiling study to characterize the transcriptomes of v-Src-transformed CEFs expressing either TAM67 or the JunD shRNA. Our study revealed a cluster of 18 probe sets upregulated exclusively in response to AP-1/JunD impairment and v-Src transformation. Four of these probe sets correspond to genes involved in the interferon pathway. One gene in particular, death-associated protein kinase 1 (DAPK1), is a C/EBPβ-regulated mediator of apoptosis in gamma interferon (IFN-γ)-induced cell death. Here, we show that inhibition of DAPK1 abrogates cell death in v-Src-transformed cells expressing the JunD shRNA. Chromatin immunoprecipitation data indicated that C/EBPβ was recruited to the DAPK1 promoter while the expression of a dominant negative mutant of C/EBPβ abrogated the induction of DAPK1 in response to the inhibition of AP-1. In contrast, as determined by chromatin immunoprecipitation (ChIP) assays, JunD was not detected on the DAPK1 promoter under any conditions, suggesting that JunD promotes survival by indirectly antagonizing the expression of DAPK1 in v-Src transformed cells. IMPORTANCE Transformation by the v-Src oncoprotein causes extensive changes in gene expression in primary cells such as chicken embryo fibroblasts. These changes, determining the properties of transformed cells, are controlled in part at the transcriptional level. Much attention has been devoted to transcription factors such as AP-1 and NF-κB and the control of genes associated with a more aggressive phenotype. In this report, we describe a novel mechanism of action determined by the JunD component of AP-1, a factor enhancing cell survival in v-Src-transformed cells. We show that the loss of JunD results in the aberrant activation of a genetic program leading to cell death. This program requires the activation of the tumor suppressor death-associated protein kinase 1 (DAPK1). Since DAPK1 is phosphorylated and inhibited by v-Src, these results highlight the importance of this kinase and the multiple mechanisms controlled by v-Src to antagonize the tumor suppressor function of DAPK1.
Collapse
|
3
|
Extracellular Signal-Regulated Kinase 2 and CHOP Restrict the Expression of the Growth Arrest-Specific p20K Lipocalin Gene to G0. Mol Cell Biol 2016; 36:2890-2902. [PMID: 27601586 DOI: 10.1128/mcb.00338-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022] Open
Abstract
The activation of the growth arrest-specific (gas) p20K gene depends on the interaction of C/EBPβ with two elements of a 48-bp promoter region termed the quiescence-responsive unit (QRU). Here we identify extracellular signal-related kinase 2 (ERK2) as a transcriptional repressor of the p20K QRU in cycling chicken embryo fibroblasts (CEF). ERK2 binds to repeated GAAAG sequences overlapping the C/EBPβ sites of the QRU. The recruitment of ERK2 and C/EBPβ is mutually exclusive and dictates the expression of p20K. C/EBP homologous protein (CHOP) was associated with C/EBPβ under conditions promoting endoplasmic reticulum (ER) stress and, to a lesser extent, in cycling CEF but was not detectable when C/EBPβ was immunoprecipitated from contact-inhibited cells. During ER stress, overexpression of CHOP inhibited p20K, while its downregulation promoted p20K, indicating that CHOP is also a potent inhibitor of p20K. Transcriptome analyses revealed that hypoxia-responsive genes are strongly induced in contact-inhibited but not serum-starved CEF, and elevated levels of nitroreductase activity, a marker of hypoxia, were detected at confluence. Conditions of hypoxia (2% O2) induced growth arrest in subconfluent CEF and markedly stimulated p20K expression, suggesting that the control of proliferation and gas gene expression is closely linked to limiting oxygen concentrations associated with high cell densities.
Collapse
|
4
|
Maynard S, Ghosh R, Wu Y, Yan S, Miyake T, Gagliardi M, Rethoret K, Bédard PA. GABARAP is a determinant of apoptosis in growth-arrested chicken embryo fibroblasts. J Cell Physiol 2015; 230:1475-88. [DOI: 10.1002/jcp.24889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/26/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Scott Maynard
- Department of Biology; York University; Toronto Ontario M3J 1P3 Canada
| | - Romita Ghosh
- Department of Biology; McMaster University; Hamilton Ontario L8S 4K1 Canada
| | - Ying Wu
- Department of Biology; McMaster University; Hamilton Ontario L8S 4K1 Canada
| | - Shi Yan
- Department of Biology; McMaster University; Hamilton Ontario L8S 4K1 Canada
| | - Tetsuaki Miyake
- Department of Biology; York University; Toronto Ontario M3J 1P3 Canada
| | - Mark Gagliardi
- Department of Biology; York University; Toronto Ontario M3J 1P3 Canada
| | - Karen Rethoret
- Department of Biology; York University; Toronto Ontario M3J 1P3 Canada
| | - P-A. Bédard
- Department of Biology; McMaster University; Hamilton Ontario L8S 4K1 Canada
| |
Collapse
|
5
|
Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev 2015; 49:135-56. [DOI: 10.1016/j.neubiorev.2014.12.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022]
|
6
|
Promoter identification and transcriptional regulation of the metastasis gene MACC1 in colorectal cancer. Mol Oncol 2013; 7:929-43. [PMID: 23800415 DOI: 10.1016/j.molonc.2013.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 02/08/2023] Open
Abstract
MACC1, Metastasis associated in colon cancer 1, is a newly identified prognostic biomarker for colorectal cancer metastasis and patient survival, when determined in the primary tumor or patient blood. MACC1 induces cell motility and proliferation in cell culture and metastasis in mouse models. MACC1 acts as a transcriptional regulator of the receptor tyrosine kinase gene Met via binding to its promoter. However, no information about the promoter of the MACC1 gene and its transcriptional regulation has been reported so far. Here we report the identification of the MACC1 promoter using a promoter luciferase construct that directs transcription of MACC1. To gain insights into the essential domains within this promoter region, we constructed 5' truncated deletion constructs. Our results show that the region from -426 to -18 constitutes the core promoter and harbors functional motifs for the binding of AP-1, Sp1, and C/EBP transcription factors as validated by site directed mutagenesis study. Using electrophoretic mobility shift assay and chromatin immunoprecipitation assay, we demonstrated the physical interaction of these transcription factors to a minimal essential MACC1 core promoter sequence. Knock down of these transcription factors using RNAi strategy reduced MACC1 expression (P < 0.001), and resulted in decrease of cell migration (P < 0.01) which could be specifically rescued by ectopic overexpression of MACC1. In human colorectal tumors, expression levels of c-Jun and Sp1 correlated significantly to MACC1 (P = 0.0007 and P = 0.02, respectively). Importantly, levels of c-Jun and Sp1 also showed significant correlation to development of metachronous metastases (P = 0.01 and P = 0.001, respectively). This is the first study identifying the MACC1 promoter and its transcriptional regulation by AP-1 and Sp1. Knowledge of the transcriptional regulation of the MACC1 gene will implicate in enhanced understanding of its role in cancer progression and metastasis.
Collapse
|
7
|
Cortes-Canteli M, Aguilar-Morante D, Sanz-SanCristobal M, Megias D, Santos A, Perez-Castillo A. Role of C/EBPβ transcription factor in adult hippocampal neurogenesis. PLoS One 2011; 6:e24842. [PMID: 22003384 PMCID: PMC3189174 DOI: 10.1371/journal.pone.0024842] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/22/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The dentate gyrus of the hippocampus is one of the regions in which neurogenesis takes place in the adult brain. We have previously demonstrated that CCAAT/enhancer binding protein β (C/EBPβ) is expressed in the granular layer of the dentate gyrus of the adult mouse hippocampus. Taking into account the important role of C/EBPβ in the consolidation of long term memory, the fact that newborn neurons in the hippocampus contribute to learning and memory processes, and the role of this transcription factor, previously demonstrated by our group, in regulating neuronal differentiation, we speculated that this transcription factor could regulate stem/progenitor cells in this region of the brain. METHODOLOGY/PRINCIPAL FINDINGS Here, we show, using C/EBPβ knockout mice, that C/EBPβ expression is observed in the subset of newborn cells that proliferate in the hippocampus of the adult brain. Mice lacking C/EBPβ present reduced survival of newborn cells in the hippocampus, a decrease in the number of these cells that differentiate into neurons and a diminished number of cells that are proliferating in the subgranular zone of the dentate gyrus. These results were further confirmed in vitro. Neurosphere cultures from adult mice deficient in C/EBPβ present less proliferation and neuronal differentiation than neurospheres derived from wild type mice. CONCLUSIONS/SIGNIFICANCE In summary, using in vivo and in vitro strategies, we have identified C/EBPβ as a key player in the proliferation and survival of the new neurons produced in the adult mouse hippocampus. Our results support a novel role of C/EBPβ in the processes of adult hippocampal neurogenesis, providing new insights into the mechanisms that control neurogenesis in this region of the brain.
Collapse
Affiliation(s)
- Marta Cortes-Canteli
- Instituto de Investigaciones Biomedicas “Alberto Sols”, Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Diana Aguilar-Morante
- Instituto de Investigaciones Biomedicas “Alberto Sols”, Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marina Sanz-SanCristobal
- Instituto de Investigaciones Biomedicas “Alberto Sols”, Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Diego Megias
- Centro Nacional de Investigaciones Oncologicas, Madrid, Spain
| | - Angel Santos
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomedicas “Alberto Sols”, Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- * E-mail:
| |
Collapse
|
8
|
Lipocalin 2 regulation and its complex role in inflammation and cancer. Cytokine 2011; 56:435-41. [PMID: 21855366 DOI: 10.1016/j.cyto.2011.07.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/15/2011] [Accepted: 07/25/2011] [Indexed: 11/22/2022]
Abstract
Lipocalin 2 is a protein that has garnered a great deal of interest in multidisciplinary fields over the last two decades since its discovery. However, its exact function in metabolic processes remains to be completely characterized. More recently, it has come to light as a highly upregulated protein in the setting of injury and infection. This review focuses on lipocalin 2 regulation and its relationship to cytokine and endocrine signaling pathways.
Collapse
|
9
|
Gutsch R, Kandemir JD, Pietsch D, Cappello C, Meyer J, Simanowski K, Huber R, Brand K. CCAAT/enhancer-binding protein beta inhibits proliferation in monocytic cells by affecting the retinoblastoma protein/E2F/cyclin E pathway but is not directly required for macrophage morphology. J Biol Chem 2011; 286:22716-29. [PMID: 21558273 PMCID: PMC3123039 DOI: 10.1074/jbc.m110.152538] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Monocytic differentiation is orchestrated by complex networks that are not fully understood. This study further elucidates the involvement of transcription factor CCAAT/enhancer-binding protein β (C/EBPβ). Initially, we demonstrated a marked increase in nuclear C/EBPβ-liver-enriched activating protein* (LAP*)/liver-enriched activating protein (LAP) levels and LAP/liver-enriched inhibiting protein (LIP) ratios in phorbol 12-myristate 13-acetate (PMA)-treated differentiating THP-1 premonocytic cells accompanied by reduced proliferation. To directly study C/EBPβ effects on monocytic cells, we generated novel THP-1-derived (low endogenous C/EBPβ) cell lines stably overexpressing C/EBPβ isoforms. Most importantly, cells predominantly overexpressing LAP* (C/EBPβ-long), but not those overexpressing LIP (C/EBPβ-short), exhibited a reduced proliferation, with no effect on morphology. PMA-induced inhibition of proliferation was attenuated in C/EBPβ-short cells. In C/EBPβWT macrophage-like cells (high endogenous C/EBPβ), we measured a reduced proliferation/cycling index compared with C/EBPβKO. The typical macrophage morphology was only observed in C/EBPβWT, whereas C/EBPβKO stayed round. C/EBPα did not compensate for C/EBPβ effects on proliferation/morphology. Serum reduction, an independent approach known to inhibit proliferation, induced macrophage morphology in C/EBPβKO macrophage-like cells but not THP-1. In PMA-treated THP-1 and C/EBPβ-long cells, a reduced phosphorylation of cell cycle repressor retinoblastoma was found. In addition, C/EBPβ-long cells showed reduced c-Myc expression accompanied by increased CDK inhibitor p27 and reduced cyclin D1 levels. Finally, C/EBPβ-long and C/EBPβWT cells exhibited low E2F1 and cyclin E levels, and C/EBPβ overexpression was found to inhibit cyclin E1 promoter-dependent transcription. Our results suggest that C/EBPβ reduces monocytic proliferation by affecting the retinoblastoma/E2F/cyclin E pathway and that it may contribute to, but is not directly required for, macrophage morphology. Inhibition of proliferation by C/EBPβ may be important for coordinated monocytic differentiation.
Collapse
Affiliation(s)
- Romina Gutsch
- Institute of Clinical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The activation of AP-1 is a hallmark of cell transformation by tyrosine kinases. In this study, we characterize the role of AP-1 proteins in the transformation of chicken embryo fibroblasts (CEF) by v-Src. In normal CEF, the expression of a dominant negative mutant of c-Jun (TAM67) induced senescence. In contrast, three distinct phenotypes were observed when TAM67 was expressed in v-Src-transformed CEF. While senescent cells were also present, the inhibition of AP-1 caused apoptosis in a fraction of the v-Src-transformed cells. In addition, cells containing lipid-rich vesicles accumulated, suggesting that a subpopulation of the v-Src-transformed cells underwent differentiation in response to the inhibition of AP-1. JunD and Fra-2 were the main components of this factor, while c-Jun accounted for a minor fraction of AP-1 in v-Src-transformed CEF. The downregulation of c-Jun expression by short hairpin RNA (shRNA) induced senescence in normal and v-Src-transformed cells. In contrast, a high incidence of apoptosis was caused by the downregulation of JunD, suggesting that it is required for the survival of v-Src-transformed CEF. Levels of the p53 tumor suppressor were elevated under conditions of JunD inhibition. Repression of p53 by shRNA enhanced the survival and anchorage-independent proliferation of v-Src-transformed CEF with JunD/AP-1 inhibition. The inhibition of Fra-2 had no visible phenotype in normal CEF but caused the appearance of lipid-rich vesicles in v-Src-transformed CEF. Therefore, AP-1 facilitated transformation by acting as a survival factor, by inhibiting premature entry into senescence, and by blocking the differentiation of v-Src-transformed CEF.
Collapse
|
11
|
Carrasco DR, Sukhdeo K, Protopopova M, Sinha R, Enos M, Carrasco D, Zheng M, Mani M, Henderson J, Pinkus GS, Munshi N, Horner J, Ivanova EV, Protopopov A, Anderson KC, Tonon G, DePinho RA. The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell 2007; 11:349-60. [PMID: 17418411 PMCID: PMC1885943 DOI: 10.1016/j.ccr.2007.02.015] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 12/01/2006] [Accepted: 02/14/2007] [Indexed: 12/11/2022]
Abstract
Multiple myeloma (MM) evolves from a highly prevalent premalignant condition termed MGUS. The factors underlying the malignant transformation of MGUS are unknown. We report a MGUS/MM phenotype in transgenic mice with Emu-directed expression of the XBP-1 spliced isoform (XBP-1s), a factor governing unfolded protein/ER stress response and plasma-cell development. Emu-XBP-1s elicited elevated serum Ig and skin alterations. With age, Emu-xbp-1s transgenics develop features diagnostic of human MM, including bone lytic lesions and subendothelial Ig deposition. Furthermore, transcriptional profiles of Emu-xbp-1s lymphoid and MM cells show aberrant expression of known human MM dysregulated genes. The similarities of this model with the human disease, coupled with documented frequent XBP-1s overexpression in human MM, serve to implicate XBP-1s dysregulation in MM pathogenesis.
Collapse
Affiliation(s)
- Daniel R. Carrasco
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Corresponding author
| | - Kumar Sukhdeo
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Marina Protopopova
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
- Center for Applied Cancer Science, Belfer Foundation Institute for Innovative Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Raktim Sinha
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Miriam Enos
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Daniel E. Carrasco
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Mei Zheng
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mala Mani
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Joel Henderson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Geraldine S. Pinkus
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nikhil Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
- The Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - James Horner
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Elena V. Ivanova
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
- Center for Applied Cancer Science, Belfer Foundation Institute for Innovative Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Alexei Protopopov
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
- Center for Applied Cancer Science, Belfer Foundation Institute for Innovative Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth C. Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
- Center for Applied Cancer Science, Belfer Foundation Institute for Innovative Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
- The Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Giovanni Tonon
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Ronald A. DePinho
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
- Center for Applied Cancer Science, Belfer Foundation Institute for Innovative Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
- Departments of Medicine and Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
- Corresponding author
| |
Collapse
|
12
|
Sapino A, Bosco M, Cassoni P, Castellano I, Arisio R, Cserni G, Dei Tos AP, Fortunati N, Catalano MG, Bussolati G. Estrogen receptor-beta is expressed in stromal cells of fibroadenoma and phyllodes tumors of the breast. Mod Pathol 2006; 19:599-606. [PMID: 16554735 DOI: 10.1038/modpathol.3800574] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An estrogen dependency has been suggested for the growth of fibroadenomas: however, thus far, none of the steroid hormone receptors acting on breast tissues has been demonstrated in the stroma of breast fibroepithelial lesions. In this study, the expression of estrogen receptor (ER)-alpha and -beta was investigated by immunohistochemistry in 33 fibroadenomas and in 30 benign, three borderline and seven malignant phyllodes tumors, all with spindle cell growth and in one distant metastasis. In addition, the presence of ER-beta mRNA and its variants was evaluated by RT-PCR in microdissected stroma. The possible correlation between hormone receptor expression and differentiation processes of stromal cells was investigated by smooth muscle actin and calponin immunostaining. ER-beta was the only hormone receptor expressed by stroma of fibroadenomas and phyllodes tumors, both at protein and mRNA level. The highest percentage of ER-beta was observed in fibroadenomas with cellular stroma and in phyllodes tumors. In both lesions, ER-beta-positive stromal cells showed expression of smooth muscle actin and/or calponin, as demonstrated by double immunostaining. In addition, the mean age at diagnosis was significantly lower in patients with ER-beta-positive vs ER-beta-negative fibroadenomas. In contrast, in phyllodes tumors, ER-beta expression was higher in older patients. In conclusion, (i) only ER-beta is detected in the stroma of fibroadenomas and phyllodes tumors; (ii) its expression correlates with the expression of smooth muscle markers and suggests a role of ER-beta in myofibroblastic differentiation of stromal cells. These two results, together with the young age of patients carrying fibroadenomas with highly ER-beta-positive stroma cells, may further indicate a hormone-receptor mechanism involved in regulating the growth of fibroadenomas. Conversely, the older age of patients with ER-beta-rich phyllodes tumors suggests that mechanisms, probably independent from estrogen stimulation, act on the growth of these tumors.
Collapse
Affiliation(s)
- Anna Sapino
- Department of Biomedical Science and Human Oncology, University of Torino, Torino, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shi B, Isseroff RR. Epidermal growth factor (EGF)-mediated DNA-binding activity of AP-1 is attenuated in senescent human epidermal keratinocytes. Exp Dermatol 2005; 14:519-27. [PMID: 15946240 DOI: 10.1111/j.0906-6705.2005.00317.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proliferative responses of cells to mitogens decrease during aging, and this may result from age-related defects in signal transduction in response to mitogens. In this study, we have investigated the age-related alteration of responses to epidermal growth factor (EGF) in cultured human keratinocytes that were senesced in vitro by repeated passage. The stimulation with EGF increased the DNA-binding activity of activator protein 1 (AP-1), an important transcription factor for cell proliferation, in young keratinocytes, whereas the binding activity showed little or slight change in the senescent cells. The induced DNA-binding activity of AP-1 in young cells was inhibited by PD 98059, an inhibitor of MEK, and partially inhibited by GF 109203X, an inhibitor of protein kinase C. Western blot analysis demonstrated that EGF induced dramatic increase in the phosphorylation of EGF receptor (EGFR) and extracellular signal-regulated kinases (ERK) in young cells, while this phosphorylation was much less profound in senescent cells. Finally, the application of EGF to young cells resulted in increased phosphorylation of Fra-2, a Fos protein component of the Jun/Fos heterodimer AP-1 complex. This EGF-induced Fra-2 phosphorylation was attenuated in senescent cells. Taken together, our study suggests that the signal transduction mediated by EGF/ERK pathway is altered in senescent human keratinocytes, and this change may be attributed, in part, to the decreased AP-1 transcription activity observed in senescent keratinocytes.
Collapse
Affiliation(s)
- Biao Shi
- Department of Dermatology, University of California Davis School of Medicine, Davis, CA, USA
| | | |
Collapse
|
14
|
Shishodia S, Aggarwal BB. Nuclear factor-kappaB: a friend or a foe in cancer? Biochem Pharmacol 2004; 68:1071-80. [PMID: 15313403 DOI: 10.1016/j.bcp.2004.04.026] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 04/23/2004] [Indexed: 11/16/2022]
Abstract
Nuclear transcription factor NF-kappaB, initially discovered as a factor in the nucleus of B cells that binds to the enhancer of the kappa light chain of immunoglobulin, has since been shown to be expressed ubiquitously in the cytoplasm of all cell types, conserved from Drosophila to man. It translocates to the nucleus only when activated, where it regulates the expression of over 200 genes that control the immune system, growth, and inflammation. The dysregulation of NF-kappaB can mediate a wide variety of diseases including cancer. Whether NF-kappaB activation is beneficial or harmful for cancer is controversial. The development of novel therapeutics targeting NF-kappaB requires full understanding of its role in pathology and physiology. The current review is an attempt to describe two sides of the NF-kappaB coin; viz, as a friend and as a foe.
Collapse
Affiliation(s)
- Shishir Shishodia
- Cytokine Research Section, Department of Bioimmunotherapy, Unit 143, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston 77030, USA
| | | |
Collapse
|