1
|
Synergistic effects of autocrine motility factor and methyl jasmonate on human breast cancer cells. Biochem Biophys Res Commun 2021; 558:22-28. [PMID: 33894674 DOI: 10.1016/j.bbrc.2021.04.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022]
Abstract
Autocrine motility factor (AMF) stimulates the motility of cancer cells via an autocrine route and has been implicated in tumor progression and metastasis. Overexpression of AMF is correlated with the aggressive nature of breast cancer and is negatively associated with clinical outcomes. In contrast, AMF also has the ability to suppress cancer cells. In this study, AMFs from different cancer cells were demonstrated to have suppressive activity against MCF-7 and MDA-MB-231 breast cancer cells. In a growth and colony formation assay, AMF from AsPC-1 pancreatic cancer cells (ASPC-1:AMF) was determined to be more suppressive compared to other AMFs. It was also demonstrated that AsPC-1:AMF could arrest breast cancer cells at the G0/G1 cell cycle phase. Quantified by Western blot analysis, AsPC-1:AMF lowered levels of the AMF receptor (AMFR) and G-protein-coupled estrogen receptor (GPER), concomitantly regulating the activation of the AKT and ERK signaling pathways. JAK/STAT activation was also decreased. These results were found in estrogen receptor (ER)-positive MCF-7 cells but not in triple-negative MDA-MB-231 cells, suggesting that AsPC-1:AMF could work through multiple pathways led to apoptosis. More importantly, AsPC-1:AMF and methyl jasmonate (MJ) cooperatively and synergistically acted against breast cancer cells. Thus, AMF alone or along with MJ may be a promising breast cancer treatment option.
Collapse
|
2
|
Digging deeper through glucose metabolism and its regulators in cancer and metastasis. Life Sci 2020; 264:118603. [PMID: 33091446 DOI: 10.1016/j.lfs.2020.118603] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Glucose metabolism enzymes and transporters play major role in cancer development and metastasis. In this study, we discuss glucose metabolism, transporters, receptors, hormones, oncogenes and tumor suppressors which interact with glucose metabolism and we try to discuss their major role in cancer development and cancer metabolism. We try to highlight the. Metabolic changes in cancer and metastasis upregulation of glycolysis is observed in many primary and metastatic cancers and aerobic glycolysis is the most favorable mechanism for glucose metabolism in cancer cells, and it is a kind of evolutionary change. The question that is posed at this juncture is: Can we use aerobic glycolysis phenotype and enzymes beyond this mechanism in estimating cancer prognosis and metastasis? Lactate is a metabolite of glucose metabolism and it is a key player in cancer and metastasis in both normoxic and hypoxic condition so lactate dehydrogenase can be a good prognostic biomarker. Furthermore, monocarboxylic transporter which is the main lactate transporter can be good target in therapeutic studies. Glycolysis enzymes are valuable enzymes in cancer and metastasis diagnosis and can be used as therapeutic targets in cancer treatment. Designing a diagnostic and prognostic profile for cancer metastasis seems to be possible base on glycolysis enzymes and glucose transporters. Also, glucose metabolism enzymes and agents can give us a clear vision in estimating cancer metastasis. We can promote a panel of genes that detect genetic changes in glucose metabolism agents to diagnose cancer metastasis.
Collapse
|
3
|
Autocrine motility factor and its receptor expression in musculoskeletal tumors. J Bone Oncol 2020; 24:100318. [PMID: 33101887 PMCID: PMC7574284 DOI: 10.1016/j.jbo.2020.100318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
Discovery of Autocrine Motility factor (AMF) and its receptor (AMFR), both triggering tumor invasion and metastasis, may alter the therapeutic concept. Here, in this review, we show a novel outlook suggesting a cross-talking between musculoskeletal tumors and the skeletal milieu regulated by AMF-AMFR signaling. This review will highlight the pharmacological need for AMF and AMFR inhibitors for patients with malignant musculoskeletal tumors.
Management of aggressive malignant musculoskeletal tumors is clinically challenging and awaits the identification of regulator(s) that can be therapeutically used to improve patient outcome. Autocrine motility factor (AMF), a secreted cytokine, is known to alter the bone microenvironment by linking to its receptor AMFR (AMF Receptor), leading to tumor progression. It was noted that both the ligand and its receptor belong to the moonlighting family of proteins, as they contribute to intracellular metabolic function such as glycolysis and gluconeogenesis by expressing glucose-6-phosphate isomerase AMF/GPI and higher protein degradation by expressing AMFR/gp78 functioning as ubiquitin ligase activity. Thus, AMF/GPI and AMFR/gp78 contribute to higher metabolic turnover of protein and glucose. Recently, a large-scale cohort study including 23 different histological types of musculoskeletal tumors revealed that patients with osteosarcoma, multiple myeloma, rhabdomyosarcoma, and angiosarcoma tend to express higher levels of AMF, whereas multiple myeloma patients expressed high levels of AMFR. Consistently, the cellular data showed that a variety of musculoskeletal tumors express AMF and components of bone microenvironment express AMFR. Thus, a novel outlook suggests a cellular link and cross-talk between musculoskeletal tumors and the skeletal milieu are regulated by AMF-AMFR signaling. This review will highlight the pharmacological need for AMF and AMFR inhibitors as unmet medical needs for patients with malignant musculoskeletal tumors.
Collapse
|
4
|
Nakajima K, Raz A. Amplification of autocrine motility factor and its receptor in multiple myeloma and other musculoskeletal tumors. J Bone Oncol 2020; 23:100308. [PMID: 32714781 PMCID: PMC7378681 DOI: 10.1016/j.jbo.2020.100308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022] Open
Abstract
This study is a large scale cohort of the patients with malignant musculoskeletal tumors to determine the expression levels of Autocrine Motility factor (AMF) and its receptor (AMFR). We Visualization of amplified Autocrine motility factor (AMF) and its receptor (AMFR) in musculoskeletal tumors. A novel software aimed at analyzing numerous cell-to-cell and ligand-to-receptor interactions was developed, which lead to visualization of bone tumor microenvironment.
Autocrine motility factor (AMF: GPI) and its receptor AMFR (AMF Receptor: gp78) regulate the metastatic process. Here, we have tested the expression levels of AMF, AMFR, and AMF × AMFR in 1348 patients with musculoskeletal tumor. The results depicted here identified that multiple myeloma highly express AMF × AMFR value as compared with normal bone samples (p < 0.00001). To visualize the AMF × AMFR autocrine amplification in multiple myeloma microenvironment, we have developed a novel software aimed at analyzing numerous cell-to-cell and ligand-to-receptor interactions, i.e., Environmentome. It has led to the identification that myeloma-associated interactions with normal bone cells including osteoblast, osteoclast, immunological components, and others in a paracrine manner. In conclusion, the data showed that AMF × AMFR amplification is a clinical manifestation in bone microenvironment of multiple myeloma.
Collapse
Affiliation(s)
- Kosei Nakajima
- Division of Translational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Research Institute. 5-1-1 Tsukiji, Chuo-Ku, Tokyo 104-0045, Japan.,Division of Veterinary Oncology and Surgery, Faculty of Veterinary Medicine, Imabari Campus, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| | - Avraham Raz
- Departments of Oncology and Pathology, School of Medicine, Wayne State University and Barbara Ann Karmanos Cancer Institute, 4100 John R St, Detroit, MI 48201, United States
| |
Collapse
|
5
|
Wagatsuma A, Arakawa M, Matsumoto H, Matsuda R, Hoshino T, Mabuchi K. Cobalt chloride, a chemical hypoxia-mimicking agent, suppresses myoblast differentiation by downregulating myogenin expression. Mol Cell Biochem 2020; 470:199-214. [PMID: 32451753 DOI: 10.1007/s11010-020-03762-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/16/2020] [Indexed: 12/17/2022]
Abstract
Cobalt chloride can create hypoxia-like state in vitro (referred to as chemical hypoxia). Several studies have suggested that chemical hypoxia may cause deleterious effects on myogenesis. The intrinsic underlying mechanisms of myoblast differentiation, however, are not fully understood. Here, we show that cobalt chloride strongly suppresses myoblast differentiation in a dose-dependent manner. The impaired myoblast differentiation is accompanied by downregulation of myogenic regulatory factor myogenin. Under chemical hypoxia, myogenin stability is decreased at mRNA and protein levels. A muscle-specific E3 ubiquitin ligase MAFbx, which can target myogenin protein for proteasomal degradation, is upregulated along with changes in Akt/Foxo and AMPK/Foxo signaling pathways. A proteasome inhibitor completely prevents cobalt chloride-mediated decrease in myogenin protein. These results suggest that cobalt chloride might modulate myogenin expression at post-transcriptional and post-translational levels, resulting in the failure of the myoblasts to differentiate into myotubes.
Collapse
Affiliation(s)
- Akira Wagatsuma
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
- Department of Communication, Tokyo Women's Christian University, Tokyo, Japan.
| | - Masayuki Arakawa
- Institute of Microbial Chemistry, Biology Division, Laboratory of Virology, Tokyo, Japan
| | - Hanano Matsumoto
- Department of Food and Health Science, Faculty of Human Life Sciences, Jissen Women's University, Tokyo, Japan
| | - Ryoichi Matsuda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Hoshino
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Mabuchi
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Park HS, Jeoung NH. Autocrine motility factor secreted by HeLa cells inhibits the growth of many cancer cells by regulating AKT/ERK signaling. Biochem Biophys Res Commun 2020; 525:557-562. [PMID: 32113681 DOI: 10.1016/j.bbrc.2020.02.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
In cell competition, a secreted death signal can determine cell fate. However, the nature of such a signal remains unclear. In this study, conditioned medium from HeLa cells (HeLa CM) inhibited growth of A549 and MCF-7 cells. Through HeLa CM fractionation, glucose 6-phosphate isomerase/autocrine motility factor (GPI/AMF) was identified as the main growth inhibitor. Previously, AMF was known for its mitogenic, motogenic, and differentiation functions and was implicated in tumor progression and metastasis. HeLa CM lost its growth inhibitory property after treatment with erythrose-4-phosphate (E4P) or anti-GPI antibody. Purified HeLa recombinant AMF (rAMF) proteins inhibited the growth of A549, MDA-MB-232, MCF-7, AsPC-1, DU145, Hep-2, Hep G2, and HT-29 cells. However, growth of HL-60, SKOV3, U-87 MG, SNU-484, U-87 MG, and 3T3-L1 cells was little affected. In a Transwell assay, HeLa rAMF effectively reduced A549 cell migration and invasion. HeLa rAMF effectively induced apoptosis in A549 cells, apparently by reducing the levels of Bcl-2, GPI, and poly(ADP-ribose) polymerase (PARP)14 and activating caspase-3 and p53. HeLa rAMF antagonized HER2 and the AMF receptor (AMFR or GP78) in relation to the AKT/EKT signaling pathway. These results suggest that HeLa AMF could act as a diffusible death signal that could induce cancer cell-selective growth inhibition and apoptosis.
Collapse
Affiliation(s)
- Hee Sung Park
- Department of Biotechnology, Catholic University of Daegu, Gyungsan, 38430, South Korea.
| | - Nam Ho Jeoung
- Department of Pharmaceutical Engineering, Catholic University of Daegu, Gyungsan, 38430, South Korea
| |
Collapse
|
7
|
Eishi Oskouei A, Rafiee L, Mahzouni P, Gharipour M, Javanmard SH. Association between autocrine motility factor receptor gene polymorphism (rs2440472, rs373191257) and glioblastoma multiform in a representative Iranian population. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2019; 23:96. [PMID: 30595704 PMCID: PMC6282538 DOI: 10.4103/jrms.jrms_305_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/02/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
Background: Glioblastoma multiform (GBM) is the most common and most malignant of the glial tumors that begins primarily in brain tissue. Genetic background could be considered as an important predisposing factor in GBM. Autocrine motility factor receptor (AMFR) is a cytokine receptor that participates in a lot of physiologic and pathologic processes like: Cellular motility and metastasis. So, it seems that this protein has an essential role in pathophysiology of several cancers and could be a potential diagnostic and or therapeutic target in GBM. The aim of this study is to investigate the association of AMFR (rs2440472, rs373191257) gene polymorphism and GBM in a representative Iranian population. Materials and Methods: This study includes 81 cases of GBM and 117 control subjects. After DNA extraction, polymerase chain reaction - high resolution melting reaction was performed. For each single nucleotide polymorphisms, 12 samples were selected for sequencing. Data was analyzed using Chi-square test and Logistic regression. Results: For rs2440472, frequency of GG genotype in the case group was increased compared to the control group (51.9% vs. 34.2% respectively, P = 0.013). After adjusting for sex and age by logistic regression our results were the same (P = 0.017, odds ratio = 2.056). Allelic frequencies for rs2440472 among cases and controls were not significantly different (P = 0.058). For rs373191257, genotypic and allelic frequencies were not significantly different between two groups. Conclusion: Our results showed the possible association between the AMFR rs2440472 gene polymorphism with susceptibility to GBM.
Collapse
Affiliation(s)
- Alireza Eishi Oskouei
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.,Medical Student Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Rafiee
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Mahzouni
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojgan Gharipour
- Division of Genetic Studies, Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medicine Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Ma YT, Xing XF, Dong B, Cheng XJ, Guo T, Du H, Wen XZ, Ji JF. Higher autocrine motility factor/glucose-6-phosphate isomerase expression is associated with tumorigenesis and poorer prognosis in gastric cancer. Cancer Manag Res 2018; 10:4969-4980. [PMID: 30464597 PMCID: PMC6208529 DOI: 10.2147/cmar.s177441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Glucose-6-phosphate isomerase (GPI) is a glycolytic-related enzyme that inter-converts glucose-6-phosphate and fructose-6-phosphate in the cytoplasm. This protein is also secreted into the extracellular matrix by cancer cells and is, therefore, also called autocrine motility factor (AMF). Methods To clarify the roles of AMF/GPI in gastric cancer (GC), we collected 335 GC tissues and the corresponding adjacent noncancerous tissues, performed immunohistochemical studies, and analyzed the relationship between AMF/GPI expression and the patients’ clinicopathologic features. Results AMF/GPI expression was found to be significantly higher in the GC group than in the corresponding noncancerous tissue group (P<0.001). Additionally, AMF/GPI expression positively associated with a higher TNM stage and poorer prognosis in patients. Through Kaplan–Meier analysis and according to the Oncomine database, we found that AMF/GPI was overexpressed in GC tissues compared to normal mucosa, and the patients with higher AMF/GPI expression had poorer outcomes. We used AMF/GPI-silenced GC cell lines to observe how changes in AMP/GPI affect cellular phenotypes. AMF/GPI knockdown suppressed proliferation, migration, invasion, and glycolysis, and induced apoptosis in GC cells. Conclusion These findings suggest that AMF/GPI overexpression is involved in carcinogenesis and promotes the aggressive phenotypes of GC cells.
Collapse
Affiliation(s)
- Yu-Teng Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China, , .,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China,
| | - Xiao-Fang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Bin Dong
- Department of Pathology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Jing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Xian-Zi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China, , .,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China,
| |
Collapse
|
9
|
Preventive effect of celecoxib use against cancer progression and occurrence of oral squamous cell carcinoma. Sci Rep 2017; 7:6235. [PMID: 28740192 PMCID: PMC5524966 DOI: 10.1038/s41598-017-06673-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/15/2017] [Indexed: 12/28/2022] Open
Abstract
Overexpression of cyclooxygenase-2 in oral cancer increases lymph node metastasis and is associated with a poor prognosis. The potential of celecoxib (CXB) use is reported in cancer treatment by inhibiting proliferation through apoptosis, but the effects on the epithelial-mesenchymal transition (EMT) and cancer cell mobility remain unclear. We performed a preclinical study and population-based study to evaluate CXB use in the prevention of oral cancer progression and occurrence. The in-vitro findings showed that CXB is involved in the inhibition of EMT and cell mobility through blocking transcription factors (Slug, Snail and ZEB1), cytoplasmic mediators (focal adhesion kinase (FAK), vimentin and β-catenin), cell adhesion molecules (cadherins and integrins), and surface receptors (AMFR and EGFR). The murine xenograft model showed a 65% inhibition in tumour growth after a 5-week treatment of CXB compared to placebo. Xenograft tumours in placebo-treated mice displayed a well-to-moderate/moderate differentiated SCC grade, while those from CXB-treated mice were well differentiated. The expression levels of membrane EGFR, and nuclear FAK, Slug and ZEB1 were decreased in the xenograft tumours of CXB-treated mice. A retrospective cohort study showed that increasing the daily dose and medication time of CXB was associated with oral cancer prevention. The findings provide an alternative prevention strategy for oral cancer development with CXB use.
Collapse
|
10
|
Jung HS, Lee SI, Kang SH, Wang JS, Yang EH, Jeon B, Myung J, Baek JY, Park SK. Monoclonal antibodies against autocrine motility factor suppress gastric cancer. Oncol Lett 2017; 13:4925-4932. [PMID: 28599497 DOI: 10.3892/ol.2017.6037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/17/2017] [Indexed: 12/13/2022] Open
Abstract
Autocrine motility factor (AMF), which is a secreted form of phosphoglucose isomerase, is mainly secreted by various tumors and has cytokine-like activity. AMF is known to stimulate proliferation, survival and metastasis of cancer cells, and angiogenesis within a tumor. The present study investigated whether inhibition of AMF using targeted-antibodies was able to suppress the growth of cancer. A migration assay using a Boyden chamber was utilized to measure the activity of AMF on the motility of cancer cells. A recombinant human AMF (rhAMF) prepared from E. coli transformed with the pET22b-AMF vector increased the motility of MDA-MB-231 and A549 cells, but it did not affect that of NCI-N87 or HepG2 cells, which exhibited the ability to secrete high amounts of their own endogenous AMF into the culture medium. The extent to which the AMF receptor was expressed on cancer cells did not correlate clearly with the cell motility stimulated by rhAMF. In A549-xenografted nude mice treated with sunitinib or cetuximab, a decrease in the plasma AMF concentration was accompanied by a reduction in tumor weight, suggesting an association between the plasma AMF concentration and anticancer activity. A monoclonal antibody (9A-4H), which revealed a high binding affinity for E. coli-derived rhAMF, significantly suppressed the growth of tumors in Balb/c nude mice transplanted with the human gastric cancer cell line NCI-N87, to the similar extent as trastuzumab, an anticancer antibody. The present study suggests, for the first time, that an antibody specific to AMF may be a therapeutic agent for gastric cancer.
Collapse
Affiliation(s)
- Hahn-Sun Jung
- Boryung Central Research Institute, Boryung Pharmaceutical Co. Ltd., Ansan-Si, Kyeongki-Do 03127, Republic of Korea
| | - Su In Lee
- College of Pharmacy, Republic of Korea University, Sejong 30019, Republic of Korea
| | - Seung-Hoon Kang
- Boryung Central Research Institute, Boryung Pharmaceutical Co. Ltd., Ansan-Si, Kyeongki-Do 03127, Republic of Korea
| | - Jin Sang Wang
- Boryung Central Research Institute, Boryung Pharmaceutical Co. Ltd., Ansan-Si, Kyeongki-Do 03127, Republic of Korea
| | - Eun Hee Yang
- Boryung Central Research Institute, Boryung Pharmaceutical Co. Ltd., Ansan-Si, Kyeongki-Do 03127, Republic of Korea
| | - Byungwook Jeon
- Boryung Central Research Institute, Boryung Pharmaceutical Co. Ltd., Ansan-Si, Kyeongki-Do 03127, Republic of Korea
| | - Jayhyuk Myung
- Boryung Central Research Institute, Boryung Pharmaceutical Co. Ltd., Ansan-Si, Kyeongki-Do 03127, Republic of Korea
| | - Ji Young Baek
- College of Pharmacy, Republic of Korea University, Sejong 30019, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Republic of Korea University, Sejong 30019, Republic of Korea.,Research Driven Hospital, Korea University Guro Hospital, Biomedical Research Center, Seoul 08308, Republic of Korea
| |
Collapse
|
11
|
Zou W, Al-Rubeai M. Understanding central carbon metabolism of rapidly proliferating mammalian cells based on analysis of key enzymatic activities in GS-CHO cell lines. Biotechnol Appl Biochem 2016; 63:642-651. [PMID: 26108557 DOI: 10.1002/bab.1409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/19/2015] [Indexed: 12/20/2022]
Abstract
The central carbon metabolism (glycolysis, the pentose phosphate pathway [PPP], and the tricarboxylic acid [TCA] cycle) plays an essential role in the supply of biosynthetic precursors and energy. How the central carbon metabolism changes with the varying growth rates in the in vitro cultivation of rapidly proliferating mammalian cells, such as cancer cells and continuous cell lines for recombinant protein production, remains elusive. Based on relationships between the growth rate and the activity of seven key enzymes from six cell clones, this work reports finding an important metabolic characteristic in rapidly proliferating glutamine synthetase-Chinese hamster ovary cells. The key enzymatic activity involved in the TCA cycle that is responsible for the supply of energy became elevated as the growth rate exhibited increases, while the activity of key enzymes in metabolic pathways (glycolysis and the PPP), responsible for the supply of biosynthetic precursors, tended to decrease-suggesting that rapidly proliferating cells still depended predominantly on the TCA cycle rather than on aerobic glycolysis for their energetic demands. Meanwhile, the growth-limiting resource was most likely biosynthetic substrates rather than energy provision. In addition, the multifaceted role of glucose-6-phosphate isomerase (PGI) was confirmed, based on a significant correlation between PGI activity and the percentage of G2/M-phase cells.
Collapse
Affiliation(s)
- Wu Zou
- School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Mohamed Al-Rubeai
- School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
12
|
Li Y, Wei Z, Dong B, Lian Z, Xu Y. Silencing of phosphoglucose isomerase/autocrine motility factor decreases U87 human glioblastoma cell migration. Int J Mol Med 2016; 37:998-1004. [PMID: 26936801 PMCID: PMC4790702 DOI: 10.3892/ijmm.2016.2500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 02/03/2016] [Indexed: 01/18/2023] Open
Abstract
Phosphoglucose isomerase/autocrine motility factor (PGI/AMF) is secreted by tumors and influences tumor growth and metastasis. In order to investigate the effects of silencing PGI/AMF on the migration and the sphere forming abilities of human glioblastoma U87 cells, as well as on the side population cells (SPCs), PGI/AMF was silenced using siRNA. Western blot analysis and RT-qPCR were used to assess the expression of PGI/AMF, Akt and SRY (sex determining region Y)-box 2 (SOX2). Wound healing, migration and tumorsphere formation assays were performed to assess invasion and metastatic potential. The proportion of SPCs was determined using Hoechst 33342 dye and flow cytometric analysis. PGI/AMF silencing inhibited the wound healing capacity and migration ability of U87 cells by 52.6 and 80.4%, respectively, compared with the scrambled siRNA (both P<0.001). Silencing of PGI/AMF decreased the proportion of SPCs in the U87 cells by 80.9% (P<0.01). The silencing of PGI/AMF decreased the number and size of tumorspheres by 53.1 and 39.9%, respectively, compared with the scrambled siRNA (both P<0.01). The silencing of PGI/AMF decreased the levels of phosphorylated Akt (−71.9%, P<0.001) compared with the scrambled siRNA, as well as the levels of the stemness marker, SOX2 (−61.7%, P<0.01). Taken together, these findings suggest that PGI/AMF silencing decreases migration, tumorsphere formation as well as the proportion of SPCs in glioblastoma U87 cells. We suggest that the Akt pathway is involved, and our results provide a potential new target for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhenqing Wei
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Bin Dong
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhigang Lian
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yinghui Xu
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
13
|
Tian K, Zhong W, Zhang Y, Yin B, Zhang W, Liu H. Microfluidics‑based optimization of neuroleukin‑mediated regulation of articular chondrocyte proliferation. Mol Med Rep 2015; 13:67-74. [PMID: 26573126 PMCID: PMC4686044 DOI: 10.3892/mmr.2015.4540] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022] Open
Abstract
Due to the low proliferative and migratory capacities of chondrocytes, cartilage repair remains a challenging clinical problem. Current therapeutic strategies for cartilage repair result in unsatisfactory outcomes. Autologous chondrocyte implantation (ACI) is a cell based therapy that relies on the in vitro expansion of healthy chondrocytes from the patient, during which proliferation-promoting factors are frequently used. Neuroleukin (NLK) is a multifunctional protein that possesses growth factor functions, and its expression has been associated with cartilage development and bone regeneration, however its direct role in chondrocyte proliferation remains to be fully elucidated. In the current study, the role of NLK in chondrocyte proliferation in vitro in addition to its potential to act as an exogenous factor during ACI was investigated. Furthermore, the concentration of NLK for in vitro chondrocyte culture was optimized using a microfluidic device. An NLK concentration of 12.85 ng/ml was observed to provide optimal conditions for the promotion of chondrocyte proliferation. Additionally, NLK stimulation resulted in an increase in type II collagen synthesis by chondrocytes, which is a cartilaginous secretion marker and associated with the phenotype of chondrocytes. Together these data suggest that NLK is able to promote cell proliferation and type II collagen synthesis during in vitro chondrocyte propagation, and thus may serve as an exogenous factor for ACI.
Collapse
Affiliation(s)
- Kang Tian
- Department of Orthopaedics, First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Weiliang Zhong
- Department of Orthopaedics, First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yingqiu Zhang
- Department of Orthopaedics, First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Baosheng Yin
- Department of Orthopaedics, First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Weiguo Zhang
- Department of Orthopaedics, First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Han Liu
- Department of Orthopaedics, First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
14
|
Neuroleukin/Autocrine Motility Factor Receptor Pathway Promotes Proliferation of Articular Chondrocytes through Activation of AKT and Smad2/3. Sci Rep 2015; 5:15101. [PMID: 26459914 PMCID: PMC4602231 DOI: 10.1038/srep15101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 09/15/2015] [Indexed: 12/12/2022] Open
Abstract
Cartilage defect is an intractable clinical problem. Therapeutic strategies for cartilage repair are far from optimal due to poor proliferation capacity of chondrocytes. Autologous chondrocyte implantation is a cell based therapy that uses in vitro amplified healthy chondrocytes from the patient. However, chondrocyte dedifferentiation during in vitro culture limits its application. Neuroleukin (NLK) is a multifunctional protein that stimulates cell growth and migration, together with its receptor autocrine motility factor receptor (AMFR, also called gp78). We investigated expression of NLK and AMFR/gp78 during cartilage development in vivo and in cultured articular chondrocytes in vitro, and found the pair associates with chondrocyte proliferation and differentiation. While applied to isolated articular chondrocytes, NLK promotes cell proliferation and secretion of type II collagen, a marker of proliferating chondrocytes. Further work demonstrates that NLK up regulates pAKT and pSmad2/3, but down regulates pSmad1/5. In animals, NLK treatment also promotes chondrocyte proliferation while inhibits terminal differentiation, leading to expanded proliferating zone but decreased prehypertrophic and hypertrophic zones in the growth plate region. NLK is therefore a candidate factor that can be applied in the treatment of cartilage defects.
Collapse
|
15
|
Cole BK, Simmers MB, Feaver R, Qualls CW, Collado MS, Berzin E, Figler RA, Pryor AW, Lawson M, Mackey A, Manka D, Wamhoff BR, Turk JR, Blackman BR. An In Vitro Cynomolgus Vascular Surrogate System for Preclinical Drug Assessment and Human Translation. Arterioscler Thromb Vasc Biol 2015; 35:2185-95. [DOI: 10.1161/atvbaha.115.306245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/06/2015] [Indexed: 01/29/2023]
Abstract
Objectives—
The predictive value of animal and in vitro systems for drug development is limited, particularly for nonhuman primate studies as it is difficult to deduce the drug mechanism of action. We describe the development of an in vitro cynomolgus macaque vascular system that reflects the in vivo biology of healthy, atheroprone, or advanced inflammatory cardiovascular disease conditions.
Approach and Results—
We compare the responses of the in vitro human and cynomolgus vascular systems to 4 statins. Although statins exert beneficial pleiotropic effects on the human vasculature, the mechanism of action is difficult to investigate at the tissue level. Using RNA sequencing, we quantified the response to statins and report that most statins significantly increased the expression of genes that promote vascular health while suppressing inflammatory cytokine gene expression. Applying computational pathway analytics, we identified statin-regulated biological themes, independent of cholesterol lowering, that provide mechanisms for off-target effects, including thrombosis, cell cycle regulation, glycogen metabolism, and ethanol degradation.
Conclusions—
The cynomolgus vascular system described herein mimics the baseline and inflammatory regional biology of the human vasculature, including statin responsiveness, and provides mechanistic insight not achievable in vivo.
Collapse
Affiliation(s)
- Banumathi K. Cole
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Michael B. Simmers
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Ryan Feaver
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Charles W. Qualls
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - M. Sol Collado
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Erica Berzin
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Robert A. Figler
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Andrew W. Pryor
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Mark Lawson
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Aaron Mackey
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - David Manka
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Brian R. Wamhoff
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - James R. Turk
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Brett R. Blackman
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| |
Collapse
|
16
|
Li Y, Che Q, Bian Y, Zhou Q, Jiang F, Tong H, Ke J, Wang K, Wan XP. Autocrine motility factor promotes epithelial-mesenchymal transition in endometrial cancer via MAPK signaling pathway. Int J Oncol 2015. [PMID: 26201353 DOI: 10.3892/ijo.2015.3091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autocrine motility factor (AMF) as a cytokine and a growth factor, is known to regulate tumor cell growth and motility in the progress of various human malignant tumors, however, its role in endometrial cancer (EC) has not been fully studied. In the present study, using immunohistochemistry, we found that AMF was highly expressed in EC tissues compared with normal endometrial tissues and tissue micrioarray technology showed positive correlation between AMF expression and epithelial-to-mesenchymal transition (EMT) related markers E-cadherin, vimentin and Snail. Next, we detected that silencing of AMF by stable transfection with shRNA induced mesenchymal-to-epithelial transition phenotype in Ishikawa and HEC-1B cells by qRT-PCR, western blotting and immunofluorescence. Gene expression profile revealed that AMF silencing resulted in altered expression of EMT related molecular mediators including Snail and transforming growth factor β receptor 1, and involvement of mitogen-activated protein kinase (MAPK) signaling pathway. Additionally, we found that EMT related markers were downregulated with pretreatment of the MAPK-specific inhibitor U0126 by western blotting. The present study is the first to support a role for AMF mediating EMT in endometrial cancer through MAPK signaling. Therefore, AMF may provide a potential prognostic and therapeutic target in preventing EC progression.
Collapse
Affiliation(s)
- Yiran Li
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Qi Che
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Yiding Bian
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Qian Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Feizhou Jiang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Huan Tong
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Xiao-Ping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| |
Collapse
|
17
|
Li Y, Jia Y, Che Q, Zhou Q, Wang K, Wan XP. AMF/PGI-mediated tumorigenesis through MAPK-ERK signaling in endometrial carcinoma. Oncotarget 2015; 6:26373-87. [PMID: 26308071 PMCID: PMC4694908 DOI: 10.18632/oncotarget.4708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/08/2015] [Indexed: 12/23/2022] Open
Abstract
Autocrine motility factor (AMF), which is also known as phosphoglucose isomerase (PGI), enhances tumor cell growth and motility. In this study, we found that AMF and its receptor were both highly expressed in Endometrial Carcinoma (EC) tissues compared to normal tissues. Levels of AMF were increased in serum of endometrial cancer patients. Downregulation of AMF by shRNA inhibited invasion, migration and proliferation as well as growth in a three-dimensional culture. AMF cytokine function, but not enzymatic activity of PGI, regulated tumorigenic activities of AMF. The MAPK-ERK1/2 pathway contributed to AMF-induced effects in EC cells. In agreement, Mek inhibitor decreased AMF-induced invasion, migration and proliferation of EC cells. In addition, in two mouse tumor metastasis models (EC cells delivered through left ventricle or intraperitoneally) AMF-silenced EC cells showed decreased tumor proliferative and metastatic capacities. We suggest that AMF/PGI is a potential therapeutic target in endometrial carcinoma.
Collapse
Affiliation(s)
- Yiran Li
- 1 Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yuanhui Jia
- 2 Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Che
- 2 Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhou
- 2 Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Wang
- 2 Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Ping Wan
- 3 Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Senyilmaz D, Teleman AA. Chicken or the egg: Warburg effect and mitochondrial dysfunction. F1000PRIME REPORTS 2015; 7:41. [PMID: 26097714 PMCID: PMC4447048 DOI: 10.12703/p7-41] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Compared with normal cells, cancer cells show alterations in many cellular processes, including energy metabolism. Studies on cancer metabolism started with Otto Warburg's observation at the beginning of the last century. According to Warburg, cancer cells rely on glycolysis more than mitochondrial respiration for energy production. Considering that glycolysis yields much less energy compared with mitochondrial respiration, Warburg hypothesized that mitochondria must be dysfunctional and this is the initiating factor for cancer formation. However, this hypothesis did not convince every scientist in the field. Some believed the opposite: the reduction in mitochondrial activity is a result of increased glycolysis. This discrepancy of opinions is ongoing. In this review, we will discuss the alterations in glycolysis, pyruvate metabolism, and the Krebs cycle in cancer cells and focus on cause and consequence.
Collapse
|
19
|
You ZM, Zhao L, Xia J, Wei Q, Liu YM, Liu XY, Chen DL, Li J. Down-regulation of phosphoglucose isomerase/autocrine motility factor enhances gensenoside Rh2 pharmacological action on leukemia KG1α cells. Asian Pac J Cancer Prev 2014; 15:1099-104. [PMID: 24606425 DOI: 10.7314/apjcp.2014.15.3.1099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AIMS AND BACKGROUND Ginsenoside Rh2, which exerts the potent anticancer action both in vitro and in vivo, is one of the most well characterized ginsenosides extracted from ginseng. Although its effects on cancer are significant, the underlying mechanisms remain unknown. In this study, we sought to elucidate possible links between ginsenoside Rh2 and phosphoglucose isomerase/autocrine motility factor (PGI/AMF). METHODS KG1α, a leukemia cell line highly expressing PGI/AMF was assessed by western blot analysis and reverse transcription- PCR (RT-PCR) assay after transfection of a small interfering (si)-RNA to silence PGI/AMF. The effect of PGI/ AMF on proliferation was measured by typan blue assay and antibody array. A cell counting kit (CCK)-8 and flow cytometry (FCM) were adopted to investigate the effects of Rh2 on PGI/AMF. The relationships between PGI/AMF and Rh2 associated with Akt, mTOR, Raptor, Rag were detected by western blot analysis. RESULTS KG1α cells expressed PGI/AMF and its down-regulation significantly inhibited proliferation. The antibody array indicated that the probable mechanism was reduced expression of PARP, State1, SAPK/JNK and Erk1/2, while those of PRAS40 and p38 were up-regulated. Silencing of PGI/AMF enhanced the sensibility of KG1α to Rh2 by suppressing the expression of mTOR, Raptor and Akt. CONCLUSION These results suggested that ginsenoside Rh2 suppressed the proliferation of KG1α, the same as down-regulation of PGI/AMF. Down-regulation of PGI/ AMF enhanced the pharmacological effects of ginsenoside Rh2 on KG1α by reducing Akt/mTOR signaling.
Collapse
Affiliation(s)
- Zhi-Mei You
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China E-mail : ,
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Huang Z, Zhang N, Zha L, Mao HC, Chen X, Xiang JF, Zhang H, Wang ZW. Aberrant expression of the autocrine motility factor receptor correlates with poor prognosis and promotes metastasis in gastric carcinoma. Asian Pac J Cancer Prev 2014; 15:989-97. [PMID: 24568530 DOI: 10.7314/apjcp.2014.15.2.989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AMFR, autocrine motility factor receptor, also called gp78, is a cell surface cytokine receptor which has a dual role as an E3 ubiquitin ligase in endoplasmic reticulum-associated degradation. AMFR expression is associated with tumor malignancy. We here investigated the clinical significance of AMFR and its role in metastasis and prognosis in gastric cancer. Expression of AMFR, E-cadherin and N-cadherin in cancer tissues and matched adjacent normal tissues from 122 gastric cancer (GC) patients undergoing surgical resection was assessed by immunohistochemistry. Levels of these molecules in 17 cases selected randomly were also analysed by Western blotting. AMFR expression was significantly increased in gastric cancer tissues, and associated with invasion depth and lymph node metastasis. Kaplan-Meier analysis showed AMFR expression correlated with poor overall survival and an increased risk of recurrence in the GC cases. Cox regression analysis suggested AMFR to be an independent predictor for overall and recurrence-free survival. E-cadherin expression was decreased in gastric cancer tissues; conversely, N-cadherin was increased. Expression of AMFR negatively correlated with E-cadherin expression, whereas N-cadherin expression showed a significant positive correlation with AMFR expression. AMFR might be involved in the regulation of epithelial-mesenchymal transition, with aberrant expression correlating with a poor prognosis and promoting invasion and metastasis in GCs.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Shih WL, Yu FL, Chang CD, Liao MH, Wu HY, Lin PY. Suppression of AMF/PGI-mediated tumorigenic activities by ursolic acid in cultured hepatoma cells and in a mouse model. Mol Carcinog 2013; 52:800-12. [PMID: 22549898 DOI: 10.1002/mc.21919] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/27/2012] [Accepted: 04/06/2012] [Indexed: 01/11/2023]
Abstract
Our previous studies demonstrated that autocrine motility factor/phosphoglucose isomerase (AMF/PGI) possesses tumorigenic activities through the modulation of intracellular signaling. We then investigated the effects of ursolic acid (UA), oleanolic acid (OA), tangeretin, and nobiletin against AMF/PGI-mediated oncogenesis in cultured stable Huh7 and Hep3B cells expressing wild-type or mutated AMF/PGI and in a mouse model in this study. The working concentrations of the tested compounds were lower than their IC10 , which was determined by Brdu incorporation and colony formation assay. Only UA efficiently suppressed the AMF/PGI-induced Huh7 cell migration and MMP-3 secretion. Additionally, UA inhibited the AMF/PGI-mediated protection against TGF-β-induced apoptosis in Hep3B cells, whereas OA, tangeretin, and nobiletin had no effect. In Huh7 cells and tumor tissues, UA disrupted the Src/RhoA/PI 3-kinase signaling and complex formation induced by AMF/PGI. In the Hep3B system, UA dramatically suppressed AMF/PGI-induced anti-apoptotic signaling transmission, including Akt, p85, Bad, and Stat3 phosphorylation. AMF/PGI enhances tumor growth, angiogenesis, and pulmonary metastasis in mice, which is correlated with its enzymatic activity, and critically, UA intraperitoneal injection reduces the tumorigenesis in vivo, enhances apoptosis in tumor tissues and also prolongs mouse survival. Combination of sub-optimal dose of UA and cisplatin, a synergistic tumor cell-killing effects was found. Thus, UA modulates intracellular signaling and might serve as a functional natural compound for preventing or alleviating hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wen-Ling Shih
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | | | | | | | | |
Collapse
|
22
|
Nakajima K, Yanagawa T, Watanabe H, Takagishi K. Hyperthermia reduces migration of osteosarcoma by suppression of autocrine motility factor. Oncol Rep 2012; 28:1953-8. [PMID: 23027359 PMCID: PMC3583516 DOI: 10.3892/or.2012.2066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/27/2012] [Indexed: 01/20/2023] Open
Abstract
Autocrine motility factor (AMF) plays an important role in the development of metastasis by regulating tumor cell motility. The expression of AMF is associated with metastasis in malignant musculoskeletal tumors including osteosarcoma. Recent studies indicated that hyperthermia contributes to the improvement of the prognosis of patients with soft tissue sarcomas; however, few reports have evaluated the impact of hyperthermia on tumor cell motility, which is an important factor of metastasis. The purpose of this study was to evaluate the effect of hyperthermia with or without heat shock protein (HSP) inhibitors on the motility and AMF expression in an osteosarcoma cell line. Hyperthermia was carried out at 41°C for 24 h. According to microarray results, HSP90, HSP70 and HSP27 expression was upregulated in osteosarcoma cells under hyperthermia. The intracellular, secreted AMF, mRNA of AMF and cell motility were evaluated by western blotting, ELISA, RT-PCR, wound healing and phagokinetic track assays, respectively. The protein secretion and mRNA levels of AMF and tumor cell motility were significantly decreased by hyperthermia. Of note, the downregulated AMF expression and motility were recovered by the addition of an HSP27 inhibitor. By contrast, the HSP90 and HSP70/72/105 inhibitors had no effect on AMF expression and motility downregulated by hyperthermia. In conclusion, hyperthermia reduced AMF expression and tumor cell motility via HSP27 and may therefore be applied as osteosarcoma treatment.
Collapse
Affiliation(s)
- Kosei Nakajima
- Department of Orthopedic Surgery, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | | | | | | |
Collapse
|
23
|
Yang Y, Cheng XR, Zhang GR, Zhou WX, Zhang YX. Autocrine motility factor receptor is involved in the process of learning and memory in the central nervous system. Behav Brain Res 2012; 229:412-8. [PMID: 22313999 DOI: 10.1016/j.bbr.2012.01.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/17/2012] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
Abstract
The autocrine motility factor receptor (AMFR) is a multifunctional protein involved in cellular adhesion, proliferation, motility and apoptosis. Our study showed that increased AMFR protein expression in the hippocampus of KM mice correlated with enhanced capacity for learning and memory following the shuttle-box test and was significantly elevated in the highest score group. Also, AMF and AMFR mRNA expression positively correlates with the mRNA expression of the synapse marker synaptophysin (Syp). Aging studies in the senescence-accelerated mouse strain (SAM) prone/8 (SAMP8), an animal model of Alzheimer's disease (AD), revealed significantly decreased mRNA and protein expression of AMF and AMFR in the hippocampus. This is especially true for AMFR and AMF protein expression compared with age-matched SAM resistant/1 (SAMR1) mouse strain as the control. Additionally, the low mRNA expression of AMFR could be up-regulated by the four nootropic traditional Chinese medicinal prescriptions (TCMPs): Ba-Wei-Di-Huang decoction (BW), Huang-Lian-Jie-Du decoction (HL), Dang-Gui-Shao-Yao-San (DSS) and Tiao-Xin-Fang decoction (TXF). AMFR protein expression could be up-regulated by two TCMPs, Liu-Wei-Di-Huang decoction (LW) and BW. This indicated that AMFR is involved in the process of learning and memory in the central nervous system. These results may provide useful clues for understanding the etiology of AD.
Collapse
Affiliation(s)
- Yong Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | | | | | | | | |
Collapse
|
24
|
Stadelmann B, Spiliotis M, Müller J, Scholl S, Müller N, Gottstein B, Hemphill A. Echinococcus multilocularis phosphoglucose isomerase (EmPGI): A glycolytic enzyme involved in metacestode growth and parasite–host cell interactions. Int J Parasitol 2010; 40:1563-74. [DOI: 10.1016/j.ijpara.2010.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 05/25/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
|
25
|
Niinaka Y, Harada K, Fujimuro M, Oda M, Haga A, Hosoki M, Uzawa N, Arai N, Yamaguchi S, Yamashiro M, Raz A. Silencing of autocrine motility factor induces mesenchymal-to-epithelial transition and suppression of osteosarcoma pulmonary metastasis. Cancer Res 2010; 70:9483-93. [PMID: 20978190 DOI: 10.1158/0008-5472.can-09-3880] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phosphoglucose isomerase (PGI) is a multifunctional enzyme that functions in glucose metabolism as a glycolytic enzyme catalyzing an interconversion between glucose and fructose inside the cell, while it acts as cytokine outside the cell, with properties that include autocrine motility factor (AMF)-regulating tumor cell motility. Overexpression of AMF/PGI induces epithelial-to-mesenchymal transition with enhanced malignancy. Recent studies have revealed that silencing of AMF/PGI resulted in mesenchymal-to-epithelial transition (MET) of human lung fibrosarcoma cells and breast cancer cells with reduced malignancy. Here, we constructed a hammerhead ribozyme specific against GUC triplet at the position G390 in the human, mouse, and rat AMF/PGI mRNA sequence. Mesenchymal human osteosarcoma MG-63, HS-Os-1, and murine LM8 cells were stably transfected with the ribozyme specific for AMF/PGI. The stable transfectant cells showed effective downregulation of AMF/PGI expression and subsequent abrogation of AMF/PGI secretion, which resulted in morphologic change with reduced growth, motility, and invasion. Silencing of AMF/PGI induced MET, in which upregulation of E-cadherin and cytokeratins, as well as downregulation of vimentin, were noted. The MET guided by AMF/PGI gene silencing induced osteosarcoma MG-63 to terminally differentiate into mature osteoblasts. Furthermore, MET completely suppressed the tumor growth and pulmonary metastasis of LM8 cells in nude mice. Thus, acquisition of malignancy might be completed in part by upregulation of AMF/PGI, and waiver of malignancy might also be controlled by downregulation of AMF/PGI.
Collapse
Affiliation(s)
- Yasufumi Niinaka
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shih WL, Liao MH, Lin PY, Chang CI, Cheng HL, Yu FL, Lee JW. PI 3-kinase/Akt and STAT3 are required for the prevention of TGF-beta-induced Hep3B cell apoptosis by autocrine motility factor/phosphoglucose isomerase. Cancer Lett 2009; 290:223-37. [PMID: 19819066 DOI: 10.1016/j.canlet.2009.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 11/17/2022]
Abstract
We established Hep3B cells stably-expressing wild-type and mutated AMF/PGI with differing enzymatic activities in order to investigate how AMF/PGI affects TGF-beta-induced apoptosis, and demonstrated that AMF/PGI against TGF-beta-induced apoptosis was correlated with its enzymatic activity. AMF/PGI did not alter TGF-beta-receptor expression nor affect TGF-beta-induced PAI-1 gene promoter or Smad3/4 activity. AMF/PGI induced PI 3-kinase activity, IRS and Akt phosphorylation, which can further regulate BAD phosphorylation. Constitutively-active p110 enhanced AMF/PGI-mediated anti-apoptosis activity, and dominant negative Akt alleviated anti-TGF-beta-induced apoptosis. We also demonstrated that STAT3 is a weak anti-apoptotic agent but has an increased anti-apoptotic effect in cooperation with PI 3-kinase/Akt.
Collapse
Affiliation(s)
- Wen-Ling Shih
- National Pingtung University of Science and Technology, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Araki K, Shimura T, Yajima T, Tsutsumi S, Suzuki H, Okada K, Kobayashi T, Raz A, Kuwano H. Phosphoglucose isomerase/autocrine motility factor promotes melanoma cell migration through ERK activation dependent on autocrine production of interleukin-8. J Biol Chem 2009; 284:32305-11. [PMID: 19801670 DOI: 10.1074/jbc.m109.008250] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It is well known that phosphoglucose isomerase/autocrine motility factor (AMF) promotes cell migration in an autocrine manner in various tumor cells. However, it remains unclear whether certain cytokines modulate the effects of AMF on tumor cell migration. Because interleukin (IL)-8, a proinflammatory cytokine, is produced by melanoma cells and has been correlated with melanoma migration, the migratory ability of melanoma cells induced by AMF may also involve induction of IL-8 expression. In the present study, we assessed whether AMF promotes melanoma cell migration through autocrine production of IL-8. We found that AMF stimulation increased IL-8 production through up-regulation of IL-8 mRNA transcription, especially in biologically early stage melanoma cells. AMF-induced migration of these cells was inhibited by a specific neutralizing antibody against IL-8. The IL-8 production induced by AMF was mediated by the ERK1/2 pathways. These findings suggest that melanoma migration induced by AMF is mediated by autocrine production of IL-8 as a novel downstream modulator of the AMF signaling pathway.
Collapse
Affiliation(s)
- Kenichiro Araki
- Department of General Surgical Science (Surgery I), Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Haga A, Komazaki S, Funasaka T, Hashimoto K, Yokoyama Y, Watanabe H, Raz A, Nagase H. AMF/G6PI induces differentiation of leukemic cells via an unknown receptor that differs from gp78. Leuk Lymphoma 2009; 47:2234-43. [PMID: 17071500 DOI: 10.1080/10428190600773263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Autocrine Motility Factor (AMF)/maturation factor (MF)/neuroleukin (NLK) is a multifunctional protein, which acts as a glucose 6-phosphate isomerase (G6PI) intracellularly. Exto-G6PI stimulates invasion and metastasis of tumor cells, neurotropic growth and differentiation of leukemic cells. The cell motility and proliferation receptor is known to be gp78 (78 kilo-Dalton glycoprotein), which has seven transmembrane domains in its N-terminal region, but the maturation factor receptor remains unclear. The human acute monocytic leukemia line does not express gp78 and its motile activity is not enhanced by AMF though it is well differentiated by AMF exposure. The forced expression of gp78 in leukemic cells recovered acceptable motile stimulation, concomitant with reduced differentiation ability. Two unknown proteins were detected by crosslinking between AMF and leukemic cells. The results of this report suggest that the receptor molecule for AMF/NLK/MF in leukemic differentiation is not gp78.
Collapse
Affiliation(s)
- Arayo Haga
- Research Institute for Health and Environmental Science, Gifu Prefectural Government, Kakamigahara, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bret C, Hose D, Reme T, Sprynski AC, Mahtouk K, Schved JF, Quittet P, Rossi JF, Goldschmidt H, Klein B. Expression of genes encoding for proteins involved in heparan sulphate and chondroitin sulphate chain synthesis and modification in normal and malignant plasma cells. Br J Haematol 2009; 145:350-68. [PMID: 19298595 DOI: 10.1111/j.1365-2141.2009.07633.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Syndecan-1 is a proteoglycan that concentrates heparin-binding factors on the surface of multiple myeloma cells, and probably plays a major role in multiple myeloma biology. As heparan sulphate and chondroitin sulphate are the bioactive components of syndecan-1, we analysed the signature of genes encoding 100 proteins involved in synthesis of these chains, i.e. from precursor uptake to post-translational modifications, using Affymetrix microarrays. The expression of enzymes required for heparan sulphate and chondroitin sulphate biosynthesis was shown to increase in parallel with syndecan-1 expression, throughout the differentiation of memory B cells into plasmablasts and normal bone marrow plasma cells. Sixteen genes were significantly different between normal and malignant plasma cells, nine of these genes -EXT2, CHSY3, CSGALNACT1, HS3ST2, HS2ST1, CHST11, CSGALNACT2, HPSE, SULF2 - encode proteins involved in glycosaminoglycan chain synthesis or modifications. Kaplan-Meier analysis was performed in two independent series of patients: B4GALT7, CSGALNACT1, HS2ST1 were associated with a good prognosis whereas EXT1 was linked to a bad prognosis. This study provides an overall picture of the major genes encoding for proteins involved in heparan sulphate and chondroitin sulphate synthesis and modifications that can be implicated in normal and malignant plasma cells.
Collapse
Affiliation(s)
- Caroline Bret
- INSERM U847, Equipe Labellisée LIGUE 2006, Université Montpellier, UFR Méldecine, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shih WL, Liao MH, Yu FL, Lin PY, Hsu HY, Chiu SJ. AMF/PGI transactivates the MMP-3 gene through the activation of Src-RhoA-phosphatidylinositol 3-kinase signaling to induce hepatoma cell migration. Cancer Lett 2008; 270:202-17. [PMID: 18571835 DOI: 10.1016/j.canlet.2008.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 02/16/2008] [Accepted: 05/06/2008] [Indexed: 11/17/2022]
Abstract
We have previously shown that AMF/PGI induces hepatoma cell migration through the induction of MMP-3. This work investigates how AMF/PGI activates the MMP-3 gene. We demonstrated that AMF/PGI transactivates the MMP-3 gene promoter through AP-1. The transactivation and induction of cell migration effect of AMF/PGI directly correlates with its enzymatic activity. Various analyses showed that AMF/PGI stimulated the Src-RhoA-PI3-kinase signaling pathway, and these three signaling molecules could form a complex. Our results demonstrate a new mechanism of AMF/PGI-induced cell migration and a link between Src-RhoA-PI3-kinase, AP-1, MMP-3 and hepatoma cell migration.
Collapse
Affiliation(s)
- Wen-Ling Shih
- Graduate Institute, Department of Life Science, Tzu-Chi University, 701 Section 3, Chung-Yang Road, Hualien 970, Taiwan.
| | | | | | | | | | | |
Collapse
|
31
|
Autocrine motility factor stimulates the invasiveness of malignant cells as well as up-regulation of matrix metalloproteinase-3 expression via a MAPK pathway. FEBS Lett 2008; 582:1877-82. [PMID: 18485900 DOI: 10.1016/j.febslet.2008.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/16/2008] [Accepted: 05/06/2008] [Indexed: 10/22/2022]
Abstract
The autocrine motility factor (AMF) is a multifunctional protein that is involved in tumor progression including enhanced invasiveness via induction of matrix metalloproteinase-3 (MMP3). The increase in MMP3 was found in an AMF-high production tumor cell line, and c-Jun, c-Fos and mitogen-activated protein kinases (MAPKs) were also highly phosphorylated compared with the parent line. AMF stimulation induced the rapid phosphorylation of the cellular MAPK cascade and MMP3 secretion, which was blocked using a specific MAPK inhibitor. Results of this study suggest that AMF stimulation stimulates MMP3 expression via a MAPK signaling pathway.
Collapse
|
32
|
Funasaka T, Raz A. The role of autocrine motility factor in tumor and tumor microenvironment. Cancer Metastasis Rev 2008; 26:725-35. [PMID: 17828376 DOI: 10.1007/s10555-007-9086-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Autocrine motility factor (AMF) is a tumor-secreted cytokine and is abundant at tumor sites, where it may affect the process of tumor growth and metastasis. AMF is a multifunctional protein capable of affecting cell migration, invasion, proliferation, and survival, and possesses phosphoglucose isomerase activity and can catalyze the step in glycolysis and gluconeogenesis. Here, we review the role of AMF and tumor environment on malignant processes. The outcome of metastasis depends on multiple interactions between tumor cells and homeostatic mechanisms, therefore elucidation of the tumor/host interactions in the tumor microenvironment is essential in the development of new prevention and treatment strategies. Such knowledge might provide clues to develop new future therapeutic approaches for human cancers.
Collapse
Affiliation(s)
- Tatsuyoshi Funasaka
- Tumor Progression and Metastasis Program, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
33
|
Bennett KP, Bergeron C, Acar E, Klees RF, Vandenberg SL, Yener B, Plopper GE. Proteomics reveals multiple routes to the osteogenic phenotype in mesenchymal stem cells. BMC Genomics 2007; 8:380. [PMID: 17949499 PMCID: PMC2148065 DOI: 10.1186/1471-2164-8-380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 10/19/2007] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Recently, we demonstrated that human mesenchymal stem cells (hMSC) stimulated with dexamethazone undergo gene focusing during osteogenic differentiation (Stem Cells Dev 14(6): 1608-20, 2005). Here, we examine the protein expression profiles of three additional populations of hMSC stimulated to undergo osteogenic differentiation via either contact with pro-osteogenic extracellular matrix (ECM) proteins (collagen I, vitronectin, or laminin-5) or osteogenic media supplements (OS media). Specifically, we annotate these four protein expression profiles, as well as profiles from naïve hMSC and differentiated human osteoblasts (hOST), with known gene ontologies and analyze them as a tensor with modes for the expressed proteins, gene ontologies, and stimulants. RESULTS Direct component analysis in the gene ontology space identifies three components that account for 90% of the variance between hMSC, osteoblasts, and the four stimulated hMSC populations. The directed component maps the differentiation stages of the stimulated stem cell populations along the differentiation axis created by the difference in the expression profiles of hMSC and hOST. Surprisingly, hMSC treated with ECM proteins lie closer to osteoblasts than do hMSC treated with OS media. Additionally, the second component demonstrates that proteomic profiles of collagen I- and vitronectin-stimulated hMSC are distinct from those of OS-stimulated cells. A three-mode tensor analysis reveals additional focus proteins critical for characterizing the phenotypic variations between naïve hMSC, partially differentiated hMSC, and hOST. CONCLUSION The differences between the proteomic profiles of OS-stimulated hMSC and ECM-hMSC characterize different transitional phenotypes en route to becoming osteoblasts. This conclusion is arrived at via a three-mode tensor analysis validated using hMSC plated on laminin-5.
Collapse
Affiliation(s)
- Kristin P Bennett
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 2007; 7:585-98. [PMID: 17646864 DOI: 10.1038/nrc2189] [Citation(s) in RCA: 710] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple myeloma is a plasma cell malignancy characterized by complex heterogeneous cytogenetic abnormalities. The bone marrow microenvironment promotes multiple myeloma cell growth and resistance to conventional therapies. Although multiple myeloma remains incurable, novel targeted agents, used alone or in combination, have shown great promise to overcome conventional drug resistance and improve patient outcome. Recent oncogenomic studies have further advanced our understanding of the molecular pathogenesis of multiple myeloma, providing the framework for new prognostic classification and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Teru Hideshima
- Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
35
|
Chemical genomics: a challenge for de novo drug design. Mol Biotechnol 2007; 37:237-45. [PMID: 17952670 DOI: 10.1007/s12033-007-0037-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 05/03/2007] [Indexed: 10/23/2022]
Abstract
De novo design provides an in silico toolkit for the design of novel small molecular structures to a set of specified structural constraints. With the avalanche of bioinformatics data, de novo design is ideally suited for exploring molecules that could be useful for chemical genomics. The design process involves manipulation of the input, modification of structural constraints, and further processing of the de novo generated molecules using various modular toolkits. The development of a theoretical framework for each of these stages will provide novel practical solutions to the problem of creating compounds with maximal chemical diversity. This short review describes the fundamental problems encountered in the application of novel chemical design technologies to chemical genomics by means of a formal representation. This notation helps to outline and clarify ideas and hypotheses that can then be explored using mathematical algorithms. It is only by developing this rigorous foundation that in silico design can progress in a rational way.
Collapse
|
36
|
Funasaka T, Hu H, Yanagawa T, Hogan V, Raz A. Down-regulation of phosphoglucose isomerase/autocrine motility factor results in mesenchymal-to-epithelial transition of human lung fibrosarcoma cells. Cancer Res 2007; 67:4236-43. [PMID: 17483335 DOI: 10.1158/0008-5472.can-06-3935] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphoglucose isomerase (PGI) is one of the glycolytic enzymes and is a multifunctional enzyme that functions in glucose metabolism inside the cell while acting as a cytokine outside the cell, with properties that include autocrine motility factor (AMF) regulating tumor cell motility. Although there are many studies indicating that PGI/AMF has been implicated in progression of metastasis, no direct studies of the significance of exogenous PGI/AMF on tumor progression have been reported. Here, we report on the mesenchymal-to-epithelial transition (MET), which is the reverse phenomenon of the epithelial-to-mesenchymal transition that is associated with loss of cell polarity, loss of epithelia markers, and enhancement of cell motility essential for tumor cell invasion and metastasis. Mesenchymal human fibrosarcoma HT1080 cells, which have naturally high levels of endogenous and exogenous PGI/AMF, were stably transfected with PGI/AMF small interfering RNA (siRNA). The siRNA targeting human PGI/AMF down-regulated the endogenous PGI/AMF expression and completely extinguished the secretion of PGI/AMF in a human fibrosarcoma HT1080, whereas the control siRNA showed no effects. The PGI/AMF siRNA caused cells to change shape dramatically and inhibited cell motility and invasion markedly. Suppression of PGI/AMF led to a contact-dependent inhibition of cell growth. Those PGI/AMF siRNA-transfected cells showed epithelial phenotype. Furthermore, tumor cells with PGI/AMF deficiency lost their abilities to form tumor mass. This study identifies that MET in HT1080 human lung fibrosarcoma cells was initiated by down-regulation of the housekeeping gene product/cytokine PGI/AMF, and the results depicted here suggest a novel therapeutic target/modality for mesenchymal cancers.
Collapse
Affiliation(s)
- Tatsuyoshi Funasaka
- Tumor Progression and Metastasis Program, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
37
|
Dobashi Y, Watanabe H, Sato Y, Hirashima S, Yanagawa T, Matsubara H, Ooi A. Differential expression and pathological significance of autocrine motility factor/glucose-6-phosphate isomerase expression in human lung carcinomas. J Pathol 2007; 210:431-40. [PMID: 17029220 DOI: 10.1002/path.2069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To clarify the involvement of autocrine motility factor (AMF) in the phenotype and biological profiles of human lung carcinomas, we analysed protein and mRNA expression in a total of 180 cases. Immunohistochemistry revealed positive staining in 67.2%, with the highest frequency in squamous cell carcinoma (SCC; 90.8%) and the lowest in small cell carcinoma (SmCC; 27.8%). In SCC, the staining frequency and intensity correlated with the degree of morphological differentiation. Generally, the expression levels in immunoblotting analysis corresponded well with immunohistochemical positivity. However, there was less agreement between protein and mRNA levels: in SmCC and large cell carcinomas (LCCs), mRNA showed higher, but protein showed lower expression. Among non-small cell lung carcinomas (NSCLCs), AMF protein levels correlated inversely with tumour size, but tumours exhibiting lymph node metastasis showed higher mRNA expression. In cultured lung carcinoma cells which comprised all histological subtypes, AMF was detected in the lysates of all ten cell lines. Secreted AMF protein was detected in the conditioned media from six cell lines, most of which were SmCC or LCC. Thus, a particular subset of lung carcinomas secrete AMF, which may promote cell motility via autocrine stimulation through its cognate receptor and cause the biological aggressiveness seen in SmCC and LCC. Moreover, treatment by proteasome inhibitors resulted in increased cellular AMF in five cell lines, suggesting that intracellular AMF levels are regulated by both secretion and proteasome-dependent degradation. In conclusion, AMF was detected in a major proportion of lung carcinomas, and may play a part not only in proliferation and/or progression of the tumours, but also, possibly, in the differentiation of SCC. Furthermore, higher mRNA expression may be related to the high metastatic potential of NSCLC and increased protein secretion, leading to a more aggressive phenotype, such as the invasiveness of SmCC and LCC.
Collapse
MESH Headings
- Adenocarcinoma/chemistry
- Adenocarcinoma/pathology
- Carcinoma, Large Cell/chemistry
- Carcinoma, Large Cell/pathology
- Carcinoma, Non-Small-Cell Lung/chemistry
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Small Cell/chemistry
- Carcinoma, Small Cell/pathology
- Carcinoma, Squamous Cell/chemistry
- Carcinoma, Squamous Cell/pathology
- Cell Differentiation
- Cell Line, Tumor
- Cysteine Proteinase Inhibitors/pharmacology
- Female
- Glucose-6-Phosphate Isomerase/analysis
- Humans
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Lung Neoplasms/chemistry
- Lung Neoplasms/pathology
- Lymphatic Metastasis/pathology
- Male
- Neoplasm Proteins/analysis
- RNA, Messenger/analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y Dobashi
- Department of Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Jiang WG, Raz A, Douglas-Jones A, Mansel RE. Expression of autocrine motility factor (AMF) and its receptor, AMFR, in human breast cancer. J Histochem Cytochem 2005; 54:231-41. [PMID: 16204225 DOI: 10.1369/jhc.5a6785.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autocrine motility factor (AMF) stimulates, via an autocrine route, the motility of cancer cells. The current study investigated the expression of AMF and its receptor, AMFR (gp78), in breast cancer and attempted to dissect a clinical link. Breast tumor tissues (n=120) and non-neoplastic normal tissues (n=32) were studied. AMF and AMFR distribution in tissues were assessed using immunohistochemistry and their transcripts were analyzed using RT-PCR and quantitative PCR. Median follow-up of the cohort was 10 years. Normal mammary epithelial cells, but not stromal and endothelial cells, weakly stained for AMF and AMFR. However, cancer cells showed stronger staining. Both AMF and AMFR transcripts were significantly higher in tumor than in normal tissues (p=0.003 and p=0.0001, respectively). High levels of AMF and AMFR were seen in patients who died of breast cancer (p=0.049, p=0.0435) and high AMF was also seen in patients who had local recurrence (p=0.039) compared with those who remained disease free. A significant correlation was seen between long-term survival and the AMFR:CK19 ratio, in which patients with high AMFR:CK19 ratio tumors had a significantly shorter survival (101.0 months, 80.6-121.4) compared with those with low ratio (136.0 months, 123.7-148.2), p=0.0331. In conclusion, AMF and AMFR are overexpressed in human breast cancer and are negatively associated with patients' clinical outcome. This strongly indicates that the AMF-AMFR complex plays an important role in the progression of breast cancer, as well as having a prognostic role.
Collapse
Affiliation(s)
- Wen G Jiang
- Metastasis and Angiogenesis Research Group, University Department of Surgery, Wales College of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | | | | | | |
Collapse
|
39
|
|
40
|
Tsutsumi S, Yanagawa T, Shimura T, Kuwano H, Raz A. Autocrine motility factor signaling enhances pancreatic cancer metastasis. Clin Cancer Res 2005; 10:7775-84. [PMID: 15570012 DOI: 10.1158/1078-0432.ccr-04-1015] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Autocrine motility factor (AMF)/phosphoglucose isomerase (PGI) is a ubiquitous cytosolic enzyme that plays a key role in glycolysis. AMF/PGI is also a multifunctional protein that acts in the extracellular milieu as a potent mitogen/cytokine. Increased expression of AMF/PGI and its receptor has been found in a wide spectrum of malignancies and is associated with cancer progression and metastasis. Recent studies indicated that AMF is induced by hypoxia and enhances the random motility of pancreatic cancer cells. In the present study, the role and regulation of AMF in the growth and metastasis of pancreatic cancer cells were determined. EXPERIMENTAL DESIGN In this study, we assessed whether overexpression of AMF in human pancreatic cancer cells enhances the liver metastasis using an orthotopic mouse tumor model. We also investigated the intracellular signal transduction pathways of AMF in human pancreatic cancer cell lines. RESULTS Overexpression of AMF stimulated in vitro invasion of MIA PaCa-2 cells. In vivo, after orthotopic implantation into the pancreas of nude mice, parental and empty vector-transfected MIA PaCa-2 cells produced locally relatively small tumors with no evidence of liver metastasis, whereas AMF-transfected MIA PaCa-2 cells produced the large tumors and liver metastases. In addition, over-expression of AMF leads to down-regulation of E-cadherin expression associated with the up-regulation of the zinc-finger transcription factor SNAIL expression. CONCLUSIONS The data submitted here show that AMF expression significantly contributes to the aggressive phenotype of human pancreatic cancer and thus may provide a novel prognostic and therapeutic target.
Collapse
Affiliation(s)
- Soichi Tsutsumi
- Department of General Surgical Science (Surgery I), Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | |
Collapse
|
41
|
Haga A. A Possibility that AMF will Serve as a Target Molecule for the Diagnosis and Treatment in a Metastatic Neoplasm. YAKUGAKU ZASSHI 2005; 125:169-75. [PMID: 15684571 DOI: 10.1248/yakushi.125.169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Autocrine Motility Factor (AMF) identified as a tumor cell motile stimulation factor is a key molecule of invasion and metastasis. The AMF is also identified as neuroleukin (NLK) and maturation factor (MF) which are secreted phosphohexose isomerase (PHI, PGI) from anaplastic cells. Tumor AMF promotes cellular locomotion or invasion, and regulates tumor MMPs secretion or apoptotic resistance. The AMF was thought to be an autocrine factor as the name shows it, and it is peculiar to malignant cells. However we found paracrine effect of AMF against tumor surrounding host tissues. Especially, endothelial cells which are essential parts of tumor induced angiogenesis or ascites accumulation express the AMF-receptor and they responded to AMF stimulation. Metastasis is a most complicated biological phenomenon that a large number of molecules or factors induced by tumor and host are related, thus AMF is also unusual molecule reacting between tumor and host tissues, and therefore AMF should be a target of treatment or diagnosis of cancer.
Collapse
Affiliation(s)
- Arayo Haga
- Department of Hygienics, Gifu Pharmaceutical University, Gifu 502-8585, Japan.
| |
Collapse
|
42
|
Abstract
De novo design provides an in silico toolkit for the design of novel molecular structures to a set of specified structural constraints, and is thus ideally suited for creating molecules for chemical genomics. The design process involves manipulation of the input, modification of structural constraints, and further processing of the de novo-generated molecules using various modular toolkits. The development of a theoretical framework for each of these stages will provide novel practical solutions to the problem of creating compounds with maximal chemical diversity. This chapter describes the fundamental problems encountered in the application of novel chemical design technologies to chemical genomics by means of a formal representation. Formal representations help to outline and clarify ideas and hypotheses that can then be explored using mathematical algorithms. It is only by developing this rigorous foundation, that in silico design can progress in a rational way.
Collapse
|
43
|
Yu FL, Liao MH, Lee JW, Shih WL. Induction of hepatoma cells migration by phosphoglucose isomerase/autocrine motility factor through the upregulation of matrix metalloproteinase-3. Biochem Biophys Res Commun 2004; 314:76-82. [PMID: 14715248 DOI: 10.1016/j.bbrc.2003.12.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phosphoglucose isomerase/autocrine motility factor (PGI/AMF) catalyzes the isomerization between glucose-6-phosphate and fructose-6-phosphate, and is involved in cytokine activity, mitogenesis, differentiation, oncogenesis, and tumor metastasis. Presently, we demonstrate that exogenous PGI/AMF stimulates the migration of Huh7 and HepG2 hepatoma cells, but not Hep3B cells. Inhibition of PGI/AMF by PGI/AMF specific inhibitor 5-phospho-D-arabinonate markedly repressed the cellular migration. RT-PCR was used to examine the expression profile of matrix metalloproteinases (MMPs). MMP-3 transcripts, protein level, and secreted form were significantly upregulated in PGI/AMF-treated Huh7 and HepG2 cells, but not in Hep3B cells. MMP-3 inhibition abolished the PGI/AMF-induced cell motility. The observations are consistent with a downstream mediation role of MMP-3 in PGI/AMF-stimulated tumor cell metastasis.
Collapse
Affiliation(s)
- Feng-Ling Yu
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan, ROC
| | | | | | | |
Collapse
|
44
|
Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC. Advances in biology of multiple myeloma: clinical applications. Blood 2004; 104:607-18. [PMID: 15090448 DOI: 10.1182/blood-2004-01-0037] [Citation(s) in RCA: 465] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There appear to be 2 pathways involved in the early pathogenesis of premalignant monoclonal gammopathy of undetermined significance (MGUS) and malignant multiple myeloma (MM) tumors. Nearly half of these tumors are nonhyperdiploid and mostly have immunoglobulin H (IgH) translocations that involve 5 recurrent chromosomal loci, including 11q13 (cyclin D1), 6p21 (cyclin D3), 4p16 (fibroblast growth factor receptor 3 [FGFR3] and multiple myeloma SET domain [MMSET]), 16q23 (c-maf), and 20q11 (mafB). The remaining tumors are hyperdiploid and contain multiple trisomies involving chromosomes 3, 5, 7, 9, 11, 15, 19, and 21, but infrequently have IgH translocations involving the 5 recurrent loci. Dysregulated expression of cyclin D1, D2, or D3 appears to occur as an early event in virtually all of these tumors. This may render the cells more susceptible to proliferative stimuli, resulting in selective expansion as a result of interaction with bone marrow stromal cells that produce interleukin-6 (IL-6) and other cytokines. There are 5 proposed tumor groups, defined by IgH translocations and/or cyclin D expression, that appear to have differences in biologic properties, including interaction with stromal cells, prognosis, and response to specific therapies. Delineation of the mechanisms mediating MM cell proliferation, survival, and migration in the bone marrow (BM) microenvironment may both enhance understanding of pathogenesis and provide the framework for identification and validation of novel molecular targets.
Collapse
Affiliation(s)
- Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Abstract
Even during this past year, further advances have been made in understanding the molecular genetics of the disease, the mechanisms involved in the generation of myeloma-associated bone disease and elucidation of critical signaling pathways as therapeutic targets. New agents (thalidomide, Revimid, Velcade) providing effective salvage therapy for end-stage myeloma, have broadened the therapeutic armamentarium markedly.
As evidenced in Section I by Drs. Kuehl and Bergsagel, five recurrent primary translocations resulting from errors in IgH switch recombination during B-cell development in germinal centers involve 11q13 (cyclin D1), 4p16.3 (FGFR3 and MMSET), 6p21 (cyclin D3), 16q23 (c-maf), and 20q11 (mafB), which account for about 40% of all myeloma tumors.
Based on gene expression profiling data from two laboratories, the authors propose 5 multiple myeloma (MM) subtypes defined by the expression of translocation oncogenes and cyclins (TC molecular classification of MM) with different prognostic implications. In Section II, Drs. Barillé-Nion and Bataille review new insights into osteoclast activation through the RANK Ligand/OPG and MIP-1 chemokine axes and osteoblast inactivation in the context of recent data on DKK1. The observation that myeloma cells enhance the formation of osteoclasts whose activity or products, in turn, are essential for the survival and growth of myeloma cells forms the basis for a new treatment paradigm aimed at reducing the RANKL/OPG ratio by treatment with RANKL inhibitors and/or MIP inhibitors.
In Section III, Dr. Fenton reviews apoptotic pathways as they relate to MM therapy. Defects in the mitochrondrial intrinsic pathway result from imbalances in expression levels of Bcl-2, Bcl-XL and Mcl-1. Mcl-1 is a candidate target gene for rapid induction of apoptosis by flavoperidol. Antisense oglionucleotides (ASO) lead to the rapid induction of caspace activity and apoptosis, which was potentiated by dexamethasone. Similar clinical trials with Bcl-2 ASO molecules alone and in combination with doxorubicin and dexamethasone or thalidomide showed promising results.
The extrinsic pathway can be activated upon binding of the ligand TRAIL. OPG, released by osteoblasts and other stromal cells, can act as a decoy receptor for TRAIL, thereby blocking its apoptosis-inducing activity. MM cells inhibit OPG release by stromal cells, thereby promoting osteoclast activation and lytic bone disease (by enhancing RANKL availability) while at the same time exposing themselves to higher levels of ambient TRAIL. Thus, as a recurring theme, the relative levels of pro- versus anti-apoptotic molecules that act in a cell autonomous manner or in the milieu of the bone marrow microenvironment determine the outcome of potentially lethal signals.
In Section IV, Dr. Barlogie and colleagues review data on single and tandem autotransplants for newly diagnosed myeloma. CR rates of 60%–70% can be reached with tandem transplants extending median survival to ~7 years. Dose adjustments of melphalan in the setting of renal failure and age > 70 may be required to reduce mucositis and other toxicities in such patients, especially in the context of amyloidosis with cardiac involvement.
In Total Therapy II the Arkansas group is evaluating the role of added thalidomide in a randomized trial design. While data are still blinded as to the contribution of thalidomide, the overriding adverse importance of cytogenetic abnormalities, previously reported for Total Therapy I, also pertain to this successor trial. In these two-thirds of patients without cytogenetic abnormalities, Total Therapy II effected a doubling of the 4-year EFS estimate from 37% to 75% (P < .0001) and increased the 4-year OS estimate from 63% to 84% (P = .0009).
The well-documented graft-vs-MM effect of allotransplants can be more safely examined in the context of non-myeloablative regimens, applied as consolidation after a single autologous transplant with melphalan 200 mg/m2, have been found to be much better tolerated than standard myeloablative conditioning regimens and yielding promising results even in the high-risk entity of MM with cytogenetic abnormalities.
For previously treated patients, the thalidomide congener Revimid and the proteasome inhibitor Velcade both are active in advanced and refractory MM (~30% PR).
Gene expression profiling (GEP) has unraveled distinct MM subtypes with different response and survival expectations, can distinguish the presence of or future development of bone disease, and, through serial investigations, can elucidate mechanisms of actions of new agents also in the context of the bone marrow microenvironment. By providing prognostically relevant distinction of MM subgroups, GEP should aid in the development of individualized treatment for MM.
Collapse
|