1
|
Wang M, Zeng J, Tan H, Guo Q, Li X, Ling X, Zhang J, Song S, Deng Y. Anti-virulence and bactericidal activities of Stattic against Shigella sonnei. Appl Environ Microbiol 2023; 89:e0107423. [PMID: 38032177 PMCID: PMC10734500 DOI: 10.1128/aem.01074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Shigella sonnei is a major human enteric pathogen that causes bacillary dysentery. The increasing spread of drug-resistant S. sonnei strains has caused an emergent need for the development of new antimicrobial agents against this pathogenic bacterium. In this study, we demonstrate that Stattic employs two antibacterial mechanisms against S. sonnei. It exerted both anti-virulence activity and bactericidal activity against S. sonnei, suggesting that it shows advantages over traditional antibiotics. Moreover, Stattic showed excellent synergistic effects with kanamycin, ampicillin, chloramphenicol, and gentamicin against S. sonnei. Our findings suggest that Stattic has promising potential for development as a new antibiotic or as an adjuvant to antibiotics for infections caused by S. sonnei.
Collapse
Affiliation(s)
- Mingfang Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jia Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Huihui Tan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Quan Guo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xia Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiwen Ling
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jinyue Zhang
- School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shihao Song
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Medin S, Dressel A, Specht DA, Sheppard TJ, Holycross ME, Reid MC, Gazel E, Wu M, Barstow B. Multiple Rounds of In Vivo Random Mutagenesis and Selection in Vibrio natriegens Result in Substantial Increases in REE Binding Capacity. ACS Synth Biol 2023; 12:3680-3694. [PMID: 38055772 PMCID: PMC10729037 DOI: 10.1021/acssynbio.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Rare earth elements (REE) are essential ingredients in many modern technologies, yet their purification remains either environmentally harmful or economically unviable. Adsorption, or biosorption, of REE onto bacterial cell membranes offers a sustainable alternative to traditional solvent extraction methods. But in order for biosorption-based REE purification to compete economically, the capacity and specificity of biosorption sites must be enhanced. Although there have been some recent advances in characterizing the genetics of REE-biosorption, the variety and complexity of bacterial membrane surface sites make targeted genetic engineering difficult. Here, we propose using multiple rounds of in vivo random mutagenesis induced by the MP6 plasmid combined with plate-throughput REE-biosorption screening to improve a microbe's capacity and selectivity for biosorbing REE. We engineered a strain of Vibrio natriegens capable of biosorbing 210% more dysprosium compared to the wild-type and produced selectivity improvements of up to 50% between the lightest (lanthanum) and heaviest (lutetium) REE. We believe that mutations we observed in ABC transporters as well as a nonessential protein in the BAM outer membrane β-barrel protein insertion complex likely contribute to some─but almost certainly not all─of the biosorption changes we observed. Given the ease of finding significant biosorption mutants, these results highlight just how many genes likely contribute to biosorption as well as the power of random mutagenesis in identifying genes of interest and optimizing a biological system for a task.
Collapse
Affiliation(s)
- Sean Medin
- Department
of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Anastacia Dressel
- Department
of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - David A. Specht
- Department
of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Timothy J. Sheppard
- Department
of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Megan E. Holycross
- Department
of Earth and Atmospheric Sciences, Cornell
University, Ithaca, New York 14853, United States
| | - Matthew C. Reid
- School
of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Esteban Gazel
- Department
of Earth and Atmospheric Sciences, Cornell
University, Ithaca, New York 14853, United States
| | - Mingming Wu
- Department
of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Buz Barstow
- Department
of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Lee HJ, Lee SM, Choi M, Kwon JH, Lee SW. A Mutation of a Putative NDP-Sugar Epimerase Gene in Ralstonia pseudosolanacearum Attenuates Exopolysaccharide Production and Bacterial Virulence in Tomato Plant. THE PLANT PATHOLOGY JOURNAL 2023; 39:417-429. [PMID: 37817490 PMCID: PMC10580051 DOI: 10.5423/ppj.oa.06.2023.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023]
Abstract
Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogen-containing heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPS-defective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.
Collapse
Affiliation(s)
- Hyoung Ju Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Sang-Moo Lee
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Korea
| | - Minseo Choi
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Joo Hwan Kwon
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Seon-Woo Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Korea
| |
Collapse
|
4
|
van der Lans SPA, Janet-Maitre M, Masson FM, Walker KA, Doorduijn DJ, Janssen AB, van Schaik W, Attrée I, Rooijakkers SHM, Bardoel BW. Colistin resistance mutations in phoQ can sensitize Klebsiella pneumoniae to IgM-mediated complement killing. Sci Rep 2023; 13:12618. [PMID: 37537263 PMCID: PMC10400624 DOI: 10.1038/s41598-023-39613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
Due to multi-drug resistance, physicians increasingly use the last-resort antibiotic colistin to treat infections with the Gram-negative bacterium Klebsiella pneumoniae. Unfortunately, K. pneumoniae can also develop colistin resistance. Interestingly, colistin resistance has dual effects on bacterial clearance by the immune system. While it increases resistance to antimicrobial peptides, colistin resistance has been reported to sensitize certain bacteria for killing by human serum. Here we investigate the mechanisms underlying this increased serum sensitivity, focusing on human complement which kills Gram-negatives via membrane attack complex (MAC) pores. Using in vitro evolved colistin resistant strains and a fluorescent MAC-mediated permeabilization assay, we showed that two of the three tested colistin resistant strains, Kp209_CSTR and Kp257_CSTR, were sensitized to MAC. Transcriptomic and mechanistic analyses focusing on Kp209_CSTR revealed that a mutation in the phoQ gene locked PhoQ in an active state, making Kp209_CSTR colistin resistant and MAC sensitive. Detailed immunological assays showed that complement activation on Kp209_CSTR in human serum required specific IgM antibodies that bound Kp209_CSTR but did not recognize the wild-type strain. Together, our results show that developing colistin resistance affected recognition of Kp209_CSTR and its killing by the immune system.
Collapse
Affiliation(s)
- Sjors P A van der Lans
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Manon Janet-Maitre
- Bacterial Pathogenesis and Cellular Responses Group, UMR5075, Institute of Structural Biology, University Grenoble Alpes, Grenoble, France
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Frerich M Masson
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kimberly A Walker
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dennis J Doorduijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Axel B Janssen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ina Attrée
- Bacterial Pathogenesis and Cellular Responses Group, UMR5075, Institute of Structural Biology, University Grenoble Alpes, Grenoble, France
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Francis N, Behera MR, Natarajan K, Laishram RS. Tyrosine phosphorylation controlled poly(A) polymerase I activity regulates general stress response in bacteria. Life Sci Alliance 2023; 6:6/3/e202101148. [PMID: 36535710 PMCID: PMC9764084 DOI: 10.26508/lsa.202101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
RNA 3'-end polyadenylation that marks transcripts for degradation is implicated in general stress response in Escherichia coli Yet, the mechanism and regulation of poly(A) polymerase I (PAPI) in stress response are obscure. We show that pcnB (that encodes PAPI)-null mutation widely stabilises stress response mRNAs and imparts cellular tolerance to multiple stresses, whereas PAPI ectopic expression renders cells stress-sensitive. We demonstrate that there is a substantial loss of PAPI activity on stress exposure that functionally phenocopies pcnB-null mutation stabilising target mRNAs. We identify PAPI tyrosine phosphorylation at the 202 residue (Y202) that is enormously enhanced on stress exposure. This phosphorylation inhibits PAPI polyadenylation activity under stress. Consequentially, PAPI phosphodeficient mutation (tyrosine 202 to phenylalanine, Y202F) fails to stimulate mRNA expression rendering cells stress-sensitive. Bacterial tyrosine kinase Wzc phosphorylates PAPI-Y202 residue, and that wzc-null mutation renders cells stress-sensitive. Accordingly, wzc-null mutation has no effect on stress sensitivity in the presence of pcnB-null or pcnB-Y202F mutation. We also establish that PAPI phosphorylation-dependent stress tolerance mechanism is distinct and operates downstream of the primary stress regulator RpoS.
Collapse
Affiliation(s)
- Nimmy Francis
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Malaya R Behera
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.,Regional Centre for Biotechnology, Faridabad, India
| | - Kathiresan Natarajan
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
6
|
Tripathi N, Goshisht MK. Recent Advances and Mechanistic Insights into Antibacterial Activity, Antibiofilm Activity, and Cytotoxicity of Silver Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:1391-1463. [PMID: 35358388 DOI: 10.1021/acsabm.2c00014] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The substantial increase in multidrug-resistant (MDR) pathogenic bacteria is a major threat to global health. Recently, the Centers for Disease Control and Prevention reported possibilities of greater deaths due to bacterial infections than cancer. Nanomaterials, especially small-sized (size ≤10 nm) silver nanoparticles (AgNPs), can be employed to combat these deadly bacterial diseases. However, high reactivity, instability, susceptibility to fast oxidation, and cytotoxicity remain crucial shortcomings for their uptake and clinical application. In this review, we discuss various AgNPs-based approaches to eradicate bacterial infections and provide comprehensive mechanistic insights and recent advances in antibacterial activity, antibiofilm activity, and cytotoxicity (both in vitro and in vivo) of AgNPs. The mechanistic of antimicrobial activity involves four steps: (i) adhesion of AgNPs to cell wall/membrane and its disruption; (ii) intracellular penetration and damage; (iii) oxidative stress; and (iv) modulation of signal transduction pathways. Numerous factors affecting the bactericidal activity of AgNPs such as shape, size, crystallinity, pH, and surface coating/charge have also been described in detail. The review also sheds light on antimicrobial photodynamic therapy and the role of AgNPs versus Ag+ ions release in bactericidal activities. In addition, different methods of synthesis of AgNPs have been discussed in brief.
Collapse
Affiliation(s)
- Neetu Tripathi
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manoj Kumar Goshisht
- Department of Chemistry, Government Naveen College Tokapal, Bastar, Chhattisgarh 494442, India
| |
Collapse
|
7
|
Lamont RJ, Miller DP. Tyrosine Kinases and Phosphatases: Enablers of the Porphyromonas gingivalis Lifestyle. FRONTIERS IN ORAL HEALTH 2022; 3:835586. [PMID: 35224543 PMCID: PMC8863745 DOI: 10.3389/froh.2022.835586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Tyrosine phosphorylation modifies the functionality of bacterial proteins and forms the basis of a versatile and tunable signal transduction system. The integrated action of tyrosine kinases and phosphatases controls bacterial processes important for metabolism and virulence. Porphyromonas gingivalis, a keystone pathogen in periodontal disease, possesses an extensive phosphotyrosine signaling network. The phosphorylation reaction is catalyzed by a bacterial tyrosine (BY) kinase, Ptk1, and a Ubiquitous bacterial Kinase UbK1. Dephosphorylation is mediated by a low-molecular-weight phosphatase, Ltp1 and a polymerase and histidinol phosphatase, Php1. Phosphotyrosine signaling controls exopolysaccharide production, gingipain activity, oxidative stress responses and synergistic community development with Streptococcus gordonii. Additionally, Ltp1 is secreted extracellularly and can be delivered inside gingival epithelial cells where it can override host cell signaling and readjust cellular physiology. The landscape of coordinated tyrosine kinase and phosphatase activity thus underlies the adaptive responses of P. gingivalis to both the polymicrobial environment of bacterial communities and the intracellular environment of gingival epithelial cells.
Collapse
Affiliation(s)
- Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
- *Correspondence: Richard J. Lamont
| | - Daniel P. Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University Richmond, Richmond, VA, United States
| |
Collapse
|
8
|
Sande C, Whitfield C. Capsules and Extracellular Polysaccharides in Escherichia coli and Salmonella. EcoSal Plus 2021; 9:eESP00332020. [PMID: 34910576 PMCID: PMC11163842 DOI: 10.1128/ecosalplus.esp-0033-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Escherichia coli and Salmonella isolates produce a range of different polysaccharide structures that play important roles in their biology. E. coli isolates often possess capsular polysaccharides (K antigens), which form a surface structural layer. These possess a wide range of repeat-unit structures. In contrast, only one capsular polymer (Vi antigen) is found in Salmonella, and it is confined to typhoidal serovars. In both genera, capsules are vital virulence determinants and are associated with the avoidance of host immune defenses. Some isolates of these species also produce a largely secreted exopolysaccharide called colanic acid as part of their complex Rcs-regulated phenotypes, but the precise function of this polysaccharide in microbial cell biology is not fully understood. E. coli isolates produce two additional secreted polysaccharides, bacterial cellulose and poly-N-acetylglucosamine, which play important roles in biofilm formation. Cellulose is also produced by Salmonella isolates, but the genes for poly-N-acetylglucosamine synthesis appear to have been lost during its evolution toward enhanced virulence. Here, we discuss the structures, functions, relationships, and sophisticated assembly mechanisms for these important biopolymers.
Collapse
Affiliation(s)
- Caitlin Sande
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Song L, Yang X, Huang J, Zhu X, Han G, Wan Y, Xu Y, Luan G, Jia X. Phage Selective Pressure Reduces Virulence of Hypervirulent Klebsiella pneumoniae Through Mutation of the wzc Gene. Front Microbiol 2021; 12:739319. [PMID: 34690983 PMCID: PMC8526901 DOI: 10.3389/fmicb.2021.739319] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp), one of the major community-acquired pathogens, can cause invasive infections such as liver abscess. In recent years, bacteriophages have been used in the treatment of K. pneumoniae, but the characteristics of the phage-resistant bacteria produced in the process of phage therapy need to be evaluated. In this study, two Podoviridae phages, hvKpP1 and hvKpP2, were isolated and characterized. In vitro and in vivo experiments demonstrated that the virulence of the resistant bacteria was significantly reduced compared with that of the wild type. Comparative genomic analysis of monoclonal sequencing showed that nucleotide deletion mutations of wzc and wcaJ genes led to phage resistance, and the electron microscopy and mucoviscosity results showed that mutations led to the loss of the capsule. Meanwhile, animal assay indicated that loss of capsule reduced the virulence of hvKp. These findings contribute to a better understanding of bacteriophage therapy, which not only can kill bacteria directly but also can reduce the virulence of bacteria by phage screening.
Collapse
Affiliation(s)
- Lingjie Song
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Xianggui Yang
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jinwei Huang
- Department of Respiratory Diseases, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xiaokui Zhu
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Guohui Han
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Yan Wan
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Ying Xu
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Guangxin Luan
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| |
Collapse
|
10
|
Schastnaya E, Raguz Nakic Z, Gruber CH, Doubleday PF, Krishnan A, Johns NI, Park J, Wang HH, Sauer U. Extensive regulation of enzyme activity by phosphorylation in Escherichia coli. Nat Commun 2021; 12:5650. [PMID: 34561442 PMCID: PMC8463566 DOI: 10.1038/s41467-021-25988-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023] Open
Abstract
Protein serine/threonine/tyrosine (S/T/Y) phosphorylation is an essential and frequent post-translational modification in eukaryotes, but historically has been considered less prevalent in bacteria because fewer proteins were found to be phosphorylated and most proteins were modified to a lower degree. Recent proteomics studies greatly expanded the phosphoproteome of Escherichia coli to more than 2000 phosphorylation sites (phosphosites), yet mechanisms of action were proposed for only six phosphosites and fitness effects were described for 38 phosphosites upon perturbation. By systematically characterizing functional relevance of S/T/Y phosphorylation in E. coli metabolism, we found 44 of the 52 mutated phosphosites to be functional based on growth phenotypes and intracellular metabolome profiles. By effectively doubling the number of known functional phosphosites, we provide evidence that protein phosphorylation is a major regulation process in bacterial metabolism. Combining in vitro and in vivo experiments, we demonstrate how single phosphosites modulate enzymatic activity and regulate metabolic fluxes in glycolysis, methylglyoxal bypass, acetate metabolism and the split between pentose phosphate and Entner-Doudoroff pathways through mechanisms that include shielding the substrate binding site, limiting structural dynamics, and disrupting interactions relevant for activity in vivo.
Collapse
Affiliation(s)
- Evgeniya Schastnaya
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | - Zrinka Raguz Nakic
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
- Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Christoph H Gruber
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | | | - Aarti Krishnan
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Nathan I Johns
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Jimin Park
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Hajredini F, Ghose R. An ATPase with a twist: A unique mechanism underlies the activity of the bacterial tyrosine kinase, Wzc. SCIENCE ADVANCES 2021; 7:eabj5836. [PMID: 34550748 PMCID: PMC8457666 DOI: 10.1126/sciadv.abj5836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BY-kinases constitute a protein tyrosine kinase family that encodes unique catalytic domains that deviate from those of eukaryotic kinases resembling P-loop nucleotide triphosphatases (NTPases) instead. We have used computational and supporting biochemical approaches using the catalytic domain of the Escherichia coli BY-kinase, Wzc, to illustrate mechanistic divergences between BY-kinases and NTPases despite their deployment of similar catalytic motifs. In NTPases, the “arginine finger” drives the reactive conformation of ATP while also displacing its solvation shell, thereby making favorable enthalpic and entropic contributions toward βγ-bond cleavage. In BY-kinases, the reactive state of ATP is enabled by ATP·Mg2+-induced global conformational transitions coupled to the conformation of the Walker-A lysine. While the BY-kinase arginine finger does promote the desolvation of ATP, it does so indirectly by generating an ordered active site in combination with other structural elements. Bacteria, using these mechanistic variations, have thus repurposed an ancient fold to phosphorylate on tyrosine.
Collapse
Affiliation(s)
- Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA
- Corresponding author.
| |
Collapse
|
12
|
The surprising structural and mechanistic dichotomy of membrane-associated phosphoglycosyl transferases. Biochem Soc Trans 2021; 49:1189-1203. [PMID: 34100892 DOI: 10.1042/bst20200762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
Phosphoglycosyl transferases (PGTs) play a pivotal role at the inception of complex glycoconjugate biosynthesis pathways across all domains of life. PGTs promote the first membrane-committed step in the en bloc biosynthetic strategy by catalyzing the transfer of a phospho-sugar from a nucleoside diphospho-sugar to a membrane-resident polyprenol phosphate. Studies on the PGTs have been hampered because they are integral membrane proteins, and often prove to be recalcitrant to expression, purification and analysis. However, in recent years exciting new information has been derived on the structures and the mechanisms of PGTs, revealing the existence of two unique superfamilies of PGT enzymes that enact catalysis at the membrane interface. Genome neighborhood analysis shows that these superfamilies, the polytopic PGT (polyPGT) and monotopic PGT (monoPGT), may initiate different pathways within the same organism. Moreover, the same fundamental two-substrate reaction is enacted through two different chemical mechanisms with distinct modes of catalysis. This review highlights the structural and mechanistic divergence between the PGT enzyme superfamilies and how this is reflected in differences in regulation in their varied glycoconjugate biosynthesis pathways.
Collapse
|
13
|
Bian S, Zeng W, Li Q, Li Y, Wong NK, Jiang M, Zuo L, Hu Q, Li L. Genetic Structure, Function, and Evolution of Capsule Biosynthesis Loci in Vibrio parahaemolyticus. Front Microbiol 2021; 11:546150. [PMID: 33505361 PMCID: PMC7829505 DOI: 10.3389/fmicb.2020.546150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023] Open
Abstract
Capsule-forming extracellular polysaccharides are crucial for bacterial host colonization, invasion, immune evasion, and ultimately pathogenicity. Due to warming ocean waters and human encroachment of coastal ecosystems, Vibrio parahaemolyticus has emerged as a globally important foodborne enteropathogen implicated in acute gastroenteritis, wound infections, and septic shock. Conventionally, the antigenic properties of lipopolysaccharide (LPS, O antigen) and capsular polysaccharide (CPS, K antigen) have provided a basis for serotyping V. parahaemolyticus, whereas disclosure of genetic elements encoding 13 O-serogroups have allowed molecular serotyping methods to be developed. However, the genetic structure of CPS loci for 71 K-serogroups has remained unidentified, limiting progress in understanding its roles in V. parahaemolyticus pathophysiology. In this study, we identified and characterized the genetic structure and their evolutionary relationship of CPS loci of 40 K-serogroups through whole genome sequencing of 443 V. parahaemolyticus strains. We found a distinct pattern of CPS gene cluster across different K-serogroups and expanded its new 3'-border by identifying glpX as a key gene conserved across all K-serogroups. A total of 217 genes involved in CPS biosynthesis were annotated. Functional contents and genetic structure of the 40 K-serogroups were analyzed. Based on inferences from species trees and gene trees, we proposed an evolution model of the CPS gene clusters of 40 K-serogroups. Horizontal gene transfer by recombination from other Vibrio species, gene duplication is likely to play instrumental roles in the evolution of CPS in V. parahaemolyticus. This is the first time, to the best of our knowledge, that a large scale of CPS gene clusters of different K-serogroups in V. parahaemolyticus have been identified and characterized in evolutionary contexts. This work should help advance understanding on the variation of CPS in V. parahaemolyticus and provide a framework for developing diagnostically relevant serotyping methods.
Collapse
Affiliation(s)
- Shengzhe Bian
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Wenhong Zeng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qiwen Li
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Nai-Kei Wong
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Le Zuo
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liqiang Li
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China
| |
Collapse
|
14
|
Su T, Nakamoto R, Chun YY, Chua WZ, Chen JH, Zik JJ, Sham LT. Decoding capsule synthesis in Streptococcus pneumoniae. FEMS Microbiol Rev 2020; 45:6041728. [PMID: 33338218 DOI: 10.1093/femsre/fuaa067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae synthesizes more than one hundred types of capsular polysaccharides (CPS). While the diversity of the enzymes and transporters involved is enormous, it is not limitless. In this review, we summarized the recent progress on elucidating the structure-function relationships of CPS, the mechanisms by which they are synthesized, how their synthesis is regulated, the host immune response against them, and the development of novel pneumococcal vaccines. Based on the genetic and structural information available, we generated provisional models of the CPS repeating units that remain unsolved. In addition, to facilitate cross-species comparisons and assignment of glycosyltransferases, we illustrated the biosynthetic pathways of the known CPS in a standardized format. Studying the intricate steps of pneumococcal CPS assembly promises to provide novel insights for drug and vaccine development as well as improve our understanding of related pathways in other species.
Collapse
Affiliation(s)
- Tong Su
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Rei Nakamoto
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Ye Yu Chun
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Wan Zhen Chua
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Jia Hui Chen
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Justin J Zik
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| |
Collapse
|
15
|
Evolution of Colistin Resistance in the Klebsiella pneumoniae Complex Follows Multiple Evolutionary Trajectories with Variable Effects on Fitness and Virulence Characteristics. Antimicrob Agents Chemother 2020; 65:AAC.01958-20. [PMID: 33139278 DOI: 10.1128/aac.01958-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022] Open
Abstract
The increasing prevalence of multidrug-resistant Klebsiella pneumoniae has led to a resurgence in the use of colistin as a last-resort drug. Colistin is a cationic antibiotic that selectively acts on Gram-negative bacteria through electrostatic interactions with anionic phosphate groups of the lipid A moiety of lipopolysaccharides (LPSs). Colistin resistance in K. pneumoniae is mediated through loss of these phosphate groups, their modification by cationic groups, and by the hydroxylation of acyl groups of lipid A. Here, we study the in vitro evolutionary trajectories toward colistin resistance in four clinical K. pneumoniae complex strains and their impact on fitness and virulence characteristics. Through population sequencing during in vitro evolution, we found that colistin resistance develops through a combination of single nucleotide polymorphisms, insertions and deletions, and the integration of insertion sequence elements, affecting genes associated with LPS biosynthesis and modification and capsule structures. Colistin resistance decreased the maximum growth rate of one K. pneumoniae sensu stricto strain, but not those of the other three K. pneumoniae complex strains. Colistin-resistant strains had lipid A modified through hydroxylation, palmitoylation, and l-Ara4N addition. K. pneumoniae sensu stricto strains exhibited cross-resistance to LL-37, in contrast to the Klebsiella variicola subsp. variicola strain. Virulence, as determined in a Caenorhabditis elegans survival assay, was increased in two colistin-resistant strains. Our study suggests that nosocomial K. pneumoniae complex strains can rapidly develop colistin resistance through diverse evolutionary trajectories upon exposure to colistin. This effectively shortens the life span of this last-resort antibiotic for the treatment of infections with multidrug-resistant Klebsiella.
Collapse
|
16
|
Bonne Køhler J, Jers C, Senissar M, Shi L, Derouiche A, Mijakovic I. Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Lett 2020; 594:2339-2369. [PMID: 32337704 DOI: 10.1002/1873-3468.13797] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation regulates a large variety of biological processes in all living cells. In pathogenic bacteria, the study of serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation has shed light on the course of infectious diseases, from adherence to host cells to pathogen virulence, replication, and persistence. Mass spectrometry (MS)-based phosphoproteomics has provided global maps of Ser/Thr/Tyr phosphosites in bacterial pathogens. Despite recent developments, a quantitative and dynamic view of phosphorylation events that occur during bacterial pathogenesis is currently lacking. Temporal, spatial, and subpopulation resolution of phosphorylation data is required to identify key regulatory nodes underlying bacterial pathogenesis. Herein, we discuss how technological improvements in sample handling, MS instrumentation, data processing, and machine learning should improve bacterial phosphoproteomic datasets and the information extracted from them. Such information is expected to significantly extend the current knowledge of Ser/Thr/Tyr phosphorylation in pathogenic bacteria and should ultimately contribute to the design of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Julie Bonne Køhler
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Carsten Jers
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mériem Senissar
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lei Shi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Abderahmane Derouiche
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
17
|
Tiwari M, Panwar S, Kothidar A, Tiwari V. Rational targeting of Wzb phosphatase and Wzc kinase interaction inhibits extracellular polysaccharides synthesis and biofilm formation in Acinetobacter baumannii. Carbohydr Res 2020; 492:108025. [PMID: 32402850 DOI: 10.1016/j.carres.2020.108025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 11/18/2022]
Abstract
Acinetobacter baumannii is an opportunistic nosocomial pathogen, and responsible for high mortality and morbidity. Biofilm formation is one of the resistance determinants, where extracellular polysaccharide (EPS) is an essential component. EPS synthesis and its export is regulated by the bacterial Wza-Wzb-Wzc system. Wzc exhibits auto-phosphorylation protein tyrosine kinase activity, while Wzb is a protein tyrosine phosphatase. Wzb mediates dephosphorylation of Wzc. Dephosphorylated Wzc is required for the export of the EPS through porin Wza-Wzc complex. It shows that the interaction of Wzb with Wzc is critical for the export of EPS. Therefore, if the Wzb-Wzc interaction is inhibited, then it might hinder the EPS transport and diminish the biofilm formation. In this study, we have modelled the Wzb, and Wzc proteins and further validated using PSVS, ProSA, RAMPAGE, and PDBsum. The modelled proteins were used for protein-protein docking. The docked protein-protein complex was minimized by Schrodinger software using OPLS_2005 force field. The binding site of the minimized Wzb-Wzc complex was identified by Sitemap. The high throughput virtual screening identified Labetalol hydrochloride and 4-{1-hydroxy-2-[(1-methyl-3-phenylpropyl) amino] propyl} phenol from FDA-approved drug library based on their interaction at the interface of Wzb-Wzc complex. The inhibitor-protein complex was further undergone molecular mechanics analysis using Generalized Born model and Solvent Accessibility (MMGBSA) to estimate the binding free energies. The lead was also used to generate the pharmacophore model and screening the molecule with antimicrobial scaffold. The identified lead was experimentally validated for its effect on EPS quantity and biofilm formation by A. baumannii. Wzb-Wzc interaction is essential for biofilm and EPS export; hence, the identified lead might be useful to regulate the biofilm formation by A. baumannii.
Collapse
Affiliation(s)
- Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Shruti Panwar
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Akansha Kothidar
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India.
| |
Collapse
|
18
|
Pang Y, Guo X, Tian X, Liu F, Wang L, Wu J, Zhang S, Li S, Liu B. Developing a novel molecular serotyping system based on capsular polysaccharide synthesis gene clusters of Vibrio parahaemolyticus. Int J Food Microbiol 2019; 309:108332. [DOI: 10.1016/j.ijfoodmicro.2019.108332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022]
|
19
|
Abstract
Phosphorylation events modify bacterial and archaeal proteomes, imparting cells with rapid and reversible responses to specific environmental stimuli or niches. Phosphorylated proteins are generally modified at one or more serine, threonine, or tyrosine residues. Within the last ten years, increasing numbers of global phosphoproteomic surveys of prokaryote species have revealed an abundance of tyrosine-phosphorylated proteins. In some cases, novel phosphorylation-dependent regulatory paradigms for cell division, gene transcription, and protein translation have been identified, suggesting that a wide scope of prokaryotic physiology remains to be characterized. Recent observations of bacterial proteins with putative phosphotyrosine binding pockets or Src homology 2 (SH2)-like domains suggest the presence of phosphotyrosine-dependent protein interaction networks. Here in this minireview, we focus on protein tyrosine phosphorylation, a posttranslational modification once thought to be rare in prokaryotes but which has emerged as an important regulatory facet in microbial biology.
Collapse
|
20
|
Fukazawa H, Fukuyama M, Miyazaki Y. Expression of Active Staphylococcus aureus Tyrosine Kinases in a Human Cell Line. Biol Pharm Bull 2019; 42:411-416. [PMID: 30828073 DOI: 10.1248/bpb.b18-00722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many bacteria encode tyrosine kinases that are structurally unrelated to their eukaryotic counterparts and are termed BY-kinases. Two BY-kinases, CapB1 and CapB2, have been identified in the Staphylococcus aureus genome. Although CapB1 and CapB2 share more than 70% homology, earlier studies with purified enzymes did not find any evident kinase activity in CapB1, whereas CapB2 was autophosphorylated on a C-terminal tyrosine cluster in the presence of the kinase modulator proteins CapA1 or CapA2. For the convenient analysis of BY-kinases, we attempted to express CapB2 in an active form in a mammalian cell line. To this end, the C-terminal activation domain of CapA1 was attached to the N-terminus of CapB2, and the resulting CapA1/CT-CapB2 chimera was further fused with various tags and transfected into HEK293T cells. Immunoblotting analyses showed that when fluorescent protein tags were attached to the N-terminus, CapA1/CT-CapB2 was both expressed and tyrosine phosphorylated in HEK293T cells. Mutation of the ATP-binding lysine abrogated tyrosine phosphorylation, indicating that tyrosine phosphorylation was catalyzed by the transfected bacterial kinase and not by endogenous cellular enzymes. Unexpectedly, mutation of the C-terminal tyrosine cluster did not abolish autophosphorylation. Further analyses revealed that CapA1/CT-CapB2 phosphorylated not only itself but also the attached fluorescent protein tag. Several domains and residues important for tyrosine kinase activity were identified from the production of various mutants. We also present data that CapB1, which was previously thought to be catalytically inert, may possess intrinsic kinase activity.
Collapse
Affiliation(s)
- Hidesuke Fukazawa
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| | - Mari Fukuyama
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| |
Collapse
|
21
|
Pagano GJ, Arsenault RJ. Advances, challenges and tools in characterizing bacterial serine, threonine and tyrosine kinases and phosphorylation target sites. Expert Rev Proteomics 2019; 16:431-441. [DOI: 10.1080/14789450.2019.1601015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Giovanni J. Pagano
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, USA
| | - Ryan J. Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
22
|
Coordination of capsule assembly and cell wall biosynthesis in Staphylococcus aureus. Nat Commun 2019; 10:1404. [PMID: 30926919 PMCID: PMC6441080 DOI: 10.1038/s41467-019-09356-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 02/28/2019] [Indexed: 11/08/2022] Open
Abstract
The Gram-positive cell wall consists of peptidoglycan functionalized with anionic glycopolymers, such as wall teichoic acid and capsular polysaccharide (CP). How the different cell wall polymers are assembled in a coordinated fashion is not fully understood. Here, we reconstitute Staphylococcus aureus CP biosynthesis and elucidate its interplay with the cell wall biosynthetic machinery. We show that the CapAB tyrosine kinase complex controls multiple enzymatic checkpoints through reversible phosphorylation to modulate the consumption of essential precursors that are also used in peptidoglycan biosynthesis. In addition, the CapA1 activator protein interacts with and cleaves lipid-linked CP precursors, releasing the essential lipid carrier undecaprenyl-phosphate. We further provide biochemical evidence that the subsequent attachment of CP is achieved by LcpC, a member of the LytR-CpsA-Psr protein family, using the peptidoglycan precursor native lipid II as acceptor substrate. The Ser/Thr kinase PknB, which can sense cellular lipid II levels, negatively controls CP synthesis. Our work sheds light on the integration of CP biosynthesis into the multi-component Gram-positive cell wall.
Collapse
|
23
|
Kim H, Kim M, Bai J, Lim JA, Heu S, Ryu S. Colanic Acid Is a Novel Phage Receptor of Pectobacterium carotovorum subsp. carotovorum Phage POP72. Front Microbiol 2019; 10:143. [PMID: 30837957 PMCID: PMC6390001 DOI: 10.3389/fmicb.2019.00143] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
The emergence and widespread nature of pathogen resistance to antibiotics and chemicals has led to the re-consideration of bacteriophages as an alternative biocontrol agent in several fields, including agriculture. In this study, we isolated and characterized a novel bacteriophage, POP72, that specifically infects Pectobacterium carotovorum subsp. carotovorum (Pcc), which frequently macerates agricultural crops. POP72 contains a 44,760 bp double-stranded DNA genome and belongs to the family Podoviridae. To determine the phage receptor for POP72, a random mutant library of Pcc was constructed using a Tn5 transposon and screened for resistance against POP72 infection. Most of the resistant clones had a Tn5 insertion in various genes associated with colanic acid (CA) biosynthesis. The phage adsorption rate and CA production decreased dramatically in the resistant clones. Complementation of the clones with the pUHE21-2 lacI q vector harboring genes associated with CA biosynthesis restored their sensitivity to POP72, as well as their ability to produce CA. These results suggest that CA functions as a novel phage receptor for POP72. The application of POP72 protected Chinese cabbage from Pcc infection, suggesting that phage POP72 would be an effective alternative antimicrobial agent to protect agricultural products from Pcc.
Collapse
Affiliation(s)
- Hyeongsoon Kim
- Department of Agricultural Biotechnology, Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Minsik Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, South Korea
| | - Jaewoo Bai
- Department of Agricultural Biotechnology, Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jeong-A Lim
- Research Group of Food Safety, Korea Food Research Institute, Seongnam, South Korea
| | - Sunggi Heu
- Crop Cultivation and Environmental Research Division, National Institute of Crop Science, Suwon, South Korea
| | - Sangryeol Ryu
- Department of Agricultural Biotechnology, Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
24
|
Besbes F, Franz-Oberdorf K, Schwab W. Phosphorylation-dependent ribonuclease activity of Fra a 1 proteins. JOURNAL OF PLANT PHYSIOLOGY 2019; 233:1-11. [PMID: 30572279 DOI: 10.1016/j.jplph.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 05/24/2023]
Abstract
Abiotic and biotic stress situations cause the upregulation of the transcription of a number of plant defence genes. They code for so-called pathogenesis-related (PR) proteins such as PR proteins of class-10 (PR-10), whose biological functions are still unclear. PR10 proteins are members of the Bet v 1 (major birch pollen allergen) superfamily including related proteins from the cultivated strawberry Fragaria × ananassa (Fra a 1 proteins). Here, we analyzed the expression of 21 Fra a 1 genes in different tissues of the strawberry plant by quantitative real-time PCR. Thirteen members were mainly expressed in roots, three in stems, two in red fruits and leaves, and one in flowers. Five genes (Fra a 1.04-1.08) were selected based on their expression profiles, heterologously expressed in Escherichia coli, and their recombinant proteins functionally characterized. Ribonuclease activity, demonstrated by in-solution and in-gel RNA degradation assays, indicated complete hydrolysis of RNA only by Fra a 1.06. Moreover, phosphorylation assays showed that except for Fra a 1.06, the remaining four recombinant proteins were phosphorylated. Consequently, we investigated whether the phosphorylation status of the proteins affects their ribonuclease activity. Using an in-solution as well as an in-gel RNase activity assay, results demonstrated that the four recombinant proteins, dephosphorylated with phosphatases, exhibited ribonucleolytic activity against total RNA. Thus, the PR10 related proteins characterized in this study harbour a phosphorylation-dependent RNase activity. The results shed new light on the assumed function of PR10 proteins in plant defence.
Collapse
Affiliation(s)
- Fatma Besbes
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Katrin Franz-Oberdorf
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany.
| |
Collapse
|
25
|
Lekota KE, Bezuidt OKI, Mafofo J, Rees J, Muchadeyi FC, Madoroba E, van Heerden H. Whole genome sequencing and identification of Bacillus endophyticus and B. anthracis isolated from anthrax outbreaks in South Africa. BMC Microbiol 2018; 18:67. [PMID: 29986655 PMCID: PMC6038202 DOI: 10.1186/s12866-018-1205-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/20/2018] [Indexed: 11/25/2022] Open
Abstract
Background Bacillus endophyticus is a soil plant-endophytic bacterium, while B. anthracis is the causative agent of anthrax. The virulence factors of B. anthracis are the plasmid encoded tripartite toxins (pXO1) and poly-γ-glutamic acid (PGA) capsule (pXO2). B. endophyticus isolated alongside B. anthracis from animals that died of anthrax in Northern Cape Province (NCP), South Africa, harbored polyglutamate genes. The study compared the characteristics of B. anthracis and B. endophyticus with other Bacillus species with a focus on the presence of the PGA capsule or/and unbound PGA. The morphology and whole genome sequence analysis of B. endophyticus strains and B. anthracis were compared. Results In conventional microbiology, B. endophyticus showed gram-positive round-shaped rods in single/short chains, which were endospore-forming, non-motile, non-haemolytic with white and dry colonies, and γ-phage resistant. B. anthracis was differentiated from B. endophyticus based on the latter’s box-shaped rods in pairs/long chains, white-grey and slimy colonies, encapsulated and γ-phage susceptible. The study identified a PGA polyglutamate synthase operon that consisted of pgsBCA, γ-glutamyltranspeptidase (ggt) and pgsE in B. endophyticus genomes. Conclusions PGA regions of B. anthracis contain capBCADE genes located in the pXO2 required for capsulation formation, while B. endophyticus contain the pgsBCAE genes in the chromosome. Whole genome and microbiology analysis identified B. endophyticus, as a non-capsuled endospore-forming bacterium that consists of PGA required for biosynthesis. B. endophyticus strains do not synthesize surface associated PGA, therefore capsule visualization of B. anthracis is a key diagnostic characteristic. The study highlights the significance of using whole genome shotgun sequencing to identify virulence and other important genes that might be present amongst unknown samples from natural outbreaks. None of the B. anthracis related plasmids or virulence genes were found in the B. endophyticus genomes. Electronic supplementary material The online version of this article (10.1186/s12866-018-1205-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kgaugelo Edward Lekota
- The Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort, 0110, South Africa.,Department of Veterinary Tropical Diseases, University of Pretoria, Private bag X4, Onderstepoort, 0110, South Africa.,Bacteriology section, Agricultural Research Council-Onderstepoort Veterinary Institute, Private Bag X5, Onderstepoort, 0110, South Africa.,College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Christiaan De Wet/ Pioneer Dr, P.O. Box X6, Florida, 1710, South Africa
| | | | - Joseph Mafofo
- The Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort, 0110, South Africa
| | - Jasper Rees
- The Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort, 0110, South Africa
| | - Farai Catherine Muchadeyi
- The Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort, 0110, South Africa
| | - Evelyn Madoroba
- Bacteriology section, Agricultural Research Council-Onderstepoort Veterinary Institute, Private Bag X5, Onderstepoort, 0110, South Africa.,College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Christiaan De Wet/ Pioneer Dr, P.O. Box X6, Florida, 1710, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa, 3886, South Africa
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, University of Pretoria, Private bag X4, Onderstepoort, 0110, South Africa.
| |
Collapse
|
26
|
Abstract
Enteric pathogens with low infectious doses rely on the ability to orchestrate the expression of virulence and metabolism-associated genes in response to environmental cues for successful infection. Accordingly, the human pathogen enterohemorrhagic Escherichia coli (EHEC) employs a complex multifaceted regulatory network to link the expression of type III secretion system (T3SS) components to nutrient availability. While phosphorylation of histidine and aspartate residues on two-component system response regulators is recognized as an integral part of bacterial signaling, the involvement of phosphotyrosine-mediated control is minimally explored in Gram-negative pathogens. Our recent phosphotyrosine profiling study of E. coli identified 342 phosphorylated proteins, indicating that phosphotyrosine modifications in bacteria are more prevalent than previously anticipated. The present study demonstrates that tyrosine phosphorylation of a metabolite-responsive LacI/GalR family regulator, Cra, negatively affects T3SS expression under glycolytic conditions that are typical for the colonic lumen environment where production of the T3SS is unnecessary. Our data suggest that Cra phosphorylation affects T3SS expression by modulating the expression of ler, which encodes the major activator of EHEC virulence gene expression. Phosphorylation of the Cra Y47 residue diminishes DNA binding to fine-tune the expression of virulence-associated genes, including those of the locus of enterocyte effacement pathogenicity island that encode the T3SS, and thereby negatively affects the formation of attaching and effacing lesions. Our data indicate that tyrosine phosphorylation provides an additional mechanism to control the DNA binding of Cra and other LacI/GalR family regulators, including LacI and PurR. This study describes an initial effort to unravel the role of global phosphotyrosine signaling in the control of EHEC virulence potential. Enterohemorrhagic Escherichia coli (EHEC) causes outbreaks of hemorrhagic colitis and the potentially fatal hemolytic-uremic syndrome. Successful host colonization by EHEC relies on the ability to coordinate the expression of virulence factors in response to environmental cues. A complex network that integrates environmental signals at multiple regulatory levels tightly controls virulence gene expression. We demonstrate that EHEC utilizes a previously uncharacterized phosphotyrosine signaling pathway through Cra to fine-tune the expression of virulence-associated genes to effectively control T3SS production. This study demonstrates that tyrosine phosphorylation negatively affects the DNA-binding capacity of Cra, which affects the expression of genes related to virulence and metabolism. We demonstrate for the first time that phosphotyrosine-mediated control affects global transcription in EHEC. Our data provide insight into a hitherto unexplored regulatory level of the global network controlling EHEC virulence gene expression.
Collapse
|
27
|
Salomone-Stagni M, Musiani F, Benini S. Characterization and 1.57 Å resolution structure of the key fire blight phosphatase AmsI from Erwinia amylovora. Acta Crystallogr F Struct Biol Commun 2016; 72:903-910. [PMID: 27917839 PMCID: PMC5137468 DOI: 10.1107/s2053230x16018781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/23/2016] [Indexed: 11/10/2022] Open
Abstract
AmsI is a low-molecular-weight protein tyrosine phosphatase that regulates the production of amylovoran in the Gram-negative bacterium Erwinia amylovora, a specific pathogen of rosaceous plants such as apple, pear and quince. Amylovoran is an exopolysaccharide that is necessary for successful infection. In order to shed light on AmsI, its structure was solved at 1.57 Å resolution at the same pH as its highest measured activity (pH 5.5). In the active site, a water molecule, bridging between the catalytic Arg15 and the reaction-product analogue sulfate, might be representative of the water molecule attacking the phospho-cysteine intermediate in the second step of the reaction mechanism.
Collapse
Affiliation(s)
- Marco Salomone-Stagni
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Stefano Benini
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| |
Collapse
|
28
|
Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front Microbiol 2016; 7:1831. [PMID: 27899918 PMCID: PMC5110546 DOI: 10.3389/fmicb.2016.01831] [Citation(s) in RCA: 798] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/01/2016] [Indexed: 01/19/2023] Open
Abstract
Multidrug resistance of the pathogenic microorganisms to the antimicrobial drugs has become a major impediment toward successful diagnosis and management of infectious diseases. Recent advancements in nanotechnology-based medicines have opened new horizons for combating multidrug resistance in microorganisms. In particular, the use of silver nanoparticles (AgNPs) as a potent antibacterial agent has received much attention. The most critical physico-chemical parameters that affect the antimicrobial potential of AgNPs include size, shape, surface charge, concentration and colloidal state. AgNPs exhibits their antimicrobial potential through multifaceted mechanisms. AgNPs adhesion to microbial cells, penetration inside the cells, ROS and free radical generation, and modulation of microbial signal transduction pathways have been recognized as the most prominent modes of antimicrobial action. On the other side, AgNPs exposure to human cells induces cytotoxicity, genotoxicity, and inflammatory response in human cells in a cell-type dependent manner. This has raised concerns regarding use of AgNPs in therapeutics and drug delivery. We have summarized the emerging endeavors that address current challenges in relation to safe use of AgNPs in therapeutics and drug delivery platforms. Based on research done so far, we believe that AgNPs can be engineered so as to increase their efficacy, stability, specificity, biosafety and biocompatibility. In this regard, three perspectives research directions have been suggested that include (1) synthesizing AgNPs with controlled physico-chemical properties, (2) examining microbial development of resistance toward AgNPs, and (3) ascertaining the susceptibility of cytoxicity, genotoxicity, and inflammatory response to human cells upon AgNPs exposure.
Collapse
Affiliation(s)
| | - Anu Kumar
- Department of Biotechnology, School of Engineering and Technology, Sharda UniversityGreater Noida, India
| | - Rita S. Majumdar
- Department of Microbiology, Central University of HaryanaMahendragarh, India
| | - Vinod Yadav
- Department of Biotechnology, School of Engineering and Technology, Sharda UniversityGreater Noida, India
| |
Collapse
|
29
|
Liu C, Miller DP, Wang Y, Merchant M, Lamont RJ. Structure-function aspects of the Porphyromonas gingivalis tyrosine kinase Ptk1. Mol Oral Microbiol 2016; 32:314-323. [PMID: 27498608 DOI: 10.1111/omi.12173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 02/05/2023]
Abstract
The development of synergistically pathogenic communities of Porphyromonas gingivalis and Streptococcus gordonii is controlled by a tyrosine-phosphorylation-dependent signaling pathway in P. gingivalis. The Ptk1 bacterial tyrosine (BY) kinase of P. gingivalis is required for maximal community development and for the production of extracellular polysaccharide. We show that the consensus BY kinase Walker A and B domains, the RK cluster, and the YC domain of Ptk1 are necessary for autophosphorylation and for substrate phosphorylation. Mass spectrometry showed that six tyrosine residues in a 16-amino-acid C-terminal region were phosphorylated in recombinant (r) Ptk1. Complementation of a ptk1 mutant with the wild-type ptk1 allele in trans restored community development between P. gingivalis and S. gordonii, and extracellular polysaccharide production by P. gingivalis. In contrast, complementation of Δptk1 with ptk1 containing a mutation in the Walker A domain failed to restore community development or extracellular polysaccharide production. rPtk1 was capable of phosphorylating the tyrosine phosphatase Ltp1 and the transcriptional regulator CdhR, both of which are involved in the development of P. gingivalis communities with S. gordonii.
Collapse
Affiliation(s)
- C Liu
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.,State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - D P Miller
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Y Wang
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M Merchant
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - R J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
30
|
CTL0511 from Chlamydia trachomatis Is a Type 2C Protein Phosphatase with Broad Substrate Specificity. J Bacteriol 2016; 198:1827-1836. [PMID: 27114464 DOI: 10.1128/jb.00025-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/15/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Protein phosphorylation has become increasingly recognized for its role in regulating bacterial physiology and virulence. Chlamydia spp. encode two validated Hanks'-type Ser/Thr protein kinases, which typically function with cognate protein phosphatases and appear capable of global protein phosphorylation. Consequently, we sought to identify a Ser/Thr protein phosphatase partner for the chlamydial kinases. CTL0511 from Chlamydia trachomatis L2 434/Bu, which has homologs in all sequenced Chlamydia spp., is a predicted type 2C Ser/Thr protein phosphatase (PP2C). Recombinant maltose-binding protein (MBP)-tagged CTL0511 (rCTL0511) hydrolyzed p-nitrophenyl phosphate (pNPP), a generic phosphatase substrate, in a MnCl2-dependent manner at physiological pH. Assays using phosphopeptide substrates revealed that rCTL0511 can dephosphorylate phosphorylated serine (P-Ser), P-Thr, and P-Tyr residues using either MnCl2 or MgCl2, indicating that metal usage can alter substrate preference. Phosphatase activity was unaffected by PP1, PP2A, and PP3 phosphatase inhibitors, while mutation of conserved PP2C residues significantly inhibited activity. Finally, phosphatase activity was detected in elementary body (EB) and reticulate body (RB) lysates, supporting a role for protein dephosphorylation in chlamydial development. These findings support that CTL0511 is a metal-dependent protein phosphatase with broad substrate specificity, substantiating a reversible phosphorylation network in C. trachomatis IMPORTANCE Chlamydia spp. are obligate intracellular bacterial pathogens responsible for a variety of diseases in humans and economically important animal species. Our work demonstrates that Chlamydia spp. produce a PP2C capable of dephosphorylating P-Thr, P-Ser, and P-Tyr and that Chlamydia trachomatis EBs and RBs possess phosphatase activity. In conjunction with the chlamydial Hanks'-type kinases Pkn1 and PknD, validation of CTL0511 fulfills the enzymatic requirements for a reversible phosphoprotein network. As protein phosphorylation regulates important cellular processes, including metabolism, differentiation, and virulence, in other bacterial pathogens, these results set the stage for elucidating the role of global protein phosphorylation in chlamydial physiology and virulence.
Collapse
|
31
|
Mijakovic I, Grangeasse C, Turgay K. Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiol Rev 2016; 40:398-417. [PMID: 26926353 DOI: 10.1093/femsre/fuw003] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/02/2016] [Indexed: 12/31/2022] Open
Abstract
Protein modifications not only affect protein homeostasis but can also establish new cellular protein functions and are important components of complex cellular signal sensing and transduction networks. Among these post-translational modifications, protein phosphorylation represents the one that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein modification and homeostasis in all cellular life.
Collapse
Affiliation(s)
- Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| | - Christophe Grangeasse
- Unité Microbiologie Moléculaire et Biochimie Structurale, UMR 5086-CNRS/ Université Lyon 1, Lyon 69367, France
| | - Kürşad Turgay
- Institut für Mikrobiologie, Leibniz Universität Hannover, D-30419 Hannover, Germany
| |
Collapse
|
32
|
Medeot DB, Romina Rivero M, Cendoya E, Contreras-Moreira B, Rossi FA, Fischer SE, Becker A, Jofré E. Sinorhizobium meliloti low molecular mass phosphotyrosine phosphatase SMc02309 modifies activity of the UDP-glucose pyrophosphorylase ExoN involved in succinoglycan biosynthesis. MICROBIOLOGY-SGM 2016; 162:552-563. [PMID: 26813656 DOI: 10.1099/mic.0.000239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Gram-negative bacteria, tyrosine phosphorylation has been shown to play a role in the control of exopolysaccharide (EPS) production. This study demonstrated that the chromosomal ORF SMc02309 from Sinorhizobium meliloti 2011 encodes a protein with significant sequence similarity to low molecular mass protein-tyrosine phosphatases (LMW-PTPs), such as the Escherichia coli Wzb. Unlike other well-characterized EPS biosynthesis gene clusters, which contain neighbouring LMW-PTPs and kinase, the S. meliloti succinoglycan (EPS I) gene cluster located on megaplasmid pSymB does not encode a phosphatase. Biochemical assays revealed that the SMc02309 protein hydrolyses p-nitrophenyl phosphate (p-NPP) with kinetic parameters similar to other bacterial LMW-PTPs. Furthermore, we show evidence that SMc02309 is not the LMW-PTP of the bacterial tyrosine-kinase (BY-kinase) ExoP. Nevertheless, ExoN, a UDP-glucose pyrophosphorylase involved in the first stages of EPS I biosynthesis, is phosphorylated at tyrosine residues and constitutes an endogenous substrate of the SMc02309 protein. Additionally, we show that the UDP-glucose pyrophosphorylase activity is modulated by SMc02309-mediated tyrosine dephosphorylation. Moreover, a mutation in the SMc02309 gene decreases EPS I production and delays nodulation on Medicago sativa roots.
Collapse
Affiliation(s)
- Daniela B Medeot
- Department of Natural Sciences, FCEFQyN, National University of Río Cuarto, Ruta Nacional 36 Km 601, Córdoba, Argentina
- Department of Molecular Biology, FCEFQyN, National University of Río Cuarto, Ruta Nacional 36 Km 601, Córdoba, Argentina
| | - María Romina Rivero
- Department of Natural Sciences, FCEFQyN, National University of Río Cuarto, Ruta Nacional 36 Km 601, Córdoba, Argentina
| | - Eugenia Cendoya
- Department of Natural Sciences, FCEFQyN, National University of Río Cuarto, Ruta Nacional 36 Km 601, Córdoba, Argentina
| | - Bruno Contreras-Moreira
- Laboratory of Computational Biology, Department of Genetics and Plant Production, Estación Experimental de Aula Dei/CSIC, Av. Montañana 1005, Zaragoza, Spain
| | - Fernando A Rossi
- Department of Natural Sciences, FCEFQyN, National University of Río Cuarto, Ruta Nacional 36 Km 601, Córdoba, Argentina
| | - Sonia E Fischer
- Department of Natural Sciences, FCEFQyN, National University of Río Cuarto, Ruta Nacional 36 Km 601, Córdoba, Argentina
| | - Anke Becker
- LOEWE-Center for Synthetic Microbiology, Philipps-Universität Marburg, D-35032, Marburg, Germany
| | - Edgardo Jofré
- Department of Natural Sciences, FCEFQyN, National University of Río Cuarto, Ruta Nacional 36 Km 601, Córdoba, Argentina
| |
Collapse
|
33
|
Multiple Posttranslational Modifications of Leptospira biflexa Proteins as Revealed by Proteomic Analysis. Appl Environ Microbiol 2015; 82:1183-1195. [PMID: 26655756 DOI: 10.1128/aem.03056-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
The saprophyte Leptospira biflexa is an excellent model for studying the physiology of the medically important Leptospira genus, the pathogenic members of which are more recalcitrant to genetic manipulation and have significantly slower in vitro growth. However, relatively little is known regarding the proteome of L. biflexa, limiting its utility as a model for some studies. Therefore, we have generated a proteomic map of both soluble and membrane-associated proteins of L. biflexa during exponential growth and in stationary phase. Using these data, we identified abundantly produced proteins in each cellular fraction and quantified the transcript levels from a subset of these genes using quantitative reverse transcription-PCR (RT-PCR). These proteins should prove useful as cellular markers and as controls for gene expression studies. We also observed a significant number of L. biflexa membrane-associated proteins with multiple isoforms, each having unique isoelectric focusing points. L. biflexa cell lysates were examined for several posttranslational modifications suggested by the protein patterns. Methylation and acetylation of lysine residues were predominately observed in the proteins of the membrane-associated fraction, while phosphorylation was detected mainly among soluble proteins. These three posttranslational modification systems appear to be conserved between the free-living species L. biflexa and the pathogenic species Leptospira interrogans, suggesting an important physiological advantage despite the varied life cycles of the different species.
Collapse
|
34
|
Tyrosine Phosphorylation and Dephosphorylation in Burkholderia cenocepacia Affect Biofilm Formation, Growth under Nutritional Deprivation, and Pathogenicity. Appl Environ Microbiol 2015; 82:843-56. [PMID: 26590274 DOI: 10.1128/aem.03513-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/14/2015] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia, a member of the B. cepacia complex (Bcc), is an opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis. Tyrosine phosphorylation has emerged as an important posttranslational modification modulating the physiology and pathogenicity of Bcc bacteria. Here, we investigated the predicted bacterial tyrosine kinases BCAM1331 and BceF and the low-molecular-weight protein tyrosine phosphatases BCAM0208, BceD, and BCAL2200 of B. cenocepacia K56-2. We show that BCAM1331, BceF, BCAM0208, and BceD contribute to biofilm formation, while BCAL2200 is required for growth under nutrient-limited conditions. Multiple deletions of either tyrosine kinase or low-molecular-weight protein tyrosine phosphatase genes resulted in the attenuation of B. cenocepacia intramacrophage survival and reduced pathogenicity in the Galleria mellonella larval infection model. Experimental evidence indicates that BCAM1331 displays reduced tyrosine autophosphorylation activity compared to that of BceF. With the artificial substrate p-nitrophenyl phosphate, the phosphatase activities of the three low-molecular-weight protein tyrosine phosphatases demonstrated similar kinetic parameters. However, only BCAM0208 and BceD could dephosphorylate BceF. Further, BCAL2200 became tyrosine phosphorylated in vivo and catalyzed its autodephosphorylation. Together, our data suggest that despite having similar biochemical activities, low-molecular-weight protein tyrosine phosphatases and tyrosine kinases have both overlapping and specific roles in the physiology of B. cenocepacia.
Collapse
|
35
|
Singh S, Michalska K, Bigelow L, Endres M, Kharel MK, Babnigg G, Yennamalli RM, Bingman CA, Joachimiak A, Thorson JS, Phillips GN. Structural Characterization of CalS8, a TDP-α-D-Glucose Dehydrogenase Involved in Calicheamicin Aminodideoxypentose Biosynthesis. J Biol Chem 2015; 290:26249-58. [PMID: 26240141 DOI: 10.1074/jbc.m115.673459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 11/06/2022] Open
Abstract
Classical UDP-glucose 6-dehydrogenases (UGDHs; EC 1.1.1.22) catalyze the conversion of UDP-α-d-glucose (UDP-Glc) to the key metabolic precursor UDP-α-d-glucuronic acid (UDP-GlcA) and display specificity for UDP-Glc. The fundamental biochemical and structural study of the UGDH homolog CalS8 encoded by the calicheamicin biosynthetic gene is reported and represents one of the first studies of a UGDH homolog involved in secondary metabolism. The corresponding biochemical characterization of CalS8 reveals CalS8 as one of the first characterized base-permissive UGDH homologs with a >15-fold preference for TDP-Glc over UDP-Glc. The corresponding structure elucidations of apo-CalS8 and the CalS8·substrate·cofactor ternary complex (at 2.47 and 1.95 Å resolution, respectively) highlight a notably high degree of conservation between CalS8 and classical UGDHs where structural divergence within the intersubunit loop structure likely contributes to the CalS8 base permissivity. As such, this study begins to provide a putative blueprint for base specificity among sugar nucleotide-dependent dehydrogenases and, in conjunction with prior studies on the base specificity of the calicheamicin aminopentosyltransferase CalG4, provides growing support for the calicheamicin aminopentose pathway as a TDP-sugar-dependent process.
Collapse
Affiliation(s)
- Shanteri Singh
- From the Center for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596
| | - Karolina Michalska
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Lance Bigelow
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Michael Endres
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Madan K Kharel
- the School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland 21853
| | - Gyorgy Babnigg
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Ragothaman M Yennamalli
- the Department of BioSciences, Department of Chemistry, Rice University, Houston, Texas 77005
| | - Craig A Bingman
- the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Andrzej Joachimiak
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Jon S Thorson
- From the Center for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596,
| | - George N Phillips
- the Department of BioSciences, Department of Chemistry, Rice University, Houston, Texas 77005 the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| |
Collapse
|
36
|
Derouiche A, Shi L, Bidnenko V, Ventroux M, Pigonneau N, Franz-Wachtel M, Kalantari A, Nessler S, Noirot-Gros MF, Mijakovic I. Bacillus subtilis SalA is a phosphorylation-dependent transcription regulator that represses scoC and activates the production of the exoprotease AprE. Mol Microbiol 2015; 97:1195-208. [PMID: 26094643 DOI: 10.1111/mmi.13098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2015] [Indexed: 11/29/2022]
Abstract
Bacillus subtilis Mrp family protein SalA has been shown to indirectly promote the production of the exoprotease AprE by inhibiting the expression of scoC, which codes for a repressor of aprE. The exact mechanism by which SalA influences scoC expression has not been clarified previously. We demonstrate that SalA possesses a DNA-binding domain (residues 1-60), which binds to the promoter region of scoC. The binding of SalA to its target DNA depends on the presence of ATP and is stimulated by phosphorylation of SalA at tyrosine 327. The B. subtilis protein-tyrosine kinase PtkA interacts specifically with the C-terminal domain of SalA in vivo and in vitro and is responsible for activating its DNA binding via phosphorylation of tyrosine 327. In vivo, a mutant mimicking phosphorylation of SalA (SalA Y327E) exhibited a strong repression of scoC and consequently overproduction of AprE. By contrast, the non-phosphorylatable SalA Y327F and the ΔptkA exhibited the opposite effect, stronger expression of scoC and lower production of the exoprotease. Interestingly, both SalA and PtkA contain the same ATP-binding Walker domain and have thus presumably arisen from the common ancestral protein. Their regulatory interplay seems to be conserved in other bacteria.
Collapse
Affiliation(s)
- Abderahmane Derouiche
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Lei Shi
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Vladimir Bidnenko
- Micalis UMR1319, Institut National de la Recherche Agronomique, Jouy-en-Josas, 78350, France
| | - Magali Ventroux
- Micalis UMR1319, Institut National de la Recherche Agronomique, Jouy-en-Josas, 78350, France
| | - Nathalie Pigonneau
- Micalis UMR1319, Institut National de la Recherche Agronomique, Jouy-en-Josas, 78350, France
| | | | - Aida Kalantari
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Sylvie Nessler
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, University Paris-Sud, Orsay, 91405, France
| | | | - Ivan Mijakovic
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| |
Collapse
|
37
|
Kang HJ, Gilbert C, Badeaux F, Atlan D, LaPointe G. A tyrosine phosphorylation switch controls the interaction between the transmembrane modulator protein Wzd and the tyrosine kinase Wze of Lactobacillus rhamnosus. BMC Microbiol 2015; 15:40. [PMID: 25885688 PMCID: PMC4340800 DOI: 10.1186/s12866-015-0371-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 02/04/2015] [Indexed: 04/27/2023] Open
Abstract
Background One proposed mechanism for assembly of secreted heteropolysaccharides by many Gram positive bacteria relies on the coordinated action of a polymerization complex through reversible phosphorylation events. The role of the tyrosine protein kinase transmembrane modulator is, however, not well understood. Results The protein sequences deduced from the wzb, wzd and wze genes from Lactobacillus rhamnosus ATCC 9595 and RW-9595 M contain motifs also found in corresponding proteins CpsB, CpsC and CpsD from Streptococcus pneumoniae D39 (serotype 2). Use of an anti-phosphotyrosine antibody demonstrated that both Wzd and Wze can be found in tyrosine phosphorylated form. When tyrosine 266 was mutated to phenylalanine, WzdY266F showed slightly less phosphorylated protein than those produced by using eight other tyrosine mutated Wzd genes, when expressed along with Wze and Wzb in Lactococcus lactis subsp. cremoris MG1363. In order to demonstrate the importance of ATP for the interactions among these proteins, native and fusion Wzb, Wzd and Wze proteins were expressed and purified from Escherichia coli cultures. The modulator protein, Wzd, binds with the phosphotyrosine kinase Wze, irrespective of its phosphorylation status. However, Wze attained a higher phosphorylation level after interacting with phosphorylated Wzd in the presence of 10 mM ATP. This highly phosphorylated Wze did not remain in close association with phosphorylated Wzd. Conclusion The Wze tyrosine kinase protein of Lactobacillus rhamnosus thus carries out tyrosine phosphorylation of Wzd in addition to auto- and trans- phosphorylation of the kinase itself. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0371-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hye-Ji Kang
- STELA Dairy Research Centre, INAF, Université Laval, Québec, G1V 0A6, QC, Canada. .,Present address: Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, 790-784, Republic of Korea.
| | - Christophe Gilbert
- CIRI-U1111 INSERM- UMR5308 CNRS-UCBL-ENSL, Université de Lyon, Université Lyon 1, 10 rue Dubois, bât. Lwoff, F-69622, Villeurbanne cedex, France.
| | - Frédérique Badeaux
- STELA Dairy Research Centre, INAF, Université Laval, Québec, G1V 0A6, QC, Canada.
| | - Danièle Atlan
- CNRS, UMR5240, Unité microbiologie, adaptation et pathogénie, Villeurbanne, F-69622, France.
| | - Gisèle LaPointe
- STELA Dairy Research Centre, INAF, Université Laval, Québec, G1V 0A6, QC, Canada.
| |
Collapse
|
38
|
De Bruyn F, Maertens J, Beauprez J, Soetaert W, De Mey M. Biotechnological advances in UDP-sugar based glycosylation of small molecules. Biotechnol Adv 2015; 33:288-302. [PMID: 25698505 DOI: 10.1016/j.biotechadv.2015.02.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/19/2014] [Accepted: 02/09/2015] [Indexed: 01/04/2023]
Abstract
Glycosylation of small molecules like specialized (secondary) metabolites has a profound impact on their solubility, stability or bioactivity, making glycosides attractive compounds as food additives, therapeutics or nutraceuticals. The subsequently growing market demand has fuelled the development of various biotechnological processes, which can be divided in the in vitro (using enzymes) or in vivo (using whole cells) production of glycosides. In this context, uridine glycosyltransferases (UGTs) have emerged as promising catalysts for the regio- and stereoselective glycosylation of various small molecules, hereby using uridine diphosphate (UDP) sugars as activated glycosyldonors. This review gives an extensive overview of the recently developed in vivo production processes using UGTs and discusses the major routes towards UDP-sugar formation. Furthermore, the use of interconverting enzymes and glycorandomization is highlighted for the production of unusual or new-to-nature glycosides. Finally, the technological challenges and future trends in UDP-sugar based glycosylation are critically evaluated and summarized.
Collapse
Affiliation(s)
- Frederik De Bruyn
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Jo Maertens
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Joeri Beauprez
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Wim Soetaert
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| |
Collapse
|
39
|
Shi L, Ji B, Kolar-Znika L, Boskovic A, Jadeau F, Combet C, Grangeasse C, Franjevic D, Talla E, Mijakovic I. Evolution of bacterial protein-tyrosine kinases and their relaxed specificity toward substrates. Genome Biol Evol 2015; 6:800-17. [PMID: 24728941 PMCID: PMC4007543 DOI: 10.1093/gbe/evu056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It has often been speculated that bacterial protein-tyrosine kinases (BY-kinases) evolve rapidly and maintain relaxed substrate specificity to quickly adopt new substrates when evolutionary pressure in that direction arises. Here, we report a phylogenomic and biochemical analysis of BY-kinases, and their relationship to substrates aimed to validate this hypothesis. Our results suggest that BY-kinases are ubiquitously distributed in bacterial phyla and underwent a complex evolutionary history, affected considerably by gene duplications and horizontal gene transfer events. This is consistent with the fact that the BY-kinase sequences represent a high level of substitution saturation and have a higher evolutionary rate compared with other bacterial genes. On the basis of similarity networks, we could classify BY kinases into three main groups with 14 subgroups. Extensive sequence conservation was observed only around the three canonical Walker motifs, whereas unique signatures proposed the functional speciation and diversification within some subgroups. The relationship between BY-kinases and their substrates was analyzed using a ubiquitous substrate (Ugd) and some Firmicute-specific substrates (YvyG and YjoA) from Bacillus subtilis. No evidence of coevolution between kinases and substrates at the sequence level was found. Seven BY-kinases, including well-characterized and previously uncharacterized ones, were used for experimental studies. Most of the tested kinases were able to phosphorylate substrates from B. subtilis (Ugd, YvyG, and YjoA), despite originating from very distant bacteria. Our results are consistent with the hypothesis that BY-kinases have evolved relaxed substrate specificity and are probably maintained as rapidly evolving platforms for adopting new substrates.
Collapse
Affiliation(s)
- Lei Shi
- INRA-AgroParisTech UMR 1319, Micalis-CBAI, Thiverval-Grignon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mijakovic I, Deutscher J. Protein-tyrosine phosphorylation in Bacillus subtilis: a 10-year retrospective. Front Microbiol 2015; 6:18. [PMID: 25667587 PMCID: PMC4304235 DOI: 10.3389/fmicb.2015.00018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/07/2015] [Indexed: 11/13/2022] Open
Abstract
The discovery of tyrosine-phosphorylated proteins in Bacillus subtilis in the year 2003 was followed by a decade of intensive research activity. Here we provide an overview of the lessons learned in that period. While the number of characterized kinases and phosphatases involved in reversible protein-tyrosine phosphorylation in B. subtilis has remained essentially unchanged, the number of proteins known to be targeted by this post-translational modification has increased dramatically. This is mainly due to phosphoproteomics and interactomics studies, which were instrumental in identifying new tyrosine-phosphorylated proteins. Despite their structural similarity, the two B. subtilis protein-tyrosine kinases (BY-kinases), PtkA and PtkB (EpsB), seem to accomplish different functions in the cell. The PtkB is encoded by a large operon involved in exopolysaccharide production, and its main role appears to be the control of this process. The PtkA seems to have a more complex role; it phosphorylates and regulates a large number of proteins involved in the DNA, fatty acid and carbon metabolism and engages in physical interaction with other types of kinases (Ser/Thr kinases), leading to mutual phosphorylation. PtkA also seems to respond to several activator proteins, which direct its activity toward different substrates. In that respect PtkA seems to function as a highly connected signal integration device.
Collapse
Affiliation(s)
- Ivan Mijakovic
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology , Göteborg, Sweden
| | - Josef Deutscher
- Centre National de la Recherche Scientifique, FRE3630 Expression Génétique Microbienne, Institut de Biologie Physico-Chimique , Paris, France ; UMR1319 Microbiologie de l'Alimentation au Service de la Santé Humaine, Institut National de la Recherche Agronomique/AgroParisTech , Jouy en Josas, France
| |
Collapse
|
41
|
Elsholz AKW, Wacker SA, Losick R. Self-regulation of exopolysaccharide production in Bacillus subtilis by a tyrosine kinase. Genes Dev 2014; 28:1710-20. [PMID: 25085422 PMCID: PMC4117945 DOI: 10.1101/gad.246397.114] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exopolysaccharide (EPS) is an extracellular matrix constituent of the B. subtilis biofilm. Here, Losick and colleagues report a previously unrecognized mechanism for the self-regulation of EPS production. EPS synthesis depends on a tyrosine kinase that consists of a membrane component (EpsA) and a kinase component (EpsB). EPS interacts with the extracellular domain of EpsA to control kinase activity. Further data show that EPS is a signaling molecule that controls its own synthesis. Importantly, tyrosine kinase-mediated self-regulation could be a widespread system of intercellular communication controlling exopolysaccharide production in bacteria. We report that the Bacillus subtilis exopolysaccharide (EPS) is a signaling molecule that controls its own production. EPS synthesis depends on a tyrosine kinase that consists of a membrane component (EpsA) and a kinase component (EpsB). EPS interacts with the extracellular domain of EpsA, which is a receptor, to control kinase activity. In the absence of EPS, the kinase is inactivated by autophosphorylation. The presence of EPS inhibits autophosphorylation and instead promotes the phosphorylation of a glycosyltransferase in the biosynthetic pathway, thereby stimulating the production of EPS. Thus, EPS production is subject to a positive feedback loop that ties its synthesis to its own concentration. Tyrosine kinase-mediated self-regulation could be a widespread feature of the control of exopolysaccharide production in bacteria.
Collapse
Affiliation(s)
- Alexander K W Elsholz
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Sarah A Wacker
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Richard Losick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
42
|
Standish AJ, Morona R. The role of bacterial protein tyrosine phosphatases in the regulation of the biosynthesis of secreted polysaccharides. Antioxid Redox Signal 2014; 20:2274-89. [PMID: 24295407 PMCID: PMC3995119 DOI: 10.1089/ars.2013.5726] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Tyrosine phosphorylation and associated protein tyrosine phosphatases are gaining prominence as critical mechanisms in the regulation of fundamental processes in a wide variety of bacteria. In particular, these phosphatases have been associated with the control of the biosynthesis of capsular polysaccharides and extracellular polysaccharides, critically important virulence factors for bacteria. RECENT ADVANCES Deletion and overexpression of the phosphatases result in altered polysaccharide biosynthesis in a range of bacteria. The recent structures of associated auto-phosphorylating tyrosine kinases have suggested that the phosphatases may be critical for the cycling of the kinases between monomers and higher order oligomers. CRITICAL ISSUES Additional substrates of the phosphatases apart from cognate kinases are currently being identified. These are likely to be critical to our understanding of the mechanism by which polysaccharide biosynthesis is regulated. FUTURE DIRECTIONS Ultimately, these protein tyrosine phosphatases are an attractive target for the development of novel antimicrobials. This is particularly the case for the polymerase and histidinol phosphatase family, which is predominantly found in bacteria. Furthermore, the determination of bacterial tyrosine phosphoproteomes will likely help to uncover the fundamental roles, mechanism, and critical importance of these phosphatases in a wide range of bacteria.
Collapse
Affiliation(s)
- Alistair J Standish
- School of Molecular and Biomedical Science, University of Adelaide , Adelaide, Australia
| | | |
Collapse
|
43
|
Wright CJ, Xue P, Hirano T, Liu C, Whitmore SE, Hackett M, Lamont RJ. Characterization of a bacterial tyrosine kinase in Porphyromonas gingivalis involved in polymicrobial synergy. Microbiologyopen 2014; 3:383-94. [PMID: 24811194 PMCID: PMC4082711 DOI: 10.1002/mbo3.177] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/18/2014] [Accepted: 03/25/2014] [Indexed: 12/30/2022] Open
Abstract
Interspecies communication between Porphyromonas gingivalis and Streptococcus gordonii underlies the development of synergistic dual species communities. Contact with S. gordonii initiates signal transduction within P. gingivalis that is based on protein tyrosine (de)phosphorylation. In this study, we characterize a bacterial tyrosine (BY) kinase (designated Ptk1) of P. gingivalis and demonstrate its involvement in interspecies signaling. Ptk1 can utilize ATP for autophosphorylation and is dephosphorylated by the P. gingivalis tyrosine phosphatase, Ltp1. Community development with S. gordonii is severely abrogated in a ptk1 mutant of P. gingivalis, indicating that tyrosine kinase activity is required for maximal polymicrobial synergy. Ptk1 controls the levels of the transcriptional regulator CdhR and the fimbrial adhesin Mfa1 which mediates binding to S. gordonii. The ptk1 gene is in an operon with two genes involved in exopolysaccharide synthesis, and similar to other BY kinases, Ptk1 is necessary for exopolysaccharide production in P. gingivalis. Ptk1 can phosphorylate the capsule related proteins PGN_0224, a UDP-acetyl-mannosamine dehydrogenase, and PGN_0613, a UDP-glucose dehydrogenase, in P. gingivalis. Knockout of ptk1 in an encapsulated strain of P. gingivalis resulted in loss of capsule production. Collectively these results demonstrate that the P. gingivalis Ptk1 BY kinase regulates interspecies communication and controls heterotypic community development with S. gordonii through adjusting the levels of the Mfa1 adhesin and exopolysaccharide.
Collapse
Affiliation(s)
- Christopher J Wright
- Oral Health and Systemic Disease, University of Louisville, Louisville, Kentucky, 40202
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Microbial ester kinases identified in the past 3 decades came as a surprise, as protein phosphorylation on Ser, Thr, and Tyr amino acids was thought to be unique to eukaryotes. Current analysis of available microbial genomes reveals that "eukaryote-like" protein kinases are prevalent in prokaryotes and can converge in the same signaling pathway with the classical microbial "two-component" systems. Most microbial tyrosine kinases lack the "eukaryotic" Hanks domain signature and are designated tyrosine kinases based upon their biochemical activity. These include the tyrosine kinases termed bacterial tyrosine kinases (BY-kinases), which are responsible for the majority of known bacterial tyrosine phosphorylation events. Although termed generally as bacterial tyrosine kinases, BY-kinases can be considered as one family belonging to the superfamily of prokaryotic protein-tyrosine kinases in bacteria. Other members of this superfamily include atypical "odd" tyrosine kinases with diverse mechanisms of protein phosphorylation and the "eukaryote-like" Hanks-type tyrosine kinases. Here, we discuss the distribution, phylogeny, and function of the various prokaryotic protein-tyrosine kinases, focusing on the recently discovered Mycobacterium tuberculosis PtkA and its relationship with other members of this diverse family of proteins.
Collapse
Affiliation(s)
- Joseph D Chao
- From the Department of Microbiology and Immunology and
| | | | | |
Collapse
|
45
|
Jers C, Soufi B, Grangeasse C, Deutscher J, Mijakovic I. Phosphoproteomics in bacteria: towards a systemic understanding of bacterial phosphorylation networks. Expert Rev Proteomics 2014; 5:619-27. [DOI: 10.1586/14789450.5.4.619] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Comparative analysis of the Tyr-kinases CapB1 and CapB2 fused to their cognate modulators CapA1 and CapA2 from Staphylococcus aureus. PLoS One 2013; 8:e75958. [PMID: 24146800 PMCID: PMC3795738 DOI: 10.1371/journal.pone.0075958] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/19/2013] [Indexed: 11/18/2022] Open
Abstract
A particular class of tyrosine-kinases sharing no structural similarity with eukaryotic tyrosine-kinases has been evidenced in a large array of bacterial species. These bacterial tyrosine-kinases are able to autophosphorylate on a C-terminal tyrosine-rich motif. Their autophosphorylation has been shown to play a crucial role in the biosynthesis or export of capsular polysaccharide. The analysis of the first crystal structure of the staphylococcal tyrosine kinase CapB2 associated with the activating domain of the transmembrane modulator CapA1 had brought conclusive explanation for both the autophosphorylation and activation processes. In order to explain why CapA1 activates CapB2 more efficiently than its cognate transmembrane modulator CapA2, we solved the crystal structure of CapA2B2 and compared it with the previously published structure of CapA1B2. This structural analysis did not provide the expected clues about the activation discrepancy observed between the two modulators. Staphylococcus aureus also encodes for a CapB2 homologue named CapB1 displaying more than 70% sequence similarity and being surprisingly nearly unable to autophosphorylate. We solved the crystal structure of CapA1B1 and carefully compare it with the structure of CapA1B2. The active sites of both proteins are highly conserved and the biochemical characterization of mutant proteins engineered to test the importance of small structural discrepancies identified between the two structures did not explain the inactivity of CapB1. We thus tested if CapB1 could phosphorylate other protein substrates or hydrolyze ATP. However, no activity could be detected in our in vitro assays. Taken together, these data question about the biological role of the homologous protein pairs CapA1/CapB1 and CapA2/CapB2 and we discuss about several possible interpretations.
Collapse
|
47
|
Mainprize IL, Bean JD, Bouwman C, Kimber MS, Whitfield C. The UDP-glucose dehydrogenase of Escherichia coli K-12 displays substrate inhibition by NAD that is relieved by nucleotide triphosphates. J Biol Chem 2013; 288:23064-74. [PMID: 23792965 DOI: 10.1074/jbc.m113.486613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UDP-glucose dehydrogenase (Ugd) generates UDP-glucuronic acid, an important precursor for the production of many hexuronic acid-containing bacterial surface glycostructures. In Escherichia coli K-12, Ugd is important for biosynthesis of the environmentally regulated exopolysaccharide known as colanic acid, whereas in other E. coli isolates, the same enzyme is required for production of the constitutive group 1 capsular polysaccharides, which act as virulence determinants. Recent studies have implicated tyrosine phosphorylation in the activation of Ugd from E. coli K-12, although it is not known if this is a feature shared by bacterial Ugd proteins. The activities of Ugd from E. coli K-12 and from the group 1 capsule prototype (serotype K30) were compared. Surprisingly, for both enzymes, site-directed Tyr → Phe mutants affecting the previously proposed phosphorylation site retained similar kinetic properties to the wild-type protein. Purified Ugd from E. coli K-12 had significant levels of NAD substrate inhibition, which could be alleviated by the addition of ATP and several other nucleotide triphosphates. Mutations in a previously identified UDP-glucuronic acid allosteric binding site decreased the binding affinity of the nucleotide triphosphate. Ugd from E. coli serotype K30 was not inhibited by NAD, but its activity still increased in the presence of ATP.
Collapse
Affiliation(s)
- Iain L Mainprize
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
48
|
Cousin C, Derouiche A, Shi L, Pagot Y, Poncet S, Mijakovic I. Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiol Lett 2013; 346:11-9. [PMID: 23731382 DOI: 10.1111/1574-6968.12189] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 01/05/2023] Open
Abstract
In this review, we address some recent developments in the field of bacterial protein phosphorylation, focusing specifically on serine/threonine and tyrosine kinases. We present an overview of recent studies outlining the scope of physiological processes that are regulated by phosphorylation, ranging from cell cycle, growth, cell morphology, to metabolism, developmental phenomena, and virulence. Specific emphasis is placed on Mycobacterium tuberculosis as a showcase organism for serine/threonine kinases, and Bacillus subtilis to illustrate the importance of protein phosphorylation in developmental processes. We argue that bacterial serine/threonine and tyrosine kinases have a distinctive feature of phosphorylating multiple substrates and might thus represent integration nodes in the signaling network. Some open questions regarding the evolutionary benefits of relaxed substrate selectivity of these kinases are treated, as well as the notion of nonfunctional 'background' phosphorylation of cellular proteins. We also argue that phosphorylation events for which an immediate regulatory effect is not clearly established should not be dismissed as unimportant, as they may have a role in cross-talk with other post-translational modifications. Finally, recently developed methods for studying protein phosphorylation networks in bacteria are briefly discussed.
Collapse
|
49
|
Wright CJ, Burns LH, Jack AA, Back CR, Dutton LC, Nobbs AH, Lamont RJ, Jenkinson HF. Microbial interactions in building of communities. Mol Oral Microbiol 2013; 28:83-101. [PMID: 23253299 PMCID: PMC3600090 DOI: 10.1111/omi.12012] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 12/31/2022]
Abstract
Establishment of a community is considered to be essential for microbial growth and survival in the human oral cavity. Biofilm communities have increased resilience to physical forces, antimicrobial agents and nutritional variations. Specific cell-to-cell adherence processes, mediated by adhesin-receptor pairings on respective microbial surfaces, are able to direct community development. These interactions co-localize species in mutually beneficial relationships, such as streptococci, veillonellae, Porphyromonas gingivalis and Candida albicans. In transition from the planktonic mode of growth to a biofilm community, microorganisms undergo major transcriptional and proteomic changes. These occur in response to sensing of diffusible signals, such as autoinducer molecules, and to contact with host tissues or other microbial cells. Underpinning many of these processes are intracellular phosphorylation events that regulate a large number of microbial interactions relevant to community formation and development.
Collapse
Affiliation(s)
- Christopher J. Wright
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Logan H. Burns
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Alison A. Jack
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Catherine R. Back
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Lindsay C. Dutton
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Angela H. Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Richard J. Lamont
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| |
Collapse
|
50
|
Temel DB, Dutta K, Alphonse S, Nourikyan J, Grangeasse C, Ghose R. Regulatory interactions between a bacterial tyrosine kinase and its cognate phosphatase. J Biol Chem 2013; 288:15212-28. [PMID: 23543749 DOI: 10.1074/jbc.m113.457804] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclic process of autophosphorylation of the C-terminal tyrosine cluster (YC) of a bacterial tyrosine kinase and its subsequent dephosphorylation following interactions with a counteracting tyrosine phosphatase regulates diverse physiological processes, including the biosynthesis and export of polysaccharides responsible for the formation of biofilms or virulence-determining capsules. We provide here the first detailed insight into this hitherto uncharacterized regulatory interaction at residue-specific resolution using Escherichia coli Wzc, a canonical bacterial tyrosine kinase, and its opposing tyrosine phosphatase, Wzb. The phosphatase Wzb utilizes a surface distal to the catalytic elements of the kinase, Wzc, to dock onto its catalytic domain (WzcCD). WzcCD binds in a largely YC-independent fashion near the Wzb catalytic site, inducing allosteric changes therein. YC dephosphorylation is proximity-mediated and reliant on the elevated concentration of phosphorylated YC near the Wzb active site resulting from WzcCD docking. Wzb principally recognizes the phosphate of its phosphotyrosine substrate and further stabilizes the tyrosine moiety through ring stacking interactions with a conserved active site tyrosine.
Collapse
Affiliation(s)
- Deniz B Temel
- Department of Chemistry, City College of New York, New York, New York 10031, USA
| | | | | | | | | | | |
Collapse
|