1
|
Liu Q, Fong B, Yoo S, Unruh JR, Guo F, Yu Z, Chen J, Si K, Li R, Zhou C. Nascent mitochondrial proteins initiate the localized condensation of cytosolic protein aggregates on the mitochondrial surface. Proc Natl Acad Sci U S A 2023; 120:e2300475120. [PMID: 37494397 PMCID: PMC10401023 DOI: 10.1073/pnas.2300475120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Eukaryotes organize cellular contents into membrane-bound organelles and membrane-less condensates, for example, protein aggregates. An unsolved question is why the ubiquitously distributed proteins throughout the cytosol give rise to spatially localized protein aggregates on the organellar surface, like mitochondria. We report that the mitochondrial import receptor Tom70 is involved in the localized condensation of protein aggregates in budding yeast and human cells. This is because misfolded cytosolic proteins do not autonomously aggregate in vivo; instead, they are recruited to the condensation sites initiated by Tom70's substrates (nascent mitochondrial proteins) on the organellar membrane using multivalent hydrophobic interactions. Knocking out Tom70 partially impairs, while overexpressing Tom70 increases the formation and association between cytosolic protein aggregates and mitochondria. In addition, ectopic targeting Tom70 and its substrates to the vacuole surface is able to redirect the localized aggregation from mitochondria to the vacuolar surface. Although other redundant mechanisms may exist, this nascent mitochondrial proteins-based initiation of protein aggregation likely explains the localized condensation of otherwise ubiquitously distributed molecules on the mitochondria. Disrupting the mitochondrial association of aggregates impairs their asymmetric retention during mitosis and reduces the mitochondrial import of misfolded proteins, suggesting a proteostasis role of the organelle-condensate interactions.
Collapse
Affiliation(s)
- Qingqing Liu
- Buck Institute for Research on Aging, Novato, CA94945
| | - Benjamin Fong
- Buck Institute for Research on Aging, Novato, CA94945
| | - Seungmin Yoo
- Buck Institute for Research on Aging, Novato, CA94945
| | - Jay R. Unruh
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Jingjing Chen
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Kausik Si
- Stowers Institute for Medical Research, Kansas City, MO64110
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS66160
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD21218
- Mechanobiology Institute and Department of Biological Science, National University of Singapore, Singapore117411, Singapore
| | - Chuankai Zhou
- Buck Institute for Research on Aging, Novato, CA94945
| |
Collapse
|
2
|
Busch JD, Fielden LF, Pfanner N, Wiedemann N. Mitochondrial protein transport: Versatility of translocases and mechanisms. Mol Cell 2023; 83:890-910. [PMID: 36931257 DOI: 10.1016/j.molcel.2023.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/17/2023]
Abstract
Biogenesis of mitochondria requires the import of approximately 1,000 different precursor proteins into and across the mitochondrial membranes. Mitochondria exhibit a wide variety of mechanisms and machineries for the translocation and sorting of precursor proteins. Five major import pathways that transport proteins to their functional intramitochondrial destination have been elucidated; these pathways range from the classical amino-terminal presequence-directed pathway to pathways using internal or even carboxy-terminal targeting signals in the precursors. Recent studies have provided important insights into the structural organization of membrane-embedded preprotein translocases of mitochondria. A comparison of the different translocases reveals the existence of at least three fundamentally different mechanisms: two-pore-translocase, β-barrel switching, and transport cavities open to the lipid bilayer. In addition, translocases are physically engaged in dynamic interactions with respiratory chain complexes, metabolite transporters, quality control factors, and machineries controlling membrane morphology. Thus, mitochondrial preprotein translocases are integrated into multi-functional networks of mitochondrial and cellular machineries.
Collapse
Affiliation(s)
- Jakob D Busch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Laura F Fielden
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
3
|
Lee J, Moon B, Lee DW, Hwang I. Translation rate underpins specific targeting of N-terminal transmembrane proteins to mitochondria. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36897023 DOI: 10.1111/jipb.13475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Protein biogenesis is a complex process, and complexity is greatly increased in eukaryotic cells through specific targeting of proteins to different organelles. To direct targeting, organellar proteins carry an organelle-specific targeting signal for recognition by organelle-specific import machinery. However, the situation is confusing for transmembrane domain (TMD)-containing signal-anchored (SA) proteins of various organelles because TMDs function as an endoplasmic reticulum (ER) targeting signal. Although ER targeting of SA proteins is well understood, how they are targeted to mitochondria and chloroplasts remains elusive. Here, we investigated how the targeting specificity of SA proteins is determined for specific targeting to mitochondria and chloroplasts. Mitochondrial targeting requires multiple motifs around and within TMDs: a basic residue and an arginine-rich region flanking the N- and C-termini of TMDs, respectively, and an aromatic residue in the C-terminal side of the TMD that specify mitochondrial targeting in an additive manner. These motifs play a role in slowing down the elongation speed during translation, thereby ensuring mitochondrial targeting in a co-translational manner. By contrast, the absence of any of these motifs individually or together causes at varying degrees chloroplast targeting that occurs in a post-translational manner.
Collapse
Affiliation(s)
- Junho Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | - Byeongho Moon
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, South Korea
- Department Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| |
Collapse
|
4
|
Zhou J, Jung M, Dimmer KS, Rapaport D. The multi-factor modulated biogenesis of the mitochondrial multi-span protein Om14. J Biophys Biochem Cytol 2022; 221:213056. [PMID: 35262629 PMCID: PMC8916117 DOI: 10.1083/jcb.202112030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
The mitochondrial outer membrane (MOM) harbors proteins that traverse the membrane via several helical segments and are called multi-span proteins. To obtain new insights into the biogenesis of these proteins, we utilized yeast mitochondria and the multi-span protein Om14. Testing different truncation variants, we show that while only the full-length protein contains all the information that assures perfect targeting specificity, shorter variants are targeted to mitochondria with compromised fidelity. Employing a specific insertion assay and various deletion strains, we show that proteins exposed to the cytosol do not contribute significantly to the biogenesis process. We further demonstrate that Mim1 and Porin support optimal membrane integration of Om14 but none of them are absolutely required. Unfolding of newly synthesized Om14, its optimal hydrophobicity, and higher fluidity of the membrane enhanced the import capacity of Om14. Collectively, these findings suggest that MOM multi-span proteins follow different biogenesis pathways in which proteinaceous elements and membrane behavior contribute to a variable extent to the combined efficiency.
Collapse
Affiliation(s)
- Jialin Zhou
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Kai S Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Shvetsova A, Masud AJ, Schneider L, Bergmann U, Monteuuis G, Miinalainen IJ, Hiltunen JK, Kastaniotis AJ. A hunt for OM45 synthetic petite interactions in Saccharomyces cerevisiae reveals a role for Miro GTPase Gem1p in cristae structure maintenance. Microbiologyopen 2021; 10:e1238. [PMID: 34713605 PMCID: PMC8501180 DOI: 10.1002/mbo3.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022] Open
Abstract
Om45 is a major protein of the yeast's outer mitochondrial membrane under respiratory conditions. However, the cellular role of the protein has remained obscure. Previously, deletion mutant phenotypes have not been found, and clear amino acid sequence similarities that would allow inferring its functional role are not available. In this work, we describe synthetic petite mutants of GEM1 and UGO1 that depend on the presence of OM45 for respiratory growth, as well as the identification of several multicopy suppressors of the synthetic petite phenotypes. In the analysis of our mutants, we demonstrate that Om45p and Gem1p have a collaborative role in the maintenance of mitochondrial morphology, cristae structure, and mitochondrial DNA maintenance. A group of multicopy suppressors rescuing the synthetic lethal phenotypes of the mutants on non-fermentable carbon sources additionally supports this result. Our results imply that the synthetic petite phenotypes we observed are due to the disturbance of the inner mitochondrial membrane and point to this mitochondrial sub-compartment as the main target of action of Om45p, Ugo1p, and the yeast Miro GTPase Gem1p.
Collapse
Affiliation(s)
- Antonina Shvetsova
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Ali J. Masud
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Laura Schneider
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Geoffray Monteuuis
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
- Present address:
Department of Biochemistry and Developmental BiologyUniversity of HelsinkiHelsinkiFinland
| | - Ilkka J. Miinalainen
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - J. Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | | |
Collapse
|
6
|
Drwesh L, Rapaport D. Biogenesis pathways of α-helical mitochondrial outer membrane proteins. Biol Chem 2021; 401:677-686. [PMID: 32017702 DOI: 10.1515/hsz-2019-0440] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/21/2020] [Indexed: 01/23/2023]
Abstract
Mitochondria harbor in their outer membrane (OM) proteins of different topologies. These proteins are encoded by the nuclear DNA, translated on cytosolic ribosomes and inserted into their target organelle by sophisticated protein import machineries. Recently, considerable insights have been accumulated on the insertion pathways of proteins into the mitochondrial OM. In contrast, little is known regarding the early cytosolic stages of their biogenesis. It is generally presumed that chaperones associate with these proteins following their synthesis in the cytosol, thereby keeping them in an import-competent conformation and preventing their aggregation and/or mis-folding and degradation. In this review, we outline the current knowledge about the biogenesis of different mitochondrial OM proteins with various topologies, and highlight the recent findings regarding their import pathways starting from early cytosolic events until their recognition on the mitochondrial surface that lead to their final insertion into the mitochondrial OM.
Collapse
Affiliation(s)
- Layla Drwesh
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Wojcik S, Kriechbaumer V. Go your own way: membrane-targeting sequences. PLANT PHYSIOLOGY 2021; 185:608-618. [PMID: 33822216 PMCID: PMC8133554 DOI: 10.1093/plphys/kiaa058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/19/2020] [Indexed: 05/05/2023]
Abstract
Membrane-targeting sequences, connected targeting mechanisms, and co-factors orchestrate primary targeting of proteins to membranes.
Collapse
Affiliation(s)
- Stefan Wojcik
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Verena Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Author for communication: (V.K.)
| |
Collapse
|
8
|
Cecchini NM, Speed DJ, Roychoudhry S, Greenberg JT. Kinases and protein motifs required for AZI1 plastid localization and trafficking during plant defense induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1615-1629. [PMID: 33342031 PMCID: PMC8048937 DOI: 10.1111/tpj.15137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 05/10/2023]
Abstract
The proper subcellular localization of defense factors is an important part of the plant immune system. A key component for systemic resistance, lipid transfer protein (LTP)-like AZI1, is needed for the systemic movement of the priming signal azelaic acid (AZA) and a pool of AZI1 exists at the site of AZA production, the plastid envelope. Moreover, after systemic defense-triggering infections, the proportion of AZI1 localized to plastids increases. However, AZI1 does not possess a classical plastid transit peptide that can explain its localization. Instead, AZI1 uses a bipartite N-terminal signature that allows for its plastid targeting. Furthermore, the kinases MPK3 and MPK6, associated with systemic immunity, promote the accumulation of AZI1 at plastids during priming induction. Our results indicate the existence of a mode of plastid targeting possibly related to defense responses.
Collapse
Affiliation(s)
- Nicolás M. Cecchini
- Department of Molecular Genetics and Cell BiologyThe University of Chicago929 East 57th Street GCIS 524WChicagoIL60637USA
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC‐CONICET) and Departamento de Química Biológica Ranwel CaputtoFacultad de Ciencias QuímicasUniversidad Nacional de CórdobaHaya de la Torre y Medina Allende – Ciudad UniversitariaCórdobaX5000HUAArgentina
| | - DeQuantarius J. Speed
- Department of Molecular Genetics and Cell BiologyThe University of Chicago929 East 57th Street GCIS 524WChicagoIL60637USA
| | - Suruchi Roychoudhry
- Department of Molecular Genetics and Cell BiologyThe University of Chicago929 East 57th Street GCIS 524WChicagoIL60637USA
- Centre for Plant SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell BiologyThe University of Chicago929 East 57th Street GCIS 524WChicagoIL60637USA
| |
Collapse
|
9
|
Gupta A, Becker T. Mechanisms and pathways of mitochondrial outer membrane protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148323. [PMID: 33035511 DOI: 10.1016/j.bbabio.2020.148323] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/29/2022]
Abstract
Outer membrane proteins integrate mitochondria into the cellular environment. They warrant exchange of small molecules like metabolites and ions, transport proteins into mitochondria, form contact sites to other cellular organelles for lipid exchange, constitute a signaling platform for apoptosis and inflammation and mediate organelle fusion and fission. The outer membrane contains two types of integral membrane proteins. Proteins with a transmembrane β-barrel structure and proteins with a single or multiple α-helical membrane spans. All outer membrane proteins are produced on cytosolic ribosomes and imported into the target organelle. Precursors of β-barrel and α-helical proteins are transported into the outer membrane via distinct import routes. The translocase of the outer membrane (TOM complex) transports β-barrel precursors across the outer membrane and the sorting and assembly machinery (SAM complex) inserts them into the target membrane. The mitochondrial import (MIM) complex constitutes the major integration site for α-helical embedded proteins. The import of some MIM-substrates involves TOM receptors, while others are imported in a TOM-independent manner. Remarkably, TOM, SAM and MIM complexes dynamically interact to import a large set of different proteins and to coordinate their assembly into protein complexes. Thus, protein import into the mitochondrial outer membrane involves a dynamic platform of protein translocases.
Collapse
Affiliation(s)
- Arushi Gupta
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Universität Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
10
|
Sinzel M, Zeitler A, Dimmer KS. Interaction network of the mitochondrial outer membrane protein Mcp3. FEBS Lett 2018; 592:3210-3220. [PMID: 30192984 DOI: 10.1002/1873-3468.13243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 02/04/2023]
Abstract
Mitochondria are organelles containing two membranes that are distinct in composition and function. A role of the mitochondrial outer membrane (MOM) is to mediate contact of the organelle with the rest of the cell. In yeast, the MOM contains about 40 different integral proteins. Recently, we described the MOM protein Mcp3, which can serve as a multicopy suppressor of loss of ERMES complex that mediates mitochondria-endoplasmic reticulum contacts. To shed further light on the role of Mcp3 in the MOM, we analyzed its physical interaction with other proteins. We show that Mcp3 interacts with the MOM protein Om45 and the inner membrane protein Aim19. Our observations hint toward a potential involvement of Mcp3 in a structural and/or functional link between both mitochondrial membranes.
Collapse
Affiliation(s)
- Monika Sinzel
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Andreas Zeitler
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Kai S Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| |
Collapse
|
11
|
Shi Y, Wang L, Zhang J, Zhai Y, Sun F. Determining the target protein localization in 3D using the combination of FIB-SEM and APEX2. BIOPHYSICS REPORTS 2017; 3:92-99. [PMID: 29238746 PMCID: PMC5719812 DOI: 10.1007/s41048-017-0043-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/24/2017] [Indexed: 11/05/2022] Open
Abstract
Determining the cellular localization of proteins of interest at nanometer resolution is necessary for elucidating their functions. Besides super-resolution fluorescence microscopy, conventional electron microscopy (EM) combined with immunolabeling or clonable EM tags provides a unique approach to correlate protein localization information and cellular ultrastructural information. However, there are still rare cases of such correlation in three-dimensional (3D) spaces. Here, we developed an approach by combining the focus ion beam scanning electron microscopy (FIB-SEM) and a promising clonable EM tag APEX2 (an enhanced ascorbate peroxidase 2) to determine the target protein localization within 3D cellular ultrastructural context. We further utilized this approach to study the 3D localization of mitochondrial dynamics-related proteins (MiD49/51, Mff, Fis1, and Mfn2) in the cells where the target proteins were overexpressed. We found that all the target proteins were located at the surface of the mitochondrial outer membrane accompanying with mitochondrial clusters. Mid49/51, Mff, and hFis1 spread widely around the mitochondrial surface while Mfn2 only exists at the contact sites.
Collapse
Affiliation(s)
- Yang Shi
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China.,Sino-Danish Center for Education and Research, Beijing, 100190 China
| | - Li Wang
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianguo Zhang
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yujia Zhai
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China.,Sino-Danish Center for Education and Research, Beijing, 100190 China
| |
Collapse
|
12
|
Bruggisser J, Käser S, Mani J, Schneider A. Biogenesis of a Mitochondrial Outer Membrane Protein in Trypanosoma brucei: TARGETING SIGNAL AND DEPENDENCE ON A UNIQUE BIOGENESIS FACTOR. J Biol Chem 2017; 292:3400-3410. [PMID: 28100781 DOI: 10.1074/jbc.m116.755983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/16/2017] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial outer membrane (OM) contains single and multiple membrane-spanning proteins that need to contain signals that ensure correct targeting and insertion into the OM. The biogenesis of such proteins has so far essentially only been studied in yeast and related organisms. Here we show that POMP10, an OM protein of the early diverging protozoan Trypanosoma brucei, is signal-anchored. Transgenic cells expressing variants of POMP10 fused to GFP demonstrate that the N-terminal membrane-spanning domain flanked by a few positively charged or neutral residues is both necessary and sufficient for mitochondrial targeting. Carbonate extraction experiments indicate that although the presence of neutral instead of positively charged residues did not interfere with POMP10 localization, it weakened its interaction with the OM. Expression of GFP-tagged POMP10 in inducible RNAi cell lines shows that its mitochondrial localization depends on pATOM36 but does not require Sam50 or ATOM40, the trypanosomal analogue of the Tom40 import pore. pATOM36 is a kinetoplastid-specific OM protein that has previously been implicated in the assembly of OM proteins and in mitochondrial DNA inheritance. In summary, our results show that although the features of the targeting signal in signal-anchored proteins are widely conserved, the protein machinery that mediates their biogenesis is not.
Collapse
Affiliation(s)
- Julia Bruggisser
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Sandro Käser
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Jan Mani
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
13
|
Murcha MW, Kmiec B, Kubiszewski-Jakubiak S, Teixeira PF, Glaser E, Whelan J. Protein import into plant mitochondria: signals, machinery, processing, and regulation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6301-35. [PMID: 25324401 DOI: 10.1093/jxb/eru399] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The majority of more than 1000 proteins present in mitochondria are imported from nuclear-encoded, cytosolically synthesized precursor proteins. This impressive feat of transport and sorting is achieved by the combined action of targeting signals on mitochondrial proteins and the mitochondrial protein import apparatus. The mitochondrial protein import apparatus is composed of a number of multi-subunit protein complexes that recognize, translocate, and assemble mitochondrial proteins into functional complexes. While the core subunits involved in mitochondrial protein import are well conserved across wide phylogenetic gaps, the accessory subunits of these complexes differ in identity and/or function when plants are compared with Saccharomyces cerevisiae (yeast), the model system for mitochondrial protein import. These differences include distinct protein import receptors in plants, different mechanistic operation of the intermembrane protein import system, the location and activity of peptidases, the function of inner-membrane translocases in linking the outer and inner membrane, and the association/regulation of mitochondrial protein import complexes with components of the respiratory chain. Additionally, plant mitochondria share proteins with plastids, i.e. dual-targeted proteins. Also, the developmental and cell-specific nature of mitochondrial biogenesis is an aspect not observed in single-celled systems that is readily apparent in studies in plants. This means that plants provide a valuable model system to study the various regulatory processes associated with protein import and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
14
|
Pogozheva ID, Mosberg HI, Lomize AL. Life at the border: adaptation of proteins to anisotropic membrane environment. Protein Sci 2014; 23:1165-96. [PMID: 24947665 DOI: 10.1002/pro.2508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/25/2022]
Abstract
This review discusses main features of transmembrane (TM) proteins which distinguish them from water-soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co-translational and post-translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large-scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen-bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region-between double bonds and carbonyl groups of lipids. These "midpolar" regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side-chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein-lipid binding.
Collapse
Affiliation(s)
- Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109-1065
| | | | | |
Collapse
|
15
|
Song J, Tamura Y, Yoshihisa T, Endo T. A novel import route for an N-anchor mitochondrial outer membrane protein aided by the TIM23 complex. EMBO Rep 2014; 15:670-7. [PMID: 24781694 DOI: 10.1002/embr.201338142] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The membrane topology of Om45 in the yeast mitochondrial outer membrane (OM) is under debate. Here, we confirm that Om45 is anchored to the OM from the intermembrane space (IMS) by its N-terminal hydrophobic segment. We show that import of Om45 requires the presequence receptors, Tom20 and Tom22, and the import channel of Tom40. Unlike any of the known OM proteins, Om45 import requires the TIM23 complex in the inner membrane, a translocator for presequence-containing proteins, and the membrane potential (ΔΨ). Therefore, Om45 is anchored to the OM via the IMS by a novel import pathway involving the TIM23 complex.
Collapse
Affiliation(s)
- Jiyao Song
- Department of Chemistry, Graduate School of Science Nagoya University, Chikusa-ku Nagoya, Japan
| | - Yasushi Tamura
- Research Center for Materials Science Nagoya University, Chikusa-ku Nagoya, Japan
| | - Tohru Yoshihisa
- Graduate School of Life Science University of Hyogo, Hyogo, Japan
| | - Toshiya Endo
- Department of Chemistry, Graduate School of Science Nagoya University, Chikusa-ku Nagoya, Japan Structural Biology Research Center Nagoya University, Chikusa-ku Nagoya, Japan JST CREST Nagoya University, Chikusa-ku Nagoya, Japan
| |
Collapse
|
16
|
Wenz LS, Opaliński L, Schuler MH, Ellenrieder L, Ieva R, Böttinger L, Qiu J, van der Laan M, Wiedemann N, Guiard B, Pfanner N, Becker T. The presequence pathway is involved in protein sorting to the mitochondrial outer membrane. EMBO Rep 2014; 15:678-85. [PMID: 24781695 DOI: 10.1002/embr.201338144] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mitochondrial outer membrane contains integral α-helical and β-barrel proteins that are imported from the cytosol. The machineries importing β-barrel proteins have been identified, however, different views exist on the import of α-helical proteins. It has been reported that the biogenesis of Om45, the most abundant signal-anchored protein, does not depend on proteinaceous components, but involves direct insertion into the outer membrane. We show that import of Om45 occurs via the translocase of the outer membrane and the presequence translocase of the inner membrane. Assembly of Om45 in the outer membrane involves the MIM machinery. Om45 thus follows a new mitochondrial biogenesis pathway that uses elements of the presequence import pathway to direct a protein to the outer membrane.
Collapse
Affiliation(s)
- Lena-Sophie Wenz
- Institut für Biochemie und Molekularbiologie, ZBMZ Universität Freiburg, Freiburg, Germany Faculty of Biology, Universität Freiburg, Freiburg, Germany
| | - Lukasz Opaliński
- Institut für Biochemie und Molekularbiologie, ZBMZ Universität Freiburg, Freiburg, Germany
| | - Max-Hinderk Schuler
- Institut für Biochemie und Molekularbiologie, ZBMZ Universität Freiburg, Freiburg, Germany
| | - Lars Ellenrieder
- Institut für Biochemie und Molekularbiologie, ZBMZ Universität Freiburg, Freiburg, Germany Faculty of Biology, Universität Freiburg, Freiburg, Germany
| | - Raffaele Ieva
- Institut für Biochemie und Molekularbiologie, ZBMZ Universität Freiburg, Freiburg, Germany
| | - Lena Böttinger
- Institut für Biochemie und Molekularbiologie, ZBMZ Universität Freiburg, Freiburg, Germany Faculty of Biology, Universität Freiburg, Freiburg, Germany
| | - Jian Qiu
- Institut für Biochemie und Molekularbiologie, ZBMZ Universität Freiburg, Freiburg, Germany Spemann Graduate School of Biology and Medicine, Universität Freiburg, Freiburg, Germany
| | - Martin van der Laan
- Institut für Biochemie und Molekularbiologie, ZBMZ Universität Freiburg, Freiburg, Germany BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, ZBMZ Universität Freiburg, Freiburg, Germany BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, France
| | - Nikolaus Pfanner
- Institut für Biochemie und Molekularbiologie, ZBMZ Universität Freiburg, Freiburg, Germany BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ Universität Freiburg, Freiburg, Germany BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Yuan Y, Li M, Hong N, Hong Y. Correlative light and electron microscopic analyses of mitochondrial distribution in blastomeres of early fish embryos. FASEB J 2014; 28:577-585. [DOI: 10.1096/fj.13-233635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Yongming Yuan
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Mingyou Li
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Ni Hong
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Yunhan Hong
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| |
Collapse
|
18
|
Lee J, Kim DH, Hwang I. Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria. FRONTIERS IN PLANT SCIENCE 2014; 5:173. [PMID: 24808904 PMCID: PMC4010795 DOI: 10.3389/fpls.2014.00173] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/10/2014] [Indexed: 05/21/2023]
Abstract
Chloroplasts and mitochondria are endosymbiotic organelles thought to be derived from endosymbiotic bacteria. In present-day eukaryotic cells, these two organelles play pivotal roles in photosynthesis and ATP production. In addition to these major activities, numerous reactions, and cellular processes that are crucial for normal cellular functions occur in chloroplasts and mitochondria. To function properly, these organelles constantly communicate with the surrounding cellular compartments. This communication includes the import of proteins, the exchange of metabolites and ions, and interactions with other organelles, all of which heavily depend on membrane proteins localized to the outer envelope membranes. Therefore, correct and efficient targeting of these membrane proteins, which are encoded by the nuclear genome and translated in the cytosol, is critically important for organellar function. In this review, we summarize the current knowledge of the mechanisms of protein targeting to the outer membranes of mitochondria and chloroplasts in two different directions, as well as targeting signals and cytosolic factors.
Collapse
Affiliation(s)
- Junho Lee
- Cellular Systems Biology, Department of Life Sciences, Pohang University of Science and TechnologyPohang, South Korea
| | - Dae Heon Kim
- Cellular Systems Biology, Department of Life Sciences, Pohang University of Science and TechnologyPohang, South Korea
| | - Inhwan Hwang
- Cellular Systems Biology, Department of Life Sciences, Pohang University of Science and TechnologyPohang, South Korea
- Division of Integrative Biosciences and Bioengineering, Pohang University of Science and TechnologyPohang, South Korea
- *Correspondence: Inhwan Hwang, Cellular Systems Biology, Department of Life Sciences and Division of Integrative Biosciences and Bioengineering, Pohang University of Science and Technology, Hyojadong, Nam-Gu, Pohang 790-784, South Korea e-mail:
| |
Collapse
|
19
|
Krumpe K, Rapaport D. An assay to monitor the membrane integration of single-span proteins. Methods Mol Biol 2013; 1033:301-306. [PMID: 23996185 DOI: 10.1007/978-1-62703-487-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In vitro import experiments with isolated organelles are a powerful tool for investigation of the biogenesis of proteins. A key issue in such experiments is an assay to distinguish between correctly and incorrectly imported proteins. Here we describe an assay to monitor in vitro the proper membrane integration of single-span proteins. In this assay non-imported proteins are distinguished from correctly imported protein species by labelling of unprotected cysteine residues and a resulting migration shift in SDS-PAGE.
Collapse
Affiliation(s)
- Katrin Krumpe
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
20
|
Chen R, Braun GB, Luo X, Sugahara KN, Teesalu T, Ruoslahti E. Application of a proapoptotic peptide to intratumorally spreading cancer therapy. Cancer Res 2012; 73:1352-61. [PMID: 23248118 DOI: 10.1158/0008-5472.can-12-1979] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bit1 is a proapoptotic mitochondrial protein associated with anoikis. Upon cell detachment, Bit1 is released into the cytoplasm and triggers caspase-independent cell death. Bit1 consists of 179 amino acids; for the C-terminal, two thirds of the molecule functions as a peptidyl-tRNA hydrolase, whereas the N-terminus contains a mitochondrial localization signal. Here, we localize the cell death domain (CDD) to the N-terminal 62 amino acids of Bit1 by transfecting cells with truncated Bit1 cDNA constructs. CDD was more potent in killing cells than the full-length Bit1 protein when equivalent amounts of cDNA were transfected. To develop Bit1 CDD into a cancer therapeutic, we engineered a recombinant protein consisting of the CDD fused to iRGD, which is a tumor-specific peptide with unique tumor-penetrating and cell-internalizing properties. iRGD-CDD internalized into cultured tumor cells through a neuropilin-1-activated pathway and triggered cell death. Importantly, iRGD-CDD spread extensively within the tumor when injected intratumorally into orthotopically implanted breast tumors in mice. Repeated treatment with iRGD-CDD strongly inhibited tumor growth, resulting in an average reduction of 77% in tumor volume and eradication of some tumors. The caspase independence of Bit1-induced cell death makes CDD a potentially attractive anticancer agent, because tumor resistance to the main mechanisms of apoptosis is circumvented. Using iRGD to facilitate the spreading of a therapeutic agent throughout the tumor mass may be a useful adjunct to local therapy for tumors that are surgically inoperable or difficult to treat systemically.
Collapse
Affiliation(s)
- Renwei Chen
- Center for Nanomedicine, Sanford-Burnham Medical Research Institute, University of California, Santa Barbara, CA, USA
| | | | | | | | | | | |
Collapse
|
21
|
Mackiewicz P, Bodył A, Gagat P. Protein import into the photosynthetic organelles of Paulinella chromatophora and its implications for primary plastid endosymbiosis. Symbiosis 2012; 58:99-107. [PMID: 23482692 PMCID: PMC3589627 DOI: 10.1007/s13199-012-0202-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
Abstract
The rhizarian amoeba Paulinella chromatophora harbors two photosynthetically active organelles of cyanobacterial origin that have been acquired independently of classic primary plastids. Because their acquisition did take place relatively recently, they are expected to provide new insight into the ancient cyanobacterial primary endosymbiosis. During the process of Paulinella endosymbiont-to-organelle transformation, more than 30 genes have been transferred from the organelle to the host nuclear genome via endosymbiotic gene transfer (EGT). The article discusses step-by-step protein import of EGT-derived proteins into Paulinella photosynthetic organelles with the emphasis on the nature of their targeting signals and the final passage of proteins through the inner organelle membrane. The latter most probably involves a simplified Tic translocon composed of Tic21- and Tic32-like proteins as well as a Hsp70-based motor responsible for pulling of imported proteins into the organelle matrix. Our results indicate that although protein translocation across the inner membrane of Paulinella photosynthetic organelles seems to resemble the one in classic primary plastids, the transport through the outer membrane does not. The differences could result from distinct integration pathways of Paulinella photosynthetic organelles and primary plastids with their respective host cells.
Collapse
Affiliation(s)
- Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | - Andrzej Bodył
- Laboratory of Evolutionary Protistology, Division of Invertebrate Biology, Evolution and Conservation, Faculty of Biological Sciences, University of Wrocław, ul. Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | - Przemysław Gagat
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| |
Collapse
|
22
|
Zhang Y, Berndt U, Gölz H, Tais A, Oellerer S, Wölfle T, Fitzke E, Rospert S. NAC functions as a modulator of SRP during the early steps of protein targeting to the endoplasmic reticulum. Mol Biol Cell 2012; 23:3027-40. [PMID: 22740632 PMCID: PMC3418300 DOI: 10.1091/mbc.e12-02-0112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
NAC acts as a modulator of SRP function. It can bind to signal sequences directly. SRP initially displaces NAC from RNCs; however, when the signal sequence emerges, trimeric NAC·RNC·SRP complexes form. Upon docking NAC·RNC·SRP complexes to the ER, NAC remains bound, allowing NAC to shield cytosolically exposed nascent chain domains. Nascent polypeptide-associated complex (NAC) was initially found to bind to any segment of the nascent chain except signal sequences. In this way, NAC is believed to prevent mistargeting due to binding of signal recognition particle (SRP) to signalless ribosome nascent chain complexes (RNCs). Here we revisit the interplay between NAC and SRP. NAC does not affect SRP function with respect to signalless RNCs; however, NAC does affect SRP function with respect to RNCs targeted to the endoplasmic reticulum (ER). First, early recruitment of SRP to RNCs containing a signal sequence within the ribosomal tunnel is NAC dependent. Second, NAC is able to directly and tightly bind to nascent signal sequences. Third, SRP initially displaces NAC from RNCs; however, when the signal sequence emerges further, trimeric NAC·RNC·SRP complexes form. Fourth, upon docking to the ER membrane NAC remains bound to RNCs, allowing NAC to shield cytosolically exposed nascent chain domains not only before but also during cotranslational translocation. The combined data indicate a functional interplay between NAC and SRP on ER-targeted RNCs, which is based on the ability of the two complexes to bind simultaneously to distinct segments of a single nascent chain.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lauffer S, Mäbert K, Czupalla C, Pursche T, Hoflack B, Rödel G, Krause-Buchholz U. Saccharomyces cerevisiae porin pore forms complexes with mitochondrial outer membrane proteins Om14p and Om45p. J Biol Chem 2012; 287:17447-17458. [PMID: 22461620 DOI: 10.1074/jbc.m111.328328] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Numerous transport processes occur between the two mitochondrial (mt) membranes due to the diverse functions and metabolic processes of the mt organelle. The metabolite and ion transport through the mt outer membrane (OM) is widely assumed to be mediated by the porin pore, whereas in the mt inner membrane (IM) specific carriers are responsible for transport processes. Here, we provide evidence by means of Blue Native (BN)-PAGE analysis, co-immunoprecipitation, and tandem affinity purification that the two mt OM proteins Om14p and Om45p associate with the porin pore. Porin molecules seem to assemble independently to build the core unit. A subpopulation of these core units interacts with Om14p and Om45p. With preparative tandem affinity purification followed by MS analysis, we could identify interaction partners of this OM complex, which are mainly localized within the mt IM and function as carriers for diverse molecules. We propose a model for the role of the two OM proteins in addressing the porin pore to bind to specific channels in the mt IM to facilitate transport of metabolites.
Collapse
Affiliation(s)
- Susann Lauffer
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden and.
| | - Katrin Mäbert
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden and
| | - Cornelia Czupalla
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Theresia Pursche
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Bernard Hoflack
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Gerhard Rödel
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden and
| | | |
Collapse
|
24
|
Membrane integration of a mitochondrial signal-anchored protein does not require additional proteinaceous factors. Biochem J 2012; 442:381-9. [DOI: 10.1042/bj20111363] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The MOM (mitochondrial outer membrane) contains SA (signal-anchored) proteins that bear at their N-terminus a single hydrophobic segment that serves as both a mitochondrial targeting signal and an anchor at the membrane. These proteins, like the vast majority of mitochondrial proteins, are encoded in the nucleus and have to be imported into the organelle. Currently, the mechanisms by which they are targeted to and inserted into the OM (outer membrane) are unclear. To shed light on these issues, we employed a recombinant version of the SA protein OM45 and a synthetic peptide corresponding to its signal-anchor segment. Both forms are associated with isolated mitochondria independently of cytosolic factors. Interaction with mitochondria was diminished when a mutated form of the signal-anchor was employed. We demonstrate that the signal-anchor peptide acquires an α-helical structure in a lipid environment and adopted a TM (transmembrane) topology within artificial lipid bilayers. Moreover, the peptide's affinity to artificial membranes with OM-like lipid composition was much higher than that of membranes with ER (endoplasmic reticulum)-like lipid composition. Collectively, our results suggest that SA proteins are specifically inserted into the MOM by a process that is not dependent on additional proteins, but is rather facilitated by the distinct lipid composition of this membrane.
Collapse
|
25
|
Dimmer KS, Papić D, Schumann B, Sperl D, Krumpe K, Walther DM, Rapaport D. A crucial role of Mim2 in the biogenesis of mitochondrial outer membrane proteins. J Cell Sci 2012; 125:3464-73. [DOI: 10.1242/jcs.103804] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Most of the mitochondrial outer membrane (MOM) proteins contain helical transmembrane domains. Some of the single span proteins and all known multiple span proteins are inserted into the membrane in a pathway which depends on the MOM protein Mitochondrial Import 1 (Mim1). So far it has been unknown whether additional proteins are required for this process. Here we describe the identification and characterization of Mim2, a novel protein of the mitochondrial outer membrane that has a crucial role in the biogenesis of MOM helical proteins. Mim2 physically and genetically interacts with Mim1 and both proteins form the MIM complex. Cells lacking Mim2 exhibit a severely reduced growth rate and lower steady state levels of helical MOM proteins. In addition, absence of Mim2 leads to compromised assembly of the translocase of the outer mitochondrial membrane (TOM complex), hampered mitochondrial protein import, and defects in mitochondrial morphology. In summary, the current study demonstrates that Mim2 is a novel central player in the biogenesis of MOM proteins.
Collapse
|
26
|
Abstract
Depending on the organism, mitochondria consist approximately of 500-1,400 different proteins. By far most of these proteins are encoded by nuclear genes and synthesized on cytosolic ribosomes. Targeting signals direct these proteins into mitochondria and there to their respective subcompartment: the outer membrane, the intermembrane space (IMS), the inner membrane, and the matrix. Membrane-embedded translocation complexes allow the translocation of proteins across and, in the case of membrane proteins, the insertion into mitochondrial membranes. A small number of proteins are encoded by the mitochondrial genome: Most mitochondrial translation products represent hydrophobic proteins of the inner membrane which-together with many nuclear-encoded proteins-form the respiratory chain complexes. This chapter gives an overview on the mitochondrial protein translocases and the mechanisms by which they drive the transport and assembly of mitochondrial proteins.
Collapse
|
27
|
Mackiewicz P, Bodył A, Gagat P. Possible import routes of proteins into the cyanobacterial endosymbionts/plastids of Paulinella chromatophora. Theory Biosci 2011; 131:1-18. [PMID: 22209953 PMCID: PMC3334493 DOI: 10.1007/s12064-011-0147-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/13/2011] [Indexed: 01/13/2023]
Abstract
The rhizarian amoeba Paulinella chromatophora harbors two photosynthetically active and deeply integrated cyanobacterial endosymbionts acquired ~60 million years ago. Recent genomic analyses of P. chromatophora have revealed the loss of many essential genes from the endosymbiont's genome, and have identified more than 30 genes that have been transferred to the host cell's nucleus through endosymbiotic gene transfer (EGT). This indicates that, similar to classical primary plastids, Paulinella endosymbionts have evolved a transport system to import their nuclear-encoded proteins. To deduce how these proteins are transported, we searched for potential targeting signals in genes for 10 EGT-derived proteins. Our analyses indicate that five proteins carry potential signal peptides, implying they are targeted via the host endomembrane system. One sequence encodes a mitochondrial-like transit peptide, which suggests an import pathway involving a channel protein residing in the outer membrane of the endosymbiont. No N-terminal targeting signals were identified in the four other genes, but their encoded proteins could utilize non-classical targeting signals contained internally or in C-terminal regions. Several amino acids more often found in the Paulinella EGT-derived proteins than in their ancestral set (proteins still encoded in the endosymbiont genome) could constitute such signals. Characteristic features of the EGT-derived proteins are low molecular weight and nearly neutral charge, which both could be adaptations to enhance passage through the peptidoglycan wall present in the intermembrane space of the endosymbiont's envelope. Our results suggest that Paulinella endosymbionts/plastids have evolved several different import routes, as has been shown in classical primary plastids.
Collapse
Affiliation(s)
- Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Przybyszewskiego 63/77, 51-148 Wrocław, Poland.
| | | | | |
Collapse
|
28
|
Lee J, Lee H, Kim J, Lee S, Kim DH, Kim S, Hwang I. Both the hydrophobicity and a positively charged region flanking the C-terminal region of the transmembrane domain of signal-anchored proteins play critical roles in determining their targeting specificity to the endoplasmic reticulum or endosymbiotic organelles in Arabidopsis cells. THE PLANT CELL 2011; 23:1588-607. [PMID: 21515817 PMCID: PMC3101543 DOI: 10.1105/tpc.110.082230] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 03/30/2011] [Accepted: 04/06/2011] [Indexed: 05/20/2023]
Abstract
Proteins localized to various cellular and subcellular membranes play pivotal roles in numerous cellular activities. Accordingly, in eukaryotic cells, the biogenesis of organellar proteins is an essential process requiring their correct localization among various cellular and subcellular membranes. Localization of these proteins is determined by either cotranslational or posttranslational mechanisms, depending on the final destination. However, it is not fully understood how the targeting specificity of membrane proteins is determined in plant cells. Here, we investigate the mechanism by which signal-anchored (SA) proteins are differentially targeted to the endoplasmic reticulum (ER) or endosymbiotic organelles using in vivo targeting, subcellular fractionation, and bioinformatics approaches. For targeting SA proteins to endosymbiotic organelles, the C-terminal positively charged region (CPR) flanking the transmembrane domain (TMD) is necessary but not sufficient. The hydrophobicity of the TMD in CPR-containing proteins also plays a critical role in determining targeting specificity; TMDs with a hydrophobicity value >0.4 on the Wimley and White scale are targeted primarily to the ER, whereas TMDs with lower values are targeted to endosymbiotic organelles. Based on these data, we propose that the CPR and the hydrophobicity of the TMD play a critical role in determining the targeting specificity between the ER and endosymbiotic organelles.
Collapse
Affiliation(s)
- Junho Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Hyunkyung Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jinho Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Sumin Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Dae Heon Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Sanguk Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
- Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
- Address correspondence to
| |
Collapse
|
29
|
Dukanovic J, Rapaport D. Multiple pathways in the integration of proteins into the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:971-80. [DOI: 10.1016/j.bbamem.2010.06.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 11/25/2022]
|
30
|
Intracellular sorting signals for sequential trafficking of human cytomegalovirus UL37 proteins to the endoplasmic reticulum and mitochondria. J Virol 2010; 84:6400-9. [PMID: 20410282 DOI: 10.1128/jvi.00556-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human cytomegalovirus UL37 antiapoptotic proteins, including the predominant UL37 exon 1 protein (pUL37x1), traffic sequentially from the endoplasmic reticulum (ER) through the mitochondrion-associated membrane compartment to the mitochondrial outer membrane (OMM), where they inactivate the proapoptotic activity of Bax. We found that widespread mitochondrial distribution occurs within 1 h of pUL37x1 synthesis. The pUL37x1 mitochondrial targeting signal (MTS) spans its first antiapoptotic domain (residues 5 to 34) and consists of a weak hydrophobicity leader (MTSalpha) and proximal downstream residues (MTSbeta). This MTS arrangement of a hydrophobic leader and downstream proximal basic residues is similar to that of the translocase of the OMM 20, Tom20. We examined whether the UL37 MTS functions analogously to Tom20 leader. Surprisingly, lowered hydropathy of the UL37x1 MTSalpha, predicted to block ER translocation, still allowed dual targeting of mutant to the ER and OMM. However, increased hydropathy of the MTS leader caused exclusion of the UL37x1 high-hydropathy mutant from mitochondrial import. Conversely, UL37 MTSalpha replacement with the Tom20 leader did not retarget pUL37x1 exclusively to the OMM; rather, the UL37x1-Tom20 chimera retained dual trafficking. Moreover, replacement of the UL37 MTSbeta basic residues did not reduce OMM import. Ablation of the MTSalpha posttranslational modification site or of the downstream MTS proline-rich domain (PRD) increased mitochondrial import. Our results suggest that pUL37x1 sequential ER to mitochondrial trafficking requires a weakly hydrophobic leader and is regulated by MTSbeta sequences. Thus, HCMV pUL37x1 uses a mitochondrial importation pathway that is genetically distinguishable from that of known OMM proteins.
Collapse
|
31
|
Two Modular Forms of the Mitochondrial Sorting and Assembly Machinery Are Involved in Biogenesis of α-Helical Outer Membrane Proteins. J Mol Biol 2010; 396:540-9. [DOI: 10.1016/j.jmb.2009.12.026] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 12/11/2009] [Accepted: 12/13/2009] [Indexed: 11/19/2022]
|
32
|
Genetic and functional interactions between the mitochondrial outer membrane proteins Tom6 and Sam37. Mol Cell Biol 2009; 29:5975-88. [PMID: 19797086 DOI: 10.1128/mcb.00069-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TOM complex is the general mitochondrial entry site for newly synthesized proteins. Precursors of beta-barrel proteins initially follow this common pathway and are then relayed to the SAM/TOB complex, which mediates their integration into the outer membrane. Three proteins, Sam50 (Tob55), Sam35 (Tob38/Tom38), and Sam37 (Mas37), have been identified as the core constituents of the latter complex. Sam37 is essential for growth at elevated temperatures, but the function of the protein is currently unresolved. To identify interacting partners of Sam37 and thus shed light on its function, we screened for multicopy suppressors of sam37Delta. We identified the small subunit of the TOM complex, Tom6, as such a suppressor and found a tight genetic interaction between the two proteins. Overexpression of SAM37 suppresses the growth phenotype of tom6Delta, and cells lacking both genes are not viable. The ability of large amounts of Tom6 to suppress the sam37Delta phenotype can be linked to the capacity of Tom6 to stabilize Tom40, an essential beta-barrel protein which is the central component of the TOM complex. Our results suggest that Sam37 is required for growth at higher temperatures, since it enhances the biogenesis of Tom40, and this requirement can be overruled by improved stability of newly synthesized Tom40 molecules.
Collapse
|
33
|
Sengupta D, Truschel S, Bachert C, Linstedt AD. Organelle tethering by a homotypic PDZ interaction underlies formation of the Golgi membrane network. ACTA ACUST UNITED AC 2009; 186:41-55. [PMID: 19581411 PMCID: PMC2712994 DOI: 10.1083/jcb.200902110] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Formation of the ribbon-like membrane network of the Golgi apparatus depends on GM130 and GRASP65, but the mechanism is unknown. We developed an in vivo organelle tethering assaying in which GRASP65 was targeted to the mitochondrial outer membrane either directly or via binding to GM130. Mitochondria bearing GRASP65 became tethered to one another, and this depended on a GRASP65 PDZ domain that was also required for GRASP65 self-interaction. Point mutation within the predicted binding groove of the GRASP65 PDZ domain blocked both tethering and, in a gene replacement assay, Golgi ribbon formation. Tethering also required proximate membrane anchoring of the PDZ domain, suggesting a mechanism that orientates the PDZ binding groove to favor interactions in trans. Thus, a homotypic PDZ interaction mediates organelle tethering in living cells.
Collapse
Affiliation(s)
- Debrup Sengupta
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
34
|
Mills RD, Trewhella J, Qiu TW, Welte T, Ryan TM, Hanley T, Knott RB, Lithgow T, Mulhern TD. Domain Organization of the Monomeric Form of the Tom70 Mitochondrial Import Receptor. J Mol Biol 2009; 388:1043-58. [DOI: 10.1016/j.jmb.2009.03.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/24/2009] [Accepted: 03/30/2009] [Indexed: 11/28/2022]
|
35
|
Gamberi T, Magherini F, Borro M, Gentile G, Cavalieri D, Marchi E, Modesti A. Novel insights into phenotype and mitochondrial proteome of yeast mutants lacking proteins Sco1p or Sco2p. Mitochondrion 2009; 9:103-14. [DOI: 10.1016/j.mito.2009.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/06/2008] [Accepted: 01/05/2009] [Indexed: 10/21/2022]
|
36
|
Mitochondrion-enriched anionic phospholipids facilitate flock house virus RNA polymerase membrane association. J Virol 2009; 83:4498-507. [PMID: 19244330 DOI: 10.1128/jvi.00040-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
One characteristic of all positive-strand RNA viruses is the necessity to assemble viral RNA replication complexes on host intracellular membranes, a process whose molecular details are poorly understood. To study viral replication complex assembly we use the established model system of Flock House virus (FHV), which assembles its replication complexes on the mitochondrial outer membrane. The FHV RNA-dependent RNA polymerase, protein A, is the only viral protein necessary for genome replication in the budding yeast Saccharomyces cerevisiae. To examine the host components involved in protein A-membrane interactions, an initial step of FHV RNA replication complex assembly, we established an in vitro protein A membrane association assay. Protein A translated in vitro rapidly and specifically associated with mitochondria isolated from yeast, insect, and mammalian cells. This process was temperature dependent but independent of protease-sensitive mitochondrial outer membrane components or the host mitochondrial import machinery. Furthermore, lipid-binding studies revealed that protein A preferentially bound to specific anionic phospholipids, in particular the mitochondrion-specific phospholipid cardiolipin. These studies implicate membrane phospholipids as important host determinants for FHV RNA polymerase membrane association and provide evidence for the involvement of host phospholipids in positive-strand RNA virus membrane-specific targeting.
Collapse
|
37
|
Hwang YT, McCartney AW, Gidda SK, Mullen RT. Localization of the Carnation Italian ringspot virus replication protein p36 to the mitochondrial outer membrane is mediated by an internal targeting signal and the TOM complex. BMC Cell Biol 2008; 9:54. [PMID: 18811953 PMCID: PMC2573885 DOI: 10.1186/1471-2121-9-54] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 09/23/2008] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Carnation Italian ringspot virus (CIRV) is a positive-strand RNA virus that causes massive structural alterations of mitochondria in infected host cells, the most conspicuous being the formation of numerous internal vesicles/spherules that are derived from the mitochondrial outer membrane and serve as the sites for viral RNA replication. While the membrane-bound components of the CIRV replication complex, including a 36-kD RNA-binding protein (p36), are known to be essential for these changes in mitochondrial morphology and are relatively well characterized in terms of their roles in nascent viral RNA synthesis, how these proteins are specifically targeted and inserted into mitochondria is poorly defined. RESULTS Here we report on the molecular signal responsible for sorting p36 to the mitochondrial outer membrane. Using a combination of gain-of-function assays with portions of p36 fused to reporter proteins and domain-swapping assays with p36 and another closely-related viral RNA-binding protein, p33, that sorts specifically to the peroxisomal boundary membrane, we show that the mitochondrial targeting information in p36 resides within its two transmembrane domains (TMDs) and intervening hydrophilic loop sequence. Comprehensive mutational analysis of these regions in p36 revealed that the primary targeting determinants are the moderate hydrophobicity of both TMDs and the positively-charged face of an amphipathic helix within the intervening loop sequence. We show also using bimolecular fluorescence complementation (BiFC) that p36 interacts with certain components of the translocase complex in the mitochondrial outer membrane (TOM), but not with the sorting and assembly machinery (SAM). CONCLUSION Our results provide insight to how viruses, such as CIRV, exploit specific host-cell protein sorting pathways to facilitate their replication. The characterization of the targeting and insertion of p36 into the mitochondrial outer membrane also sheds light on the mechanisms involved in sorting of host-cell membrane proteins to mitochondria, a process that has been largely unexplored in plants.
Collapse
Affiliation(s)
- Yeen Ting Hwang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Andrew W McCartney
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- JD Irving, Limited, Woodlands Division, 1350 Regent Street, Fredericton, New Brunswick, E3C 2G6, Canada
| | - Satinder K Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
38
|
Millen JI, Pierson J, Kvam E, Olsen LJ, Goldfarb DS. The luminal N-terminus of yeast Nvj1 is an inner nuclear membrane anchor. Traffic 2008; 9:1653-64. [PMID: 18694438 DOI: 10.1111/j.1600-0854.2008.00789.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The endoplasmic reticulum (ER) in Saccharomyces cerevisiae is largely divided between perinuclear and cortical compartments. Yeast Nvj1 localizes exclusively to small patches on the perinuclear ER where it interacts with Vac8 in the vacuole membrane to form nucleus-vacuole (NV) junctions. Three regions of Nvj1 mediate the biogenesis of NV junctions. A membrane-spanning domain targets the protein to the ER. The C-terminus binds Vac8 in the vacuole membrane, which induces the clustering of both proteins into NV junctions. The luminal N-terminus is required for strict perinuclear localization. Three-dimensional cryo-electron tomography reveals that Nvj1 clamps the separation between the two nuclear membranes to half the width of bulk nuclear envelope. The N-terminus contains a hydrophobic sequence bracketed by basic residues that resembles outer mitochondrial membrane signal-anchors. The hydrophobic sequence can be scrambled or reversed without affecting function. Mutations that reduce the hydrophobicity of the core sequence or affect the distribution of basic residues cause mislocalization to the cortical ER. We conclude that the N-terminus of Nvj1 is a retention sequence that bridges the perinuclear lumen and inserts into the inner nuclear membrane.
Collapse
Affiliation(s)
- Jonathan I Millen
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | | | |
Collapse
|
39
|
Mokranjac D, Neupert W. Thirty years of protein translocation into mitochondria: unexpectedly complex and still puzzling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:33-41. [PMID: 18672008 DOI: 10.1016/j.bbamcr.2008.06.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 06/16/2008] [Accepted: 06/26/2008] [Indexed: 11/26/2022]
Abstract
Mitochondria are essential organelles of the eukaryotic cells that are made by expansion and division of pre-existing mitochondria. The majority of their protein constituents are synthesized in the cytosol. They are transported into and put together within the organelle. This complex process is facilitated by several protein translocases. Here we summarize current knowledge on these sophisticated molecular machines that mediate recognition, transport across membranes and intramitochondrial sorting of many hundreds of mitochondrial proteins.
Collapse
Affiliation(s)
- Dejana Mokranjac
- Institute for Physiological Chemistry, Ludwig-Maximilians University, Butenandtstr. 5, 81377 Munich, Germany
| | | |
Collapse
|
40
|
Winter L, Abrahamsberg C, Wiche G. Plectin isoform 1b mediates mitochondrion-intermediate filament network linkage and controls organelle shape. ACTA ACUST UNITED AC 2008; 181:903-11. [PMID: 18541706 PMCID: PMC2426950 DOI: 10.1083/jcb.200710151] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plectin is a versatile intermediate filament (IF)–bound cytolinker protein with a variety of differentially spliced isoforms accounting for its multiple functions. One particular isoform, plectin 1b (P1b), remains associated with mitochondria after biochemical fractionation of fibroblasts and cells expressing exogenous P1b. Here, we determined that P1b is inserted into the outer mitochondrial membrane with the exon 1b–encoded N-terminal sequence serving as a mitochondrial targeting and anchoring signal. To study P1b-related mitochondrial functions, we generated mice that selectively lack this isoform but express all others. In primary fibroblasts and myoblasts derived from these mice, we observe a substantial elongation of mitochondrial networks, whereas other mitochondrial properties remain largely unaffected. Normal morphology of mitochondria could be restored by isoform-specific overexpression of P1b in P1b-deficient as well as plectin-null cells. We propose a model where P1b both forms a mitochondrial signaling platform and affects organelle shape and network formation by tethering mitochondria to IFs.
Collapse
Affiliation(s)
- Lilli Winter
- Department of Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | | | | |
Collapse
|
41
|
Walther DM, Rapaport D. Biogenesis of mitochondrial outer membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:42-51. [PMID: 18501716 DOI: 10.1016/j.bbamcr.2008.04.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/15/2008] [Accepted: 04/25/2008] [Indexed: 11/29/2022]
Abstract
Mitochondria are surrounded by two distinct membranes: the outer and the inner membrane. The mitochondrial outer membrane mediates numerous interactions between the mitochondrial metabolic and genetic systems and the rest of the eukaryotic cell. Proteins of this membrane are nuclear-encoded and synthesized as precursor proteins in the cytosol. They are targeted to the mitochondria and inserted into their target membrane via various pathways. This review summarizes our current knowledge of the sorting signals for this specific targeting and describes the mechanisms by which the mitochondrial import machineries recognize precursor proteins, mediate their membrane integration and facilitate assembly into functional complexes.
Collapse
Affiliation(s)
- Dirk M Walther
- Interfakultäres Institut für Biochemie, Hoppe-Seyler-Str. 4, University of Tübingen, 72076 Tübingen, Germany
| | | |
Collapse
|
42
|
Becker T, Vögtle FN, Stojanovski D, Meisinger C. Sorting and assembly of mitochondrial outer membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:557-63. [PMID: 18423394 DOI: 10.1016/j.bbabio.2008.03.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/05/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
Abstract
In the last years the picture of protein import into the mitochondria has become much more complicated in terms of new components and new sorting pathways. These novel findings have also changed views concerning the biogenesis pathway of mitochondrial outer membrane proteins. In addition to proteins anchored with transmembrane alpha-helices, the endosymbiotic origin of the mitochondria has resulted in the presence of transmembrane beta-barrels in this compartment. The sorting and assembly pathway of outer membrane proteins involves three machineries: the translocase of the outer membrane (TOM complex) the sorting and assembly machinery (SAM complex) and the MDM complex (mitochondrial distribution and morphology). Here we review recent developments on the biogenesis pathways of outer membrane proteins with a focus on Tom proteins, the most intensively studied class of these precursor proteins.
Collapse
Affiliation(s)
- Thomas Becker
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
43
|
Lu H, Cao X. GRIM-19 is essential for maintenance of mitochondrial membrane potential. Mol Biol Cell 2008; 19:1893-902. [PMID: 18287540 DOI: 10.1091/mbc.e07-07-0683] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
GRIM-19 was found to copurify with complex I of mitochondrial respiratory chain and subsequently was demonstrated to be involved in complex I assembly and activity. To further understand its function in complex I, we dissected its functional domains by generating a number of deletion, truncation, and point mutants. The mitochondrial localization sequences were located at the N-terminus. Strikingly, deletion of residues 70-80, 90-100, or the whole C-terminal region (70-144) led to a loss of mitochondrial transmembrane potential (DeltaPsim). However, similar deletions of another two complex I subunits, NDUFA9 and NDUFS3, did not show such effect. We also found that deletion of the last 10 residues affected GRIM-19's ability to be assembled to complex I. We constructed a dominant-negative mutant containing the N-terminal 60 and the last C-terminal 10 residues, which could be assembled into complex I, but failed to maintain normal DeltaPsim. Cells overexpressing this mutant did not spontaneously undergo cell death, but were sensitized to apoptosis induced by cell death agents. Our results demonstrate that GRIM-19 is required for electron transfer activity of complex I, and disruption of DeltaPsim by GRIM-19 mutants enhances the cells' sensitivity to apoptotic stimuli.
Collapse
Affiliation(s)
- Hao Lu
- Signal Transduction Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, The Republic of Singapore
| | | |
Collapse
|
44
|
Meineke B, Engl G, Kemper C, Vasiljev-Neumeyer A, Paulitschke H, Rapaport D. The outer membrane form of the mitochondrial protein Mcr1 follows a TOM-independent membrane insertion pathway. FEBS Lett 2008; 582:855-60. [DOI: 10.1016/j.febslet.2008.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/31/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
|
45
|
The Transmembrane Segment of Tom20 Is Recognized by Mim1 for Docking to the Mitochondrial TOM Complex. J Mol Biol 2008; 376:694-704. [DOI: 10.1016/j.jmb.2007.12.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/09/2007] [Accepted: 12/11/2007] [Indexed: 11/18/2022]
|
46
|
Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS One 2008; 3:e1487. [PMID: 18213395 PMCID: PMC2198940 DOI: 10.1371/journal.pone.0001487] [Citation(s) in RCA: 576] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 12/14/2007] [Indexed: 11/19/2022] Open
Abstract
Specificity of protein ubiquitylation is conferred by E3 ubiquitin (Ub) ligases. We have annotated approximately 617 putative E3s and substrate-recognition subunits of E3 complexes encoded in the human genome. The limited knowledge of the function of members of the large E3 superfamily prompted us to generate genome-wide E3 cDNA and RNAi expression libraries designed for functional screening. An imaging-based screen using these libraries to identify E3s that regulate mitochondrial dynamics uncovered MULAN/FLJ12875, a RING finger protein whose ectopic expression and knockdown both interfered with mitochondrial trafficking and morphology. We found that MULAN is a mitochondrial protein - two transmembrane domains mediate its localization to the organelle's outer membrane. MULAN is oriented such that its E3-active, C-terminal RING finger is exposed to the cytosol, where it has access to other components of the Ub system. Both an intact RING finger and the correct subcellular localization were required for regulation of mitochondrial dynamics, suggesting that MULAN's downstream effectors are proteins that are either integral to, or associated with, mitochondria and that become modified with Ub. Interestingly, MULAN had previously been identified as an activator of NF-kappaB, thus providing a link between mitochondrial dynamics and mitochondria-to-nucleus signaling. These findings suggest the existence of a new, Ub-mediated mechanism responsible for integration of mitochondria into the cellular environment.
Collapse
|
47
|
Chapter 5 New Insights into the Mechanism of Precursor Protein Insertion into the Mitochondrial Membranes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:147-90. [DOI: 10.1016/s1937-6448(08)00805-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
|
48
|
Becker T, Pfannschmidt S, Guiard B, Stojanovski D, Milenkovic D, Kutik S, Pfanner N, Meisinger C, Wiedemann N. Biogenesis of the Mitochondrial TOM Complex. J Biol Chem 2008; 283:120-127. [DOI: 10.1074/jbc.m706997200] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
49
|
Stojanovski D, Guiard B, Kozjak-Pavlovic V, Pfanner N, Meisinger C. Alternative function for the mitochondrial SAM complex in biogenesis of alpha-helical TOM proteins. ACTA ACUST UNITED AC 2007; 179:881-93. [PMID: 18039934 PMCID: PMC2099199 DOI: 10.1083/jcb.200706043] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mitochondrial outer membrane contains two preprotein translocases: the general translocase of outer membrane (TOM) and the β-barrel–specific sorting and assembly machinery (SAM). TOM functions as the central entry gate for nuclear-encoded proteins. The channel-forming Tom40 is a β-barrel protein, whereas all Tom receptors and small Tom proteins are membrane anchored by a transmembrane α-helical segment in their N- or C-terminal portion. Synthesis of Tom precursors takes place in the cytosol, and their import occurs via preexisting TOM complexes. The precursor of Tom40 is then transferred to SAM for membrane insertion and assembly. Unexpectedly, we find that the biogenesis of α-helical Tom proteins with a membrane anchor in the C-terminal portion is SAM dependent. Each SAM protein is necessary for efficient membrane integration of the receptor Tom22, whereas assembly of the small Tom proteins depends on Sam37. Thus, the substrate specificity of SAM is not restricted to β-barrel proteins but also includes the majority of α-helical Tom proteins.
Collapse
Affiliation(s)
- Diana Stojanovski
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
50
|
Wattenberg BW, Clark D, Brock S. An artificial mitochondrial tail signal/anchor sequence confirms a requirement for moderate hydrophobicity for targeting. Biosci Rep 2007; 27:385-401. [PMID: 17968654 DOI: 10.1007/s10540-007-9061-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022] Open
Abstract
Tail-anchored proteins are a group of membrane proteins oriented with their amino terminus in the cytoplasm and their carboxy terminus embedded in intracellular membranes. This group includes the apoptosis-mediating proteins of the Bcl-2 family as well as the vesicle targeting proteins of the SNARE group, among others. A stretch of hydrophobic amino acids at the extreme carboxy terminus of these proteins serves both as a membrane anchor and as a targeting signal. Tail-anchored proteins are differentially targeted to either the endoplasmic reticulum or the mitochondrial outer membrane and the mechanism which accomplishes this selective targeting is poorly understood. Here we define important characteristics of the signal/anchor region which directs proteins to the mitochondrial outer membrane. We have created an artificial sequence consisting of a stretch of 16 leucines bounded by positively charged amino acids. Using this template we demonstrate that moderate hydrophobicity distinguishes the mitochondrial tail-anchor sequence from that of the endoplasmic reticulum tail-anchor sequence. A change as small as introduction of a single polar residue into a sequence that otherwise targets to the endoplasmic reticulum can substantially switch targeting to the mitochondrial outer membrane. Further we show that a mitochondrially targeted tail-anchor has a higher propensity for the formation of alpha-helical structure than a sequence directing tail-anchored proteins to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Binks W Wattenberg
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | | | | |
Collapse
|