1
|
Xian M, Li J, Liu T, Hou K, Sun L, Wei J. β-Synuclein Intermediates α-Synuclein Neurotoxicity in Parkinson's Disease. ACS Chem Neurosci 2024; 15:2445-2453. [PMID: 38905183 DOI: 10.1021/acschemneuro.4c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024] Open
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disease in the world, and synuclein is closely related to the onset and progression of PD. Synuclein is considered a therapeutic target for PD. Recent studies have found that abnormal aggregation of α-synuclein (α-Syn) in the brains of PD patients leads to mitochondrial dysfunction and neuroinflammation. Research in the field of neuroscience has confirmed that β-synuclein (β-Syn) also plays a role in Parkinson's disease. However, there has been little research on the role mechanisms and interactions between β-Syn and α-Syn in PD. Therefore, the purpose of this study is to clarify the relationship between α-Syn, β-Syn, and PD and to explore the roles and interactions of β-Syn and α-Syn in PD.
Collapse
Affiliation(s)
- Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Jingwen Li
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Kaiying Hou
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| |
Collapse
|
2
|
Zhong W, Yang Q, Wang F, Lin X, Chen Z, Xue J, Zhao W, Liu X, Rao B, Zhang J. Cell-specific localization of β-synuclein in the mouse retina. Brain Struct Funct 2024; 229:1279-1298. [PMID: 38703218 DOI: 10.1007/s00429-024-02799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/01/2024] [Indexed: 05/06/2024]
Abstract
β-synuclein, a member of the synuclein family, is frequently co-expressed with α-synuclein in the neural system, where it serves to inhibit abnormal aggregation of α-synuclein in neurodegenerative diseases. Beyond its role in pathological conditions, β-synuclein plays various functions independently of α-synuclein. In our investigation, we discovered a broader expression of β-synuclein in the mouse retina compared to α-synuclein. This widespread pattern implies its potential significance in the retina. Through detailed examination via light- and electron-microscopic immunocytochemistry, we identified β-synuclein expression from the inner segment (IS) and outer segment (OS) of photoreceptor cells to the ganglion cell layer (GCL). Our findings unveiled unique features, including β-synuclein immunoreactive IS and OS of cones, higher expression in cone pedicles than in rod spherules, absence in horizontal cells, limited expression in cone bipolar dendrites and somas, higher expression in cone bipolar terminals, presence in most amacrine cells, and expression in almost majority of somas in GCL with an absence in intrinsically photosensitive retinal ganglion cell (ipRGCs) processes. Notably, all cholinergic amacrine cells express high β- but not α-synuclein, while dopaminergic amacrine cells express α-synuclein exclusively. These distinctive expression patterns offer valuable insights for further exploration into the functions of β-synuclein and its potential role in synuclein pathology within the retina.
Collapse
Affiliation(s)
- Wenhui Zhong
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Qingwen Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Fenglan Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xin Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zhongqun Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jing Xue
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Wenna Zhao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoqing Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Bilin Rao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jun Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
3
|
Myers AJ, Brahimi A, Jenkins IJ, Koob AO. The Synucleins and the Astrocyte. BIOLOGY 2023; 12:biology12020155. [PMID: 36829434 PMCID: PMC9952504 DOI: 10.3390/biology12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Synucleins consist of three proteins exclusively expressed in vertebrates. α-Synuclein (αS) has been identified as the main proteinaceous aggregate in Lewy bodies, a pathological hallmark of many neurodegenerative diseases. Less is understood about β-synuclein (βS) and γ-synuclein (γS), although it is known βS can interact with αS in vivo to inhibit aggregation. Likewise, both γS and βS can inhibit αS's propensity to aggregate in vitro. In the central nervous system, βS and αS, and to a lesser extent γS, are highly expressed in the neural presynaptic terminal, although they are not strictly located there, and emerging data have shown a more complex expression profile. Synapse loss and astrocyte atrophy are early aspects of degenerative diseases of the brain and correlate with disease progression. Synucleins appear to be involved in synaptic transmission, and astrocytes coordinate and organize synaptic function, with excess αS degraded by astrocytes and microglia adjacent to the synapse. βS and γS have also been observed in the astrocyte and may provide beneficial roles. The astrocytic responsibility for degradation of αS as well as emerging evidence on possible astrocytic functions of βS and γS, warrant closer inspection on astrocyte-synuclein interactions at the synapse.
Collapse
Affiliation(s)
- Abigail J. Myers
- Neuroscience Program, Health Science Research Facility, University of Vermont, 149 Beaumont Ave., Burlington, VT 05405, USA
| | - Ayat Brahimi
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Imani J. Jenkins
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Andrew O. Koob
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
- Correspondence: ; Tel.: +1-860-768-5780
| |
Collapse
|
4
|
Goloborshcheva VV, Kucheryanu VG, Voronina NA, Teterina EV, Ustyugov AA, Morozov SG. Synuclein Proteins in MPTP-Induced Death of Substantia Nigra Pars Compacta Dopaminergic Neurons. Biomedicines 2022; 10:biomedicines10092278. [PMID: 36140378 PMCID: PMC9496024 DOI: 10.3390/biomedicines10092278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson’s disease (PD) is one of the key neurodegenerative disorders caused by a dopamine deficiency in the striatum due to the death of dopaminergic (DA) neurons of the substantia nigra pars compacta. The initially discovered A53T mutation in the alpha-synuclein gene was linked to the formation of cytotoxic aggregates: Lewy bodies in the DA neurons of PD patients. Further research has contributed to the discovery of beta- and gamma-synucleins, which presumably compensate for the functional loss of either member of the synuclein family. Here, we review research from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity models and various synuclein-knockout animals. We conclude that the differences in the sensitivity of the synuclein-knockout animals compared with the MPTP neurotoxin are due to the ontogenetic selection of early neurons followed by a compensatory effect of beta-synuclein, which optimizes dopamine capture in the synapses. Triple-knockout synuclein studies have confirmed the higher sensitivity of DA neurons to the toxic effects of MPTP. Nonetheless, beta-synuclein could modulate the alpha-synuclein function, preventing its aggregation and loss of function. Overall, the use of knockout animals has helped to solve the riddle of synuclein functions, and these proteins could be promising molecular targets for the development of therapies that are aimed at optimizing the synaptic function of dopaminergic neurons.
Collapse
Affiliation(s)
- Valeria V. Goloborshcheva
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Correspondence: ; Tel.: +7-(909)-644-92-31
| | | | | | - Ekaterina V. Teterina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Aleksey A. Ustyugov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Sergei G. Morozov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| |
Collapse
|
5
|
Carnazza KE, Komer LE, Xie YX, Pineda A, Briano JA, Gao V, Na Y, Ramlall T, Buchman VL, Eliezer D, Sharma M, Burré J. Synaptic vesicle binding of α-synuclein is modulated by β- and γ-synucleins. Cell Rep 2022; 39:110675. [PMID: 35417693 PMCID: PMC9116446 DOI: 10.1016/j.celrep.2022.110675] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 01/23/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
α-synuclein, β-synuclein, and γ-synuclein are abundantly expressed proteins in the vertebrate nervous system. α-synuclein functions in neurotransmitter release by binding to and clustering synaptic vesicles and chaperoning SNARE-complex assembly. Pathologically, aggregates originating from soluble pools of α-synuclein are deposited into Lewy bodies in Parkinson's disease and related synucleinopathies. The functions of β-synuclein and γ-synuclein in presynaptic terminals remain poorly studied. Using in vitro liposome binding studies, circular dichroism spectroscopy, immunoprecipitation, and fluorescence resonance energy transfer (FRET) experiments on isolated synaptic vesicles in combination with subcellular fractionation of brains from synuclein mouse models, we show that β-synuclein and γ-synuclein have a reduced affinity toward synaptic vesicles compared with α-synuclein, and that heteromerization of β-synuclein or γ-synuclein with α-synuclein results in reduced synaptic vesicle binding of α-synuclein in a concentration-dependent manner. Our data suggest that β-synuclein and γ-synuclein are modulators of synaptic vesicle binding of α-synuclein and thereby reduce α-synuclein's physiological activity at the neuronal synapse.
Collapse
Affiliation(s)
- Kathryn E Carnazza
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lauren E Komer
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ying Xue Xie
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - André Pineda
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Juan Antonio Briano
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Virginia Gao
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yoonmi Na
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Trudy Ramlall
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Cardiff CF103AX, UK; Belgorod State National Research University, 85 Pobedy Street, Belgorod, Belgorod 308015, Russian Federation
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Manu Sharma
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jacqueline Burré
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
6
|
Checler F, Alves da Costa C. Parkin as a Molecular Bridge Linking Alzheimer’s and Parkinson’s Diseases? Biomolecules 2022; 12:biom12040559. [PMID: 35454148 PMCID: PMC9026546 DOI: 10.3390/biom12040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s (AD) and Parkinson’s (PD) diseases are two distinct age-related pathologies that are characterized by various common dysfunctions. They are referred to as proteinopathies characterized by ubiquitinated protein accumulation and aggregation. This accumulation is mainly due to altered lysosomal and proteasomal clearing processes and is generally accompanied by ER stress disturbance, autophagic and mitophagic defects, mitochondrial structure and function alterations and enhanced neuronal cell death. Genetic approaches aimed at identifying molecular triggers responsible for familial forms of AD or PD have helped to understand the etiology of their sporadic counterparts. It appears that several proteins thought to contribute to one of these pathologies are also likely to contribute to the other. One such protein is parkin (PK). Here, we will briefly describe anatomical lesions and genetic advances linked to AD and PD as well as the main cellular processes commonly affected in these pathologies. Further, we will focus on current studies suggesting that PK could well participate in AD and thereby act as a molecular bridge between these two pathologies. In particular, we will focus on the transcription factor function of PK and its newly described transcriptional targets that are directly related to AD- and PD-linked cellular defects.
Collapse
|
7
|
Hayashi J, Carver JA. β-Synuclein: An Enigmatic Protein with Diverse Functionality. Biomolecules 2022; 12:142. [PMID: 35053291 PMCID: PMC8773819 DOI: 10.3390/biom12010142] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
α-Synuclein (αS) is a small, unstructured, presynaptic protein expressed in the brain. Its aggregated form is a major component of Lewy bodies, the large proteinaceous deposits in Parkinson's disease. The closely related protein, β-Synuclein (βS), is co-expressed with αS. In vitro, βS acts as a molecular chaperone to inhibit αS aggregation. As a result of this assignation, βS has been largely understudied in comparison to αS. However, recent reports suggest that βS promotes neurotoxicity, implying that βS is involved in other cellular pathways with functions independent of αS. Here, we review the current literature pertaining to human βS in order to understand better the role of βS in homeostasis and pathology. Firstly, the structure of βS is discussed. Secondly, the ability of βS to (i) act as a molecular chaperone; (ii) regulate synaptic function, lipid binding, and the nigrostriatal dopaminergic system; (iii) mediate apoptosis; (iv) participate in protein degradation pathways; (v) modulate intracellular metal levels; and (vi) promote cellular toxicity and protein aggregation is explored. Thirdly, the P123H and V70M mutations of βS, which are associated with dementia with Lewy bodies, are discussed. Finally, the importance of post-translational modifications on the structure and function of βS is reviewed. Overall, it is concluded that βS has both synergistic and antagonistic interactions with αS, but it may also possess important cellular functions independent of αS.
Collapse
Affiliation(s)
| | - John A. Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia;
| |
Collapse
|
8
|
Ninkina N, Millership SJ, Peters OM, Connor-Robson N, Chaprov K, Kopylov AT, Montoya A, Kramer H, Withers DJ, Buchman VL. β-synuclein potentiates synaptic vesicle dopamine uptake and rescues dopaminergic neurons from MPTP-induced death in the absence of other synucleins. J Biol Chem 2021; 297:101375. [PMID: 34736896 PMCID: PMC8633583 DOI: 10.1016/j.jbc.2021.101375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Synucleins, a family of three proteins highly expressed in neurons, are predominantly known for the direct involvement of α-synuclein in the etiology and pathogenesis of Parkinson's and certain other neurodegenerative diseases, but their precise physiological functions are still not fully understood. Previous studies have demonstrated the importance of α-synuclein as a modulator of various mechanisms implicated in chemical neurotransmission, but information concerning the involvement of other synuclein family members, β-synuclein and γ-synuclein, in molecular processes within presynaptic terminals is limited. Here, we demonstrated that the vesicular monoamine transporter 2-dependent dopamine uptake by synaptic vesicles isolated from the striatum of mice lacking β-synuclein is significantly reduced. Reciprocally, reintroduction, either in vivo or in vitro, of β-synuclein but not α-synuclein or γ-synuclein improves uptake by triple α/β/γ-synuclein-deficient striatal vesicles. We also showed that the resistance of dopaminergic neurons of the substantia nigra pars compacta to subchronic administration of the Parkinson's disease-inducing prodrug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine depends on the presence of β-synuclein but only when one or both other synucleins are absent. Furthermore, proteomic analysis of synuclein-deficient synaptic vesicles versus those containing only β-synuclein revealed differences in their protein compositions. We suggest that the observed potentiation of dopamine uptake by β-synuclein might be caused by different protein architecture of the synaptic vesicles. It is also feasible that such structural changes improve synaptic vesicle sequestration of 1-methyl-4-phenylpyridinium, a toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, which would explain why dopaminergic neurons expressing β-synuclein and lacking α-synuclein and/or γ-synuclein are resistant to this neurotoxin.
Collapse
Affiliation(s)
- Natalia Ninkina
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Russian Federation
| | - Steven J Millership
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; Metabolic Signalling, MRC London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Owen M Peters
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Kirill Chaprov
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Russian Federation
| | - Arthur T Kopylov
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, Moscow, Russian Federation
| | - Alex Montoya
- Metabolic Signalling, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Holger Kramer
- Metabolic Signalling, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Dominic J Withers
- Metabolic Signalling, MRC London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Russian Federation.
| |
Collapse
|
9
|
Dehghan F, Zamani S, Barreiro C, Jami MS. Irisin injection mimics exercise effects on the brain proteome. Eur J Neurosci 2021; 54:7422-7441. [PMID: 34655501 DOI: 10.1111/ejn.15493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022]
Abstract
Physical inactivity can endanger human health and increase the incidence of neurodegenerative disease. Exercise has tremendous beneficial effects on brain health and cognitive function, especially in older adults. It also improves brain-related outcomes in depression, epilepsy and neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease. Irisin is a mediator of the beneficial effects of exercise. This study aimed to assess the proteome alterations in adult male National Maritime Research Institute (NMRI) mice brain tissue upon three different conditions including endurance exercise, resistance exercise and irisin injection. Quantification of irisin levels in blood was performed using irisin-ELISA Kit. Quantification and identification of proteins via two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS)/MS showed the alteration of at least 21 proteins due to different treatments. Cellular pathway analysis revealed common beneficial effects of sole irisin treatment and different exercise procedures suggesting the capability of irisin injection to substitute the exercise when physical activity is not possible.
Collapse
Affiliation(s)
- Fariba Dehghan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Saeed Zamani
- Department of Anatomical Sciences, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), León, Spain.,Biochemistry and Molecular Biology Area, Department of Molecular Biology, University of León, Vegazana Campus, León, Spain
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,QIANBIOTEC, Research and Development Center for Biotechnology, Isfahan, Iran.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
10
|
Hydrogen Sulfide: Novel Endogenous and Exogenous Modulator of Oxidative Stress in Retinal Degeneration Diseases. Molecules 2021; 26:molecules26092411. [PMID: 33919146 PMCID: PMC8122398 DOI: 10.3390/molecules26092411] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress (OS) damage can cause significant injury to cells, which is related to the occurrence and development of many diseases. This pathological process is considered to be the first step to trigger the death of outer retinal neurons, which is related to the pathology of retinal degenerative diseases. Hydrogen sulfide (H2S) has recently received widespread attention as a physiological signal molecule and gas neuromodulator and plays an important role in regulating OS in eyes. In this article, we reviewed the OS responses and regulatory mechanisms of H2S and its donors as endogenous and exogenous regulators in retinal degenerative diseases. Understanding the relevant mechanisms will help to identify the therapeutic potential of H2S in retinal degenerative diseases.
Collapse
|
11
|
Ujcikova H, Cechova K, Jagr M, Roubalova L, Vosahlikova M, Svoboda P. Proteomic analysis of protein composition of rat hippocampus exposed to morphine for 10 days; comparison with animals after 20 days of morphine withdrawal. PLoS One 2020; 15:e0231721. [PMID: 32294144 PMCID: PMC7159219 DOI: 10.1371/journal.pone.0231721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/30/2020] [Indexed: 01/08/2023] Open
Abstract
Opioid addiction is recognized as a chronic relapsing brain disease resulting from repeated exposure to opioid drugs. Cellular and molecular mechanisms underlying the ability of organism to return back to the physiological norm after cessation of drug supply are not fully understood. The aim of this work was to extend our previous studies of morphine-induced alteration of rat forebrain cortex protein composition to the hippocampus. Rats were exposed to morphine for 10 days and sacrificed 24 h (groups +M10 and −M10) or 20 days after the last dose of morphine (groups +M10/−M20 and −M10/−M20). The six altered proteins (≥2-fold) were identified in group (+M10) when compared with group (−M10) by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). The number of differentially expressed proteins was increased to thirteen after 20 days of the drug withdrawal. Noticeably, the altered level of α-synuclein, β-synuclein, α-enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was also determined in both (±M10) and (±M10/−M20) samples of hippocampus. Immunoblot analysis of 2D gels by specific antibodies oriented against α/β-synucleins and GAPDH confirmed the data obtained by 2D-DIGE analysis. Label-free quantification identified nineteen differentially expressed proteins in group (+M10) when compared with group (−M10). After 20 days of morphine withdrawal (±M10/−M20), the number of altered proteins was increased to twenty. We conclude that the morphine-induced alteration of protein composition in rat hippocampus after cessation of drug supply proceeds in a different manner when compared with the forebrain cortex. In forebrain cortex, the total number of altered proteins was decreased after 20 days without morphine, whilst in hippocampus, it was increased.
Collapse
Affiliation(s)
- Hana Ujcikova
- Laboratory of Membrane Receptors, Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
- * E-mail:
| | - Kristina Cechova
- Laboratory of Membrane Receptors, Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Michal Jagr
- Laboratory of Analysis of Biologically Important Compounds, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Lenka Roubalova
- Laboratory of Membrane Receptors, Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Miroslava Vosahlikova
- Laboratory of Membrane Receptors, Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Petr Svoboda
- Laboratory of Membrane Receptors, Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
12
|
Hydrogen Sulfide and β-Synuclein Are Involved and Interlinked in the Aging Glaucomatous Retina. J Ophthalmol 2020; 2020:8642135. [PMID: 32351728 PMCID: PMC7178476 DOI: 10.1155/2020/8642135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/14/2020] [Accepted: 03/11/2020] [Indexed: 11/18/2022] Open
Abstract
Purpose Glaucoma, one of the leading causes of irreversible blindness worldwide, is a group of disorders characterized by progressive retinal ganglion cell (RGC) loss. Synucleins, a family of small proteins, have been of interest in studies of neurodegeneration and CNS. However, their roles and functions in glaucoma are still not completely understood and remain to be explored. Our previous studies showed that α-synuclein and H2S play a pivotal role in glaucoma. This study aims to (1) elucidate the potential roles and functions of synucleins in glaucoma throughout aging, (2) investigate the interaction between the synucleins and H2S, and better understand the mechanism of H2S in neuroprotection. Methods The chronic IOP elevation model was carried out in 12 animals at different ages (3 months and 14 months), and RGCs were quantified by Brn3a staining. Mass spectrometric-assisted proteomics analysis was employed to measure synuclein levels and H2S producing proteins in retina. Secondly, the acute IOP elevation model was carried out in 12 juvenile animals, with or without intravitreal injection of GYY4137 (a H2S donor). RGCs were quantified along with the abundancy of synucleins. Results RGCs and β-synuclein (SNCB) are significantly changed in old animals. Under chronic IOP elevation, there is a significant RGC loss in old animals, whereas no significant change in young animals; SNCB is significantly downregulated and 3MST is significantly upregulated in young animals due to IOP, while no significant changes in old ones are notable. Under acute IOP elevation (approx. 55 mmHg), a significant RGC loss is observed; exogenous H2S significantly reduced RGC loss and downregulated SNCB levels. Conclusion The present study indicates a strong link between ageing and SNCB regulation. In young animals SNCB is downregulated going along with less RGC loss. Furthermore, increasing endogenous H2S is effective to downregulate SNCB and is neuroprotective against acute IOP elevation.
Collapse
|
13
|
Age-related distribution and potential role of SNCB in topographically different retinal areas of the common marmoset Callithrix jacchus, including the macula. Exp Eye Res 2019; 185:107676. [PMID: 31128101 DOI: 10.1016/j.exer.2019.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/08/2019] [Accepted: 05/21/2019] [Indexed: 01/24/2023]
Abstract
Evidence of an age-related increase of β-synuclein (SNCB) in several parts of the visual system including the retina has been reported. SNCB is thought to function as an antagonist of α-synuclein in neurodegenerative diseases, but the exact role of SNCB remains unclear. The presented work studies two different aspects of the onset and role of SNCB in the retinal pigment epithelium (RPE). First, the topographical and intracellular distributions of SNCB in the RPE of non-human marmoset monkey (Callithrix jacchus) were evaluated in paraffin-embedded eyes and RPE whole mounts from different developmental stages (neonatal, adolescent, and adult). Thus, revealed distinct lifetime-related alterations of the topographical and intracellular distributions of SNCB in the primate macula compared to the retinal periphery. Furthermore, the function and influences of SNCB on ARPE-19 cells and primary porcine RPE (ppRPE) cells were characterized by exposing these cells with recombinant SNCB (rSNCB) at different concentrations. Moreover, apoptosis, protein- and mRNA-expression levels of factors of the p53/MDM2 signaling cascade and inflammation- and oxidation-related genes were investigated. The observed dose-depended decreased apoptosis rates together with the PLD2 mediated activation of the p53 pathway promotes senescence-related processes in SNCB exposed common ARPE-19 cells from human origin. Further, increased HMOX1 and NOX4 levels indicate increased oxidative stress and inflammatory responses triggered by SNCB. The obtained differences in the distribution of SNCB in primate RPE together with alterations of cellular functions in rSNCB-exposed RPE cells (e.g., ARPE-19, ppRPE) support SNCB-related effects like inflammatory response and stress-related properties on RPE over lifetime. The possible functional relevance of SNCB in physiological aging converting into a pathophysiological condition should be investigated in further studies.
Collapse
|
14
|
Brockhaus K, Böhm MRR, Melkonyan H, Thanos S. Age-related Beta-synuclein Alters the p53/Mdm2 Pathway and Induces the Apoptosis of Brain Microvascular Endothelial Cells In Vitro. Cell Transplant 2018; 27:796-813. [PMID: 29808713 PMCID: PMC6047277 DOI: 10.1177/0963689718755706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Increased β-synuclein (Sncb) expression has been described in the aging visual system.
Sncb functions as the physiological antagonist of α-synuclein (Snca), which is involved in
the development of neurodegenerative diseases, such as Parkinson’s and Alzheimer’s
diseases. However, the exact function of Sncb remains unknown. The aim of this study was
to elucidate the age-dependent role of Sncb in brain microvascular endothelial cells
(BMECs). BMECs were isolated from the cortices of 5- to 9-d-old Sprague-Dawley rats and
were cultured with different concentrations of recombinant Sncb (rSncb) up to 72 h
resembling to some degree age-related as well as pathophysiological conditions. Viability,
apoptosis, expression levels of Snca, and the members of phospholipase D2
(Pld2)/p53/ Mouse double minute 2 homolog (Mdm2)/p19(Arf) pathway,
response in RAC-alpha serine/threonine-protein kinase (Akt), and stress-mediating factors
such as heme oxygenase (decycling) 1 (Hmox) and Nicotinamide adenine dinucleotide
phosphate oxygenase 4 (Nox4) were examined. rSncb-induced effects were confirmed through
Sncb small interfering RNA (siRNA) knockdown in BMECs. We demonstrated
that the viability decreases, while the rate of apoptosis underly dose-dependent
alterations. For example, apoptosis increases in BMECs following the treatment with higher
dosed rSncb. Furthermore, we observed a decrease in Snca immunostaining and messenger RNA
(mRNA) levels following the exposure to higher rScnb concentrations. Akt was shown to be
downregulated and pAkt upregulated by this treatment, which was accompanied by a
dose-independent increase in p19(Arf) levels and enhanced intracellular Mdm2 translocation
in contrast to a dose-dependent p53 activation. Moreover, Pld2 activity
was shown to be induced in rSncb-treated BMECs. The expression of Hmox and Nox4 after Sncb
treatment was altered on BEMCs. The obtained results demonstrate dose-dependent effects of
Sncb on BMECs in vitro. For example, the p53-mediated and Akt-independent
apoptosis together with the stress-mediated response of BMECs related to exposure of
higher SNCB concentrations may reflect the increase in Sncb with duration of culture as
well as its impact on cell decay. Further studies, expanding on the role of Sncb, may help
understand its role in the neurodegenerative diseases.
Collapse
Affiliation(s)
- Katrin Brockhaus
- 1 Institute of Experimental Ophthalmology, School of Medicine, Westphalian Wilhelm University of Münster, Münster, Germany
| | - Michael R R Böhm
- 1 Institute of Experimental Ophthalmology, School of Medicine, Westphalian Wilhelm University of Münster, Münster, Germany.,2 Department of Ophthalmology, Essen University Hospital, Essen, Germany
| | - Harutyun Melkonyan
- 2 Department of Ophthalmology, Essen University Hospital, Essen, Germany
| | - Solon Thanos
- 2 Department of Ophthalmology, Essen University Hospital, Essen, Germany
| |
Collapse
|
15
|
Matsuura K, Otani M, Takano M, Kadoyama K, Matsuyama S. Proteomic Analysis of Hippocampus and Cortex in Streptozotocin-Induced Diabetic Model Mice Showing Dementia. J Diabetes Res 2018; 2018:8953015. [PMID: 29850612 PMCID: PMC5907478 DOI: 10.1155/2018/8953015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/24/2018] [Accepted: 02/21/2018] [Indexed: 11/18/2022] Open
Abstract
AIM Diabetes with its associated hyperglycemia induces various type of peripheral damage and also impairs the central nervous system (CNS). This study is aimed at clarifying the precise mechanism of diabetes-induced dementia as an impairment of CNS. METHODS The proteomic analysis of the hippocampus and cortex in streptozotocin- (STZ-) treated mouse diabetic model showing dementia was performed using two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (n = 3/group). RESULTS Significant changes in the expression of 32 proteins and 7 phosphoproteins were observed in the hippocampus and cortex. These identified proteins and phosphoproteins could be functionally classified as cytoskeletal protein, oxidoreductase, protein deubiquitination, energy metabolism, GTPase activation, heme binding, hydrolase, iron storage, neurotransmitter release, protease inhibitor, transcription, glycolysis, antiapoptosis, calcium ion binding, heme metabolic process, protein degradation, vesicular transport, and unknown in the hippocampus or cortex. Additionally, Western blotting validated the changes in translationally controlled tumor protein, ATP-specific succinyl-CoA synthetase beta subunit, and gamma-enolase isoform 1. CONCLUSIONS These findings showed that STZ-induced diabetes changed the expression of proteins and phosphoproteins in the hippocampus and cortex. We propose that alterations in expression levels of these proteins play an important role in diabetes-induced dementia.
Collapse
Affiliation(s)
- Kenji Matsuura
- Faculty of Pharmacy, Osaka-Ohtani University, Tondabayashi 584-8540, Japan
| | - Mieko Otani
- Department of Life Sciences Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| | - Masaoki Takano
- Department of Life Sciences Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| | - Keiichi Kadoyama
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji 670-8524, Japan
| | - Shogo Matsuyama
- Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
16
|
Evans T, Kok WL, Cowan K, Hefford M, Anichtchik O. Accumulation of beta-synuclein in cortical neurons is associated with autophagy attenuation in the brains of dementia with Lewy body patients. Brain Res 2018; 1681:1-13. [DOI: 10.1016/j.brainres.2017.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 01/17/2023]
|
17
|
Lu JYD, Su P, Barber JEM, Nash JE, Le AD, Liu F, Wong AHC. The neuroprotective effect of nicotine in Parkinson's disease models is associated with inhibiting PARP-1 and caspase-3 cleavage. PeerJ 2017; 5:e3933. [PMID: 29062606 PMCID: PMC5651169 DOI: 10.7717/peerj.3933] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/26/2017] [Indexed: 12/20/2022] Open
Abstract
Clinical evidence points to neuroprotective effects of smoking in Parkinson’s disease (PD), but the molecular mechanisms remain unclear. We investigated the pharmacological pathways involved in these neuroprotective effects, which could provide novel ideas for developing targeted neuroprotective treatments for PD. We used the ETC complex I inhibitor methylpyridinium ion (MPP+) to induce cell death in SH-SY5Y cells as a cellular model for PD and found that nicotine inhibits cell death. Using choline as a nicotinic acetylcholine receptor (nAChR) agonist, we found that nAChR stimulation was sufficient to protect SH-SY5Y cells against cell death from MPP+. Blocking α7 nAChR with methyllycaconitine (MLA) prevented the protective effects of nicotine, demonstrating that these receptors are necessary for the neuroprotective effects of nicotine. The neuroprotective effect of nicotine involves other pathways relevant to PD. Cleaved Poly (ADP-ribose) polymerase-1 (PARP-1) and cleaved caspase-3 were decreased by nicotine in 6-hydroxydopamine (6-OHDA) lesioned mice and in MPP+-treated SH-SY5Y cells. In conclusion, our data indicate that nicotine likely exerts neuroprotective effects in PD through the α7 nAChR and downstream pathways including PARP-1 and caspase-3. This knowledge could be pursued in future research to develop neuroprotective treatments for PD.
Collapse
Affiliation(s)
- Justin Y D Lu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - James E M Barber
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada
| | - Joanne E Nash
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada
| | - Anh D Le
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Albert H C Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Nuovo G, Amann V, Williams J, Vandiver P, Quinonez M, Fadda P, Paniccia B, Mezache L, Mikhail A. Increased expression of importin-β, exportin-5 and nuclear transportable proteins in Alzheimer's disease aids anatomic pathologists in its diagnosis. Ann Diagn Pathol 2017; 32:10-16. [PMID: 29414391 DOI: 10.1016/j.anndiagpath.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 11/29/2022]
Abstract
Understanding the metabolic profile of neurons with the hyperphosphorylated tau protein characteristic of Alzheimer's disease is essential to unraveling new potential therapies and diagnostics for the surgical pathologist. We stratified 75 brain tissues from Alzheimer's disease into hyperphosphorylated tau positive or negative and did co-expression analyses and qRTPCR for importin-β and exportin-5 plus several bcl2 family members and compared the data to controls, Down's dementia and Parkinson's disease. There was a significant increase in the expression of importin-β and exportin-5 in Alzheimer's disease relative to the three other categories (each p value<0.0001) where each protein co-localized with hyperphosphorylated tau. Both apoptotic and anti-apoptotic proteins were each significantly increased in Alzheimer's disease relative to the three other groups. Neurons with hyperphosphorylated tau in Alzheimer's disease have the profile of metabolically active cells including increased exportin-5 and importin-β mRNA and proteins which indicates that immunohistochemistry testing of these proteins may aid the surgical pathologist in making a definitive diagnosis.
Collapse
Affiliation(s)
- Gerard Nuovo
- Ohio State University Comprehensive Cancer Center, Columbus, OH, United States; GNOME Diagnostic Laboratory, Powell, OH 43065, United States.
| | - Vicky Amann
- GNOME Diagnostic Laboratory, Powell, OH 43065, United States
| | - James Williams
- GNOME Diagnostic Laboratory, Powell, OH 43065, United States
| | - Paige Vandiver
- GNOME Diagnostic Laboratory, Powell, OH 43065, United States
| | - Maria Quinonez
- GNOME Diagnostic Laboratory, Powell, OH 43065, United States
| | - Paolo Fadda
- Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | | | - Louisa Mezache
- Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Adel Mikhail
- GNOME Diagnostic Laboratory, Powell, OH 43065, United States
| |
Collapse
|
19
|
Bastos P, Ferreira R, Manadas B, Moreira PI, Vitorino R. Insights into the human brain proteome: Disclosing the biological meaning of protein networks in cerebrospinal fluid. Crit Rev Clin Lab Sci 2017; 54:185-204. [PMID: 28393582 DOI: 10.1080/10408363.2017.1299682] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebrospinal fluid (CSF) is an excellent source of biological information regarding the nervous system, once it is in close contact and accurately reflects alterations in this system. Several studies have analyzed differential protein profiles of CSF samples between healthy and diseased human subjects. However, the pathophysiological mechanisms and how CSF proteins relate to diseases are still poorly known. By applying bioinformatics tools, we attempted to provide new insights on the biological and functional meaning of proteomics data envisioning the identification of putative disease biomarkers. Bioinformatics analysis of data retrieved from 99 mass spectrometry (MS)-based studies on CSF profiling highlighted 1985 differentially expressed proteins across 49 diseases. A large percentage of the modulated proteins originate from exosome vesicles, and the majority are involved in either neuronal cell growth, development, maturation, migration, or neurotransmitter-mediated cellular communication. Nevertheless, some diseases present a unique CSF proteome profile, which were critically analyzed in the present study. For instance, 48 proteins were found exclusively upregulated in the CSF of patients with Alzheimer's disease and are mainly involved in steroid esterification and protein activation cascade processes. A higher number of exclusively upregulated proteins were found in the CSF of patients with multiple sclerosis (76 proteins) and with bacterial meningitis (70 proteins). Whereas in multiple sclerosis, these proteins are mostly involved in the regulation of RNA metabolism and apoptosis, in bacterial meningitis the exclusively upregulated proteins participate in inflammation and antibacterial humoral response, reflecting disease pathogenesis. The exploration of the contribution of exclusively upregulated proteins to disease pathogenesis will certainly help to envision potential biomarkers in the CSF for the clinical management of nervous system diseases.
Collapse
Affiliation(s)
- Paulo Bastos
- a Department of Chemistry , University of Aveiro , Aveiro , Portugal.,b Department of Medical Sciences , Institute for Biomedicine - iBiMED, University of Aveiro , Aveiro , Portugal
| | - Rita Ferreira
- c QOPNA, Department of Chemistry , University of Aveiro , Aveiro , Portugal
| | - Bruno Manadas
- d CNC, Center for Neuroscience and Cell Biology, University of Coimbra , Coimbra , Portugal
| | - Paula I Moreira
- d CNC, Center for Neuroscience and Cell Biology, University of Coimbra , Coimbra , Portugal.,e Laboratory of Physiology, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Rui Vitorino
- b Department of Medical Sciences , Institute for Biomedicine - iBiMED, University of Aveiro , Aveiro , Portugal.,f Departmento de Cirurgia e Fisiologia, Faculdade de Medicina , Unidade de Investigação Cardiovascular, Universidade do Porto , Porto , Portugal
| |
Collapse
|
20
|
Landeck N, Buck K, Kirik D. Toxic effects of human and rodent variants of alpha-synuclein in vivo. Eur J Neurosci 2017; 45:536-547. [PMID: 27893183 DOI: 10.1111/ejn.13493] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022]
Abstract
In Parkinson's disease, abnormal alpha-synuclein (asyn) accumulation leads to the formation of soluble oligomeric species thought to be toxic to cells as well as intraneuronal inclusions. To date, the precise mechanisms leading to aggregation of asyn in the brain is not well-understood. Previous studies in yeast, drosophila, and transgenic mice suggested that a non-A beta component depleted version of human asyn [h-asyn(D70-83)] or human beta-synuclein (h-bsyn), naturally lacking this centrally located hydrophobic region, are less prone to form aggregates in vitro and are expected to be less toxic compared to h-asyn in vivo, although not all experimental studies unequivocally support the latter view. To address this outstanding issue, we directly compared the neurotoxicity of human asyn against that of h-asyn(D70-83), h-bsyn as well as rat asyn using an adeno-associated viral vector to express these proteins in a dose-response study where the vector load was varied over two orders of magnitude. By quantifying the neurodegeneration of rat substantia nigra dopamine neurons here we show that h-asyn, h-bsyn, and h-asyn(D70-83) display comparable neurotoxicity across the vector doses tested. On the other hand, rat asyn and GFP control vectors displayed a different profile, where no detectable neurodegeneration was seen except at the highest vector titer. Thus, the two main conclusions of our study are that (i) deletion of the central hydrophobic region in h-asyn is not sufficient to alter its neurotoxic properties and (ii) expression of the widely used GFP control protein can cause measurable neurodegeneration at high titers.
Collapse
Affiliation(s)
- Natalie Landeck
- Brain Repair and Imaging in Neural Systems (BRAINS) Unit, Department of Experimental Medical Science, Lund University, BMC D11, Lund, 22184, Sweden
| | - Kerstin Buck
- Brain Repair and Imaging in Neural Systems (BRAINS) Unit, Department of Experimental Medical Science, Lund University, BMC D11, Lund, 22184, Sweden
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS) Unit, Department of Experimental Medical Science, Lund University, BMC D11, Lund, 22184, Sweden
| |
Collapse
|
21
|
Halbgebauer S, Öckl P, Wirth K, Steinacker P, Otto M. Protein biomarkers in Parkinson's disease: Focus on cerebrospinal fluid markers and synaptic proteins. Mov Disord 2016; 31:848-60. [PMID: 27134134 DOI: 10.1002/mds.26635] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/06/2016] [Accepted: 03/09/2016] [Indexed: 01/06/2023] Open
Abstract
Despite extensive research, to date, no validated biomarkers for PD have been found. This review seeks to summarize studies approaching the detection of biomarker candidates for PD and introduce promising ones in more detail, with special attention to synaptic proteins. To this end, we performed a PubMed search and included studies using proteomic tools (2-dimensional difference in gel electrophoresis and/or mass spectrometry) for the comparison of samples from PD and control patients. We found 27 studies reporting more than 500 differentially expressed proteins in which a total of 28 were detected in 2 and 17 in 3 or more independent studies, including posttranslationally modified proteins. In addition, of these 500 proteins, 25 were found to be brain specific, and 14 were enriched in synapses. Special attention was given to the applicability of the biomarker regarding sampling procedures, that is, using CSF/serum material for diagnosis. Furthermore, presynaptic proteins involved in vesicle membrane fusion seem to be interesting candidates for future analyses. Nonetheless, even though such promising biomarker candidates for PD exist, validation of these biomarkers in large-scale clinical studies is necessary to evaluate the diagnostic potential. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Patrick Öckl
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
22
|
Tolmasov M, Djaldetti R, Lev N, Gilgun-Sherki Y. Pathological and clinical aspects of alpha/beta synuclein in Parkinson's disease and related disorders. Expert Rev Neurother 2016; 16:505-13. [PMID: 26959397 DOI: 10.1586/14737175.2016.1164600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) and related synucleinopathies are characterized by extensive neuronal cell loss, which is potentially triggered by α-synuclein misfolding and aggregation. Therefore it is reasonable to suggest that treatments targeting α-synuclein could reduce its levels and toxicity, rescue neuronal cells and halt the neurodegeneration process. Several approaches to decrease α-synuclein levels were employed thus far, mainly by using β-synuclein, another protein from the same family, or immunotherapies. These treatments demonstrated some positive results in preclinical studies, which may pave the road to the development of new promising disease-modifying therapies (DMTs). This approach should be further examined in preclinical and clinical settings, together with a clear process in order to advance candidates, enable the ability to define when there are target engagements and to detect what is a meaningful pharmacological response, and how it will be translated in clinical efficacy.
Collapse
Affiliation(s)
- Michael Tolmasov
- a Specialty Products Department , Dexcel Pharma Technologies Ltd ., Jerusalem , Israel
| | - Ruth Djaldetti
- b Department of Neurology , Rabin Medical Center, Beilinson Campus , Petach Tikva , Israel
| | - Nirit Lev
- b Department of Neurology , Rabin Medical Center, Beilinson Campus , Petach Tikva , Israel
| | - Yossi Gilgun-Sherki
- a Specialty Products Department , Dexcel Pharma Technologies Ltd ., Jerusalem , Israel
| |
Collapse
|
23
|
Janowska MK, Wu KP, Baum J. Unveiling transient protein-protein interactions that modulate inhibition of alpha-synuclein aggregation by beta-synuclein, a pre-synaptic protein that co-localizes with alpha-synuclein. Sci Rep 2015; 5:15164. [PMID: 26477939 PMCID: PMC4609965 DOI: 10.1038/srep15164] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/11/2015] [Indexed: 01/18/2023] Open
Abstract
Pathology in Parkinson’s disease is linked to self-association of α-Synuclein (αS) into pathogenic oligomeric species and highly ordered amyloid fibrils. Developing effective therapeutic strategies against this debilitating disease is critical and βS, a pre-synaptic protein that co-localizes with αS, can act as an inhibitor of αS assembly. Despite the potential importance of βS as an inhibitor of αS, the nature, location and specificity of the molecular interactions between these two proteins is unknown. Here we use NMR paramagnetic relaxation enhancement experiments, to demonstrate that βS interacts directly with αS in a transient dimer complex with high specificity and weak affinity. Inhibition of αS by βS arises from transient αS/βS heterodimer species that exist primarily in head- to- tail configurations while αS aggregation arises from a more heterogeneous and weaker range of transient interactions that include both head-to-head and head-to-tail configurations. Our results highlight that intrinsically disordered proteins can interact directly with one another at low affinity and that the transient interactions that drive inhibition versus aggregation are distinct by virtue of their plasticity and specificity.
Collapse
Affiliation(s)
- Maria K Janowska
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854
| | - Kuen-Phon Wu
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
24
|
Krassnig S, Schweinzer C, Taub N, Havas D, Auer E, Flunkert S, Schreibmayer W, Hutter-Paier B, Windisch M. Influence of Lentiviral β-Synuclein Overexpression in the Hippocampus of a Transgenic Mouse Model of Alzheimer's Disease on Amyloid Precursor Protein Metabolism and Pathology. NEURODEGENER DIS 2015; 15:243-57. [PMID: 26111745 DOI: 10.1159/000430952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 04/26/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND β-Synuclein (β-Syn) is a member of the highly homologous synuclein protein family. The most prominent family member, α-synuclein (α-Syn), abnormally accumulates in so-called Lewy bodies, one of the major pathological hallmarks of α-synucleinopathies. Notably, parts of the peptide backbone, called the nonamyloid component, are also found in amyloid plaques. However, β-Syn seems to have beneficial effects by reducing α-Syn aggregation, and amyloid antiaggregatory activity has been described. OBJECTIVE The aim of the study was to analyze if wild-type β-Syn can counteract functional and pathological changes in a murine Alzheimer model over different time periods. METHODS At the onset of pathology, lentiviral particles expressing human β-Syn were injected into the hippocampus of transgenic mice overexpressing human amyloid precursor protein with Swedish and London mutations (APPSL). An empty vector served as the control. Behavioral analyses were performed 1, 3 and 6 months after injection followed by biochemical and histological examinations of brain samples. RESULTS β-Syn expression was locally concentrated and rather modest, but nevertheless changed its effect on APP expression and plaque load in a time- and concentration-dependent manner. Interestingly, the phosphorylation of glycogen synthase kinase 3 beta was enhanced in APPSL mice expressing human β-Syn, but an inverse trend was observed in wild-type animals. CONCLUSION The initially reported beneficial effects of β-Syn could be partially reproduced, but locally elevated levels of β-Syn might also cause neurodegeneration. To enlighten the controversial pathological mechanism of β-Syn, further examinations considering the relationship between concentration and exposure time of β-Syn are needed.
Collapse
|
25
|
Böhm MRR, Melkonyan H, Thanos S. Life-time expression of the proteins peroxiredoxin, beta-synuclein, PARK7/DJ-1, and stathmin in the primary visual and primary somatosensory cortices in rats. Front Neuroanat 2015; 9:16. [PMID: 25788877 PMCID: PMC4349188 DOI: 10.3389/fnana.2015.00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/04/2015] [Indexed: 11/16/2022] Open
Abstract
Four distinct proteins are regulated in the aging neuroretina and may be regulated in the cerebral cortex, too: peroxiredoxin, beta-synuclein, PARK[Parkinson disease(autosomal recessive, early onset)]7/DJ-1, and Stathmin. Thus, we performed a comparative analysis of these proteins in the the primary somatosensory cortex (S1) and primary visual cortex (V1) in rats, in order to detect putative common development-, maturation- and age-related changes. The expressions of peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin were compared in the newborn, juvenile, adult, and aged S1 and V1. Western blot (WB), quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and immunohistochemistry (IHC) analyses were employed to determine whether the changes identified by proteomics were verifiable at the cellular and molecular levels. All of the proteins were detected in both of the investigated cortical areas. Changes in the expressions of the four proteins were found throughout the life-time of the rats. Peroxiredoxin expression remained unchanged over life-time. Beta-Synuclein expression was massively increased up to the adult stage of life in both the S1 and V1. PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1 exhibited a massive up-regulation in both the S1 and V1 at all ages. Stathmin expression was massively down regulated after the neonatal period in both the S1 and V1. The detected protein alterations were analogous to their retinal profiles. This study is the first to provide evidence that peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin are associated with postnatal maturation and aging in both the S1 and V1 of rats. These changes may indicate their involvement in key functional pathways and may account for the onset or progression of age-related pathologies.
Collapse
Affiliation(s)
- Michael R R Böhm
- Institute of Experimental Ophthalmology and DFG-Center of Excellence Cells in Motion (CiM), area C.4, School of Medicine, Westfalian-Wilhelms-University of Münster Münster, Germany ; Department of Ophthalmology, St. Franziskus Hospital Münster Münster, Germany
| | - Harutyun Melkonyan
- Institute of Experimental Ophthalmology and DFG-Center of Excellence Cells in Motion (CiM), area C.4, School of Medicine, Westfalian-Wilhelms-University of Münster Münster, Germany
| | - Solon Thanos
- Institute of Experimental Ophthalmology and DFG-Center of Excellence Cells in Motion (CiM), area C.4, School of Medicine, Westfalian-Wilhelms-University of Münster Münster, Germany
| |
Collapse
|
26
|
p53 in neurodegenerative diseases and brain cancers. Pharmacol Ther 2013; 142:99-113. [PMID: 24287312 DOI: 10.1016/j.pharmthera.2013.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022]
Abstract
More than thirty years elapsed since a protein, not yet called p53 at the time, was detected to bind SV40 during viral infection. Thousands of papers later, p53 evolved as the main tumor suppressor involved in growth arrest and apoptosis. A lot has been done but the protein has not yet revealed all its secrets. Particularly important is the observation that in totally distinct pathologies where apoptosis is either exacerbated or impaired, p53 appears to play a central role. This is exemplified for Alzheimer's and Parkinson's diseases that represent the two main causes of age-related neurodegenerative affections, where cell death enhancement appears as one of the main etiological paradigms. Conversely, in cancers, about half of the cases are linked to mutations in p53 leading to the impairment of p53-dependent apoptosis. The involvement of p53 in these pathologies has driven a huge amount of studies aimed at designing chemical tools or biological approaches to rescue p53 defects or over-activity. Here, we describe the data linking p53 to neurodegenerative diseases and brain cancers, and we document the various strategies to interfere with p53 dysfunctions in these disorders.
Collapse
|
27
|
Harrison IF, Dexter DT. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease? Pharmacol Ther 2013; 140:34-52. [PMID: 23711791 DOI: 10.1016/j.pharmthera.2013.05.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the most common movement disorder affecting more than 4million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD?
Collapse
Affiliation(s)
- Ian F Harrison
- Parkinson's Disease Research Group, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| | | |
Collapse
|
28
|
Duplan E, Giaime E, Viotti J, Sévalle J, Corti O, Brice A, Ariga H, Qi L, Checler F, Alves da Costa C. ER-stress-associated functional link between Parkin and DJ-1 via a transcriptional cascade involving the tumor suppressor p53 and the spliced X-box binding protein XBP-1. J Cell Sci 2013; 126:2124-33. [PMID: 23447676 DOI: 10.1242/jcs.127340] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parkin and DJ-1 are two multi-functional proteins linked to autosomal recessive early-onset Parkinson's disease (PD) that have been shown to functionally interact by as-yet-unknown mechanisms. We have delineated the mechanisms by which parkin controls DJ-1. Parkin modulates DJ-1 transcription and protein levels via a signaling cascade involving p53 and the endoplasmic reticulum (ER)-stress-induced active X-box-binding protein-1S (XBP-1S). Parkin triggers the transcriptional repression of p53 while p53 downregulates DJ-1 protein and mRNA expressions. We show that parkin-mediated control of DJ-1 is fully p53-dependent. Furthermore, we establish that p53 lowers the protein and mRNA levels of XBP-1S. Accordingly, we show that parkin ultimately upregulates XBP-1 levels. Subsequently, XBP-1S physically interacts with the DJ-1 promoter, thereby enhancing its promoter trans-activation, mRNA levels and protein expression. This data was corroborated by the examination of DJ-1 in both parkin- and p53-null mice brains. This transcriptional cascade is abolished by pathogenic parkin mutations and is independent of its ubiquitin-ligase activity. Our data establish a parkin-dependent ER-stress-associated modulation of DJ-1 and identifies p53 and XBP-1 as two major actors acting downstream of parkin in this signaling cascade in cells and in vivo. This work provides a mechanistic explanation for the increase in the unfolded protein response observed in PD pathology, i.e. that it is due to a defect in parkin-associated control of DJ-1.
Collapse
Affiliation(s)
- Eric Duplan
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNSA, Team Fondation pour la Recherche Médicale and Labex Distalz, 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Desplats P, Spencer B, Crews L, Pathel P, Morvinski-Friedmann D, Kosberg K, Roberts S, Patrick C, Winner B, Winkler J, Masliah E. α-Synuclein induces alterations in adult neurogenesis in Parkinson disease models via p53-mediated repression of Notch1. J Biol Chem 2012; 287:31691-702. [PMID: 22833673 DOI: 10.1074/jbc.m112.354522] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson disease is characterized by the loss of dopaminergic neurons mainly in the substantia nigra. Accumulation of α-synuclein and cell loss has been also reported in many other brain regions including the hippocampus, where it might impair adult neurogenesis, contributing to nonmotor symptoms. However, the molecular mechanisms of these alterations are still unknown. In this report we show that α-synuclein-accumulating adult rat hippocampus neural progenitors present aberrant neuronal differentiation, with reduction of Notch1 expression and downstream signaling targets. We characterized a Notch1 proximal promoter that contains p53 canonical response elements. In vivo binding of p53 represses the transcription of Notch1 in neurons. Moreover, we demonstrated that α-synuclein directly binds to the DNA at Notch1 promoter vicinity and also interacts with p53 protein, facilitating or increasing Notch1 signaling repression, which interferes with maturation and survival of neural progenitors cells. This study provides a molecular basis for α-synuclein-mediated disruption of adult neurogenesis in Parkinson disease.
Collapse
Affiliation(s)
- Paula Desplats
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Strain-independent global effect of hippocampal proteins in mice trained in the Morris water maze. Amino Acids 2012; 43:1739-49. [DOI: 10.1007/s00726-012-1258-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
|
31
|
Hashimoto M, La Spada AR. β-synuclein in the pathogenesis of Parkinson’s disease and related α-synucleinopathies: emerging roles and new directions. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.12.5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An important turning point in understanding Parkinson’s disease was the realization that altered function of α-synuclein (αS) is central to disease pathogenesis. β-synuclein (βS), the homolog of αS, received limited attention initially, but further work indicated that βS may be involved in the pathogenesis of Parkinson’s disease and other α-synucleinopathies. βS can protect against neurodegeneration caused by αS, and mutations in the βS gene have been linked to dementia with Lewy bodies. When we created transgenic mice expressing the P123H βS mutation, we observed neurodegeneration characterized by axonal pathology and gliosis. Furthermore, P123H-βS transgenic mice exhibited memory dysfunction, suggesting that alteration of neuroprotective βS function contributes to non-motor symptoms. Similar to other amyloidogenic proteins, βS may yield neurodegeneration through both loss-of-function and gain-of-function mechanisms. Such diverse modes of action need to be carefully considered, as βS is emerging as an attractive candidate for therapy development.
Collapse
Affiliation(s)
- Makoto Hashimoto
- Division of Sensory & Motor Systems, Tokyo Metropolitan Institute of Medical Science, 2–1-6 Kamikitasawa, Setagaya-ku, Tokyo 156-0057, Japan
| | - Albert R La Spada
- Departments of Pediatrics, Cellular & Molecular Medicine, and Neurosciences, Division of Biological Sciences, and the Institute for Genomic Medicine, University of California, San Diego; La Jolla, CA 92093, USA; Pediatrics and Cellular & Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0642, La Jolla, CA 92093-0642, USA
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
32
|
Jerez A, Gondek LP, Jankowska AM, Makishima H, Przychodzen B, Tiu RV, O'Keefe CL, Mohamedali AM, Batista D, Sekeres MA, McDevitt MA, Mufti GJ, Maciejewski JP. Topography, clinical, and genomic correlates of 5q myeloid malignancies revisited. J Clin Oncol 2012; 30:1343-9. [PMID: 22370328 DOI: 10.1200/jco.2011.36.1824] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Interstitial deletions of chromosome 5q are common in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), pointing toward the pathogenic role of this region in disease phenotype and clonal evolution. The higher level of resolution of single-nucleotide polymorphism array (SNP-A) karyotyping may be used to find cryptic abnormalities and to precisely define the topographic features of the genomic lesions, allowing for more accurate clinical correlations. PATIENTS AND METHODS We analyzed high-density SNP-A karyotyping at diagnosis for a cohort of 1,155 clinically well-annotated patients with malignant myeloid disorders. results: We identified chromosome 5q deletions in 142 (12%) of 1,155 patients and uniparental disomy segments (UPD) in four (0.35%) of 1,155 patients. Patients with deletions involving the centromeric and telomeric extremes of 5q have a more aggressive disease phenotype and additional chromosomal lesions. Lesions not involving the centromeric or telomeric extremes of 5q are not exclusive to 5q- syndrome but can be associated with other less aggressive forms of MDS. In addition, larger 5q deletions are associated with either del(17p) or UPD17p. In 31 of 33 patients with del(5q) AML, either a deletion involving the centromeric and/or telomeric regions or heterozygous mutations in NPM1 or MAML1 located in 5q35 were present. CONCLUSION Our results suggest that the extent of the affected region on 5q determines clinical characteristics that can be further modified by heterozygous mutations present in the telomeric extreme.
Collapse
|
33
|
Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol Rev 2011; 91:1161-218. [PMID: 22013209 DOI: 10.1152/physrev.00022.2010] [Citation(s) in RCA: 418] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common motor disorder of mysterious etiology. It is due to the progressive degeneration of the dopaminergic neurons of the substantia nigra and is accompanied by the appearance of intraneuronal inclusions enriched in α-synuclein, the Lewy bodies. It is becoming increasingly clear that genetic factors contribute to its complex pathogenesis. Over the past decade, the genetic basis of rare PD forms with Mendelian inheritance, representing no more than 10% of the cases, has been investigated. More than 16 loci and 11 associated genes have been identified so far; genome-wide association studies have provided convincing evidence that polymorphic variants in these genes contribute to sporadic PD. The knowledge acquired of the functions of their protein products has revealed pathways of neurodegeneration that may be shared between inherited and sporadic PD. An impressive set of data in different model systems strongly suggest that mitochondrial dysfunction plays a central role in clinically similar, early-onset autosomal recessive PD forms caused by parkin and PINK1, and possibly DJ-1 gene mutations. In contrast, α-synuclein accumulation in Lewy bodies defines a spectrum of disorders ranging from typical late-onset PD to PD dementia and including sporadic and autosomal dominant PD forms due to mutations in SCNA and LRRK2. However, the pathological role of Lewy bodies remains uncertain, as they may or may not be present in PD forms with one and the same LRRK2 mutation. Impairment of autophagy-based protein/organelle degradation pathways is emerging as a possible unifying but still fragile pathogenic scenario in PD. Strengthening these discoveries and finding other convergence points by identifying new genes responsible for Mendelian forms of PD and exploring their functions and relationships are the main challenges of the next decade. It is also the way to follow to open new promising avenues of neuroprotective treatment for this devastating disorder.
Collapse
Affiliation(s)
- Olga Corti
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale U.975, Paris, France
| | | | | |
Collapse
|
34
|
Alves da Costa C, Checler F. Apoptosis in Parkinson's disease: Is p53 the missing link between genetic and sporadic Parkinsonism? Cell Signal 2011; 23:963-8. [DOI: 10.1016/j.cellsig.2010.10.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/11/2010] [Indexed: 01/27/2023]
|
35
|
Thomas B, Mandir AS, West N, Liu Y, Andrabi SA, Stirling W, Dawson VL, Dawson TM, Lee MK. Resistance to MPTP-neurotoxicity in α-synuclein knockout mice is complemented by human α-synuclein and associated with increased β-synuclein and Akt activation. PLoS One 2011; 6:e16706. [PMID: 21304957 PMCID: PMC3031616 DOI: 10.1371/journal.pone.0016706] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/12/2011] [Indexed: 11/30/2022] Open
Abstract
Genetic and biochemical abnormalities of α-synuclein are associated with the pathogenesis of Parkinson's disease. In the present study we investigated the in vivo interaction of mouse and human α-synuclein with the potent parkinsonian neurotoxin, MPTP. We find that while lack of mouse α-synuclein in mice is associated with reduced vulnerability to MPTP, increased levels of human α-synuclein expression is not associated with obvious changes in the vulnerability of dopaminergic neurons to MPTP. However, expressing human α-synuclein variants (human wild type or A53T) in the α-synuclein null mice completely restores the vulnerability of nigral dopaminergic neurons to MPTP. These results indicate that human α-synuclein can functionally replace mouse α-synuclein in regard to vulnerability of dopaminergic neurons to MPTP-toxicity. Significantly, α-synuclein null mice and wild type mice were equally sensitive to neurodegeneration induced by 2′NH2-MPTP, a MPTP analog that is selective for serotoninergic and noradrenergic neurons. These results suggest that effects of α-synuclein on MPTP like compounds are selective for nigral dopaminergic neurons. Immunoblot analysis of β-synuclein and Akt levels in the mice reveals selective increases in β-synuclein and phosphorylated Akt levels in ventral midbrain, but not in other brain regions, of α-synuclein null mice, implicating the α-synuclein-level dependent regulation of β-synuclein expression in modulation of MPTP-toxicity by α-synuclein. Together these findings provide new mechanistic insights on the role α-synuclein in modulating neurodegenerative phenotypes by regulation of Akt-mediated cell survival signaling in vivo.
Collapse
Affiliation(s)
- Bobby Thomas
- Neuroregeneration and Stem Cell Programs, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nourizadeh-Lillabadi R, Seilø Torgersen J, Vestrheim O, König M, Aleström P, Syed M. Early embryonic gene expression profiling of zebrafish prion protein (Prp2) morphants. PLoS One 2010; 5:e13573. [PMID: 21042590 PMCID: PMC2962645 DOI: 10.1371/journal.pone.0013573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/26/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Prion protein (PRNP/Prp) plays a crucial role in transmissible spongiform encephalopathies (TSEs) like Creutzfeldt-Jakob disease (CJD), scrapie and mad cow disease. Notwithstanding the importance in human and animal disease, fundamental aspects of PRNP/Prp function and transmission remains unaccounted for. METHODOLOGY/PRINCIPAL FINDINGS The zebrafish (Danio rerio) genome contains three Prp encoding genes assigned prp1, prp2 and prp3. Currently, the second paralogue is believed to be the most similar to the mammalian PRNP gene in structure and function. Functional studies of the PRNP gene ortholog was addressed by prp2 morpholino (MO) knockdown experiments. Investigation of Prp2 depleted embryos revealed high mortality and apoptosis at 24 hours post fertilization (hpf) as well as impaired brain and neuronal development. In order to elucidate the underlying mechanisms, a genome-wide transcriptome analysis was carried out in viable 24 hpf morphants. The resulting changes in gene expression profiles revealed 249 differently expressed genes linked to biological processes like cell death, neurogenesis and embryonic development. CONCLUSIONS/SIGNIFICANCE The current study contributes to the understanding of basic Prp functions and demonstrates that the zebrafish is an excellent model to address the role of Prp in vertebrates. The gene knockdown of prp2 indicates an essential biological function for the zebrafish ortholog with a morphant phenotype that suggests a neurodegenerative action and gene expression effects which are apoptosis related and effects gene networks controlling neurogenesis and embryo development.
Collapse
Affiliation(s)
| | - Jacob Seilø Torgersen
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway
| | - Olav Vestrheim
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway
| | - Melanie König
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway
| | - Peter Aleström
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway
| | - Mohasina Syed
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway
- * E-mail:
| |
Collapse
|
37
|
Beyer K, Domingo-Sàbat M, Santos C, Tolosa E, Ferrer I, Ariza A. The decrease of β-synuclein in cortical brain areas defines a molecular subgroup of dementia with Lewy bodies. ACTA ACUST UNITED AC 2010; 133:3724-33. [PMID: 20959308 DOI: 10.1093/brain/awq275] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lewy body diseases include dementia with Lewy bodies and Parkinson's disease. Whereas dementia with Lewy bodies and Parkinson's disease can be distinguished as separate clinical entities, the pathological picture is very often identical. α-synuclein aggregation is a key event in the pathogenesis of Lewy body diseases and β-synuclein inhibits α-synuclein aggregation in vitro and in vivo. Recently, β-synuclein has been shown to interact directly with α-synuclein, regulating its functionality and preventing its oligomerization. In this study, we analysed the expression of two β-synuclein transcript variants and the main α-synuclein transcript SNCA140, in frozen samples of three areas from brains of patients with (i) pure diffuse Lewy body pathology; (ii) pure Alzheimer's disease pathology; (iii) diffuse Lewy body pathology and concomitant Alzheimer's disease pathology and (iv) controls. Relative messenger RNA expression was determined by real-time polymerase chain reaction, expression changes were evaluated by the ΔΔC(t) method and messenger RNA expression data were confirmed at the protein level. A drastic diminution of β-synuclein expression was observed in cortical areas of all samples that presented neuropathological features corresponding to pure diffuse Lewy body pathology and the clinical phenotype of dementia with Lewy bodies, but not in those with neuropathological features corresponding to diffuse Lewy body pathology and concomitant Alzheimer's disease pathology or the clinical phenotype of Parkinson's disease with dementia. The correlation of expression data with the clinical phenotype and neuropathological diagnosis of the patients suggested the existence of a specific molecular subtype of dementia with Lewy bodies, characterized by a strong decrease of β-synuclein in the frontal and temporal cortices. Furthermore, our findings provide new insights into the pathogenesis of Lewy body diseases that may be important for the understanding of molecular mechanisms involved in these complex diseases.
Collapse
Affiliation(s)
- Katrin Beyer
- Servicio de Anatomía Patológica, Hospital Universitario Germans Trias i Pujol, Universidad Autonoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
38
|
Loss of function of DJ-1 triggered by Parkinson's disease-associated mutation is due to proteolytic resistance to caspase-6. Cell Death Differ 2010; 17:158-69. [PMID: 19680261 DOI: 10.1038/cdd.2009.116] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
DJ-1 was recently identified as a gene product responsible for a subset of familial Parkinson's disease (PD). The mechanisms by which mutations in DJ-1 alter its function and account for PD-related pathology remained largely unknown. We show that DJ-1 is processed by caspase-6 and that the caspase-6-derived C-terminal fragment of DJ-1 fully accounts for associated p53-dependent cell death. In line with the above data, we show that a recently described early-onset PD-associated mutation (D149A) renders DJ-1 resistant to caspase-6 proteolysis and abolishes its protective phenotype. Unlike the D149A mutation, the L166P mutation that prevents DJ-1 dimerization does not impair its proteolysis by caspase-6 although it also abolishes DJ-1 antiapoptotic function. Therefore, we show here that DJ-1 loss of function could be due to impaired caspase-6 proteolysis and we document the fact that various DJ-1 mutations could lead to PD pathology through distinct molecular mechanisms.
Collapse
|
39
|
Effects of environmental tobacco smoke on adult rat brain biochemistry. J Mol Neurosci 2009; 41:165-71. [PMID: 19960371 DOI: 10.1007/s12031-009-9316-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
Abstract
Environmental tobacco smoke (ETS) has been linked to deleterious health effects, particularly pulmonary and cardiac disease; yet, the general public considers ETS benign to brain function in adults. In contrast, epidemiological data have suggested that ETS impacts the brain and potentially modulates neurodegenerative disease. The present study begins to examine yet unknown biochemical effects of ETS on the adult mammalian brain. In the developed animal model, adult male rats were exposed to ETS 3 h a day for 3 weeks. Biochemical data showed altered glial fibrillary acid protein levels as a main treatment effect of ETS, suggestive of reactive astrogliosis. Yet, markers of oxidative and cell stress were unaffected by ETS exposure in the brain regions examined. Increased proteolytic degradation of alphaII-spectrin by caspase-3 and the dephosphorylation of serine(116) on PEA-15 indicated greater apoptotic cell death modulated by the extrinsic pathway in the brains of ETS-exposed animals. Further, beta-synuclein was upregulated by ETS, a neuroprotective protein previously reported to exhibit anti-apoptotic and anti-fibrillogenic properties. These findings demonstrate that ETS exposure alters the neuroproteome of the adult rat brain, and suggest modulation of inflammatory and cell death processes.
Collapse
|
40
|
Ninkina N, Peters O, Millership S, Salem H, van der Putten H, Buchman VL. Gamma-synucleinopathy: neurodegeneration associated with overexpression of the mouse protein. Hum Mol Genet 2009; 18:1779-94. [PMID: 19246516 PMCID: PMC2671987 DOI: 10.1093/hmg/ddp090] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of α-synuclein in pathogenesis of familial and idiopathic forms of Parkinson’s disease, and other human disorders known as α-synucleinopathies, is well established. In contrast, the involvement of two other members of the synuclein family, β-synuclein and γ-synuclein, in the development and progression of neurodegeneration is poorly studied. However, there is a growing body of evidence that α-synuclein and β-synuclein have opposite neuropathophysiological effects. Unlike α-synuclein, overexpressed β-synuclein does not cause pathological changes in the nervous system of transgenic mice and even ameliorates the pathology caused by overexpressed α-synuclein. To assess the consequences of excess expression of the third family member, γ-synuclein, on the nervous system we generated transgenic mice expressing high levels of mouse γ-synuclein under control of Thy-1 promoter. These animals develop severe age- and transgene dose-dependent neuropathology, motor deficits and die prematurely. Histopathological changes include aggregation of γ-synuclein, accumulation of various inclusions in neuronal cell bodies and processes, and astrogliosis. These changes are seen throughout the nervous system but are most prominent in the spinal cord where they lead to loss of spinal motor neurons. Our data suggest that down-regulation of small heat shock protein HSPB1 and disintegration of neurofilament network play a role in motor neurons dysfunction and death. These findings demonstrate that γ-synuclein can be involved in neuropathophysiological changes and the death of susceptible neurons suggesting the necessity of further investigations of the potential role of this synuclein in disease.
Collapse
|
41
|
Al-Wandi A, Ninkina N, Millership S, Williamson SJM, Jones PA, Buchman VL. Absence of alpha-synuclein affects dopamine metabolism and synaptic markers in the striatum of aging mice. Neurobiol Aging 2008; 31:796-804. [PMID: 19097673 PMCID: PMC3146702 DOI: 10.1016/j.neurobiolaging.2008.11.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 10/19/2008] [Accepted: 11/08/2008] [Indexed: 12/22/2022]
Abstract
Despite numerous evidences for neurotoxicity of overexpressed α-synuclein, a protective function was suggested for endogenous α-synuclein and other members of the synuclein family. This protective role is most important for and evident in presynaptic terminals, where synucleins are normally accumulated. However, mice lacking synucleins display no adverse phenotype. In particular, no significant changes in striatal dopamine metabolism and only subtle deficit of dopaminergic neurons in the substantia nigra were found in juvenile or adult mice. To assess whether aging and synuclein deficiency may have additive detrimental effect on the nigrostriatal system, we studied dopaminergic neurons of the substantia nigra and their striatal synapses in 24–26-month-old α-synuclein and γ-synuclein null mutant mice. Significant ∼36% reduction of the striatal dopamine was found in aging α-synuclein, but not γ-synuclein null mutant mice when compared to age-matching wild type mice. This was accompanied by the reduction of TH-positive fibers in the striatum and decrease of striatal levels of TH and DAT. However, no progressive loss of TH-positive neurons was revealed in the substantia nigra of synuclein-deficient aging animals. Our results are consistent with a hypothesis that α-synuclein is important for normal function and integrity of synapses, and suggest that in the aging nervous system dysfunction of this protein could become a predisposition factor for the development of nigrostriatal pathology.
Collapse
Affiliation(s)
- Abdelmojib Al-Wandi
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, United Kingdom
| | | | | | | | | | | |
Collapse
|
42
|
Israeli E, Sharon R. Beta-synuclein occurs in vivo in lipid-associated oligomers and forms hetero-oligomers with alpha-synuclein. J Neurochem 2008; 108:465-74. [PMID: 19012742 DOI: 10.1111/j.1471-4159.2008.05776.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alpha-synuclein (alphaS) and beta-synuclein (betaS) are homologous proteins implicated in Parkinson's disease and related synucleinopathies. While alphaS is neurotoxic and its aggregation and deposition in Lewy bodies is related to neurodegeneration, betaS is considered as a potent inhibitor of alphaS aggregation and toxicity. No mechanism for the neuroprotective role of betaS has been described before. Here, we report that similar to alphaS, betaS normally occurs in lipid-associated, soluble oligomers in wild-type (WT) mouse brains. We partially purified betaS and alphaS proteins from whole mouse brain by size exclusion followed by ion exchange chromatography and found highly similar elution profiles. Using this technique, we were able to partially separate betaS from alphaS and further separate betaS monomer from its own oligomers. Importantly, we show that although alphaS and betaS share high degree of similarities, betaS oligomerization is not affected by increasing cellular levels of polyunsaturated fatty acids (PUFAs), while alphaS oligomerization is dramatically enhanced by PUFA. We show the in vivo occurrence of hetero-oligomers of alphaS and betaS and suggest that betaS expression inhibits PUFA-enhanced alphaS oligomerization by forming hetero-oligomers up to a quatramer that do not further propagate.
Collapse
Affiliation(s)
- Eitan Israeli
- Department of Cellular Biochemistry and Human Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
43
|
Chapter 6 Molecular and Cellular Biology of Synucleins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 270:225-317. [DOI: 10.1016/s1937-6448(08)01406-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Yuan Z, Zhao X, Yan F, Zhao J, Liu H, Xiong S, Li J, Chen L, Wei Y. Beta-synuclein protein from Xenopus laevis: overexpression in Escherichia coli of the GST-tagged protein and production of polyclonal antibodies. BIOCHEMISTRY. BIOKHIMIIA 2007; 72:1270-1278. [PMID: 18205611 DOI: 10.1134/s0006297907110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This report presents a procedure to obtain and purify recombinant beta-synuclein from Xenopus laevis expressed in Escherichia coli as a glutathione-S-transferase fusion protein. After identification by mass spectrometry, the protein was then used to raise anti-X. laevis beta-synuclein polyclonal antibodies, which were suitable to detect the presence of beta-synuclein in X. laevis brain by Western blot. This is the first report of a positive identification of beta-synuclein in an amphibian at the protein level.
Collapse
Affiliation(s)
- Zhu Yuan
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School and College of Life Science, Sichuan University, Chengdu, Sichuan, 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wei J, Fujita M, Nakai M, Waragai M, Watabe K, Akatsu H, Rockenstein E, Masliah E, Hashimoto M. Enhanced lysosomal pathology caused by beta-synuclein mutants linked to dementia with Lewy bodies. J Biol Chem 2007; 282:28904-28914. [PMID: 17652097 DOI: 10.1074/jbc.m703711200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Two missense mutations (P123H and V70M) of beta-synuclein (beta-syn), the homologue of alpha-syn, have been recently identified in dementia with Lewy bodies. However, the mechanism through which these mutations influence the pathogenesis of dementia with Lewy bodies is unclear. To investigate the role of the beta-syn mutations in neurodegeneration, each mutant was stably transfected into B103 neuroblastoma cells. Cells overexpressing mutated beta-syn had eosinophilic cytoplasmic inclusion bodies immunopositive for mutant beta-syn, and electron microscopy revealed that these cells were abundant in various cytoplasmic membranous inclusions resembling the histopathology of lysosomal storage disease. Consistent with these findings, the inclusion bodies were immunopositive for lysosomal markers, including cathepsin B, LAMP-2, GM2 ganglioside, and ATP13A2, which has recently been linked to PARK9. Notably, formation of these lysosomal inclusions was greatly stimulated by co-expression of alpha-syn, was dependent on the phosphorylation of alpha-syn at Ser-129, and was more efficient with the A53T familial mutant of alpha-syn compared with wild type. Furthermore, the inclusion formation in cells overexpressing mutant beta-syn and transfected with alpha-syn was significantly suppressed by treatment with autophagy-lysosomal inhibitors, which were associated with impaired clearance of syn proteins and enhanced apoptosis, indicating that formation of lysosomal inclusions might be protective. Collectively, the results demonstrated unambiguously that overexpression of beta-syn mutants (P123H and V70M) in neuroblastoma cells results in an enhanced lysosomal pathology. We suggest that these missense mutations of beta-syn might play a causative role in stimulating neurodegeneration.
Collapse
Affiliation(s)
- Jianshe Wei
- Laboratory for Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | - Masayo Fujita
- Laboratory for Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | - Masaaki Nakai
- Laboratory for Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | - Masaaki Waragai
- Laboratory for Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | - Kazuhiko Watabe
- Laboratory for Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | - Hiroyasu Akatsu
- Choju Medical Institute, Fukushimura Hospital, Aichi 441-8124, Japan
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093-0624
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093-0624
| | - Makoto Hashimoto
- Laboratory for Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan.
| |
Collapse
|
46
|
Monti B, Polazzi E, Batti L, Crochemore C, Virgili M, Contestabile A. Alpha-synuclein protects cerebellar granule neurons against 6-hydroxydopamine-induced death. J Neurochem 2007; 103:518-30. [PMID: 17635667 DOI: 10.1111/j.1471-4159.2007.04778.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The physiological role of alpha-synuclein, a protein found enriched in intraneuronal deposits characterizing Parkinson's disease, is debated. While its aggregation is usually considered linked to neuropathology, its normal function may be related to fundamental processes of synaptic transmission and plasticity. By using antisense oligonucleotide strategy, we report in this study that alpha-synuclein silencing in cultured cerebellar granule cells results in widespread death of these neurons, thus demonstrating an essential pro-survival role of the protein towards primary neurons. To study alpha-synuclein expression and processing in a Parkinson's disease model of neurotoxicity, we exposed differentiated cultures of cerebellar granule neurons to toxic concentrations of 6-hydroxydopamine (6-OHDA). This resulted in neuronal death accompanied by a decrease of the monomeric form of alpha-synuclein, which was due to both decreased synthesis of the protein and its increased mono-ubiquitination accompanied by nuclear translocation. The essential neuroprotective role of alpha-synuclein was confirmed by the fact that subchronic valproate treatment, which increases alpha-synuclein expression and prevents its nuclear translocation in cerebellar granule cells exposed to 6-OHDA, significantly protected these neurons from 6-OHDA insult. In agreement with the pro-survival role of alpha-synuclein in this model, subtoxic concentrations of alpha-synuclein antisense oligonucleotides, aggravated 6-OHDA toxicity towards granule neurons. Our results demonstrate that normal alpha-synuclein expression is essential for the viability of primary neurons and that its pro-survival role is abolished in 6-OHDA neurotoxic challenge. These results are relevant to more precisely define the role of alpha-synuclein in neuronal cells and to better understand its putative involvement in neurodegeneration.
Collapse
Affiliation(s)
- Barbara Monti
- Department of Biology, University of Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Ahmad M, Attoub S, Singh MN, Martin FL, El-Agnaf OMA. Gamma-synuclein and the progression of cancer. FASEB J 2007; 21:3419-30. [PMID: 17567567 DOI: 10.1096/fj.07-8379rev] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The synucleins are a small, soluble, highly conserved group of neuronal proteins that have been implicated in both neurodegenerative diseases and cancer. The synuclein family consists of alpha-, beta-, and gamma-synucleins (gamma-syn). They are a natively unfolded group of proteins that share sequence homologies and structural properties. So far, the biological functions of the synucleins are still unclear, but their involvement in neurodegenerative diseases and cancer may provide insights into the pathological processes that result from these two groups of debilitating diseases, and present the possibility to use them as potential targets for early diagnosis and treatment. Recently, elevated levels of gamma-syn proteins have been detected in various types of cancer, especially in advanced stages of the disease. Furthermore, studies to date indicate that overexpression of gamma-syn compromises normal mitotic checkpoint controls, resulting in multinucleation as well as faster cell growth. Gamma-syn has also been shown to promote invasion and metastasis in in vitro assays as well as in animal models. Overexpression of gamma-syn also interferes with drug-induced apoptotic responses. These observations raise questions about the involvement of gamma-syn in the process of tumorigenesis and metastasis, and efforts have already been made to use gamma-syn as a marker for assessing breast cancer progression. This review will discuss the involvement of gamma-syn in cancer progression, metastasis and its potential as a marker.
Collapse
Affiliation(s)
- Mushfika Ahmad
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates, Al Ain, PO BOX 17666, United Arab Emirates
| | | | | | | | | |
Collapse
|
48
|
Sarkar P, Sarkar S, Ramesh V, Hayes BE, Thomas RL, Wilson BL, Kim H, Barnes S, Kulkarni A, Pellis N, Ramesh GT. Proteomic analysis of mice hippocampus in simulated microgravity environment. J Proteome Res 2007; 5:548-53. [PMID: 16512669 PMCID: PMC2748658 DOI: 10.1021/pr050274r] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Space travel induces many deleterious effects on the flight crew due to the '0' g environment. The brain experiences a tremendous fluid shift, which is responsible for many of the detrimental changes in physical behavior seen in astronauts. It therefore indicates that the brain may undergo major changes in its protein levels in a '0' g environment to counteract the stress. Analysis of these global changes in proteins may explain to better understand the functioning of brain in a '0' g condition. Toward such an effort, we have screened proteins in the hippocampus of mice kept in simulated microgravity environment for 7 days and have observed a few changes in major proteins as compared to control mice. Essentially, the results show a major loss of proteins in the hippocampus of mice subjected to simulated microgravity. These changes occur in structural proteins such as tubulin, coupled with the loss of proteins involved in metabolism. This preliminary investigation leads to an understanding of the alteration of proteins in the hippocampus in response to the microgravity environment.
Collapse
Affiliation(s)
- Poonam Sarkar
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Shubhashish Sarkar
- Molecular Neurotoxicology Laboratory and Proteomics Core, Department of Biology, Texas Southern University, Houston, Texas 77004
| | - Vani Ramesh
- Department of Surgery, The University of Texas, Houston, Texas 77030
| | - Barbara E. Hayes
- Molecular Neurotoxicology Laboratory and Proteomics Core, Department of Biology, Texas Southern University, Houston, Texas 77004
| | - Renard L. Thomas
- Molecular Neurotoxicology Laboratory and Proteomics Core, Department of Biology, Texas Southern University, Houston, Texas 77004
| | - Bobby L. Wilson
- Molecular Neurotoxicology Laboratory and Proteomics Core, Department of Biology, Texas Southern University, Houston, Texas 77004
| | - Helen Kim
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Anil Kulkarni
- Department of Surgery, The University of Texas, Houston, Texas 77030
| | - Neal Pellis
- Cellular Biotechnology Program, NASA-JSC, Houston, Texas 77058
| | - Govindarajan T. Ramesh
- Molecular Neurotoxicology Laboratory and Proteomics Core, Department of Biology, Texas Southern University, Houston, Texas 77004
- To whom correspondence should be addressed. Department of Biology, Texas Southern University, 3100 Cleburne St, Houston, TX -77004, USA. Tel: (713) 313-7784. Fax: (713) 313-7932.
| |
Collapse
|
49
|
Bowman AB, Lam YC, Jafar-Nejad P, Chen HK, Richman R, Samaco RC, Fryer JD, Kahle JJ, Orr HT, Zoghbi HY. Duplication of Atxn1l suppresses SCA1 neuropathology by decreasing incorporation of polyglutamine-expanded ataxin-1 into native complexes. Nat Genet 2007; 39:373-9. [PMID: 17322884 DOI: 10.1038/ng1977] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 01/12/2007] [Indexed: 11/09/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a glutamine tract in ataxin-1 (ATXN1). SCA1 pathogenesis studies support a model in which the expanded glutamine tract causes toxicity by modulating the normal activities of ATXN1. To explore native interactions that modify the toxicity of ATXN1, we generated a targeted duplication of the mouse ataxin-1-like (Atxn1l, also known as Boat) locus, a highly conserved paralog of SCA1, and tested the role of this protein in SCA1 pathology. Using a knock-in mouse model of SCA1 that recapitulates the selective neurodegeneration seen in affected individuals, we found that elevated Atxn1l levels suppress neuropathology by displacing mutant Atxn1 from its native complex with Capicua (CIC). Our results provide genetic evidence that the selective neuropathology of SCA1 arises from modulation of a core functional activity of ATXN1, and they underscore the importance of studying the paralogs of genes mutated in neurodegenerative diseases to gain insight into mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Aaron B Bowman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fujita M, Wei J, Nakai M, Masliah E, Hashimoto M. Chaperone and anti-chaperone: Two-faced synuclein as stimulator of synaptic evolution. Neuropathology 2006; 26:383-92. [PMID: 17080714 DOI: 10.1111/j.1440-1789.2006.00732.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous studies have shown that beta-synuclein (beta-syn), the homologue of alpha-syn, inhibited alpha-syn aggregation and stabilized Akt cell survival signaling molecule, suggesting that beta-syn was protective against alpha-syn-related neurodegenerative disorders, such as Parkinson's disease and diffuse Lewy body disease. However, emerging evidence argues that the situation may be not so simple. Two missense mutations of beta-syn were identified in familial and sporadic diffuse Lewy body disease, and wild type beta-syn was induced to form fibril structures in vitro, while, alpha-syn was shown to be protective against neurodegeneration caused by deletion of cysteine-string protein-alpha, the presynaptic cochaperone to Hsc70 in mice. Collectively, alpha- and beta-syn are both, but in varying degrees, featured with two opposite properties, namely normal chaperone and anti-chaperone. By reviewing recent progress in syn biology with a particular focus on beta-syn, this manuscript refers to the intriguing possibility that the dual syn proteins might have acquired a driving force for synaptic evolution. Hypothetically, the anti-chaperone syn may provoke stress-induced diverse responses, whereas, the chaperone syn may provide buffering for them, allowing accumulation of nonlethal phenotypic variations in synapses. Consequently, dual syn proteins may cope with forthcoming stresses in the brain by stimulating adaptive evolution. In this context, failure to regulate this process due to various causes, such as gene mutations and environmental risk factors, may result in imperfect adaptability against stresses, leading to neurodegenerative disorders.
Collapse
Affiliation(s)
- Masayo Fujita
- Department of Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo, Japan
| | | | | | | | | |
Collapse
|