1
|
Zhou FY, Waterman DP, Ashton M, Caban-Penix S, Memisoglu G, Eapen VV, Haber JE. Prolonged Cell Cycle Arrest in Response to DNA damage in Yeast Requires the Maintenance of DNA Damage Signaling and the Spindle Assembly Checkpoint. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.15.540538. [PMID: 37292675 PMCID: PMC10245577 DOI: 10.1101/2023.05.15.540538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cells evoke the DNA damage checkpoint (DDC) to inhibit mitosis in the presence of DNA double-strand breaks (DSBs) to allow more time for DNA repair. In budding yeast, a single irreparable DSB is sufficient to activate the DDC and induce cell cycle arrest prior to anaphase for about 12 to 15 hours, after which cells "adapt" to the damage by extinguishing the DDC and resuming the cell cycle. While activation of the DNA damage-dependent cell cycle arrest is well-understood, how it is maintained remains unclear. To address this, we conditionally depleted key DDC proteins after the DDC was fully activated and monitored changes in the maintenance of cell cycle arrest. Degradation of Ddc2ATRIP, Rad9, Rad24, or Rad53CHK2 results in premature resumption of the cell cycle, indicating that these DDC factors are required both to establish and to maintain the arrest. Dun1 is required for establishment, but not maintenance of arrest, whereas Chk1 is required for prolonged maintenance but not for initial establishment of the mitotic arrest. When the cells are challenged with 2 persistent DSBs, they remain permanently arrested. This permanent arrest is initially dependent on the continuous presence of Ddc2, Rad9, and Rad53; however, after 15 hours these proteins become dispensable. Instead, the continued mitotic arrest is sustained by spindle-assembly checkpoint (SAC) proteins Mad1, Mad2, and Bub2 but not by Bub2's binding partner Bfa1. These data suggest that prolonged cell cycle arrest in response to 2 DSBs is achieved by a handoff from the DDC to specific components of the SAC. Furthermore, the establishment and maintenance of DNA damage-induced cell cycle arrest requires overlapping but different sets of factors.
Collapse
Affiliation(s)
- Felix Y. Zhou
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - David P. Waterman
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - Marissa Ashton
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - Suhaily Caban-Penix
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - Gonen Memisoglu
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
- Department of Molecular Genetics & Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Vinay V. Eapen
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
2
|
Hu J, Ferlez B, Dau J, Crickard JB. Rad53 regulates the lifetime of Rdh54 at homologous recombination intermediates. Nucleic Acids Res 2023; 51:11688-11705. [PMID: 37850655 PMCID: PMC10681728 DOI: 10.1093/nar/gkad848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Rdh54 is a conserved DNA translocase that participates in homologous recombination (HR), DNA checkpoint adaptation, and chromosome segregation. Saccharomyces cerevisiae Rdh54 is a known target of the Mec1/Rad53 signaling axis, which globally protects genome integrity during DNA metabolism. While phosphorylation of DNA repair proteins by Mec1/Rad53 is critical for HR progression little is known about how specific post translational modifications alter HR reactions. Phosphorylation of Rdh54 is linked to protection of genomic integrity but the consequences of modification remain poorly understood. Here, we demonstrate that phosphorylation of the Rdh54 C-terminus by the effector kinase Rad53 regulates Rdh54 clustering activity as revealed by single molecule imaging. This stems from phosphorylation dependent and independent interactions between Rdh54 and Rad53. Genetic assays reveal that loss of phosphorylation leads to phenotypic changes resulting in loss-of-heterozygosity (LOH) outcomes. Our data highlight Rad53 as a key regulator of HR intermediates through activation and attenuation of Rdh54 motor function.
Collapse
Affiliation(s)
- Jingyi Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bryan Ferlez
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer Dau
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - J Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Ivessa AS, Singh S. The increase in cell death rates in caloric restricted cells of the yeast helicase mutant rrm3 is Sir complex dependent. Sci Rep 2023; 13:17832. [PMID: 37857740 PMCID: PMC10587150 DOI: 10.1038/s41598-023-45125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
Calorie restriction (CR), which is a reduction in calorie intake without malnutrition, usually extends lifespan and improves tissue integrity. This report focuses on the relationship between nuclear genomic instability and dietary-restriction and its effect on cell survival. We demonstrate that the cell survival rates of the genomic instability yeast mutant rrm3 change under metabolic restricted conditions. Rrm3 is a DNA helicase, chromosomal replication slows (and potentially stalls) in its absence with increased rates at over 1400 natural pause sites including sites within ribosomal DNA and tRNA genes. Whereas rrm3 mutant cells have lower cell death rates compared to wild type (WT) in growth medium containing normal glucose levels (i.e., 2%), under CR growth conditions cell death rates increase in the rrm3 mutant to levels, which are higher than WT. The silent-information-regulatory (Sir) protein complex and mitochondrial oxidative stress are required for the increase in cell death rates in the rrm3 mutant when cells are transferred from growth medium containing 2% glucose to CR-medium. The Rad53 checkpoint protein is highly phosphorylated in the rrm3 mutant in response to genomic instability in growth medium containing 2% glucose. Under CR, Rad53 phosphorylation is largely reduced in the rrm3 mutant in a Sir-complex dependent manner. Since CR is an adjuvant treatment during chemotherapy, which may target genomic instability in cancer cells, our studies may gain further insight into how these therapy strategies can be improved.
Collapse
Affiliation(s)
- Andreas S Ivessa
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07101-1709, USA.
| | - Sukhwinder Singh
- Pathology and Laboratory Medicine/Flow Cytometry and Immunology Core Laboratory, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07101-1709, USA
| |
Collapse
|
4
|
Gordon MR, Zhu J, Sun G, Li R. Suppression of chromosome instability by targeting a DNA helicase in budding yeast. Mol Biol Cell 2023; 34:ar3. [PMID: 36350688 PMCID: PMC9816644 DOI: 10.1091/mbc.e22-09-0395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Chromosome instability (CIN) is an important driver of cancer initiation, progression, drug resistance, and aging. As such, genes whose inhibition suppresses CIN are potential therapeutic targets. We report here that deletion of an accessory DNA helicase, Rrm3, suppresses high CIN caused by a wide range of genetic or pharmacological perturbations in yeast. Although this helicase mutant has altered cell cycle dynamics, suppression of CIN by rrm3∆ is independent of the DNA damage and spindle assembly checkpoints. Instead, the rrm3∆ mutant may have increased kinetochore-microtubule error correction due to an altered localization of Aurora B kinase and associated phosphatase, PP2A-Rts1.
Collapse
Affiliation(s)
- Molly R. Gordon
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhu
- Mechanobiology Institute and
| | - Gordon Sun
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biomedical Engineering and
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Mechanobiology Institute and
- Department of Biological Sciences, National University of Singapore, 117411
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
5
|
Coutelier H, Ilioaia O, Le Peillet J, Hamon M, D’Amours D, Teixeira MT, Xu Z. The Polo kinase Cdc5 is regulated at multiple levels in the adaptation response to telomere dysfunction. Genetics 2022; 223:6808627. [PMID: 36342193 PMCID: PMC9836022 DOI: 10.1093/genetics/iyac171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Telomere dysfunction activates the DNA damage checkpoint to induce a cell cycle arrest. After an extended period of time, however, cells can bypass the arrest and undergo cell division despite the persistence of the initial damage, a process called adaptation to DNA damage. The Polo kinase Cdc5 in Saccharomyces cerevisiae is essential for adaptation and for many other cell cycle processes. How the regulation of Cdc5 in response to telomere dysfunction relates to adaptation is not clear. Here, we report that Cdc5 protein level decreases after telomere dysfunction in a Mec1-, Rad53- and Ndd1-dependent manner. This regulation of Cdc5 is important to maintain long-term cell cycle arrest but not for the initial checkpoint arrest. We find that both Cdc5 and the adaptation-deficient mutant protein Cdc5-ad are heavily phosphorylated and several phosphorylation sites modulate adaptation efficiency. The PP2A phosphatases are involved in Cdc5-ad phosphorylation status and contribute to adaptation mechanisms. We finally propose that Cdc5 orchestrates multiple cell cycle pathways to promote adaptation.
Collapse
Affiliation(s)
| | | | | | - Marion Hamon
- Sorbonne Université, PSL, CNRS, FR550, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Damien D’Amours
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Maria Teresa Teixeira
- Sorbonne Université, PSL, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, 75005 Paris, France
| | - Zhou Xu
- Corresponding author: Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris‐Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France.
| |
Collapse
|
6
|
Liakopoulos D. Coupling DNA Replication and Spindle Function in Saccharomyces cerevisiae. Cells 2021; 10:cells10123359. [PMID: 34943867 PMCID: PMC8699587 DOI: 10.3390/cells10123359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/02/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae DNA replication and spindle assembly can overlap. Therefore, signaling mechanisms modulate spindle dynamics in order to ensure correct timing of chromosome segregation relative to genome duplication, especially when replication is incomplete or the DNA becomes damaged. This review focuses on the molecular mechanisms that coordinate DNA replication and spindle dynamics, as well as on the role of spindle-dependent forces in DNA repair. Understanding the coupling between genome duplication and spindle function in yeast cells can provide important insights into similar processes operating in other eukaryotic organisms, including humans.
Collapse
Affiliation(s)
- Dimitris Liakopoulos
- CRBM, Université de Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier, France;
- Laboratory of Biology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
- University Research Center of loannina, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
7
|
Jiménez J, Queralt E, Posas F, de Nadal E. The regulation of Net1/Cdc14 by the Hog1 MAPK upon osmostress unravels a new mechanism regulating mitosis. Cell Cycle 2020; 19:2105-2118. [PMID: 32794416 PMCID: PMC7513861 DOI: 10.1080/15384101.2020.1804222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
During evolution, cells have developed a plethora of mechanisms to optimize survival in a changing and unpredictable environment. In this regard, they have evolved networks that include environmental sensors, signaling transduction molecules and response mechanisms. Hog1 (yeast) and p38 (mammals) stress-activated protein kinases (SAPKs) are activated upon stress and they drive a full collection of cell adaptive responses aimed to maximize survival. SAPKs are extensively used to learn about the mechanisms through which cells adapt to changing environments. In addition to regulating gene expression and metabolism, SAPKs control cell cycle progression. In this review, we will discuss the latest findings related to the SAPK-driven regulation of mitosis upon osmostress in yeast.
Collapse
Affiliation(s)
- Javier Jiménez
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Department of Ciències Bàsiques, Facultat De Medicina I Ciències De La Salut, Universitat Internacional De Catalunya , Barcelona, Spain
| | - Ethel Queralt
- Cell Cycle Group, Institut d'Investigacions Biomèdica De Bellvitge (IDIBELL), L'Hospitalet De Llobregat , Barcelona, Spain
| | - Francesc Posas
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology , 08028 Barcelona, Spain
| | - Eulàlia de Nadal
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology , 08028 Barcelona, Spain
| |
Collapse
|
8
|
Vydzhak O, Bender K, Klermund J, Busch A, Reimann S, Luke B. Checkpoint adaptation in recombination-deficient cells drives aneuploidy and resistance to genotoxic agents. DNA Repair (Amst) 2020; 95:102939. [PMID: 32777450 DOI: 10.1016/j.dnarep.2020.102939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
Abstract
Human cancers frequently harbour mutations in DNA repair genes, rendering the use of DNA damaging agents as an effective therapeutic intervention. As therapy-resistant cells often arise, it is important to better understand the molecular pathways that drive resistance in order to facilitate the eventual targeting of such processes. We employ recombination-defective diploid yeast as a model to demonstrate that, in response to genotoxic challenges, nearly all cells eventually undergo checkpoint adaptation, resulting in the generation of aneuploid cells with whole chromosome losses that have acquired resistance to the initial genotoxic challenge. We demonstrate that adaptation inhibition, either pharmacologically, or genetically, drastically reduces the occurrence of resistant cells. Additionally, the aneuploid phenotypes of the resistant cells can be specifically targeted to induce cytotoxicity. We provide evidence that TORC1 inhibition with rapamycin, in combination with DNA damaging agents, can prevent both checkpoint adaptation and the continued growth of aneuploid resistant cells.
Collapse
Affiliation(s)
- Olga Vydzhak
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany; Johannes Gutenberg University Mainz, Faculty of Biology, Institute of Developmental Biology and Neurobiology, Mainz, 55128, Germany
| | - Katharina Bender
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany; Johannes Gutenberg University Mainz, Faculty of Biology, Institute of Developmental Biology and Neurobiology, Mainz, 55128, Germany
| | - Julia Klermund
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany
| | - Stefanie Reimann
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany; Johannes Gutenberg University Mainz, Faculty of Biology, Institute of Developmental Biology and Neurobiology, Mainz, 55128, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany; Johannes Gutenberg University Mainz, Faculty of Biology, Institute of Developmental Biology and Neurobiology, Mainz, 55128, Germany.
| |
Collapse
|
9
|
Khondker S, Kajjo S, Chandler-Brown D, Skotheim J, Rudner A, Ikui AE. PP2A Cdc55 dephosphorylates Pds1 and inhibits spindle elongation in S. cerevisiae. J Cell Sci 2020; 133:jcs243766. [PMID: 32591482 PMCID: PMC7406319 DOI: 10.1242/jcs.243766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/11/2020] [Indexed: 11/20/2022] Open
Abstract
PP2ACdc55 (the form of protein phosphatase 2A containing Cdc55) regulates cell cycle progression by reversing cyclin-dependent kinase (CDK)- and polo-like kinase (Cdc5)-dependent phosphorylation events. In S. cerevisiae, Cdk1 phosphorylates securin (Pds1), which facilitates Pds1 binding and inhibits separase (Esp1). During anaphase, Esp1 cleaves the cohesin subunit Scc1 and promotes spindle elongation. Here, we show that PP2ACdc55 directly dephosphorylates Pds1 both in vivo and in vitro Pds1 hyperphosphorylation in a cdc55 deletion mutant enhanced the Pds1-Esp1 interaction, which played a positive role in Pds1 nuclear accumulation and in spindle elongation. We also show that nuclear PP2ACdc55 plays a role during replication stress to inhibit spindle elongation. This pathway acted independently of the known Mec1, Swe1 or spindle assembly checkpoint (SAC) checkpoint pathways. We propose a model where Pds1 dephosphorylation by PP2ACdc55 disrupts the Pds1-Esp1 protein interaction and inhibits Pds1 nuclear accumulation, which prevents spindle elongation, a process that is elevated during replication stress.
Collapse
Affiliation(s)
- Shoily Khondker
- Biology Department, Brooklyn College, The City University of New York, Brooklyn, NY 11238, USA
- Biology Program, CUNY Graduate Center, New York, NY 10016, USA
| | - Sam Kajjo
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | | | - Jan Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Adam Rudner
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Amy E. Ikui
- Biology Department, Brooklyn College, The City University of New York, Brooklyn, NY 11238, USA
- Biology Program, CUNY Graduate Center, New York, NY 10016, USA
| |
Collapse
|
10
|
Abstract
Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.
Collapse
Affiliation(s)
- David P Waterman
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA;
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA;
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
11
|
Yam CQX, Chia DB, Shi I, Lim HH, Surana U. Dun1, a Chk2-related kinase, is the central regulator of securin-separase dynamics during DNA damage signaling. Nucleic Acids Res 2020; 48:6092-6107. [PMID: 32402080 PMCID: PMC7293041 DOI: 10.1093/nar/gkaa355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 01/26/2023] Open
Abstract
The DNA damage checkpoint halts cell cycle progression in G2 in response to genotoxic insults. Central to the execution of cell cycle arrest is the checkpoint-induced stabilization of securin-separase complex (yeast Pds1-Esp1). The checkpoint kinases Chk1 and Chk2 (yeast Chk1 and Rad53) are thought to critically contribute to the stability of securin-separase complex by phosphorylation of securin, rendering it resistant to proteolytic destruction by the anaphase promoting complex (APC). Dun1, a Rad53 paralog related to Chk2, is also essential for checkpoint-imposed arrest. Dun1 is required for the DNA damage-induced transcription of DNA repair genes; however, its role in the execution of cell cycle arrest remains unknown. Here, we show that Dun1′s role in checkpoint arrest is independent of its involvement in the transcription of repair genes. Instead, Dun1 is necessary to prevent Pds1 destruction during DNA damage in that the Dun1-deficient cells degrade Pds1, escape G2 arrest and undergo mitosis despite the presence of checkpoint-active Chk1 and Rad53. Interestingly, proteolytic degradation of Pds1 in the absence of Dun1 is mediated not by APC but by the HECT domain-containing E3 ligase Rsp5. Our results suggest a regulatory scheme in which Dun1 prevents chromosome segregation during DNA damage by inhibiting Rsp5-mediated proteolytic degradation of securin Pds1.
Collapse
Affiliation(s)
- Candice Qiu Xia Yam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore.,Bioprocessing Technology Institute, A*STAR, Singapore
| | - David Boy Chia
- Biotransformation Innovation Platform, A*STAR, Singapore
| | - Idina Shi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore
| | - Hong Hwa Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore.,Bioprocessing Technology Institute, A*STAR, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore.,Bioprocessing Technology Institute, A*STAR, Singapore.,Biotransformation Innovation Platform, A*STAR, Singapore.,Department of Pharmacology, National University of Singapore, Singapore
| |
Collapse
|
12
|
Matellán L, Monje-Casas F. Regulation of Mitotic Exit by Cell Cycle Checkpoints: Lessons From Saccharomyces cerevisiae. Genes (Basel) 2020; 11:E195. [PMID: 32059558 PMCID: PMC7074328 DOI: 10.3390/genes11020195] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
In order to preserve genome integrity and their ploidy, cells must ensure that the duplicated genome has been faithfully replicated and evenly distributed before they complete their division by mitosis. To this end, cells have developed highly elaborated checkpoints that halt mitotic progression when problems in DNA integrity or chromosome segregation arise, providing them with time to fix these issues before advancing further into the cell cycle. Remarkably, exit from mitosis constitutes a key cell cycle transition that is targeted by the main mitotic checkpoints, despite these surveillance mechanisms being activated by specific intracellular signals and acting at different stages of cell division. Focusing primarily on research carried out using Saccharomyces cerevisiae as a model organism, the aim of this review is to provide a general overview of the molecular mechanisms by which the major cell cycle checkpoints control mitotic exit and to highlight the importance of the proper regulation of this process for the maintenance of genome stability during the distribution of the duplicated chromosomes between the dividing cells.
Collapse
Affiliation(s)
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC)—University of Seville—University Pablo de Olavide, Avda, Américo Vespucio, 24, 41092 Sevilla, Spain;
| |
Collapse
|
13
|
Kaur H, Gn K, Lichten M. Unresolved Recombination Intermediates Cause a RAD9-Dependent Cell Cycle Arrest in Saccharomyces cerevisiae. Genetics 2019; 213:805-818. [PMID: 31562181 PMCID: PMC6827386 DOI: 10.1534/genetics.119.302632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, the conserved Sgs1-Top3-Rmi1 helicase-decatenase regulates homologous recombination by limiting accumulation of recombination intermediates that are crossover precursors. In vitro studies have suggested that this may be due to dissolution of double-Holliday junction joint molecules by Sgs1-driven convergent junction migration and Top3-Rmi1 mediated strand decatenation. To ask whether dissolution occurs in vivo, we conditionally depleted Sgs1 and/or Rmi1 during return to growth (RTG), a procedure where recombination intermediates formed during meiosis are resolved when cells resume the mitotic cell cycle. Sgs1 depletion during RTG delayed joint molecule resolution, but, ultimately, most were resolved and cells divided normally. In contrast, Rmi1 depletion resulted in delayed and incomplete joint molecule resolution, and most cells did not divide. rad9 ∆ mutation restored cell division in Rmi1-depleted cells, indicating that the DNA damage checkpoint caused this cell cycle arrest. Restored cell division in Rmi1-depleted rad9 ∆ cells frequently produced anucleate cells, consistent with the suggestion that persistent recombination intermediates prevented chromosome segregation. Our findings indicate that Sgs1-Top3-Rmi1 acts in vivo, as it does in vitro, to promote recombination intermediate resolution by dissolution. They also indicate that, in the absence of Top3-Rmi1 activity, unresolved recombination intermediates persist and activate the DNA damage response, which is usually thought to be activated by much earlier DNA damage-associated lesions.
Collapse
Affiliation(s)
- Hardeep Kaur
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Krishnaprasad Gn
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
14
|
Julius J, Peng J, McCulley A, Caridi C, Arnak R, See C, Nugent CI, Feng W, Bachant J. Inhibition of spindle extension through the yeast S phase checkpoint is coupled to replication fork stability and the integrity of centromeric DNA. Mol Biol Cell 2019; 30:2771-2789. [PMID: 31509480 PMCID: PMC6789157 DOI: 10.1091/mbc.e19-03-0156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Budding yeast treated with hydroxyurea (HU) activate the S phase checkpoint kinase Rad53, which prevents DNA replication forks from undergoing aberrant structural transitions and nuclease processing. Rad53 is also required to prevent premature extension of the mitotic spindle that assembles during a HU-extended S phase. Here we present evidence that checkpoint restraint of spindle extension is directly coupled to Rad53 control of replication fork stability. In budding yeast, centromeres are flanked by replication origins that fire in early S phase. Mutations affecting the Zn2+-finger of Dbf4, an origin activator, preferentially reduce centromere-proximal origin firing in HU, corresponding with suppression of rad53 spindle extension. Inactivating Exo1 nuclease or displacing centromeres from origins provides a similar suppression. Conversely, short-circuiting Rad53 targeting of Dbf4, Sld3, and Dun1, substrates contributing to fork stability, induces spindle extension. These results reveal spindle extension in HU-treated rad53 mutants is a consequence of replication fork catastrophes at centromeres. When such catastrophes occur, centromeres become susceptible to nucleases, disrupting kinetochore function and spindle force balancing mechanisms. At the same time, our data indicate centromere duplication is not required to stabilize S phase spindle structure, leading us to propose a model for how monopolar kinetochore-spindle attachments may contribute to spindle force balance in HU.
Collapse
Affiliation(s)
- Jeff Julius
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Jie Peng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Andrew McCulley
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Chris Caridi
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Remigiusz Arnak
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Colby See
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Constance I Nugent
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Jeff Bachant
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| |
Collapse
|
15
|
Ballew O, Lacefield S. The DNA damage checkpoint and the spindle position checkpoint: guardians of meiotic commitment. Curr Genet 2019; 65:1135-1140. [PMID: 31028453 DOI: 10.1007/s00294-019-00981-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
Exogenous signals induce cells to enter the specialized cell division process of meiosis, which produces haploid gametes from diploid progenitor cells. Once cells initiate the meiotic divisions, it is imperative that they complete meiosis. Inappropriate exit from meiosis and entrance into mitosis can create polyploid cells and can lead to germline tumors. Saccharomyces cerevisiae cells enter meiosis when starved of nutrients but can return to mitosis if provided nutrient-rich medium before a defined commitment point. Once past the meiotic commitment point in prometaphase I, cells stay committed to meiosis even in the presence of a mitosis-inducing signal. Recent research investigated the maintenance of meiotic commitment in budding yeast and found that two checkpoints that do not normally function in meiosis I, the DNA damage checkpoint and the spindle position checkpoint, have crucial functions in maintaining meiotic commitment. Here, we review these findings and discuss how the mitosis-inducing signal of nutrient-rich medium could activate these two checkpoints in meiosis to prevent inappropriate meiotic exit.
Collapse
Affiliation(s)
- Olivia Ballew
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
16
|
Campbell IW, Zhou X, Amon A. The Mitotic Exit Network integrates temporal and spatial signals by distributing regulation across multiple components. eLife 2019; 8:41139. [PMID: 30672733 PMCID: PMC6363386 DOI: 10.7554/elife.41139] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
GTPase signal transduction pathways control cellular decision making by integrating multiple cellular events into a single signal. The Mitotic Exit Network (MEN), a Ras-like GTPase signaling pathway, integrates spatial and temporal cues to ensure that cytokinesis only occurs after the genome has partitioned between mother and daughter cells during anaphase. Here we show that signal integration does not occur at a single step of the pathway. Rather, sequential components of the pathway are controlled in series by different signals. The spatial signal, nuclear position, regulates the MEN GTPase Tem1. The temporal signal, commencement of anaphase, is mediated by mitotic cyclin-dependent kinase (CDK) phosphorylation of the GTPase's downstream kinases. We propose that integrating multiple signals through sequential steps in the GTPase pathway represents a generalizable principle in GTPase signaling and explains why intracellular signal transmission is a multi-step process. Serial signal integration rather than signal amplification makes multi-step signal transduction necessary.
Collapse
Affiliation(s)
- Ian Winsten Campbell
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Xiaoxue Zhou
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | | |
Collapse
|
17
|
Maya Miles D, Peñate X, Sanmartín Olmo T, Jourquin F, Muñoz Centeno MC, Mendoza M, Simon MN, Chavez S, Geli V. High levels of histones promote whole-genome-duplications and trigger a Swe1 WEE1-dependent phosphorylation of Cdc28 CDK1. eLife 2018; 7:35337. [PMID: 29580382 PMCID: PMC5871333 DOI: 10.7554/elife.35337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/05/2018] [Indexed: 12/13/2022] Open
Abstract
Whole-genome duplications (WGDs) have played a central role in the evolution of genomes and constitute an important source of genome instability in cancer. Here, we show in Saccharomyces cerevisiae that abnormal accumulations of histones are sufficient to induce WGDs. Our results link these WGDs to a reduced incorporation of the histone variant H2A.Z to chromatin. Moreover, we show that high levels of histones promote Swe1WEE1 stabilisation thereby triggering the phosphorylation and inhibition of Cdc28CDK1 through a mechanism different of the canonical DNA damage response. Our results link high levels of histones to a specific type of genome instability that is quite frequently observed in cancer and uncovers a new mechanism that might be able to respond to high levels of histones.
Collapse
Affiliation(s)
- Douglas Maya Miles
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, Marseille, France
| | - Xenia Peñate
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Trinidad Sanmartín Olmo
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Frederic Jourquin
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, Marseille, France
| | - Maria Cruz Muñoz Centeno
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Manuel Mendoza
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Marie-Noelle Simon
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, Marseille, France
| | - Sebastian Chavez
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Vincent Geli
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, Marseille, France
| |
Collapse
|
18
|
A pathway of targeted autophagy is induced by DNA damage in budding yeast. Proc Natl Acad Sci U S A 2017; 114:E1158-E1167. [PMID: 28154131 DOI: 10.1073/pnas.1614364114] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response.
Collapse
|
19
|
Palou R, Palou G, Quintana DG. A role for the spindle assembly checkpoint in the DNA damage response. Curr Genet 2016; 63:275-280. [PMID: 27488803 PMCID: PMC5383677 DOI: 10.1007/s00294-016-0634-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 11/28/2022]
Abstract
Spontaneous DNA damage poses a continuous threat to genomic integrity. If unchecked, genotoxic insults result in genomic instability, a hallmark of cancer cells. In eukaryotic cells a DNA Damage Response (DDR) detects and responds to genotoxic stress, acting as an anti-cancer barrier in humans. Among other actions, the DDR blocks the segregation of incompletely replicated or damaged chromosomes, thus preventing aneuploidy. In a work aimed at better understanding such S-M control, we recently showed that cells block anaphase through different control pathways. The S phase checkpoint kinase Mec1/ATR inhibits mitotic Cyclin Dependent Kinase activity through effector kinases Swe1/Wee1 and Rad53/Chk2. Cells also stabilize the levels of Pds1/securin to block sister chromatid segregation in response to DNA damage. We show here that Pds1/securin abundance is still secured when the S phase checkpoint response is fully abrogated in mec1/ATR tel1/ATM double null mutants. When such cells are exposed to genotoxic stress, Pds1/securin is stabilized in a spindle assembly checkpoint (SAC) dependent manner. Disruption of the SAC and the S phase checkpoint together, allows chromosome segregation in the presence of DNA damage or replication stress. Our results place the SAC as a part of the DDR, which appears to count on different, independent control layers to preserve genomic integrity when chromosome replication is challenged.
Collapse
Affiliation(s)
- Roger Palou
- Biophysics Unit, School of Medicine, and Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Gloria Palou
- Biophysics Unit, School of Medicine, and Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - David G Quintana
- Biophysics Unit, School of Medicine, and Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, 08193, Catalonia, Spain.
| |
Collapse
|
20
|
Palou G, Palou R, Zeng F, Vashisht AA, Wohlschlegel JA, Quintana DG. Three Different Pathways Prevent Chromosome Segregation in the Presence of DNA Damage or Replication Stress in Budding Yeast. PLoS Genet 2015; 11:e1005468. [PMID: 26332045 PMCID: PMC4558037 DOI: 10.1371/journal.pgen.1005468] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022] Open
Abstract
A surveillance mechanism, the S phase checkpoint, blocks progression into mitosis in response to DNA damage and replication stress. Segregation of damaged or incompletely replicated chromosomes results in genomic instability. In humans, the S phase checkpoint has been shown to constitute an anti-cancer barrier. Inhibition of mitotic cyclin dependent kinase (M-CDK) activity by Wee1 kinases is critical to block mitosis in some organisms. However, such mechanism is dispensable in the response to genotoxic stress in the model eukaryotic organism Saccharomyces cerevisiae. We show here that the Wee1 ortholog Swe1 does indeed inhibit M-CDK activity and chromosome segregation in response to genotoxic insults. Swe1 dispensability in budding yeast is the result of a redundant control of M-CDK activity by the checkpoint kinase Rad53. In addition, our results indicate that Swe1 is an effector of the checkpoint central kinase Mec1. When checkpoint control on M-CDK and on Pds1/securin stabilization are abrogated, cells undergo aberrant chromosome segregation. Genetic inheritance during cell proliferation requires chromosome duplication (replication) and segregation of the replicated chromosomes to the two daughter cells. In response to the presence of DNA damage, cells block chromosome segregation to avoid the inheritance of damaged, incompletely replicated chromosomes. Failure to do so results in loss of genomic integrity. Here we show that three different, redundant pathways are responsible for such control in budding yeast, a model eukaryotic organism. One of the pathways had been described before and blocks the separation of the replicated chromosomes. We show now that two additional pathways inhibit the essential pro-mitotic Cyclin Dependent Kinase (M-CDK) activity. One of them involves the conserved inhibition of M-CDK through tyrosine phosphorylation, which was puzzlingly dispensable in the response to challenged replication in budding yeast. We show that the reason for such dispensability is the existence of redundant control of M-CDK activity by Rad53. Rad53 is part of a surveillance mechanism termed the S phase checkpoint that detects and responds to replication insults. Such control mechanism has been proposed to constitute an anti-cancer barrier in human cells.
Collapse
Affiliation(s)
- Gloria Palou
- Department of Biochemistry and Molecular Biology, Biophysics Unit, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Roger Palou
- Department of Biochemistry and Molecular Biology, Biophysics Unit, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Fanli Zeng
- Department of Biochemistry and Molecular Biology, Biophysics Unit, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Ajay A. Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - David G. Quintana
- Department of Biochemistry and Molecular Biology, Biophysics Unit, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, Spain
- * E-mail:
| |
Collapse
|
21
|
Luo G, Kim J, Song K. The C-terminal domains of human neurofibromin and its budding yeast homologs Ira1 and Ira2 regulate the metaphase to anaphase transition. Cell Cycle 2015; 13:2780-9. [PMID: 25486365 PMCID: PMC4615033 DOI: 10.4161/15384101.2015.945870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The human tumor suppressor neurofibromin contains a cysteine and serine-rich domain/Ras-GTPase activating protein domain (CSRD/RasGAP) and a C-terminal domain (CTD). Domain studies of neurofibromin suggest it has other functions in addition to being a RasGAP, but the mechanisms underlying its tumor suppressor activity are not well understood. The budding yeast Saccharomyces cerevisiae is a good model system for studying neurofibromin function because it possesses Ira1 and Ira2, which are homologous to human neurofibromin in both sequence and function. We found that overexpression of CTD or a neurofibromin CTD-homologous domain (CHD) of Ira1/2 in budding yeast delayed degradation of the securin protein Pds1, whereas overexpression of CSRD/RasGAP did not affect Pds1 degradation. We also found that when CTD or CHD was overexpressed, the number of cells in metaphase was higher than in the control. These results demonstrate that CTD and CHD function in the metaphase to anaphase transition. In addition, Δira1Δira2 cells bypassed mitotic arrest in response to spindle damage, indicating that Ira1 and Ira2 may be involved in the spindle assembly checkpoint (SAC). However, Δira1Δira2Δmad2 cells are more sensitive to spindle damage than Δmad2 or Δira1Δira2 cells are, suggesting that Ira1/2 and Mad2 function in different pathways. Overexpression of CTD but not CSRD/RasGAP partially rescued the hypersensitivity of Δira1Δira2Δmad2 cells to microtubule-destabilizing drugs, indicating a role for CTD in the SAC pathway. Taken together, independently of RasGAP activity, the C-terminal domains of neurofibromin, Ira1, and Ira2 regulate the metaphase to anaphase transition in a Mad2-independent fashion.
Collapse
Affiliation(s)
- Guangming Luo
- a Department of Biochemistry; College of Life Science and Biotechnology ; Yonsei University ; Seoul , Korea
| | | | | |
Collapse
|
22
|
Roccuzzo M, Visintin C, Tili F, Visintin R. FEAR-mediated activation of Cdc14 is the limiting step for spindle elongation and anaphase progression. Nat Cell Biol 2015; 17:251-61. [PMID: 25706236 DOI: 10.1038/ncb3105] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/09/2015] [Indexed: 01/01/2023]
Abstract
Cleavage of cohesins and cyclin-dependent kinase (CDK) inhibition are thought to be sufficient for triggering chromosome segregation. Here we identify an essential requirement for anaphase chromosome movement. We show that, at anaphase onset, the phosphatase Cdc14 and the polo-like kinase Cdc5 are redundantly required to drive spindle elongation. This role of Cdc14 is mediated by the FEAR network, a group of proteins that activates Cdc14 at anaphase onset, and we suggest that Cdc5 facilitates both Cdc14 activation and CDK inhibition. We further identify the kinesin-5 motor protein Cin8 as a key target of Cdc14. Indeed, Cin8 mutants lacking critical CDK phosphorylation sites suppress the requirement for Cdc14 and Cdc5 in anaphase spindle elongation. Our results indicate that cohesin dissolution and CDK inhibition per se are not sufficient to drive sister chromatid segregation but that the motor protein Cin8 must be activated to elongate the spindle.
Collapse
Affiliation(s)
- Michela Roccuzzo
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Clara Visintin
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Federico Tili
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Rosella Visintin
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| |
Collapse
|
23
|
Leveraging DNA damage response signaling to identify yeast genes controlling genome stability. G3-GENES GENOMES GENETICS 2015; 5:997-1006. [PMID: 25721128 PMCID: PMC4426383 DOI: 10.1534/g3.115.016576] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Oncogenesis frequently is accompanied by rampant genome instability, which fuels genetic heterogeneity and resistance to targeted cancer therapy. We have developed an approach that allows precise, quantitative measurement of genome instability in high-throughput format in the Saccharomyces cerevisiae model system. Our approach takes advantage of the strongly DNA damage-inducible gene RNR3, in conjunction with the reporter synthetic genetic array methodology, to infer mutants exhibiting genome instability by assaying for increased Rnr3 abundance. We screen for genome instability across a set of ~1000 essential and ~4200 nonessential mutant yeast alleles in untreated conditions and in the presence of the DNA-damaging agent methylmethane sulfonate. Our results provide broad insights into the cellular processes and pathways required for genome maintenance. Through comparison with existing genome instability screens, we isolated 130 genes that had not previously been linked to genome maintenance, 51% of which have human homologs. Several of these homologs are associated with a genome instability phenotype in human cells or are causally mutated in cancer. A comprehensive understanding of the processes required to prevent genome instability will facilitate a better understanding of its sources in oncogenesis.
Collapse
|
24
|
Lu D, Hsiao JY, Davey NE, Van Voorhis VA, Foster SA, Tang C, Morgan DO. Multiple mechanisms determine the order of APC/C substrate degradation in mitosis. ACTA ACUST UNITED AC 2014; 207:23-39. [PMID: 25287299 PMCID: PMC4195823 DOI: 10.1083/jcb.201402041] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To ensure proper mitotic progression, robust ordering of the destruction of APC/CCdc20 substrates is driven by the integration of molecular mechanisms ranging from phosphorylation-dependent interaction with substrates to sensing of the status of the spindle assembly checkpoint. The ubiquitin protein ligase anaphase-promoting complex or cyclosome (APC/C) controls mitosis by promoting ordered degradation of securin, cyclins, and other proteins. The mechanisms underlying the timing of APC/C substrate degradation are poorly understood. We explored these mechanisms using quantitative fluorescence microscopy of GFP-tagged APC/CCdc20 substrates in living budding yeast cells. Degradation of the S cyclin, Clb5, begins early in mitosis, followed 6 min later by the degradation of securin and Dbf4. Anaphase begins when less than half of securin is degraded. The spindle assembly checkpoint delays the onset of Clb5 degradation but does not influence securin degradation. Early Clb5 degradation depends on its interaction with the Cdk1–Cks1 complex and the presence of a Cdc20-binding “ABBA motif” in its N-terminal region. The degradation of securin and Dbf4 is delayed by Cdk1-dependent phosphorylation near their Cdc20-binding sites. Thus, a remarkably diverse array of mechanisms generates robust ordering of APC/CCdc20 substrate destruction.
Collapse
Affiliation(s)
- Dan Lu
- Department of Physiology and Department of Biochemistry and Biophysics and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Jennifer Y Hsiao
- Department of Physiology and Department of Biochemistry and Biophysics and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Norman E Davey
- Department of Physiology and Department of Biochemistry and Biophysics and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Vanessa A Van Voorhis
- Department of Physiology and Department of Biochemistry and Biophysics and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Scott A Foster
- Department of Physiology and Department of Biochemistry and Biophysics and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Chao Tang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - David O Morgan
- Department of Physiology and Department of Biochemistry and Biophysics and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| |
Collapse
|
25
|
Klermund J, Bender K, Luke B. High nutrient levels and TORC1 activity reduce cell viability following prolonged telomere dysfunction and cell cycle arrest. Cell Rep 2014; 9:324-335. [PMID: 25263563 DOI: 10.1016/j.celrep.2014.08.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 08/08/2014] [Accepted: 08/22/2014] [Indexed: 12/13/2022] Open
Abstract
Cells challenged with DNA damage activate checkpoints to arrest the cell cycle and allow time for repair. Successful repair coupled to subsequent checkpoint inactivation is referred to as recovery. When DNA damage cannot be repaired, a choice between permanent arrest and cycling in the presence of damage (checkpoint adaptation) must be made. While permanent arrest jeopardizes future lineages, continued proliferation is associated with the risk of genome instability. We demonstrate that nutritional signaling through target of rapamycin complex 1 (TORC1) influences the outcome of this decision. Rapamycin-mediated TORC1 inhibition prevents checkpoint adaptation via both Cdc5 inactivation and autophagy induction. Preventing adaptation results in increased cell viability and hence proliferative potential. In accordance, the ability of rapamycin to increase longevity is dependent upon the DNA damage checkpoint. The crosstalk between TORC1 and the DNA damage checkpoint may have important implications in terms of therapeutic alternatives for diseases associated with genome instability.
Collapse
Affiliation(s)
- Julia Klermund
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Katharina Bender
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Brian Luke
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Soriano-Carot M, Quilis I, Bañó MC, Igual JC. Protein kinase C controls activation of the DNA integrity checkpoint. Nucleic Acids Res 2014; 42:7084-95. [PMID: 24792164 PMCID: PMC4066786 DOI: 10.1093/nar/gku373] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translationally modified. This modification is a phosphorylation event mediated by Tel1. The expression of different mammalian PKC isoforms at the endogenous level in yeast pkc1 mutant cells revealed that PKCδ is able to activate the DNA integrity checkpoint. Finally, downregulation of PKCδ activity in HeLa cells caused a defective activation of checkpoint kinase Chk2 when DNA damage was induced. Our results indicate that the control of the DNA integrity checkpoint by PKC is a mechanism conserved from yeast to humans.
Collapse
Affiliation(s)
- María Soriano-Carot
- Departament de Bioquímica i Biologia Molecular. Universitat de València, 46100 Burjassot (Valencia), Spain
| | - Inma Quilis
- Departament de Bioquímica i Biologia Molecular. Universitat de València, 46100 Burjassot (Valencia), Spain
| | - M Carmen Bañó
- Departament de Bioquímica i Biologia Molecular. Universitat de València, 46100 Burjassot (Valencia), Spain
| | - J Carlos Igual
- Departament de Bioquímica i Biologia Molecular. Universitat de València, 46100 Burjassot (Valencia), Spain
| |
Collapse
|
27
|
Landry BD, Mapa CE, Arsenault HE, Poti KE, Benanti JA. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression. EMBO J 2014; 33:1044-60. [PMID: 24714560 DOI: 10.1002/embj.201386877] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division.
Collapse
Affiliation(s)
- Benjamin D Landry
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Rad53 downregulates mitotic gene transcription by inhibiting the transcriptional activator Ndd1. Mol Cell Biol 2013; 34:725-38. [PMID: 24324011 DOI: 10.1128/mcb.01056-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 33 genes in the Saccharomyces cerevisiae mitotic CLB2 transcription cluster have been known to be downregulated by the DNA damage checkpoint for many years. Here, we show that this is mediated by the checkpoint kinase Rad53 and the dedicated transcriptional activator of the cluster, Ndd1. Ndd1 is phosphorylated in response to DNA damage, which blocks recruitment to promoters and leads to the transcriptional downregulation of the CLB2 cluster. Finally, we show that downregulation of Ndd1 is an essential function of Rad53, as a hypomorphic ndd1 allele rescues RAD53 deletion.
Collapse
|
30
|
Machu C, Eluère R, Signon L, Simon MN, de La Roche Saint-André C, Bailly E. Spatially distinct functions of Clb2 in the DNA damage response. Cell Cycle 2013; 13:383-98. [PMID: 24300211 DOI: 10.4161/cc.27354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In budding yeast four mitotic cyclins (Clb1-4) cooperate in a partially redundant manner to bring about M-phase specific events, including the apical isotropic switch that ends polarized bud growth initiated at bud emergence. How exactly this morphogenetic transition is regulated by mitotic CDKs remains poorly understood. We have taken advantage of the isotropic bud growth that prevails in cells responding to DNA damage to unravel the contribution of mitotic cyclins in this cellular context. We find that clb2∆, in contrast to the other mitotic cyclin mutants, inappropriately respond to the presence of DNA damage. This aberrant response is characterized by a Cdc42- and Bni1-dependent but Cln-independent resumption of polarized bud growth after a brief period of actin depolarization. Biochemical and genetic evidence is presented that formally excludes the possibility of indirect effects due for instance to unrestrained APC activity, untimely mitotic exit or Swe1-mediated CDK inhibition. Importantly, our data demonstrate that in order to maintain the characteristic dumbbell arrest phenotype upon checkpoint activation Clb2 needs to be efficiently exported into the cytoplasm. We propose that the inhibition of mitotic cyclin destruction by the DNA damage checkpoint pathway leads to a buildup of Clb2 in the cytoplasm where this cyclin can stabilize the apical isotropic switch throughout a G 2/M checkpoint arrest. Our study also unveils an essential role of nuclear Clb2 in both survival and adaptation to the DNA damage checkpoint, illustrating a spatially distinct dual function of this mitotic cyclin in the response to DNA damage.
Collapse
Affiliation(s)
- Christophe Machu
- CNRS; UPR9027; Laboratoire d'Ingénierie des Systèmes Macromoléculaires; Marseille, France
| | - Raïssa Eluère
- CNRS; UPR9027; Laboratoire d'Ingénierie des Systèmes Macromoléculaires; Marseille, France; CNRS; UPR3081; Instabilité du Génome et Cancérogenèse; Marseille, France
| | - Laurence Signon
- CNRS; UPR9027; Laboratoire d'Ingénierie des Systèmes Macromoléculaires; Marseille, France
| | - Marie-Noëlle Simon
- CNRS; UPR9027; Laboratoire d'Ingénierie des Systèmes Macromoléculaires; Marseille, France; CNRS; UPR3081; Instabilité du Génome et Cancérogenèse; Marseille, France
| | - Christophe de La Roche Saint-André
- CNRS; UPR9027; Laboratoire d'Ingénierie des Systèmes Macromoléculaires; Marseille, France; CNRS; UPR3081; Instabilité du Génome et Cancérogenèse; Marseille, France
| | - Eric Bailly
- CNRS; UPR9027; Laboratoire d'Ingénierie des Systèmes Macromoléculaires; Marseille, France; CNRS; UPR3081; Instabilité du Génome et Cancérogenèse; Marseille, France
| |
Collapse
|
31
|
Valerio-Santiago M, de los Santos-Velázquez AI, Monje-Casas F. Inhibition of the mitotic exit network in response to damaged telomeres. PLoS Genet 2013; 9:e1003859. [PMID: 24130507 PMCID: PMC3794921 DOI: 10.1371/journal.pgen.1003859] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 08/20/2013] [Indexed: 11/18/2022] Open
Abstract
When chromosomal DNA is damaged, progression through the cell cycle is halted to provide the cells with time to repair the genetic material before it is distributed between the mother and daughter cells. In Saccharomyces cerevisiae, this cell cycle arrest occurs at the G2/M transition. However, it is also necessary to restrain exit from mitosis by maintaining Bfa1-Bub2, the inhibitor of the Mitotic Exit Network (MEN), in an active state. While the role of Bfa1 and Bub2 in the inhibition of mitotic exit when the spindle is not properly aligned and the spindle position checkpoint is activated has been extensively studied, the mechanism by which these proteins prevent MEN function after DNA damage is still unclear. Here, we propose that the inhibition of the MEN is specifically required when telomeres are damaged but it is not necessary to face all types of chromosomal DNA damage, which is in agreement with previous data in mammals suggesting the existence of a putative telomere-specific DNA damage response that inhibits mitotic exit. Furthermore, we demonstrate that the mechanism of MEN inhibition when telomeres are damaged relies on the Rad53-dependent inhibition of Bfa1 phosphorylation by the Polo-like kinase Cdc5, establishing a new key role of this kinase in regulating cell cycle progression.
Collapse
Affiliation(s)
- Mauricio Valerio-Santiago
- Centro Andaluz de Biología Molecular y Medicina Regenerativa/Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | | | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa/Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
32
|
Holt LJ. Regulatory modules: Coupling protein stability to phopshoregulation during cell division. FEBS Lett 2012; 586:2773-7. [PMID: 22664379 DOI: 10.1016/j.febslet.2012.05.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/23/2012] [Accepted: 05/23/2012] [Indexed: 11/28/2022]
Abstract
Multiple post-translational regulation systems regulate cell biology. Two key mechanisms that coordinate the myriad processes of cell replication are phosphorylation and ubiquitin-mediated degradation of proteins. Regulatory modules have evolved to integrate these two control systems at key decision points in the cell division cycle. These modules enable information to be processed with high fidelity by filtering noise, improving specificity, generating feedback loops, and optimizing spatiotemporal coordination of cellular processes. This review provides examples of these modules and considers the advantages of this signaling nexus.
Collapse
Affiliation(s)
- Liam J Holt
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
33
|
Finn K, Lowndes NF, Grenon M. Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. Cell Mol Life Sci 2012; 69:1447-73. [PMID: 22083606 PMCID: PMC11115150 DOI: 10.1007/s00018-011-0875-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 02/07/2023]
Abstract
Double-strand breaks (DSBs) are the most detrimental form of DNA damage. Failure to repair these cytotoxic lesions can result in genome rearrangements conducive to the development of many diseases, including cancer. The DNA damage response (DDR) ensures the rapid detection and repair of DSBs in order to maintain genome integrity. Central to the DDR are the DNA damage checkpoints. When activated by DNA damage, these sophisticated surveillance mechanisms induce transient cell cycle arrests, allowing sufficient time for DNA repair. Since the term "checkpoint" was coined over 20 years ago, our understanding of the molecular mechanisms governing the DNA damage checkpoint has advanced significantly. These pathways are highly conserved from yeast to humans. Thus, significant findings in yeast may be extrapolated to vertebrates, greatly facilitating the molecular dissection of these complex regulatory networks. This review focuses on the cellular response to DSBs in Saccharomyces cerevisiae, providing a comprehensive overview of how these signalling pathways function to orchestrate the cellular response to DNA damage and preserve genome stability in eukaryotic cells.
Collapse
Affiliation(s)
- Karen Finn
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | |
Collapse
|
34
|
Dewar JM, Lydall D. Similarities and differences between "uncapped" telomeres and DNA double-strand breaks. Chromosoma 2011; 121:117-30. [PMID: 22203190 DOI: 10.1007/s00412-011-0357-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/08/2011] [Indexed: 11/25/2022]
Abstract
Telomeric DNA is present at the ends of eukaryotic chromosomes and is bound by telomere "capping" proteins, which are the (Cdc13-Stn1-Ten1) CST complex, Ku (Yku70-Yku80), and Rap1-Rif1-Rif2 in budding yeast. Inactivation of any of these complexes causes telomere "uncapping," stimulating a DNA damage response (DDR) that frequently involves resection of telomeric DNA and stimulates cell cycle arrest. This is presumed to occur because telomeres resemble one half of a DNA double-strand break (DSB). In this review, we outline the DDR that occurs at DSBs and compare it to the DDR occurring at uncapped telomeres, in both budding yeast and metazoans. We give particular attention to the resection of DSBs in budding yeast by Mre11-Xrs2-Rad50 (MRX), Sgs1/Dna2, and Exo1 and compare their roles at DSBs and uncapped telomeres. We also discuss how resection uncapped telomeres in budding yeast is promoted by the by 9-1-1 complex (Rad17-Mec3-Ddc1), to illustrate how analysis of uncapped telomeres can serve as a model for the DDR elsewhere in the genome. Finally, we discuss the role of the helicase Pif1 and its requirement for resection of uncapped telomeres, but not DSBs. Pif1 has roles in DNA replication and mammalian and plant CST complexes have been identified and have roles in global genome replication. Based on these observations, we suggest that while the DDR at uncapped telomeres is partially due to their resemblance to a DSB, it may also be partially due to defective DNA replication. Specifically, we propose that the budding yeast CST complex has dual roles to inhibit a DSB-like DDR initiated by Exo1 and a replication-associated DDR initiated by Pif1. If true, this would suggest that the mammalian CST complex inhibits a Pif1-dependent DDR.
Collapse
Affiliation(s)
- James M Dewar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
35
|
Searle JS, Wood MD, Kaur M, Tobin DV, Sanchez Y. Proteins in the nutrient-sensing and DNA damage checkpoint pathways cooperate to restrain mitotic progression following DNA damage. PLoS Genet 2011; 7:e1002176. [PMID: 21779180 PMCID: PMC3136438 DOI: 10.1371/journal.pgen.1002176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/23/2011] [Indexed: 11/18/2022] Open
Abstract
Checkpoint pathways regulate genomic integrity in part by blocking anaphase until all chromosomes have been completely replicated, repaired, and correctly aligned on the spindle. In Saccharomyces cerevisiae, DNA damage and mono-oriented or unattached kinetochores trigger checkpoint pathways that bifurcate to regulate both the metaphase to anaphase transition and mitotic exit. The sensor-associated kinase, Mec1, phosphorylates two downstream kinases, Chk1 and Rad53. Activation of Chk1 and Rad53 prevents anaphase and causes inhibition of the mitotic exit network. We have previously shown that the PKA pathway plays a role in blocking securin and Clb2 destruction following DNA damage. Here we show that the Mec1 DNA damage checkpoint regulates phosphorylation of the regulatory (R) subunit of PKA following DNA damage and that the phosphorylated R subunit has a role in restraining mitosis following DNA damage. In addition we found that proteins known to regulate PKA in response to nutrients and stress either by phosphorylation of the R subunit or regulating levels of cAMP are required for the role of PKA in the DNA damage checkpoint. Our data indicate that there is cross-talk between the DNA damage checkpoint and the proteins that integrate nutrient and stress signals to regulate PKA. Previous studies showed that phosphorylation of a subset of regulatory (R) subunits of the cAMP-dependent protein kinase (PKA) occurred under conditions that down-regulate global PKA activity, including growth on non-fermentable carbon sources. However, the role of the phosphorylation sites has not been elucidated. Addition of glucose to cells growing on a non-fermentable carbon source causes a transient increase of cAMP and PKA activity, which drives cells into S phase. A second peak in cAMP was proposed to restrain mitosis if the daughter cell had not reached an appropriate size. We identified a role for PKA in restraining mitosis following DNA damage. Here we provide evidence of cross-talk between the DNA damage checkpoint and PKA by phosphorylation of the R subunit. The R subunit phosphorylation sites and cAMP are necessary for the role of PKA following DNA damage. We propose that activation of PKA in response to DNA damage occurs in two steps: the phosphorylation of a subset of R subunits, probably to allow localized activation of these complexes, and cAMP to activate PKA. Our work suggests that the checkpoint and nutrient-sensing pathways share a signaling node to restrain mitosis following nutrient-induced rapid transition through the cell cycle and DNA damage.
Collapse
Affiliation(s)
- Jennifer S. Searle
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Matthew D. Wood
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Mandeep Kaur
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - David V. Tobin
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Yolanda Sanchez
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
36
|
Budd ME, Antoshechkin IA, Reis C, Wold BJ, Campbell JL. Inviability of a DNA2 deletion mutant is due to the DNA damage checkpoint. Cell Cycle 2011; 10:1690-8. [PMID: 21508669 DOI: 10.4161/cc.10.10.15643] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dna2 is a dual polarity exo/endonuclease, and 5' to 3' DNA helicase involved in Okazaki Fragment Processing (OFP) and Double-Strand Break (DSB) Repair. In yeast, DNA2 is an essential gene, as expected for a DNA replication protein. Suppression of the lethality of dna2Δ mutants has been found to occur by two mechanisms: overexpression of RAD27 (scFEN1) , encoding a 5' to 3' exo/endo nuclease that processes Okazaki fragments (OFs) for ligation, or deletion of PIF1, a 5' to 3' helicase involved in mitochondrial recombination, telomerase inhibition and OFP. Mapping of a novel, spontaneously arising suppressor of dna2Δ now reveals that mutation of rad9 and double mutation of rad9 mrc1 can also suppress the lethality of dna2Δ mutants. Interaction of dna2Δ and DNA damage checkpoint mutations provides insight as to why dna2Δ is lethal but rad27Δ is not, even though evidence shows that Rad27 (ScFEN1) processes most of the Okazaki fragments, while Dna2 processes only a subset.
Collapse
Affiliation(s)
- Martin E Budd
- California Institute of Technology, Pasadena, CA USA
| | | | | | | | | |
Collapse
|
37
|
Wood MD, Sanchez Y. Deregulated Ras signaling compromises DNA damage checkpoint recovery in S. cerevisiae. Cell Cycle 2010; 9:3353-63. [PMID: 20716966 DOI: 10.4161/cc.9.16.12713] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The DNA damage checkpoint maintains genome stability by arresting the cell cycle and promoting DNA repair under genotoxic stress. Cells must downregulate the checkpoint signaling pathways in order to resume cell division after completing DNA repair. While the mechanisms of checkpoint activation have been well-characterized, the process of checkpoint recovery, and the signals regulating it, has only recently been investigated. We have identified a new role for the Ras signaling pathway as a regulator of DNA damage checkpoint recovery. Here we report that in budding yeast, deletion of the IRA1 and IRA2 genes encoding negative regulators of Ras prevents cellular recovery from a DNA damage induced arrest. The checkpoint kinase Rad53 is dephosphorylated in an IRA-deficient strain, indicating that recovery failure is not caused by constitutive checkpoint pathway activation. The ira1Δ ira2Δ recovery defect requires the checkpoint kinase Chk1 and the cAMP-dependent protein kinase (PKA) catalytic subunit Tpk2. Furthermore, PKA phosphorylation sites on the anaphase promoting complex specificity factor Cdc20 are required for the recovery defect, indicating a link between the recovery defect and PKA regulation of mitosis. This work identifies a new signaling pathway that can regulate DNA damage checkpoint recovery and implicates the Ras signaling pathway as an important regulator of mitotic events.
Collapse
Affiliation(s)
- Matthew D Wood
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | | |
Collapse
|
38
|
Feeney KM, Wasson CW, Parish JL. Cohesin: a regulator of genome integrity and gene expression. Biochem J 2010; 428:147-61. [PMID: 20462401 DOI: 10.1042/bj20100151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Following DNA replication, chromatid pairs are held together by a proteinacious complex called cohesin until separation during the metaphase-to-anaphase transition. Accurate segregation is achieved by regulation of both sister chromatid cohesion establishment and removal, mediated by post-translational modification of cohesin and interaction with numerous accessory proteins. Recent evidence has led to the conclusion that cohesin is also vitally important in the repair of DNA lesions and control of gene expression. It is now clear that chromosome segregation is not the only important function of cohesin in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Katherine M Feeney
- Bute Medical School, University of St Andrews, St Andrews, Fife KY16 9TS, Scotland, U.K
| | | | | |
Collapse
|
39
|
Putnam CD, Jaehnig EJ, Kolodner RD. Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair (Amst) 2009; 8:974-82. [PMID: 19477695 DOI: 10.1016/j.dnarep.2009.04.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The DNA damage and replication checkpoints are believed to primarily slow the progression of the cell cycle to allow DNA repair to occur. Here we summarize known aspects of the Saccharomyces cerevisiae checkpoints including how these responses are integrated into downstream effects on the cell cycle, chromatin, DNA repair, and cytoplasmic targets. Analysis of the transcriptional response demonstrates that it is far more complex and less relevant to the repair of DNA damage than the bacterial SOS response. We also address more speculative questions regarding potential roles of the checkpoint during the normal S-phase and how current evidence hints at a checkpoint activation mechanism mediated by positive feedback that amplifies initial damage signals above a minimum threshold.
Collapse
Affiliation(s)
- Christopher D Putnam
- Ludwig Institute for Cancer Research, Department of Medicine and Cancer Center, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0669, United States.
| | | | | |
Collapse
|
40
|
Kadyshevskaya EY, Koltovaya NA. Participation of SRM5/CDC28, SRM8/NET1, and SRM12/HFI1 genes in checkpoint control in yeast Saccharomyces cerevisiae. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Benanti JA, Matyskiela ME, Morgan DO, Toczyski DP. Functionally distinct isoforms of Cik1 are differentially regulated by APC/C-mediated proteolysis. Mol Cell 2009; 33:581-90. [PMID: 19285942 DOI: 10.1016/j.molcel.2009.01.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/10/2008] [Accepted: 01/31/2009] [Indexed: 02/02/2023]
Abstract
Cik1, in association with the kinesin Kar3, controls both the mitotic spindle and nuclear fusion during mating. Here, we show that there are two Cik1 isoforms, and that the mitotic form includes an N-terminal domain required for ubiquitination by the Anaphase-Promoting Complex/Cyclosome (APC/C). During vegetative growth, Cik1 is expressed during mitosis and regulates the mitotic spindle, allowing for accurate chromosome segregation. After mitosis, APC/C(Cdh1) targets Cik1 for ubiquitin-mediated proteolysis. Upon exposure to the mating pheromone alpha factor, a smaller APC/C-resistant Cik1 isoform is expressed from an alternate transcriptional start site. This shorter Cik1 isoform is stable and cannot be ubiquitinated by APC/C(Cdh1). Moreover, the two Cik1 isoforms are functionally distinct. Cells that express only the long isoform have defects in nuclear fusion, whereas cells expressing only the short isoform have an increased rate of chromosome loss. These results demonstrate a coupling of transcriptional regulation and APC/C-mediated proteolysis.
Collapse
Affiliation(s)
- Jennifer A Benanti
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94115, USA.
| | | | | | | |
Collapse
|
42
|
Koltovaya NA. Activation of repair and checkpoints by double-strand DNA breaks: Activational cascade of protein phosphorylation. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Leisner C, Kammerer D, Denoth A, Britschi M, Barral Y, Liakopoulos D. Regulation of mitotic spindle asymmetry by SUMO and the spindle-assembly checkpoint in yeast. Curr Biol 2008; 18:1249-55. [PMID: 18722122 DOI: 10.1016/j.cub.2008.07.091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 07/10/2008] [Accepted: 07/11/2008] [Indexed: 12/18/2022]
Abstract
During mitosis, the kinetochore microtubules capture and segregate chromosomes, and the astral microtubules position the spindle within the cell. Although the spindle is symmetric, proper positioning of the spindle in asymmetrically dividing cells generally correlates with the formation of morphologically and structurally distinct asters [1]. In budding yeast, the spindle-orientation proteins Kar9 and dynein decorate only one aster of the metaphase spindle and direct it toward the bud [2, 3]. The mechanisms controlling the distribution of Kar9 and dynein remain unclear. Here, we show that SUMO regulates astral-microtubule function in at least two ways. First, Kar9 was sumoylated in vivo. Sumoylation and Cdk1-dependent phosphorylation of Kar9 independently promoted Kar9 asymmetry on the spindle. Second, proper regulation of kinetochore function by SUMO was also required for Kar9 asymmetry. Indeed, activation of the spindle-assembly checkpoint (SAC) due to SUMO and kinetochore defects promoted symmetric redistribution of Kar9 in a Mad2-dependent manner. The control of Kar9 distribution by the SAC was independent of Kar9 sumoylation and phosphorylation. Together, our data reveal that three independent mechanisms contribute to Kar9 asymmetry: Cdk1-dependent phosphorylation, sumoylation, and SAC signaling. Hence, the two seemingly independent spindle domains, kinetochores and astral microtubules, function in a tightly coordinated fashion.
Collapse
Affiliation(s)
- Christian Leisner
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology, Schafmattstrasse 18, 8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
Rahal R, Amon A. Mitotic CDKs control the metaphase-anaphase transition and trigger spindle elongation. Genes Dev 2008; 22:1534-48. [PMID: 18519644 DOI: 10.1101/gad.1638308] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mitotic cyclin-dependent kinases (CDKs) control entry into mitosis, but their role during mitotic progression is less well understood. Here we characterize the functions of CDK activity associated with the mitotic cyclins Clb1, Clb2, and Clb3. We show that Clb-CDKs are important for the activation of the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C)-Cdc20 that triggers the metaphase-anaphase transition. Furthermore, we define an essential role for Clb-CDK activity in anaphase spindle elongation. Thus, mitotic CDKs serve not only to initiate M phase, but are also needed continuously throughout mitosis to trigger key mitotic events such as APC/C activation and anaphase spindle elongation.
Collapse
Affiliation(s)
- Rami Rahal
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA
| | | |
Collapse
|
45
|
Hwang JY, Smith S, Ceschia A, Torres-Rosell J, Aragon L, Myung K. Smc5-Smc6 complex suppresses gross chromosomal rearrangements mediated by break-induced replications. DNA Repair (Amst) 2008; 7:1426-36. [PMID: 18585101 DOI: 10.1016/j.dnarep.2008.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 04/30/2008] [Accepted: 05/08/2008] [Indexed: 11/30/2022]
Abstract
Translocations in chromosomes alter genetic information. Although the frequent translocations observed in many tumors suggest the altered genetic information by translocation could promote tumorigenesis, the mechanisms for how translocations are suppressed and produced are poorly understood. The smc6-9 mutation increased the translocation class gross chromosomal rearrangement (GCR). Translocations produced in the smc6-9 strain are unique because they are non-reciprocal and dependent on break-induced replication (BIR) and independent of non-homologous end joining. The high incidence of translocations near repetitive sequences such as delta sequences, ARS, tRNA genes, and telomeres in the smc6-9 strain indicates that Smc5-Smc6 suppresses translocations by reducing DNA damage at repetitive sequences. Synergistic enhancements of translocations in strains defective in DNA damage checkpoints by the smc6-9 mutation without affecting de novo telomere addition class GCR suggest that Smc5-Smc6 defines a new pathway to suppress GCR formation.
Collapse
Affiliation(s)
- Ji-Young Hwang
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892 USA
| | | | | | | | | | | |
Collapse
|
46
|
Holt LJ, Krutchinsky AN, Morgan DO. Positive feedback sharpens the anaphase switch. Nature 2008; 454:353-7. [PMID: 18552837 DOI: 10.1038/nature07050] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 04/24/2008] [Indexed: 12/22/2022]
Abstract
At the onset of anaphase, sister-chromatid cohesion is dissolved abruptly and irreversibly, ensuring that all chromosome pairs disjoin almost simultaneously. The regulatory mechanisms that generate this switch-like behaviour are unclear. Anaphase is initiated when a ubiquitin ligase, the anaphase-promoting complex (APC), triggers the destruction of securin, thereby allowing separase, a protease, to disrupt sister-chromatid cohesion. Here we demonstrate that the cyclin-dependent kinase 1 (Cdk1)-dependent phosphorylation of securin near its destruction-box motif inhibits securin ubiquitination by the APC. The phosphatase Cdc14 reverses securin phosphorylation, thereby increasing the rate of securin ubiquitination. Because separase is known to activate Cdc14 (refs 5 and 6), our results support the existence of a positive feedback loop that increases the abruptness of anaphase. Consistent with this model, we show that mutations that disrupt securin phosphoregulation decrease the synchrony of chromosome segregation. Our results also suggest that coupling securin degradation with changes in Cdk1 and Cdc14 activities helps coordinate the initiation of sister-chromatid separation with changes in spindle dynamics.
Collapse
Affiliation(s)
- Liam J Holt
- Department of Physiology, University of California, San Francisco, California 94158, USA
| | | | | |
Collapse
|
47
|
Jurvansuu J, Fragkos M, Ingemarsdotter C, Beard P. Chk1 instability is coupled to mitotic cell death of p53-deficient cells in response to virus-induced DNA damage signaling. J Mol Biol 2007; 372:397-406. [PMID: 17663993 DOI: 10.1016/j.jmb.2007.06.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 06/19/2007] [Accepted: 06/25/2007] [Indexed: 01/16/2023]
Abstract
Adeno-associated virus (AAV) DNA, by mimicking a stalled replication fork, provokes a DNA damage response that can arrest cells in the G2/M phase of the cell-cycle. This response depends strictly on DNA damage signaling kinases ATR and Chk1. Here, we used AAV to study long-term effects of DNA damage signaling in cells with altered p53 status. In HCT116 cells, in response to damage signaling, p53 represses transcription of the genes encoding mitotic regulators Cdc25C, cyclin B1, and Plk1 to establish a firm G2 arrest. Isogenic cells lacking p53 maintain these three proteins at constant levels yet can still arrest initially in G2 because Chk1 signaling inhibits their enzymatic activities. Unexpectedly, the levels of Chk1 fall abruptly in a proteasome-dependent manner after two days of arrest in G2. In p53-deficient cells, this Chk1 instability is coupled to recovery of the phosphatase activity of Cdc25C and in the kinase activities of Plk1 and Cdk1/cyclin B1. Consequently, the p53-deficient cells enter lethal mitosis. Thus, the Chk1-mediated arrest is transient: it initially causes cells to accumulate in G2 until p53-dependent transcriptional repression of mitotic proteins takes over. p53-deficient cells cannot maintain the DNA damage signaling-induced G2 arrest after Chk1 has disappeared, and continue into catastrophic mitosis. Restoring Chk1 prevents the cells from entering such mitosis. These results reveal a mechanism based on Chk1 stability that regulates mitotic entry after DNA damage and elucidate the controversial phenomenon of p53-promoted cell survival in the face of damage signaling.
Collapse
Affiliation(s)
- Jaana Jurvansuu
- Swiss Institute for Experimental Cancer Research (ISREC) and National Center of Competence in Research (NCCR) Molecular Oncology, 1066, Epalinges, Switzerland
| | | | | | | |
Collapse
|
48
|
Abstract
Cdc20 is an essential cell-cycle regulator required for the completion of mitosis in organisms from yeast to man and contains at its C terminus a WD40 repeat domain that mediates protein-protein interactions. In mitosis, Cdc20 binds to and activates the ubiquitin ligase activity of a large molecular machine called the anaphase-promoting complex/cyclosome (APC/C) and enables the ubiquitination and degradation of securin and cyclin B, thus promoting the onset of anaphase and mitotic exit. APC/C(Cdc20) is temporally and spatially regulated during the somatic and embryonic cell cycle by numerous mechanisms, including the spindle checkpoint and the cytostatic factor (CSF). Therefore, Cdc20 serves as an integrator of multiple intracellular signaling cascades that regulate progression through mitosis. This review summarizes recent progress toward the understanding of the functions of Cdc20, the mechanisms by which it activates APC/C, and its regulation by phosphorylation and by association with its binding proteins.
Collapse
Affiliation(s)
- Hongtao Yu
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA.
| |
Collapse
|
49
|
Schwartz DC, Felberbaum R, Hochstrasser M. The Ulp2 SUMO protease is required for cell division following termination of the DNA damage checkpoint. Mol Cell Biol 2007; 27:6948-61. [PMID: 17664284 PMCID: PMC2099214 DOI: 10.1128/mcb.00774-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic genome integrity is maintained via a DNA damage checkpoint that recognizes DNA damage and halts the cell cycle at metaphase, allowing time for repair. Checkpoint signaling is eventually terminated so that the cell cycle can resume. How cells restart cell division following checkpoint termination is poorly understood. Here we show that the SUMO protease Ulp2 is required for resumption of cell division following DNA damage-induced arrest in Saccharomyces cerevisiae, although it is not required for DNA double-strand break repair. The Rad53 branch of the checkpoint pathway generates a signal countered by Ulp2 activity following DNA damage. Interestingly, unlike previously characterized adaptation mutants, ulp2Delta mutants do not show persistent Rad53 phosphorylation following DNA damage, suggesting checkpoint signaling has been terminated and no longer asserts an arrest in these cells. Using Cdc14 localization as a cell cycle indicator, we show that nearly half of cells lacking Ulp2 can escape a checkpoint-induced metaphase arrest despite their inability to divide again. Moreover, half of permanently arrested ulp2Delta cells show evidence of an aberrant mitotic spindle, suggesting that Ulp2 is required for proper spindle dynamics during cell cycle resumption following a DNA damage-induced cell cycle arrest.
Collapse
Affiliation(s)
- David C Schwartz
- Department of Molecular Biophysics, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
50
|
Dotiwala F, Haase J, Arbel-Eden A, Bloom K, Haber JE. The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage. Proc Natl Acad Sci U S A 2007; 104:11358-63. [PMID: 17586685 PMCID: PMC1896138 DOI: 10.1073/pnas.0609636104] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A single HO endonuclease-induced double-strand break (DSB) is sufficient to activate the DNA damage checkpoint and cause Saccharomyces cells to arrest at G(2)/M for 12-14 h, after which cells adapt to the presence of the DSB and resume cell cycle progression. The checkpoint signal leading to G(2)/M arrest was previously shown to be nuclear-limited. Cells lacking ATR-like Mec1 exhibit no DSB-induced cell cycle delay; however, cells lacking Mec1's downstream protein kinase targets, Rad53 or Chk1, still have substantial G(2)/M delay, as do cells lacking securin, Pds1. This delay is eliminated only in the triple mutant chk1Delta rad53Delta pds1Delta, suggesting that Rad53 and Chk1 control targets other than the stability of securin in enforcing checkpoint-mediated cell cycle arrest. The G(2)/M arrest in rad53Delta and chk1Delta revealed a unique cytoplasmic phenotype in which there are frequent dynein-dependent excursions of the nucleus through the bud neck, without entering anaphase. Such excursions are infrequent in wild-type arrested cells, but have been observed in cells defective in mitotic exit, including the semidominant cdc5-ad mutation. We suggest that Mec1-dependent checkpoint signaling through Rad53 and Chk1 includes the repression of nuclear movements that are normally associated with the execution of anaphase.
Collapse
Affiliation(s)
- Farokh Dotiwala
- *Rosenstiel Center and Department of Biology, Brandeis University, Waltham, MA 02454-9110; and
| | - Julian Haase
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280
| | - Ayelet Arbel-Eden
- *Rosenstiel Center and Department of Biology, Brandeis University, Waltham, MA 02454-9110; and
| | - Kerry Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280
- To whom correspondence may be addressed. E-mail:
| | - James E. Haber
- *Rosenstiel Center and Department of Biology, Brandeis University, Waltham, MA 02454-9110; and
- To whom correspondence may be addressed. E-mail:
| |
Collapse
|