1
|
RNA polymerase I (Pol I) lobe-binding subunit Rpa12.2 promotes RNA cleavage and proofreading. J Biol Chem 2022; 298:101862. [PMID: 35341765 PMCID: PMC9108883 DOI: 10.1016/j.jbc.2022.101862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
Elongating nuclear RNA polymerases (Pols) frequently pause, backtrack, and are then reactivated by endonucleolytic cleavage. Pol backtracking and RNA cleavage are also crucial for proofreading, which contributes to transcription fidelity. RNA polymerase I (Pol I) of the yeast Saccharomyces cerevisiae synthesizes exclusively 35S rRNA, the precursor transcript of mature ribosomal 5.8S, 18S, and 25S rRNA. Pol I contains the specific heterodimeric subunits Rpa34.5/49 and subunit Rpa12.2, which have been implicated in RNA cleavage and elongation activity, respectively. These subunits are associated with the Pol I lobe structure and encompass different structural domains, but the contribution of these domains to RNA elongation is unclear. Here, we used Pol I mutants or reconstituted Pol I enzymes to study the effects of these subunits and/or their distinct domains on RNA cleavage, backtracking, and transcription fidelity in defined in vitro systems. Our findings suggest that the presence of the intact C-terminal domain of Rpa12.2 is sufficient to support the cleavage reaction, but that the N-terminal domains of Rpa12.2 and the heterodimer facilitate backtracking and RNA cleavage. Since both N-terminal and C-terminal domains of Rpa12.2 were also required to faithfully incorporate NTPs in the growing RNA chain, efficient backtracking and RNA cleavage might be a prerequisite for transcription fidelity. We propose that RNA Pols containing efficient RNA cleavage activity are able to add and remove nucleotides until the matching nucleotide supports RNA chain elongation, whereas cleavage-deficient enzymes can escape this proofreading process by incorporating incorrect nucleotides.
Collapse
|
2
|
Merkl PE, Schächner C, Pilsl M, Schwank K, Schmid C, Längst G, Milkereit P, Griesenbeck J, Tschochner H. Specialization of RNA Polymerase I in Comparison to Other Nuclear RNA Polymerases of Saccharomyces cerevisiae. Methods Mol Biol 2022; 2533:63-70. [PMID: 35796982 PMCID: PMC9761553 DOI: 10.1007/978-1-0716-2501-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In archaea and bacteria the major classes of RNAs are synthesized by one DNA-dependent RNA polymerase (RNAP). In contrast, most eukaryotes have three highly specialized RNAPs to transcribe the nuclear genome. RNAP I synthesizes almost exclusively ribosomal (r)RNA, RNAP II synthesizes mRNA as well as many noncoding RNAs involved in RNA processing or RNA silencing pathways and RNAP III synthesizes mainly tRNA and 5S rRNA. This review discusses functional differences of the three nuclear core RNAPs in the yeast S. cerevisiae with a particular focus on RNAP I transcription of nucleolar ribosomal (r)DNA chromatin.
Collapse
Affiliation(s)
- Philipp E Merkl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
- TUM ForTe, Technische Universität München, Munich, Germany
| | - Christopher Schächner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Michael Pilsl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Katrin Schwank
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Catharina Schmid
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Gernot Längst
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Philipp Milkereit
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| | - Joachim Griesenbeck
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Herbert Tschochner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| |
Collapse
|
3
|
Multisubunit DNA-Dependent RNA Polymerases from Vaccinia Virus and Other Nucleocytoplasmic Large-DNA Viruses: Impressions from the Age of Structure. Microbiol Mol Biol Rev 2017; 81:81/3/e00010-17. [PMID: 28701329 DOI: 10.1128/mmbr.00010-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The past 17 years have been marked by a revolution in our understanding of cellular multisubunit DNA-dependent RNA polymerases (MSDDRPs) at the structural level. A parallel development over the past 15 years has been the emerging story of the giant viruses, which encode MSDDRPs. Here we link the two in an attempt to understand the specialization of multisubunit RNA polymerases in the domain of life encompassing the large nucleocytoplasmic DNA viruses (NCLDV), a superclade that includes the giant viruses and the biochemically well-characterized poxvirus vaccinia virus. The first half of this review surveys the recently determined structural biology of cellular RNA polymerases for a microbiology readership. The second half discusses a reannotation of MSDDRP subunits from NCLDV families and the apparent specialization of these enzymes by virus family and by subunit with regard to subunit or domain loss, subunit dissociability, endogenous control of polymerase arrest, and the elimination/customization of regulatory interactions that would confer higher-order cellular control. Some themes are apparent in linking subunit function to structure in the viral world: as with cellular RNA polymerases I and III and unlike cellular RNA polymerase II, the viral enzymes seem to opt for speed and processivity and seem to have eliminated domains associated with higher-order regulation. The adoption/loss of viral RNA polymerase proofreading functions may have played a part in matching intrinsic mutability to genome size.
Collapse
|
4
|
Čabart P, Jin H, Li L, Kaplan CD. Activation and reactivation of the RNA polymerase II trigger loop for intrinsic RNA cleavage and catalysis. Transcription 2015; 5:e28869. [PMID: 25764335 PMCID: PMC4574878 DOI: 10.4161/trns.28869] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In addition to RNA synthesis, multisubunit RNA polymerases (msRNAPs) support enzymatic reactions such as intrinsic transcript cleavage. msRNAP active sites from different species appear to exhibit differential intrinsic transcript cleavage efficiency and have likely evolved to allow fine-tuning of the transcription process. Here we show that a single amino-acid substitution in the trigger loop (TL) of Saccharomyces RNAP II, Rpb1 H1085Y, engenders a gain of intrinsic cleavage activity where the substituted tyrosine appears to participate in acid-base chemistry at alkaline pH for both intrinsic cleavage and nucleotidyl transfer. We extensively characterize this TL substitution for each of these reactions by examining the responses RNAP II enzymes to catalytic metals, altered pH, and factor inputs. We demonstrate that TFIIF stimulation of the first phosphodiester bond formation by RNAP II requires wild type TL function and that H1085Y substitution within the TL compromises or alters RNAP II responsiveness to both TFIIB and TFIIF. Finally, Mn(2+) stimulation of H1085Y RNAP II reveals possible allosteric effects of TFIIB on the active center and cooperation between TFIIB and TFIIF.
Collapse
Affiliation(s)
- Pavel Čabart
- a Department of Biochemistry and Biophysics; Texas A&M University; College Station, TX
| | | | | | | |
Collapse
|
5
|
Ccr4-Not and TFIIS Function Cooperatively To Rescue Arrested RNA Polymerase II. Mol Cell Biol 2015; 35:1915-25. [PMID: 25776559 DOI: 10.1128/mcb.00044-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022] Open
Abstract
Expression of the genome requires RNA polymerase II (RNAPII) to transcribe across many natural and unnatural barriers, and this transcription across barriers is facilitated by protein complexes called elongation factors (EFs). Genetic studies in Saccharomyces cerevisiae yeast suggest that multiple EFs collaborate to assist RNAPII in completing the transcription of genes, but the molecular mechanisms of how they cooperate to promote elongation are not well understood. The Ccr4-Not complex participates in multiple steps of mRNA metabolism and has recently been shown to be an EF. Here we describe how Ccr4-Not and TFIIS cooperate to stimulate elongation. We find that Ccr4-Not and TFIIS mutations show synthetically enhanced phenotypes, and biochemical analyses indicate that Ccr4-Not and TFIIS work synergistically to reactivate arrested RNAPII. Ccr4-Not increases the recruitment of TFIIS into elongation complexes and enhances the cleavage of the displaced transcript in backtracked RNAPII. This is mediated by an interaction between Ccr4-Not and the N terminus of TFIIS. In addition to revealing insights into how these two elongation factors cooperate to promote RNAPII elongation, our study extends the growing body of evidence suggesting that the N terminus of TFIIS acts as a docking/interacting site that allows it to synergize with other EFs to promote RNAPII transcription.
Collapse
|
6
|
Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms. Proc Natl Acad Sci U S A 2014; 111:6642-7. [PMID: 24733897 DOI: 10.1073/pnas.1405181111] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent evidence suggests that transcript elongation by RNA polymerase II (RNAPII) is regulated by mechanical cues affecting the entry into, and exit from, transcriptionally inactive states, including pausing and arrest. We present a single-molecule optical-trapping study of the interactions of RNAPII with transcription elongation factors TFIIS and TFIIF, which affect these processes. By monitoring the response of elongation complexes containing RNAPII and combinations of TFIIF and TFIIS to controlled mechanical loads, we find that both transcription factors are independently capable of restoring arrested RNAPII to productive elongation. TFIIS, in addition to its established role in promoting transcript cleavage, is found to relieve arrest by a second, cleavage-independent mechanism. TFIIF synergistically enhances some, but not all, of the activities of TFIIS. These studies also uncovered unexpected insights into the mechanisms underlying transient pauses. The direct visualization of pauses at near-base-pair resolution, together with the load dependence of the pause-entry phase, suggests that two distinct mechanisms may be at play: backtracking under forces that hinder transcription and a backtrack-independent activity under assisting loads. The measured pause lifetime distributions are inconsistent with prevailing views of backtracking as a purely diffusive process, suggesting instead that the extent of backtracking may be modulated by mechanisms intrinsic to RNAPII. Pauses triggered by inosine triphosphate misincorporation led to backtracking, even under assisting loads, and their lifetimes were reduced by TFIIS, particularly when aided by TFIIF. Overall, these experiments provide additional insights into how obstacles to transcription may be overcome by the concerted actions of multiple accessory factors.
Collapse
|
7
|
Transcription factors IIS and IIF enhance transcription efficiency by differentially modifying RNA polymerase pausing dynamics. Proc Natl Acad Sci U S A 2014; 111:3419-24. [PMID: 24550488 DOI: 10.1073/pnas.1401611111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Transcription factors IIS (TFIIS) and IIF (TFIIF) are known to stimulate transcription elongation. Here, we use a single-molecule transcription elongation assay to study the effects of both factors. We find that these transcription factors enhance overall transcription elongation by reducing the lifetime of transcriptional pauses and that TFIIF also decreases the probability of pause entry. Furthermore, we observe that both factors enhance the processivity of RNA polymerase II through the nucleosomal barrier. The effects of TFIIS and TFIIF are quantitatively described using the linear Brownian ratchet kinetic model for transcription elongation and the backtracking model for transcriptional pauses, modified to account for the effects of the transcription factors. Our findings help elucidate the molecular mechanisms by which transcription factors modulate gene expression.
Collapse
|
8
|
Arginine-rich motifs are not required for hepatitis delta virus RNA binding activity of the hepatitis delta antigen. J Virol 2013; 87:8665-74. [PMID: 23740973 DOI: 10.1128/jvi.00929-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) replication and packaging require interactions between the unbranched rodlike structure of HDV RNA and hepatitis delta antigen (HDAg), a basic, disordered, oligomeric protein. The tendency of the protein to bind nonspecifically to nucleic acids has impeded analysis of HDV RNA protein complexes and conclusive determination of the regions of HDAg involved in RNA binding. The most widely cited model suggests that RNA binding involves two proposed arginine-rich motifs (ARMs I and II) in the middle of HDAg. However, other studies have questioned the roles of the ARMs. Here, binding activity was analyzed in vitro using HDAg-160, a C-terminal truncation that binds with high affinity and specificity to HDV RNA segments in vitro. Mutation of the core arginines of ARM I or ARM II in HDAg-160 did not diminish binding to HDV unbranched rodlike RNA. These same mutations did not abolish the ability of full-length HDAg to inhibit HDV RNA editing in cells, an activity that involves RNA binding. Moreover, only the N-terminal region of the protein, which does not contain the ARMs, was cross-linked to a bound HDV RNA segment in vitro. These results indicate that the amino-terminal region of HDAg is in close contact with the RNA and that the proposed ARMs are not required for binding HDV RNA. Binding was not reduced by mutation of additional clusters of basic amino acids. This result is consistent with an RNA-protein complex that is formed via numerous contacts between the RNA and each HDAg monomer.
Collapse
|
9
|
Palangat M, Larson DR. Complexity of RNA polymerase II elongation dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:667-72. [PMID: 22480952 DOI: 10.1016/j.bbagrm.2012.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 12/24/2022]
Abstract
Transcription of protein-coding genes by RNA polymerase II can be regulated at multiple points during the process of RNA synthesis, including initiation, elongation, and termination. In vivo data suggests that elongating polymerases exhibit heterogeneity throughout the gene body, suggestive of changes in elongation rate and/or pausing. Here, we review evidence from a variety of different experimental approaches for understanding regulation of transcription elongation. We compare steady-state measurements of nascent RNA density and polymerase occupancy to time-resolved measurements and point out areas of disagreement. Finally, we discuss future avenues of investigation for understanding this critically important step in gene regulation. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Murali Palangat
- Center for Cancer Research, National Cancer Institute, National Institues of Health, Bethesda, MD, USA
| | | |
Collapse
|
10
|
Luse DS, Studitsky VM. The mechanism of nucleosome traversal by RNA polymerase II: roles for template uncoiling and transcript elongation factors. RNA Biol 2011; 8:581-5. [PMID: 21519186 DOI: 10.4161/rna.8.4.15389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA polymerase II traverses nucleosomes rapidly and efficiently in the cell but it has not been possible to duplicate this process in the test tube. A single nucleosome has generally been found to provide a strong barrier to transcript elongation in vitro. Recent studies have shown that effective transcript elongation can occur on nucleosomal templates in vitro, but this depends on both facilitated uncoiling of DNA from the octamer surface and the presence of transcription factors that maintain polymerase in the transcriptionally competent state. These findings indicate that the efficiency and rate of transcription through chromatin could be regulated through controlled DNA uncoiling. These studies also demonstrate that nucleosome traversal need not result in nucleosome displacement.
Collapse
Affiliation(s)
- Donal S Luse
- Department of Molecular Genetics Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA.
| | | |
Collapse
|
11
|
Luse DS, Spangler LC, Újvári A. Efficient and rapid nucleosome traversal by RNA polymerase II depends on a combination of transcript elongation factors. J Biol Chem 2010; 286:6040-8. [PMID: 21177855 DOI: 10.1074/jbc.m110.174722] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The nucleosome is generally found to be a strong barrier to transcript elongation by RNA polymerase II (pol II) in vitro. The elongation factors TFIIF and TFIIS have been shown to cooperate in maintaining pol II in the catalytically competent state on pure DNA templates. We now show that although TFIIF or TFIIS alone is modestly stimulatory for nucleosome traversal, both factors together increase transcription through nucleosomes in a synergistic manner. We also studied the effect of TFIIF and TFIIS on transcription of nucleosomes containing a Sin mutant histone. The Sin point mutations reduce critical histone-DNA contacts near the center of the nucleosome. Significantly, we found that nucleosomes with a Sin mutant histone are traversed to the same extent and at nearly the same rate as equivalent pure DNA templates if both TFIIS and TFIIF are present. Thus, the nucleosome is not necessarily an insurmountable barrier to transcript elongation by pol II. If unfolding of template DNA from the nucleosome surface is facilitated and the tendency of pol II to retreat from barriers is countered, transcription of nucleosomal templates can be rapid and efficient.
Collapse
Affiliation(s)
- Donal S Luse
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | |
Collapse
|
12
|
Kireeva M, Kashlev M, Burton ZF. Translocation by multi-subunit RNA polymerases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:389-401. [PMID: 20097318 DOI: 10.1016/j.bbagrm.2010.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 11/30/2022]
Abstract
DNA template and RNA/DNA hybrid movement through RNA polymerase (RNAP) is referred to as "translocation". Because nucleic acid movement is coupled to NTP loading, pyrophosphate release, and conformational changes, the precise ordering of events during bond addition is consequential. Moreover, based on several lines of experimental evidence, translocation, pyrophosphate release or an associated conformational change may determine the transcription elongation rate. In this review we discuss various models of translocation, the data supporting the hypothesis that translocation rate determines transcription elongation rate and also data that may be inconsistent with this point of view. A model of the nucleotide addition cycle accommodating available experimental data is proposed. On the basis of this model, the molecular mechanisms regulating translocation and potential routes for NTP entry are discussed.
Collapse
Affiliation(s)
- Maria Kireeva
- National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|
13
|
Chen ZA, Jawhari A, Fischer L, Buchen C, Tahir S, Kamenski T, Rasmussen M, Lariviere L, Bukowski-Wills JC, Nilges M, Cramer P, Rappsilber J. Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry. EMBO J 2010; 29:717-26. [PMID: 20094031 PMCID: PMC2810376 DOI: 10.1038/emboj.2009.401] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/10/2009] [Indexed: 11/09/2022] Open
Abstract
Higher-order multi-protein complexes such as RNA polymerase II (Pol II) complexes with transcription initiation factors are often not amenable to X-ray structure determination. Here, we show that protein cross-linking coupled to mass spectrometry (MS) has now sufficiently advanced as a tool to extend the Pol II structure to a 15-subunit, 670 kDa complex of Pol II with the initiation factor TFIIF at peptide resolution. The N-terminal regions of TFIIF subunits Tfg1 and Tfg2 form a dimerization domain that binds the Pol II lobe on the Rpb2 side of the active centre cleft near downstream DNA. The C-terminal winged helix (WH) domains of Tfg1 and Tfg2 are mobile, but the Tfg2 WH domain can reside at the Pol II protrusion near the predicted path of upstream DNA in the initiation complex. The linkers between the dimerization domain and the WH domains in Tfg1 and Tfg2 are located to the jaws and protrusion, respectively. The results suggest how TFIIF suppresses non-specific DNA binding and how it helps to recruit promoter DNA and to set the transcription start site. This work establishes cross-linking/MS as an integrated structure analysis tool for large multi-protein complexes.
Collapse
Affiliation(s)
- Zhuo Angel Chen
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, The University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sydow JF, Cramer P. RNA polymerase fidelity and transcriptional proofreading. Curr Opin Struct Biol 2009; 19:732-9. [PMID: 19914059 DOI: 10.1016/j.sbi.2009.10.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 02/06/2023]
Abstract
Whereas mechanisms underlying the fidelity of DNA polymerases (DNAPs) have been investigated in detail, RNA polymerase (RNAP) fidelity mechanisms remained poorly understood. New functional and structural studies now suggest how RNAPs select the correct nucleoside triphosphate (NTP) substrate to prevent transcription errors, and how the enzymes detect and remove a misincorporated nucleotide during proofreading. Proofreading begins with fraying of the misincorporated nucleotide away from the DNA template, which pauses transcription. Subsequent backtracking of RNAP by one position enables nucleolytic cleavage of an RNA dinucleotide that contains the misincorporated nucleotide. Since cleavage occurs at the same active site that is used for polymerization, the RNAP proofreading mechanism differs from that used by DNAPs, which contain a distinct nuclease specific active site.
Collapse
Affiliation(s)
- Jasmin F Sydow
- Gene Center Munich and Center for Integrated Protein Science Munich, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | |
Collapse
|
15
|
Hepatitis delta virus RNA replication. Viruses 2009; 1:818-31. [PMID: 21994571 PMCID: PMC3185533 DOI: 10.3390/v1030818] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 12/12/2022] Open
Abstract
Hepatitis delta virus (HDV) is a distant relative of plant viroids in the animal world. Similar to plant viroids, HDV replicates its circular RNA genome using a double rolling-circle mechanism. Nevertheless, the production of hepatitis delta antigen (HDAg), which is indispensible for HDV replication, is a unique feature distinct from plant viroids, which do not encode any protein. Here the HDV RNA replication cycle is reviewed, with emphasis on the function of HDAg in modulating RNA replication and the nature of the enzyme involved.
Collapse
|
16
|
Sydow JF, Brueckner F, Cheung ACM, Damsma GE, Dengl S, Lehmann E, Vassylyev D, Cramer P. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Mol Cell 2009; 34:710-21. [PMID: 19560423 DOI: 10.1016/j.molcel.2009.06.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/05/2009] [Accepted: 06/05/2009] [Indexed: 11/17/2022]
Abstract
We show that RNA polymerase (Pol) II prevents erroneous transcription in vitro with different strategies that depend on the type of DNARNA base mismatch. Certain mismatches are efficiently formed but impair RNA extension. Other mismatches allow for RNA extension but are inefficiently formed and efficiently proofread by RNA cleavage. X-ray analysis reveals that a TU mismatch impairs RNA extension by forming a wobble base pair at the Pol II active center that dissociates the catalytic metal ion and misaligns the RNA 3' end. The mismatch can also stabilize a paused state of Pol II with a frayed RNA 3' nucleotide. The frayed nucleotide binds in the Pol II pore either parallel or perpendicular to the DNA-RNA hybrid axis (fraying sites I and II, respectively) and overlaps the nucleoside triphosphate (NTP) site, explaining how it halts transcription during proofreading, before backtracking and RNA cleavage.
Collapse
Affiliation(s)
- Jasmin F Sydow
- Department of Chemistry and Biochemistry, Gene Center Munich and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kireeva M, Nedialkov YA, Gong XQ, Zhang C, Xiong Y, Moon W, Burton ZF, Kashlev M. Millisecond phase kinetic analysis of elongation catalyzed by human, yeast, and Escherichia coli RNA polymerase. Methods 2009; 48:333-45. [PMID: 19398005 DOI: 10.1016/j.ymeth.2009.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 04/05/2009] [Accepted: 04/06/2009] [Indexed: 11/16/2022] Open
Abstract
Strategies for assembly and analysis of human, yeast, and bacterial RNA polymerase elongation complexes are described, and methods are shown for millisecond phase kinetic analyses of elongation using rapid chemical quench flow. Human, yeast, and bacterial RNA polymerases function very similarly in NTP-Mg2+ commitment and phosphodiester bond formation. A "running start, two-bond, double-quench" protocol is described and its advantages discussed. These studies provide information about stable NTP-Mg2+ loading, phosphodiester bond synthesis, the processive transition between bonds, and sequence-specific effects on transcription elongation dynamics.
Collapse
Affiliation(s)
- Maria Kireeva
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick, Bldg. 539, Room 222, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Taft RJ, Glazov EA, Cloonan N, Simons C, Stephen S, Faulkner GJ, Lassmann T, Forrest ARR, Grimmond SM, Schroder K, Irvine K, Arakawa T, Nakamura M, Kubosaki A, Hayashida K, Kawazu C, Murata M, Nishiyori H, Fukuda S, Kawai J, Daub CO, Hume DA, Suzuki H, Orlando V, Carninci P, Hayashizaki Y, Mattick JS. Tiny RNAs associated with transcription start sites in animals. Nat Genet 2009; 41:572-8. [PMID: 19377478 DOI: 10.1038/ng.312] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 12/06/2008] [Indexed: 12/13/2022]
Abstract
It has been reported that relatively short RNAs of heterogeneous sizes are derived from sequences near the promoters of eukaryotic genes. In conjunction with the FANTOM4 project, we have identified tiny RNAs with a modal length of 18 nt that map within -60 to +120 nt of transcription start sites (TSSs) in human, chicken and Drosophila. These transcription initiation RNAs (tiRNAs) are derived from sequences on the same strand as the TSS and are preferentially associated with G+C-rich promoters. The 5' ends of tiRNAs show peak density 10-30 nt downstream of TSSs, indicating that they are processed. tiRNAs are generally, although not exclusively, associated with highly expressed transcripts and sites of RNA polymerase II binding. We suggest that tiRNAs may be a general feature of transcription in metazoa and possibly all eukaryotes.
Collapse
Affiliation(s)
- Ryan J Taft
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ujvári A, Hsieh FK, Luse SW, Studitsky VM, Luse DS. Histone N-terminal tails interfere with nucleosome traversal by RNA polymerase II. J Biol Chem 2008; 283:32236-43. [PMID: 18815126 DOI: 10.1074/jbc.m806636200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We determined the effect of the N-terminal histone tails on nucleosome traversal by yeast and human RNA polymerase II (pol II). Removal of H2A/H2B tails, H3/H4 tails, or all tails increased complete traversal of the nucleosome by human pol II, although the increase varied considerably depending on the template and on which tails were removed. Human pol II achieved >80% traversal of one nucleosomal template lacking the H2A/H2B tails, but even in those reactions, the transcript elongation rate was lower than the rate on pure DNA templates. For yeast pol II, transcription proceeded much farther into the nucleosome in the absence of tails, but complete read-through was not substantially increased by tail removal. Transcription factor IIS provided roughly the same level of read-through stimulation for transcript elongation in the presence or absence of tails. FACT also stimulated elongation on nucleosomal templates, and this effect was similar regardless of the presence of tails. For both polymerases, removal of the H2A/H2B tails reduced pausing throughout the nucleosome, suggesting that histone tails affect a common step at most points during nucleosome traversal. We conclude that histone tails provide a significant part of the nucleosomal barrier to pol II transcript elongation.
Collapse
Affiliation(s)
- Andrea Ujvári
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
20
|
Johnson RS, Strausbauch M, Cooper R, Register JK. Rapid kinetic analysis of transcription elongation by Escherichia coli RNA polymerase. J Mol Biol 2008; 381:1106-13. [PMID: 18638485 DOI: 10.1016/j.jmb.2008.06.089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/27/2008] [Accepted: 06/28/2008] [Indexed: 11/28/2022]
Abstract
Nucleotide incorporation during transcription by RNA polymerase is accompanied by pyrophosphate formation. Rapid release of pyrophosphate from the elongation complex at a rate consistent with productive transcription elongation occurs only in the presence of the correct next nucleotide for incorporation into the transcript.
Collapse
Affiliation(s)
- Ronald S Johnson
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | | | | | | |
Collapse
|
21
|
Yamaguchi Y, Mura T, Chanarat S, Okamoto S, Handa H. Hepatitis delta antigen binds to the clamp of RNA polymerase II and affects transcriptional fidelity. Genes Cells 2007; 12:863-75. [PMID: 17584298 DOI: 10.1111/j.1365-2443.2007.01094.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis delta virus (HDV) is an RNA virus whose replication and transcription are considered to proceed via RNA-dependent RNA synthesis by RNA polymerase II (Pol II), and the viral protein called hepatitis delta antigen (HDAg) is essential for these processes. HDAg was previously shown to stimulate Pol II elongation on both DNA and RNA templates in vitro. Here, the mechanism of elongation control by HDAg was investigated because it serves as a prototype of cellular transcription elongation factors and also plays an interesting role in HDV proliferation. With site-specific photocrosslinking and transcription using reconstituted elongation complexes, evidence is presented that HDAg functionally interacts with the clamp of Pol II, a mobile structure that holds DNA and RNA in place. Strikingly, HDAg not only increases the rate of elongation but also affects the decision of which nucleotide is incorporated. These and our previous findings lead us to propose a model in which HDAg interacts with and loosens the clamp, and thereby accelerates forward translocation of Pol II at the cost of fidelity. By reducing transcriptional fidelity in terms of not only discrimination of incoming nucleotides but also recognition of templates, HDAg may facilitate the unusual RNA-dependent RNA synthesis by Pol II.
Collapse
Affiliation(s)
- Yuki Yamaguchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
22
|
Burton ZF, Feig M, Gong XQ, Zhang C, Nedialkov YA, Xiong Y. NTP-driven translocation and regulation of downstream template opening by multi-subunit RNA polymerases. Biochem Cell Biol 2005; 83:486-96. [PMID: 16094452 DOI: 10.1139/o05-059] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multi-subunit RNA polymerases bind nucleotide triphosphate (NTP) substrates in the pretranslocated state and carry the dNMP-NTP base pair into the active site for phosphoryl transfer. NTP-driven translocation requires that NTP substrates enter the main-enzyme channel before loading into the active site. Based on this model, a new view of fidelity and efficiency of RNA synthesis is proposed. The model predicts that, during processive elongation, NTP-driven translocation is coupled to a protein conformational change that allows pyrophosphate release: coupling the end of one bond-addition cycle to substrate loading and translocation for the next. We present a detailed model of the RNA polymerase II elongation complex based on 2 low-affinity NTP binding sites located in the main-enzyme channel. This model posits that NTP substrates, elongation factors, and the conserved Rpb2 subunit fork loop 2 cooperate to regulate opening of the downstream transcription bubble.
Collapse
Affiliation(s)
- Zachary F Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Palangat M, Renner DB, Price DH, Landick R. A negative elongation factor for human RNA polymerase II inhibits the anti-arrest transcript-cleavage factor TFIIS. Proc Natl Acad Sci U S A 2005; 102:15036-41. [PMID: 16214896 PMCID: PMC1257689 DOI: 10.1073/pnas.0409405102] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Indexed: 01/22/2023] Open
Abstract
Formation of productive transcription complexes after promoter escape by RNA polymerase II is a major event in eukaryotic gene regulation. Both negative and positive factors control this step. The principal negative elongation factor (NELF) contains four polypeptides and requires for activity the two-polypeptide 5,6-dichloro-1-beta-D-ribobenzimidazole-sensitivity inducing factor (DSIF). DSIF/NELF inhibits early transcript elongation until it is counteracted by the positive elongation factor P-TEFb. We report a previously undescribed activity of DSIF/NELF, namely inhibition of the transcript cleavage factor TFIIS. These two activities of DSIF/NELF appear to be mechanistically distinct. Inhibition of nucleotide addition requires > or = 18 nt of nascent RNA, whereas inhibition of TFIIS occurs at all transcript lengths. Because TFIIS promotes escape from promoter-proximal pauses by stimulating cleavage of back-tracked nascent RNA, TFIIS inhibition may help DSIF/NELF negatively regulate productive transcription.
Collapse
Affiliation(s)
- Murali Palangat
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
24
|
Gong XQ, Zhang C, Feig M, Burton ZF. Dynamic error correction and regulation of downstream bubble opening by human RNA polymerase II. Mol Cell 2005; 18:461-70. [PMID: 15893729 DOI: 10.1016/j.molcel.2005.04.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 03/02/2005] [Accepted: 04/21/2005] [Indexed: 01/22/2023]
Abstract
The nucleotide triphosphate (NTP)-driven translocation hypothesis posits that NTP substrates bind to templated DNA sites prior to translocation into the active site. By using millisecond phase kinetics, we demonstrate this prediction in three different ways. First, we show that, in the presence of the translocation blocker alpha-amanitin, NTPs (but not deoxynucleotide triphosphate [dNTPs]) templated at downstream sites (i + 2 and i + 3) dislodge an active site (i + 1) NTP, which was otherwise fated to complete bond synthesis. Second, we show that NTPs templated at i + 2 and/or i + 3 downstream sites suppress misincorporation errors. Third, we show that NTPs templated at downstream sites stabilize the posttranslocated elongation complex at a stall position. Therefore, at least two NTP substrates pair to DNA templated sites downstream of the active site. These results demonstrate the mechanisms of NTP loading and transcriptional efficiency and fidelity for human RNA polymerase II and indicate regulation of downstream bubble opening by NTPs.
Collapse
Affiliation(s)
- Xue Q Gong
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
25
|
Kireeva ML, Hancock B, Cremona GH, Walter W, Studitsky VM, Kashlev M. Nature of the nucleosomal barrier to RNA polymerase II. Mol Cell 2005; 18:97-108. [PMID: 15808512 DOI: 10.1016/j.molcel.2005.02.027] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 01/20/2005] [Accepted: 02/23/2005] [Indexed: 11/16/2022]
Abstract
In the cell, RNA polymerase II (pol II) efficiently transcribes DNA packaged into nucleosomes, but in vitro encounters with the nucleosomes induce catalytic inactivation (arrest) of the pol II core enzyme. To determine potential mechanisms making nucleosomes transparent to transcription in vivo, we analyzed the nature of the nucleosome-induced arrest. We found that the arrests have been detected mostly at positions of strong intrinsic pause sites of DNA. The transient pausing makes pol II vulnerable to arrest, which involves backtracking of the elongation complex for a considerable distance on DNA. The histone-DNA contacts reestablished in front of pol II stabilize backtracked conformation of the polymerase. In agreement with this mechanism, blocking of backtracking prevents nucleosome-induced arrest. Transcript cleavage factor TFIIS reactivates the backtracked complexes and promotes pol II transcription through the nucleosome. Our findings establish the crucial role of elongation factors that suppress pol II pausing and backtracking for transcription in the context of chromatin.
Collapse
Affiliation(s)
- Maria L Kireeva
- NCI Center for Cancer Research, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
26
|
Langelier MF, Baali D, Trinh V, Greenblatt J, Archambault J, Coulombe B. The highly conserved glutamic acid 791 of Rpb2 is involved in the binding of NTP and Mg(B) in the active center of human RNA polymerase II. Nucleic Acids Res 2005; 33:2629-39. [PMID: 15886393 PMCID: PMC1092279 DOI: 10.1093/nar/gki570] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/21/2005] [Accepted: 04/21/2005] [Indexed: 11/13/2022] Open
Abstract
During transcription by RNA polymerase (RNAP) II, the incoming ribonucleoside triphosphate (NTP) enters the catalytic center in association with an Mg2+ ion, termed metal B [Mg(B)]. When bound to RNAP II, Mg(B) is coordinated by the beta and gamma phosphates of the NTP, Rpb1 residues D481 and D483 and Rpb2 residue D837. Rpb2 residue D837 is highly conserved across species. Notably, its neighboring residue, E836 (E791 in human RNAP II), is also highly conserved. To probe the role of E791 in transcription, we have affinity purified and characterized a human RNAP II mutant in which this residue was substituted for alanine. Our results indicate that the transcription activity of the Rpb2 E791A mutant is impaired at low NTP concentrations both in vitro and in vivo. They also revealed that both its NTP polymerization and transcript cleavage activities are decreased at low Mg concentrations. Because Rpb2 residue E791 appears to be located too far from the NTP-Mg(B) complex to make direct contact at either the entry (E) or addition (A) site, we propose alternative mechanisms by which this highly conserved residue participates in loading NTP-Mg(B) in the active site during transcription.
Collapse
Affiliation(s)
- Marie-France Langelier
- Laboratory of Gene Transcription, Institut de recherches cliniques de Montréal110 avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
- Banting and Best Department of Medical Research, University of TorontoToronto, Ontario, Canada M5G 1L6
- Laboratory of Molecular Virology, Institut de recherches cliniques de Montréal110 avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
| | - Dania Baali
- Laboratory of Gene Transcription, Institut de recherches cliniques de Montréal110 avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
- Banting and Best Department of Medical Research, University of TorontoToronto, Ontario, Canada M5G 1L6
- Laboratory of Molecular Virology, Institut de recherches cliniques de Montréal110 avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
| | - Vincent Trinh
- Laboratory of Gene Transcription, Institut de recherches cliniques de Montréal110 avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
- Banting and Best Department of Medical Research, University of TorontoToronto, Ontario, Canada M5G 1L6
- Laboratory of Molecular Virology, Institut de recherches cliniques de Montréal110 avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
| | - Jack Greenblatt
- Banting and Best Department of Medical Research, University of TorontoToronto, Ontario, Canada M5G 1L6
| | - Jacques Archambault
- Laboratory of Molecular Virology, Institut de recherches cliniques de Montréal110 avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
| | - Benoit Coulombe
- To whom correspondence should be addressed. Tel: +1 514 987 5662; Fax: +1 514 987 5663;
| |
Collapse
|
27
|
Zhang C, Zobeck KL, Burton ZF. Human RNA polymerase II elongation in slow motion: role of the TFIIF RAP74 alpha1 helix in nucleoside triphosphate-driven translocation. Mol Cell Biol 2005; 25:3583-95. [PMID: 15831464 PMCID: PMC1084311 DOI: 10.1128/mcb.25.9.3583-3595.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 12/27/2004] [Accepted: 12/31/2004] [Indexed: 11/20/2022] Open
Abstract
The role of the RAP74 alpha1 helix of transcription factor IIF (TFIIF) in stimulating elongation by human RNA polymerase II (RNAP II) was examined using millisecond-phase transient-state kinetics. RAP74 deletion mutants RAP74(1-227), which includes an intact alpha1 helix, and RAP74(1-158), in which the alpha1 helix is deleted, were compared. Analysis of TFIIF RAP74-RAP30 complexes carrying the RAP74(1-158) deletion reveals the role of the alpha1 helix because this mutant has indistinguishable activity compared to TFIIF 74(W164A), which carries a critical point mutation in alpha1. We report adequate two-bond kinetic simulations for the reaction in the presence of TFIIF 74(1-227) + TFIIS and TFIIF 74(1-158) + TFIIS. TFIIF 74(1-158) is defective because it fails to promote forward translocation. Deletion of the RAP74 alpha1 helix results in increased occupancy of the backtracking, cleavage, and restart pathways at a stall position, indicating reverse translocation of the elongation complex. During elongation, TFIIF 74(1-158) fails to support detectable nucleoside triphosphate (NTP)-driven translocation from a stall position and is notably defective in supporting bond completion (NTP-driven translocation coupled to pyrophosphate release) during the processive transition between bonds.
Collapse
Affiliation(s)
- Chunfen Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, 224 Biochemistry Building, East Lansing, MI 48824-1319, USA
| | | | | |
Collapse
|
28
|
Sims RJ, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it. Genes Dev 2004; 18:2437-68. [PMID: 15489290 DOI: 10.1101/gad.1235904] [Citation(s) in RCA: 533] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Appreciable advances into the process of transcript elongation by RNA polymerase II (RNAP II) have identified this stage as a dynamic and highly regulated step of the transcription cycle. Here, we discuss the many factors that regulate the elongation stage of transcription. Our discussion includes the classical elongation factors that modulate the activity of RNAP II, and the more recently identified factors that facilitate elongation on chromatin templates. Additionally, we discuss the factors that associate with RNAP II, but do not modulate its catalytic activity. Elongation is highlighted as a central process that coordinates multiple stages in mRNA biogenesis and maturation.
Collapse
Affiliation(s)
- Robert J Sims
- Howard Hughes Medical Institute, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
29
|
Zhang C, Burton ZF. Transcription factors IIF and IIS and nucleoside triphosphate substrates as dynamic probes of the human RNA polymerase II mechanism. J Mol Biol 2004; 342:1085-99. [PMID: 15351637 DOI: 10.1016/j.jmb.2004.07.070] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2004] [Revised: 07/20/2004] [Accepted: 07/21/2004] [Indexed: 11/28/2022]
Abstract
The mechanism for elongation catalyzed by human RNA polymerase II (RNAP II) has been analyzed using millisecond phase transient state kinetics. Here, we apply a running start, two-bond, double-quench protocol. Quenching the reaction with EDTA indicates NTP loading into the active site followed by rapid isomerization. HCl quenching defines the time of phosphodiester bond formation. Model-independent and global kinetic analyses were applied to simulate the RNAP II mechanism for forward elongation through the synthesis of two specific phosphodiester bonds, modeling rate data collected over a wide range of nucleoside triphosphate concentrations. We report adequate two-bond kinetic simulations for the reaction in the presence of TFIIF alone and in the presence of TFIIF+TFIIS, providing detailed insight into the RNAP II mechanism and into processive RNA synthesis. RNAP II extends an RNA chain through a substrate induced-fit mechanism, termed NTP-driven translocation. After rapid isomerization, chemistry is delayed. At a stall point induced by withholding the next templated NTP, RNAP II fractionates into at least two active and one paused conformation, revealed as different forward rates of elongation. In the presence of TFIIF alone or in the presence of TFIIF+TFIIS, rapid rates are very similar; although, with TFIIF alone the complex is more highly poised for forward synthesis. Based on steady-state analysis, TFIIF was thought to suppress transcriptional pausing, but this view is misleading. TFIIF supports elongation and suppresses pausing by stabilizing the post-translocated elongation complex. When TFIIS is present, RNA cleavage and transcriptional restart pathways are supported, but TFIIS has a role in suppression of transient pausing, which is the most important contribution of TFIIS to elongation from a stall position.
Collapse
Affiliation(s)
- Chunfen Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824-1319, USA
| | | |
Collapse
|
30
|
Ujvári A, Luse DS. Newly Initiated RNA encounters a factor involved in splicing immediately upon emerging from within RNA polymerase II. J Biol Chem 2004; 279:49773-9. [PMID: 15377657 DOI: 10.1074/jbc.m409087200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We employed RNA-protein cross-linking to map the path of the nascent RNA as it emerges from within RNA polymerase II. A UV-cross-linkable uridine analog was incorporated at two positions within the first five nucleotides of the transcript. Only the two largest subunits of RNA polymerase II cross-linked to the transcript in complexes containing 17-24-nucleotide (nt) RNAs. Extension of the RNA to 26 or 28 nt revealed an additional strong cross-link to the splicing factor U2AF65. In U17 complexes, in which the RNA is still contained within the polymerase, U2AF65 is tightly bound. In contrast, U2AF65 is more loosely bound in C28 transcription complexes, in which about 10 nt of transcript have emerged from the RNA polymerase. Cross-linking of U2AF65 to RNA in a C28 complex was eliminated by the addition of an excess of an RNA oligonucleotide containing the consensus U2AF65 binding site, but U2AF65 was not displaced by a nonconsensus RNA. These findings indicate that U2AF65 shifts from protein-protein to protein-RNA interactions as the RNA emerges from the polymerase. During transcription of one particular template at low UTP concentration, RNA polymerase II pauses just after synthesizing a transcript segment that is a U2AF65 binding site. Dwell time of the polymerase at this pause site was significantly and specifically reduced by the addition of recombinant U2AF65 to the transcription reaction. Therefore, the association of U2AF65 with RNA polymerase II may function not only to deliver U2AF65 to the nascent transcript but also to modulate efficient transcript elongation.
Collapse
Affiliation(s)
- Andrea Ujvári
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
31
|
Park NJ, Tsao DC, Martinson HG. The two steps of poly(A)-dependent termination, pausing and release, can be uncoupled by truncation of the RNA polymerase II carboxyl-terminal repeat domain. Mol Cell Biol 2004; 24:4092-103. [PMID: 15121832 PMCID: PMC400489 DOI: 10.1128/mcb.24.10.4092-4103.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The carboxyl-terminal repeat domain (CTD) of RNA polymerase II is thought to help coordinate events during RNA metabolism. The mammalian CTD consists of 52 imperfectly repeated heptads followed by 10 additional residues at the C terminus. The CTD is required for cleavage and polyadenylation in vitro. We studied poly(A)-dependent termination in vivo using CTD truncation mutants. Poly(A)-dependent termination occurs in two steps, pause and release. We found that the CTD is required for release, the first 25 heptads being sufficient. Neither the final 10 amino acids nor the variant heptads of the second half of the CTD were required. No part of the CTD was required for poly(A)-dependent pausing--the poly(A) signal could communicate directly with the body of the polymerase. By removing the CTD, pausing could be observed without being obscured by release. Poly(A)-dependent pausing appeared to operate by slowing down the polymerase, such as by down-regulation of a positive elongation factor. Although the first 25 heptads supported undiminished poly(A)-dependent termination, they did not efficiently support events near the promoter involved in abortive elongation. However, the second half of the CTD, including the final 10 amino acids, was sufficient for these functions.
Collapse
Affiliation(s)
- Noh Jin Park
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
32
|
Gong XQ, Nedialkov YA, Burton ZF. Alpha-amanitin blocks translocation by human RNA polymerase II. J Biol Chem 2004; 279:27422-7. [PMID: 15096519 DOI: 10.1074/jbc.m402163200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our laboratory has developed methods for transient state kinetic analysis of human RNA polymerase II elongation. In these studies, multiple conformations of the RNA polymerase II elongation complex were revealed by their distinct elongation potential and differing dependence on nucleoside triphosphate substrate. Among these are conformations that appear to correspond to different translocation states of the DNA template and RNA-DNA hybrid. Using alpha-amanitin as a dynamic probe of the RNA polymerase II mechanism, we show that the most highly poised conformation of the elongation complex, which we interpreted previously as the posttranslocated state, is selectively resistant to inhibition with alpha-amanitin. Because initially resistant elongation complexes form only a single phosphodiester bond before being rendered inactive in the following bond addition cycle, alpha-amanitin inhibits elongation at each translocation step.
Collapse
Affiliation(s)
- Xue Q Gong
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | |
Collapse
|
33
|
Hawryluk PJ, Ujvári A, Luse DS. Characterization of a novel RNA polymerase II arrest site which lacks a weak 3' RNA-DNA hybrid. Nucleic Acids Res 2004; 32:1904-16. [PMID: 15047857 PMCID: PMC390359 DOI: 10.1093/nar/gkh505] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcript elongation by RNA polymerase II is blocked at DNA sequences called arrest sites. An exceptionally weak RNA-DNA hybrid is often thought to be necessary at the point of arrest. We have identified an arrest site from the tyrosine hydroxylase (TH) gene which does not fit this pattern. Transcription of many sequence variants of this site shows that the RNA-DNA hybrid over the three bases immediately preceding the major arrest point may be strong (i.e. C:G) without interfering with arrest. However, arrest at the TH site requires the presence of a pyrimidine at the 3' end and arrest increases when the 3'-most segment is pyrimidine rich. We also demonstrated that arrest at the TH site is completely dependent on the presence of a purine-rich element immediately upstream of the RNA-DNA hybrid. Thus, the RNA polymerase II arrest element from the TH gene has several unanticipated characteristics: arrest is independent of a weak RNA-DNA hybrid at the 3' end of the transcript, but it requires both a pyrimidine at the 3' end and a polypurine element upstream of the RNA-DNA hybrid.
Collapse
Affiliation(s)
- Peter J Hawryluk
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|