1
|
de Combiens E, Sakhi IB, Lourdel S. A Focus on the Proximal Tubule Dysfunction in Dent Disease Type 1. Genes (Basel) 2024; 15:1175. [PMID: 39336766 PMCID: PMC11431675 DOI: 10.3390/genes15091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Dent disease type 1 is a rare X-linked recessive inherited renal disorder affecting mainly young males, generally leading to end-stage renal failure and for which there is no cure. It is caused by inactivating mutations in the gene encoding ClC-5, a 2Cl-/H+ exchanger found on endosomes in the renal proximal tubule. This transporter participates in reabsorbing all filtered plasma proteins, which justifies why proteinuria is commonly observed when ClC-5 is defective. In the context of Dent disease type 1, a proximal tubule dedifferentiation was shown to be accompanied by a dysfunctional cell metabolism. However, the exact mechanisms linking such alterations to chronic kidney disease are still unclear. In this review, we gather knowledge from several Dent disease type 1 models to summarize the current hypotheses generated to understand the progression of this disorder. We also highlight some urinary biomarkers for Dent disease type 1 suggested in different studies.
Collapse
Affiliation(s)
- Elise de Combiens
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (E.d.C.); (S.L.)
- Unité Métabolisme et Physiologie Rénale, Centre National de la Recherche Scientifique (CNRS) EMR8228, F-75006 Paris, France
| | | | - Stéphane Lourdel
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (E.d.C.); (S.L.)
- Unité Métabolisme et Physiologie Rénale, Centre National de la Recherche Scientifique (CNRS) EMR8228, F-75006 Paris, France
| |
Collapse
|
2
|
Rodrigues MC, Oliveira LBF, Vieira MAR, Caruso-Neves C, Peruchetti DB. Receptor-mediated endocytosis in kidney cells during physiological and pathological conditions. CURRENT TOPICS IN MEMBRANES 2024; 93:1-25. [PMID: 39181576 DOI: 10.1016/bs.ctm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Mammalian cell membranes are very dynamic where they respond to several environmental stimuli by rearranging the membrane composition by basic biological processes, including endocytosis. In this context, receptor-mediated endocytosis, either clathrin-dependent or caveolae-dependent, is involved in different physiological and pathological conditions. In the last years, an important amount of evidence has been reported that kidney function involves the modulation of different types of endocytosis, including renal protein handling. In addition, the dysfunction of the endocytic machinery is involved with the development of proteinuria as well as glomerular and tubular injuries observed in kidney diseases associated with hypertension, diabetes, and others. In this present review, we will discuss the mechanisms underlying the receptor-mediated endocytosis in different glomerular cells and proximal tubule epithelial cells as well as their modulation by different factors during physiological and pathological conditions. These findings could help to expand the current understanding regarding renal protein handling as well as identify possible new therapeutic targets to halt the progression of kidney disease.
Collapse
Affiliation(s)
- Mariana C Rodrigues
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Laura B F Oliveira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Aparecida R Vieira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAUDE/FAPERJ, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTI, Rio de Janeiro, RJ, Brazil
| | - Diogo B Peruchetti
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nanobiofarmacêutica, INCT-NANOBiofar, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTI, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Shipman KE, Baty CJ, Long KR, Rbaibi Y, Cowan IA, Gerges M, Marciszyn AL, Kashlan OB, Tan RJ, Edwards A, Weisz OA. Impaired Endosome Maturation Mediates Tubular Proteinuria in Dent Disease Cell Culture and Mouse Models. J Am Soc Nephrol 2023; 34:619-640. [PMID: 36758125 PMCID: PMC10103310 DOI: 10.1681/asn.0000000000000084] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/03/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT Loss of function of the 2Cl - /H + antiporter ClC-5 in Dent disease causes an unknown impairment in endocytic traffic, leading to tubular proteinuria. The authors integrated data from biochemical and quantitative imaging studies in proximal tubule cells into a mathematical model to determine that loss of ClC-5 impairs endosome acidification and delays early endosome maturation in proximal tubule cells, resulting in reduced megalin recycling, surface expression, and half-life. Studies in a Dent mouse model also revealed subsegment-specific differences in the effects of ClC-5 knockout on proximal tubule subsegments. The approach provides a template to dissect the effects of mutations or perturbations that alter tubular recovery of filtered proteins from the level of individual cells to the entire proximal tubule axis. BACKGROUND Loss of function of the 2Cl - /H + antiporter ClC-5 in Dent disease impairs the uptake of filtered proteins by the kidney proximal tubule, resulting in tubular proteinuria. Reduced posttranslational stability of megalin and cubilin, the receptors that bind to and recover filtered proteins, is believed to underlie the tubular defect. How loss of ClC-5 leads to reduced receptor expression remains unknown. METHODS We used biochemical and quantitative imaging data to adapt a mathematical model of megalin traffic in ClC-5 knockout and control cells. Studies in ClC-5 knockout mice were performed to describe the effect of ClC-5 knockout on megalin traffic in the S1 segment and along the proximal tubule axis. RESULTS The model predicts that ClC-5 knockout cells have reduced rates of exit from early endosomes, resulting in decreased megalin recycling, surface expression, and half-life. Early endosomes had lower [Cl - ] and higher pH. We observed more profound effects in ClC-5 knockout cells expressing the pathogenic ClC-5 E211G mutant. Alterations in the cellular distribution of megalin in ClC-5 knockout mice were consistent with delayed endosome maturation and reduced recycling. Greater reductions in megalin expression were observed in the proximal tubule S2 cells compared with S1, with consequences to the profile of protein retrieval along the proximal tubule axis. CONCLUSIONS Delayed early endosome maturation due to impaired acidification and reduced [Cl - ] accumulation is the primary mediator of reduced proximal tubule receptor expression and tubular proteinuria in Dent disease. Rapid endosome maturation in proximal tubule cells is critical for the efficient recovery of filtered proteins.
Collapse
Affiliation(s)
- Katherine E. Shipman
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Catherine J. Baty
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kimberly R. Long
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youssef Rbaibi
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Isabella A. Cowan
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mona Gerges
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Allison L. Marciszyn
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ossama B. Kashlan
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Roderick J. Tan
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Aurélie Edwards
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Ora A. Weisz
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Priante G, Ceol M, Gianesello L, Bizzotto D, Braghetta P, Calò LA, Del Prete D, Anglani F. Emerging Perspectives on the Rare Tubulopathy Dent Disease: Is Glomerular Damage a Direct Consequence of ClC-5 Dysfunction? Int J Mol Sci 2023; 24:1313. [PMID: 36674829 PMCID: PMC9864126 DOI: 10.3390/ijms24021313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/12/2023] Open
Abstract
Dent disease (DD1) is a rare tubulopathy caused by mutations in the CLCN5 gene. Glomerulosclerosis was recently reported in DD1 patients and ClC-5 protein was shown to be expressed in human podocytes. Nephrin and actin cytoskeleton play a key role for podocyte functions and podocyte endocytosis seems to be crucial for slit diaphragm regulation. The aim of this study was to analyze whether ClC-5 loss in podocytes might be a direct consequence of the glomerular damage in DD1 patients. Three DD1 kidney biopsies presenting focal global glomerulosclerosis and four control biopsies were analyzed by immunofluorescence (IF) for nephrin and podocalyxin, and by immunohistochemistry (IHC) for ClC-5. ClC-5 resulted as down-regulated in DD1 vs. control (CTRL) biopsies in both tubular and glomerular compartments (p < 0.01). A significant down-regulation of nephrin (p < 0.01) in DD1 vs. CTRL was demonstrated. CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/Caspase9) gene editing of CLCN5 in conditionally immortalized human podocytes was used to obtain clones with the stop codon mutation p.(R34Efs*14). We showed that ClC-5 and nephrin expression, analyzed by quantitative Reverse Transcription/Polymerase Chain Reaction (qRT/PCR) and In-Cell Western (ICW), was significantly downregulated in mutant clones compared to the wild type ones. In addition, F-actin staining with fluorescent phalloidin revealed actin derangements. Our results indicate that ClC-5 loss might alter podocyte function either through cytoskeleton disorganization or through impairment of nephrin recycling.
Collapse
Affiliation(s)
- Giovanna Priante
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine—DIMED, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | - Monica Ceol
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine—DIMED, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | - Lisa Gianesello
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine—DIMED, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Lorenzo Arcangelo Calò
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine—DIMED, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | - Dorella Del Prete
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine—DIMED, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | - Franca Anglani
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine—DIMED, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| |
Collapse
|
5
|
Abouelezz A, Almeida-Souza L. The mammalian endocytic cytoskeleton. Eur J Cell Biol 2022; 101:151222. [DOI: 10.1016/j.ejcb.2022.151222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
|
6
|
Sakhi I, Bignon Y, Frachon N, Hureaux M, Arévalo B, González W, Vargas-Poussou R, Lourdel S. Diversity of functional alterations of the ClC-5 exchanger in the region of the proton glutamate in patients with Dent disease 1. Hum Mutat 2021; 42:537-550. [PMID: 33600050 DOI: 10.1002/humu.24184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 01/21/2023]
Abstract
Mutations in the CLCN5 gene encoding the 2Cl- /1H+ exchanger ClC-5 are associated with Dent disease 1, an inherited renal disorder characterized by low-molecular-weight (LMW) proteinuria and hypercalciuria. In the kidney, ClC-5 is mostly localized in proximal tubule cells, where it is thought to play a key role in the endocytosis of LMW proteins. Here, we investigated the consequences of eight previously reported pathogenic missense mutations of ClC-5 surrounding the "proton glutamate" that serves as a crucial H+ -binding site for the exchanger. A complete loss of function was observed for a group of mutants that were either retained in the endoplasmic reticulum of HEK293T cells or unstainable at plasma membrane due to proteasomal degradation. In contrast, the currents measured for the second group of mutations in Xenopus laevis oocytes were reduced. Molecular dynamics simulations performed on a ClC-5 homology model demonstrated that such mutations might alter ClC-5 protonation by interfering with the water pathway. Analysis of clinical data from patients harboring these mutations demonstrated no phenotype/genotype correlation. This study reveals that mutations clustered in a crucial region of ClC-5 have diverse molecular consequences in patients with Dent disease 1, ranging from altered expression to defects in transport.
Collapse
Affiliation(s)
- Imène Sakhi
- Laboratoire Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France
| | - Yohan Bignon
- Centre Universitaire des Saints Pères, INSERM, Université Paris Descartes, Paris, France
| | - Nadia Frachon
- Laboratoire Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France
| | - Marguerite Hureaux
- Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Bárbara Arévalo
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, Talca, Chile
| | - Wendy González
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Rosa Vargas-Poussou
- Laboratoire Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France.,Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Stéphane Lourdel
- Laboratoire Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France
| |
Collapse
|
7
|
Pusch M, Zifarelli G. Large transient capacitive currents in wild-type lysosomal Cl-/H+ antiporter ClC-7 and residual transport activity in the proton glutamate mutant E312A. J Gen Physiol 2020; 153:211547. [PMID: 33211806 PMCID: PMC7681918 DOI: 10.1085/jgp.202012583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/28/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
ClC-7 is a lysosomal 2 Cl−/1 H+ antiporter of the CLC protein family, which comprises Cl− channels and other Cl−/H+ antiporters. Mutations in ClC-7 and its associated β subunit Ostm1 lead to osteopetrosis and lysosomal storage disease in humans and mice. Previous studies on other mammalian CLC transporters showed that mutations of a conserved, intracellularly located glutamate residue, the so-called proton glutamate, abolish steady-state transport activity but increase transient capacitive currents associated with partial reactions of the transport cycle. In contrast, we observed large, transient capacitive currents for the wild-type ClC-7, which depend on external pH and internal, but not external, Cl−. Very similar transient currents were observed for the E312A mutant of the proton glutamate. Interestingly, and unlike in other mammalian CLC transporters investigated so far, the E312A mutation strongly reduces, but does not abolish, stationary transport currents, potentially explaining the intermediate phenotype observed in the E312A mouse line.
Collapse
Affiliation(s)
- Michael Pusch
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genoa, Italy
| | | |
Collapse
|
8
|
Shipman KE, Weisz OA. Making a Dent in Dent Disease. FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa017. [PMID: 33015630 PMCID: PMC7519470 DOI: 10.1093/function/zqaa017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023]
Abstract
Dent disease (DD) is a rare kidney disorder caused by mutations in the Cl-/H+ exchanger ClC-5. Extensive physiologic characterization of the transporter has begun to illuminate its role in endosomal ion homeostasis. Nevertheless, we have yet to understand how loss of ClC-5 function in the kidney proximal tubule impairs membrane traffic of megalin and cubilin receptors to cause the low molecular weight proteinuria characteristic of DD. This review identifies open questions that remain to be answered, evaluates the current literature addressing these questions, and suggests new testable models that may link loss of ClC-5 function to tubular proteinuria in DD.
Collapse
Affiliation(s)
- Katherine E Shipman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Address correspondence to O.A.W. (e-mail: )
| |
Collapse
|
9
|
Gianesello L, Del Prete D, Anglani F, Calò LA. Genetics and phenotypic heterogeneity of Dent disease: the dark side of the moon. Hum Genet 2020; 140:401-421. [PMID: 32860533 PMCID: PMC7889681 DOI: 10.1007/s00439-020-02219-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Dent disease is a rare genetic proximal tubulopathy which is under-recognized. Its phenotypic heterogeneity has led to several different classifications of the same disorder, but it is now widely accepted that the triad of symptoms low-molecular-weight proteinuria, hypercalciuria and nephrocalcinosis/nephrolithiasis are pathognomonic of Dent disease. Although mutations on the CLCN5 and OCRL genes are known to cause Dent disease, no such mutations are found in about 25–35% of cases, making diagnosis more challenging. This review outlines current knowledge regarding Dent disease from another perspective. Starting from the history of Dent disease, and reviewing the clinical details of patients with and without a genetic characterization, we discuss the phenotypic and genetic heterogeneity that typifies this disease. We focus particularly on all those confounding clinical signs and symptoms that can lead to a misdiagnosis. We also try to shed light on a concealed aspect of Dent disease. Although it is a proximal tubulopathy, its misdiagnosis may lead to patients undergoing kidney biopsy. In fact, some individuals with Dent disease have high-grade proteinuria, with or without hematuria, as in the clinical setting of glomerulopathy, or chronic kidney disease of uncertain origin. Although glomerular damage is frequently documented in Dent disease patients’ biopsies, there is currently no reliable evidence of renal biopsy being of either diagnostic or prognostic value. We review published histopathology reports of tubular and glomerular damage in these patients, and discuss current knowledge regarding the role of CLCN5 and OCRL genes in glomerular function.
Collapse
Affiliation(s)
- Lisa Gianesello
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| | - Dorella Del Prete
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| | - Franca Anglani
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy.
| | - Lorenzo A Calò
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| |
Collapse
|
10
|
Archanjo AB, Assis ALEMD, Oliveira MMD, Mendes SO, Borçoi AR, Maia LDL, Souza RPD, Cicco RD, Saito KC, Kimura ET, Carvalho MBD, Nunes FD, Tajara EH, Santos MD, Nogueira BV, Trivilin LO, Pinheiro CJG, Álvares-da-Silva AM. Elemental characterization of oral cavity squamous cell carcinoma and its relationship with smoking, prognosis and survival. Sci Rep 2020; 10:10382. [PMID: 32587307 PMCID: PMC7316707 DOI: 10.1038/s41598-020-67270-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022] Open
Abstract
Oral cancer squamous cell carcinoma (OCSCC) mainly affects individuals aged between 50 and 70 years who consume tobacco and alcohol. Tobacco smoke contains hundreds of known toxic and carcinogenic molecules, and a few studies have sought to verify the relationship of such trace elements as risk or prognostic factors for head and neck cancer. We obtained 78 samples of tumor tissues from patients with OCSCC, and performed a qualitative elemental characterization using the micro X-Ray Fluorescence technique based on synchrotron radiation. We found the presence of magnesium, phosphorus, sulfur, chlorine, potassium, calcium, chromium, manganese, iron, zinc, cobalt, nickel, copper, arsenic and bromine in OCSCC samples. Magnesium, chlorine, chromium, manganese, nickel, arsenic and bromine are associated with smoking. We observed a significant association between relapse and chlorine and chromium. The presence of chlorine in the samples was an independent protective factor against relapse (OR = 0.105, CI = 0.01-0.63) and for best disease-free survival (HR = 0.194, CI = 0.04-0.87). Reporting for the first time in oral cancer, these results suggest a key relationship between smoking and the presence of certain elements. In addition, chlorine proved to be important in the context of patient prognosis and survival.
Collapse
Affiliation(s)
- Anderson Barros Archanjo
- Postgraduate Program in Biotechnology/RENORBIO, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, 29.040-090, ES, Brazil.
| | | | - Mayara Mota de Oliveira
- Postgraduate Program in Biotechnology/RENORBIO, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, 29.040-090, ES, Brazil
| | - Suzanny Oliveira Mendes
- Postgraduate Program in Biotechnology/RENORBIO, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, 29.040-090, ES, Brazil
| | - Aline Ribeiro Borçoi
- Postgraduate Program in Biotechnology/RENORBIO, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, 29.040-090, ES, Brazil
| | - Lucas de Lima Maia
- Postgraduate Program in Biotechnology/RENORBIO, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, 29.040-090, ES, Brazil
| | | | - Rafael de Cicco
- Cancer Institute Arnaldo Vieira de Carvalho, São Paulo, Brazil
| | | | - Edna Teruko Kimura
- Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | | | - Eloiza H Tajara
- Medical School of São José do Rio Preto, São José do Rio Preto, Brazil
| | - Marcelo Dos Santos
- Multicampi School of Medical Sciences of Rio Grande do Norte, Federal University of Rio Grande do Norte, Caicó, Brazil
| | - Breno Valentim Nogueira
- Postgraduate Program in Biotechnology/RENORBIO, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, 29.040-090, ES, Brazil
| | | | | | - Adriana Madeira Álvares-da-Silva
- Postgraduate Program in Biotechnology/RENORBIO, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, 29.040-090, ES, Brazil
| |
Collapse
|
11
|
Gianesello L, Del Prete D, Ceol M, Priante G, Calò LA, Anglani F. From protein uptake to Dent disease: An overview of the CLCN5 gene. Gene 2020; 747:144662. [PMID: 32289351 DOI: 10.1016/j.gene.2020.144662] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Proteinuria is a well-known risk factor, not only for renal disorders, but also for several other problems such as cardiovascular diseases and overall mortality. In the kidney, the chloride channel Cl-/H+ exchanger ClC-5 encoded by the CLCN5 gene is actively involved in preventing protein loss. This action becomes evident in patients suffering from the rare proximal tubulopathy Dent disease because they carry a defective ClC-5 due to CLCN5 mutations. In fact, proteinuria is the distinctive clinical sign of Dent disease, and mainly involves the loss of low-molecular-weight proteins. The identification of CLCN5 disease-causing mutations has greatly improved our understanding of ClC-5 function and of the ClC-5-related physiological processes in the kidney. This review outlines current knowledge regarding the CLCN5 gene and its protein product, providing an update on ClC-5 function in tubular and glomerular cells, and focusing on its relationship with proteinuria and Dent disease.
Collapse
Affiliation(s)
- Lisa Gianesello
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Dorella Del Prete
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Monica Ceol
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Giovanna Priante
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Lorenzo Arcangelo Calò
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Franca Anglani
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| |
Collapse
|
12
|
Gianesello L, Ceol M, Bertoldi L, Terrin L, Priante G, Murer L, Peruzzi L, Giordano M, Paglialonga F, Cantaluppi V, Musetti C, Valle G, Del Prete D, Anglani F. Genetic Analyses in Dent Disease and Characterization of CLCN5 Mutations in Kidney Biopsies. Int J Mol Sci 2020; 21:ijms21020516. [PMID: 31947599 PMCID: PMC7014080 DOI: 10.3390/ijms21020516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
Dent disease (DD), an X-linked renal tubulopathy, is mainly caused by loss-of-function mutations in CLCN5 (DD1) and OCRL genes. CLCN5 encodes the ClC-5 antiporter that in proximal tubules (PT) participates in the receptor-mediated endocytosis of low molecular weight proteins. Few studies have analyzed the PT expression of ClC-5 and of megalin and cubilin receptors in DD1 kidney biopsies. About 25% of DD cases lack mutations in either CLCN5 or OCRL genes (DD3), and no other disease genes have been discovered so far. Sanger sequencing was used for CLCN5 gene analysis in 158 unrelated males clinically suspected of having DD. The tubular expression of ClC-5, megalin, and cubilin was assessed by immunolabeling in 10 DD1 kidney biopsies. Whole exome sequencing (WES) was performed in eight DD3 patients. Twenty-three novel CLCN5 mutations were identified. ClC-5, megalin, and cubilin were significantly lower in DD1 than in control biopsies. The tubular expression of ClC-5 when detected was irrespective of the type of mutation. In four DD3 patients, WES revealed 12 potentially pathogenic variants in three novel genes (SLC17A1, SLC9A3, and PDZK1), and in three genes known to be associated with monogenic forms of renal proximal tubulopathies (SLC3A, LRP2, and CUBN). The supposed third Dent disease-causing gene was not discovered.
Collapse
Affiliation(s)
- Lisa Gianesello
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
| | - Monica Ceol
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
| | - Loris Bertoldi
- CRIBI Biotechnology Centre, University of Padua, 35131 Padua, Italy; (L.B.); (G.V.)
| | - Liliana Terrin
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
| | - Giovanna Priante
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
| | - Luisa Murer
- Pediatric Nephrology, Dialysis and Transplant Unit, Department of Women’s and Children’s Health, Padua University Hospital, 35128 Padua, Italy;
| | - Licia Peruzzi
- Pediatric Nephrology Unit, Regina Margherita Children’s Hospital, 10126 CDSS Turin, Italy;
| | - Mario Giordano
- Pediatric Nephrology Unit, University Hospital, P.O. Giovanni XXIII, 70126 Bari, Italy;
| | - Fabio Paglialonga
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS, Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (V.C.); (C.M.)
| | - Claudio Musetti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (V.C.); (C.M.)
| | - Giorgio Valle
- CRIBI Biotechnology Centre, University of Padua, 35131 Padua, Italy; (L.B.); (G.V.)
| | - Dorella Del Prete
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
| | - Franca Anglani
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
- CRIBI Biotechnology Centre, University of Padua, 35131 Padua, Italy; (L.B.); (G.V.)
- Correspondence: ; Tel.: +39-049-8212-155
| | | |
Collapse
|
13
|
Liu T, Woo JAA, Yan Y, LePochat P, Bukhari MZ, Kang DE. Dual role of cofilin in APP trafficking and amyloid-β clearance. FASEB J 2019; 33:14234-14247. [PMID: 31646885 DOI: 10.1096/fj.201901268r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The accumulation of amyloid-β (Aβ) plays a pivotal early event in the pathogenesis of Alzheimer's disease (AD). In the brain, neurons produce Aβ by the proteolytic processing of amyloid precursor protein (APP) through the endocytic pathway, whereas microglia mediate Aβ clearance also via endocytic mechanisms. Previous studies have shown the critical importance of cofilin, a filamentous actin-severing protein, in actin dynamics and pathogen-triggered endocytic processes. Moreover, the binding of Aβ42 oligomers to β1-integrin triggers the cofilin activation, and in turn, cofilin promotes the internalization of surface β1-integrin. However, a role for cofilin in APP processing and Aβ metabolism has not been investigated. In this study, we found that knockdown of cofilin in Chinese hamster ovary 7WD10 cells and primary neurons significantly reduces Aβ production by increasing surface APP (sAPP) levels. Expression of active (S3A) but not inactive (S3E) cofilin reduces sAPP levels by enhancing APP endocytosis. Accordingly, Aβ deposition in APP and presenilin 1 (PS1) transgenic mice is significantly reduced by genetic reduction of cofilin (APP/PS1;cofilin+/-). However, the reduction of Aβ load in APP/PS1;cofilin+/- mice is paradoxically associated with significantly increased ionized calcium-binding adaptor molecule 1-positive microglial activation surrounding Aβ deposits. Primary microglia isolated from cofilin+/- mice demonstrate significantly enhanced state of activation and greater ability to uptake and clear Aβ42, which is reversed with the active (S3A) but not inactive (S3E) form of cofilin. These results taken together indicate a significant role for cofilin in Aβ accumulation via dual and opposing endocytic mechanisms of promoting Aβ production in neurons and inhibiting Aβ clearance in microglia.-Liu, T., Woo, J.-A. A., Yan, Y., LePochat, P., Bukhari, M. Z., Kang, D. E. Dual role of cofilin in APP trafficking and amyloid-β clearance.
Collapse
Affiliation(s)
- Tian Liu
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular of Medicine, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA
| | - Jung-A A Woo
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA
| | - Yan Yan
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular of Medicine, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA
| | - Patrick LePochat
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular of Medicine, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA
| | - Mohammed Zaheen Bukhari
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular of Medicine, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA
| | - David E Kang
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular of Medicine, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,James A. Haley Veterans Administration Hospital, Tampa, Florida, USA
| |
Collapse
|
14
|
Anglani F, Gianesello L, Beara-Lasic L, Lieske J. Dent disease: A window into calcium and phosphate transport. J Cell Mol Med 2019; 23:7132-7142. [PMID: 31472005 PMCID: PMC6815805 DOI: 10.1111/jcmm.14590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022] Open
Abstract
This review examines calcium and phosphate transport in the kidney through the lens of the rare X-linked genetic disorder Dent disease. Dent disease type 1 (DD1) is caused by mutations in the CLCN5 gene encoding ClC-5, a Cl- /H+ antiporter localized to early endosomes of the proximal tubule (PT). Phenotypic features commonly include low molecular weight proteinuria (LMWP), hypercalciuria, focal global sclerosis and chronic kidney disease; calcium nephrolithiasis, nephrocalcinosis and hypophosphatemic rickets are less commonly observed. Although it is not surprising that abnormal endosomal function and recycling in the PT could result in LMWP, it is less clear how ClC-5 dysfunction disturbs calcium and phosphate metabolism. It is known that the majority of calcium and phosphate transport occurs in PT cells, and PT endocytosis is essential for calcium and phosphorus reabsorption in this nephron segment. Evidence from ClC-5 KO models suggests that ClC-5 mediates parathormone endocytosis from tubular fluid. In addition, ClC-5 dysfunction alters expression of the sodium/proton exchanger NHE3 on the PT apical surface thus altering transcellular sodium movement and hence paracellular calcium reabsorption. A potential role for NHE3 dysfunction in the DD1 phenotype has never been investigated, either in DD models or in patients with DD1, even though patients with DD1 exhibit renal sodium and potassium wasting, especially when exposed to even a low dose of thiazide diuretic. Thus, insights from the rare disease DD1 may inform possible underlying mechanisms for the phenotype of hypercalciuria and idiopathic calcium stones.
Collapse
Affiliation(s)
- Franca Anglani
- Division of Nephrology, Department of Medicine, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Padua, Italy
| | - Lisa Gianesello
- Division of Nephrology, Department of Medicine, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Padua, Italy
| | - Lada Beara-Lasic
- Division of Nephrology, New York University School of Medicine, New York, NY, USA
| | - John Lieske
- Division of Nephrology and Hypertension, Department of Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
16
|
Abstract
Cells lining the proximal tubule (PT) of the kidney are highly specialized for apical endocytosis of filtered proteins and small bioactive molecules from the glomerular ultrafiltrate to maintain essentially protein-free urine. Compromise of this pathway results in low molecular weight (LMW) proteinuria that can progress to end-stage kidney disease. This review describes our current understanding of the endocytic pathway and the multiligand receptors that mediate LMW protein uptake in PT cells, how these are regulated in response to physiologic cues, and the molecular basis of inherited diseases characterized by LMW proteinuria.
Collapse
Affiliation(s)
- Megan L Eshbach
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| | - Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| |
Collapse
|
17
|
Tubular proteinuria in patients with HNF1α mutations: HNF1α drives endocytosis in the proximal tubule. Kidney Int 2016; 89:1075-1089. [PMID: 27083284 DOI: 10.1016/j.kint.2016.01.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 01/12/2016] [Accepted: 01/28/2016] [Indexed: 02/07/2023]
Abstract
Hepatocyte nuclear factor 1α (HNF1α) is a transcription factor expressed in the liver, pancreas, and proximal tubule of the kidney. Mutations of HNF1α cause an autosomal dominant form of diabetes mellitus (MODY-HNF1A) and tubular dysfunction. To gain insights into the role of HNF1α in the proximal tubule, we analyzed Hnf1a-deficient mice. Compared with wild-type littermates, Hnf1a knockout mice showed low-molecular-weight proteinuria and a 70% decrease in the uptake of β2-microglobulin, indicating a major endocytic defect due to decreased expression of megalin/cubilin receptors. We identified several binding sites for HNF1α in promoters of Lrp2 and Cubn genes encoding megalin and cubilin, respectively. The functional interaction of HNF1α with these promoters was shown in C33 epithelial cells lacking endogenous HNF1α. Defective receptor-mediated endocytosis was confirmed in proximal tubule cells from these knockout mice and could be rescued by transfection of wild-type but not mutant HNF1α. Transfection of human proximal tubule HK2 cells with HNF1α was able to upregulate megalin and cubilin expression and to increase endocytosis of albumin. Low-molecular-weight proteinuria was consistently detected in individuals with HNF1A mutations compared with healthy controls and patients with non-MODY-HNF1A diabetes mellitus. Thus, HNF1α plays a key role in the constitutive expression of megalin and cubilin, hence regulating endocytosis in the proximal tubule of the kidney. These findings provide new insight into the renal phenotype of individuals with mutations of HNF1A.
Collapse
|
18
|
Jentsch TJ. Discovery of CLC transport proteins: cloning, structure, function and pathophysiology. J Physiol 2015; 593:4091-109. [PMID: 25590607 DOI: 10.1113/jp270043] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/11/2015] [Indexed: 02/06/2023] Open
Abstract
After providing a personal description of the convoluted path leading 25 years ago to the molecular identification of the Torpedo Cl(-) channel ClC-0 and the discovery of the CLC gene family, I succinctly describe the general structural and functional features of these ion transporters before giving a short overview of mammalian CLCs. These can be categorized into plasma membrane Cl(-) channels and vesicular Cl(-) /H(+) -exchangers. They are involved in the regulation of membrane excitability, transepithelial transport, extracellular ion homeostasis, endocytosis and lysosomal function. Diseases caused by CLC dysfunction include myotonia, neurodegeneration, deafness, blindness, leukodystrophy, male infertility, renal salt loss, kidney stones and osteopetrosis, revealing a surprisingly broad spectrum of biological roles for chloride transport that was unsuspected when I set out to clone the first voltage-gated chloride channel.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| |
Collapse
|
19
|
Slyne J, Slattery C, McMorrow T, Ryan MP. New developments concerning the proximal tubule in diabetic nephropathy:in vitromodels and mechanisms. Nephrol Dial Transplant 2015. [DOI: 10.1093/ndt/gfv264] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
20
|
Lee A, Slattery C, Nikolic-Paterson DJ, Hryciw DH, Wilk S, Wilk E, Zhang Y, Valova VA, Robinson PJ, Kelly DJ, Poronnik P. Chloride channel ClC-5 binds to aspartyl aminopeptidase to regulate renal albumin endocytosis. Am J Physiol Renal Physiol 2015; 308:F784-92. [DOI: 10.1152/ajprenal.00322.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/04/2015] [Indexed: 12/17/2022] Open
Abstract
ClC-5 is a chloride/proton exchanger that plays an obligate role in albumin uptake by the renal proximal tubule. ClC-5 forms an endocytic complex with the albumin receptor megalin/cubilin. We have identified a novel ClC-5 binding partner, cytosolic aspartyl aminopeptidase (DNPEP; EC 3.4.11.21), that catalyzes the release of N-terminal aspartate/glutamate residues. The physiological role of DNPEP remains largely unresolved. Mass spectrometric analysis of proteins binding to the glutathione- S-transferase (GST)-ClC-5 C terminus identified DNPEP as an interacting partner. Coimmunoprecipitation confirmed that DNPEP and ClC-5 also associated in cells. Further experiments using purified GST-ClC-5 and His-DNPEP proteins demonstrated that the two proteins bound directly to each other. In opossum kidney (OK) cells, confocal immunofluorescence studies revealed that DNPEP colocalized with albumin-containing endocytic vesicles. Overexpression of wild-type DNPEP increased cell-surface levels of ClC-5 and albumin uptake. Analysis of DNPEP-immunoprecipitated products from rat kidney lysate identified β-actin and tubulin, suggesting a role for DNPEP in cytoskeletal maintenance. A DNase I inhibition assay showed a significant decrease in the amount of G actin when DNPEP was overexpressed in OK cells, suggesting a role for DNPEP in stabilizing the cytoskeleton. DNPEP was not present in the urine of healthy rats; however, it was readily detected in the urine in rat models of mild and heavy proteinuria (diabetic nephropathy and anti-glomerular basement membrane disease, respectively). Urinary levels of DNPEP were found to correlate with the severity of proteinuria. Therefore, we have identified another key molecular component of the albumin endocytic machinery in the renal proximal tubule and describe a new role for DNPEP in stabilizing the actin cytoskeleton.
Collapse
Affiliation(s)
- Aven Lee
- UQ Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Queensland, Australia
| | - Craig Slattery
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, Republic. of Ireland
| | - David J. Nikolic-Paterson
- Department of Nephrology, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Deanne H. Hryciw
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sherwin Wilk
- Department of Pharmacology, Mount Sinai School of Medicine, New York, New York
| | - Elizabeth Wilk
- Department of Pharmacology, Mount Sinai School of Medicine, New York, New York
| | - Yuan Zhang
- Department of Medicine, Saint Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Valentina A. Valova
- Children's Medical Research Institute, The University of Sydney, Westmead New South Wales, Australia; and
| | - Phillip J. Robinson
- Children's Medical Research Institute, The University of Sydney, Westmead New South Wales, Australia; and
| | - Darren J. Kelly
- Department of Medicine, Saint Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Philip Poronnik
- School of Medical Sciences and the Bosch Institute, The University of Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Armanet N, Metay C, Brisset S, Deschenes G, Pineau D, Petit FM, Di Rocco F, Goossens M, Tachdjian G, Labrune P, Tosca L. Double Xp11.22 deletion including SHROOM4 and CLCN5 associated with severe psychomotor retardation and Dent disease. Mol Cytogenet 2015; 8:8. [PMID: 25670966 PMCID: PMC4322561 DOI: 10.1186/s13039-015-0107-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/08/2015] [Indexed: 11/23/2022] Open
Abstract
Background Here we report the clinical and molecular characterization of two Xp11.22 deletions including SHROOM4 and CLCN5 genes. These deletions appeared in the same X chromosome of the same patient. Results The patient is a six-year-old boy who presented hydrocephalus, severe psychomotor and growth retardation, facial dysmorphism and renal proximal tubulopathy associated with low-molecular-weight proteinuria, hypercalciuria, hyperaminoaciduria, hypophosphatemia and hyperuricemia. Standard and high resolution karyotypes showed a 46,XY formula. Array-CGH revealed two consecutive cryptic deletions in the region Xp11.22, measuring respectively 148 Kb and 2.6 Mb. The two deletions were inherited from the asymptomatic mother. Conclusions Array-CGH allowed us to determine candidate genes in the deleted region. The disruption and partial loss of CLCN5 confirmed the diagnostic of Dent disease for this patient. Moreover, the previously described involvement of SHROOM4 in neuronal development is discussed.
Collapse
Affiliation(s)
- Narjes Armanet
- Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud. Hôpital Antoine Béclère, 157 rue de la Porte de Trivaux, 92141, Clamart, F-92140 France.,Université Paris-Sud, Le Kremlin-Bicêtre, F-94276 France
| | - Corinne Metay
- Plateforme de Génomique IMRB 955, Hôpital Henri Mondor, Créteil, F-94010 France
| | - Sophie Brisset
- Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud. Hôpital Antoine Béclère, 157 rue de la Porte de Trivaux, 92141, Clamart, F-92140 France.,Université Paris-Sud, Le Kremlin-Bicêtre, F-94276 France
| | - Georges Deschenes
- Service de Néphrologie pédiatrique, Hôpital Robert Debré, Paris, F-75935 France
| | - Dominique Pineau
- Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud. Hôpital Antoine Béclère, 157 rue de la Porte de Trivaux, 92141, Clamart, F-92140 France
| | - François M Petit
- Laboratoire de Génétique Moléculaire, Hôpitaux Universitaires Paris-Sud. Hôpital Antoine Béclère, Clamart, F-92140 France
| | - Federico Di Rocco
- Service de Neurochirurgie pédiatrique, Hôpital Necker Enfants Malades, Clamart, F-75015 France
| | - Michel Goossens
- Plateforme de Génomique IMRB 955, Hôpital Henri Mondor, Créteil, F-94010 France.,Université Paris Est, Créteil, F-94010 France
| | - Gérard Tachdjian
- Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud. Hôpital Antoine Béclère, 157 rue de la Porte de Trivaux, 92141, Clamart, F-92140 France.,Université Paris-Sud, Le Kremlin-Bicêtre, F-94276 France
| | - Philippe Labrune
- Université Paris-Sud, Le Kremlin-Bicêtre, F-94276 France.,Service de Pédiatrie, Hôpitaux Universitaires Paris-Sud. Hôpital Antoine Béclère, Clamart, F-92140 France
| | - Lucie Tosca
- Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud. Hôpital Antoine Béclère, 157 rue de la Porte de Trivaux, 92141, Clamart, F-92140 France.,Université Paris-Sud, Le Kremlin-Bicêtre, F-94276 France
| |
Collapse
|
22
|
Slattery C, Jang Y, Kruger WA, Hryciw DH, Lee A, Poronnik P. γ-Secretase inhibition promotes fibrotic effects of albumin in proximal tubular epithelial cells. Br J Pharmacol 2014; 169:1239-51. [PMID: 23594166 DOI: 10.1111/bph.12214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 01/24/2013] [Accepted: 02/20/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Albuminuria is an important biomarker of renal dysfunction and is a major mediator of renal damage and fibrosis during kidney disease. The mechanisms underlying albumin-induced renal fibrosis remain unclear. There has been significant interest in γ-secretase activity in tubular epithelial cells in recent times; however, its potential role in albumin-induced fibrosis has not been investigated. EXPERIMENTAL APPROACH The primary aim of this study was to examine the role of γ-secretase in albumin-induced fibrotic effects in proximal tubular cells. The effects of increasing albumin concentrations on fibrosis indicators and mediators in the human HK-2 cell line were examined in the presence and absence of a γ-secretase inhibitor, compound E. KEY RESULTS Treatment with albumin resulted in a number of pro-fibrotic effects, including up-regulation of fibronectin, TGF-β1 and the EGF-R. Interestingly, similar effects were observed in response to treatment with the γ-secretase inhibitor, compound E. Co-treatment of cells with albumin and an EGF-R inhibitor, AG-1478, resulted in significant inhibition of the observed pro-fibrotic effects, suggesting a major role for the EGF-R in albumin-induced fibrotic events. Albumin-induced effects on the EGF-R appeared to be mediated through inhibition of γ-secretase activity and were dependent on ERK-MAPK signalling. CONCLUSIONS AND IMPLICATIONS These results provide novel insights into the mechanisms of albumin-induced fibrotic effects in tubular epithelial cells, suggesting important roles for the γ-secretase and the EGF-R. These results suggest that the proposed use of γ-secretase inhibitors as anti-fibrotic agents requires further investigation.
Collapse
Affiliation(s)
- C Slattery
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Belfield, Ireland
| | | | | | | | | | | |
Collapse
|
23
|
Stauber T, Weinert S, Jentsch TJ. Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2013; 2:1701-44. [PMID: 23723021 DOI: 10.1002/cphy.c110038] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins of the CLC gene family assemble to homo- or sometimes heterodimers and either function as Cl(-) channels or as Cl(-)/H(+)-exchangers. CLC proteins are present in all phyla. Detailed structural information is available from crystal structures of bacterial and algal CLCs. Mammals express nine CLC genes, four of which encode Cl(-) channels and five 2Cl(-)/H(+)-exchangers. Two accessory β-subunits are known: (1) barttin and (2) Ostm1. ClC-Ka and ClC-Kb Cl(-) channels need barttin, whereas Ostm1 is required for the function of the lysosomal ClC-7 2Cl(-)/H(+)-exchanger. ClC-1, -2, -Ka and -Kb Cl(-) channels reside in the plasma membrane and function in the control of electrical excitability of muscles or neurons, in extra- and intracellular ion homeostasis, and in transepithelial transport. The mainly endosomal/lysosomal Cl(-)/H(+)-exchangers ClC-3 to ClC-7 may facilitate vesicular acidification by shunting currents of proton pumps and increase vesicular Cl(-) concentration. ClC-3 is also present on synaptic vesicles, whereas ClC-4 and -5 can reach the plasma membrane to some extent. ClC-7/Ostm1 is coinserted with the vesicular H(+)-ATPase into the acid-secreting ruffled border membrane of osteoclasts. Mice or humans lacking ClC-7 or Ostm1 display osteopetrosis and lysosomal storage disease. Disruption of the endosomal ClC-5 Cl(-)/H(+)-exchanger leads to proteinuria and Dent's disease. Mouse models in which ClC-5 or ClC-7 is converted to uncoupled Cl(-) conductors suggest an important role of vesicular Cl(-) accumulation in these pathologies. The important functions of CLC Cl(-) channels were also revealed by human diseases and mouse models, with phenotypes including myotonia, renal loss of salt and water, deafness, blindness, leukodystrophy, and male infertility.
Collapse
Affiliation(s)
- Tobias Stauber
- Leibniz-Institut für Molekulare Pharmakologie FMP and Max-Delbrück-Centrum für Molekulare Medizin MDC, Berlin, Germany
| | | | | |
Collapse
|
24
|
Kanlaya R, Fong-ngern K, Thongboonkerd V. Cellular adaptive response of distal renal tubular cells to high-oxalate environment highlights surface alpha-enolase as the enhancer of calcium oxalate monohydrate crystal adhesion. J Proteomics 2013; 80:55-65. [DOI: 10.1016/j.jprot.2013.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/07/2012] [Accepted: 01/07/2013] [Indexed: 01/14/2023]
|
25
|
Lippiat JD, Smith AJ. The CLC-5 2Cl(-)/H(+) exchange transporter in endosomal function and Dent's disease. Front Physiol 2012; 3:449. [PMID: 23226131 PMCID: PMC3510460 DOI: 10.3389/fphys.2012.00449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/09/2012] [Indexed: 01/25/2023] Open
Abstract
CLC-5 plays a critical role in the process of endocytosis in the proximal tubule of the kidney and mutations that alter protein function are the cause of Dent's I disease. In this X-linked disorder impaired reabsorption results in the wasting of calcium and low molecular weight protein to the urine, kidney stones, and progressive renal failure. Several different ion-transporting and protein clustering roles have been proposed as the physiological function of CLC-5 in endosomal membranes. At the time of its discovery, nearly 20 years ago, it was understandably assumed to be a chloride channel similar to known members of the CLC family, such as CLC-1, suggesting that chloride transport by CLC-5 was critical for endosomal function. Since then CLC-5 was found instead to be a 2Cl−/H+ exchange transporter with voltage-dependent activity. Recent studies have determined that it is this coupled exchange of protons for chloride, and not just chloride transport, which is critical for endosomal and kidney function. This review discusses the recent ideas that describe how CLC-5 might function in endosomal membranes, the aspects that we still do not understand, and where controversies remain.
Collapse
Affiliation(s)
- Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds Leeds, UK
| | | |
Collapse
|
26
|
An atypical Dent's disease phenotype caused by co-inheritance of mutations at CLCN5 and OCRL genes. Eur J Hum Genet 2012; 21:687-90. [PMID: 23047739 DOI: 10.1038/ejhg.2012.225] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Dent's disease is an X-linked renal tubulopathy caused by mutations mainly affecting the CLCN5 gene. Defects in the OCRL gene, which is usually mutated in patients with Lowe syndrome, have been shown to lead to a Dent-like phenotype called Dent disease 2. However, about 20% of patients with Dent's disease carry no CLCN5/OCRL mutations. The disease's genetic heterogeneity is accompanied by interfamilial and intrafamilial phenotypic heterogeneity. We report on a case of Dent's disease with a very unusual phenotype (dysmorphic features, ocular abnormalities, growth delay, rickets, mild mental retardation) in which a digenic inheritance was discovered. Two different, novel disease-causing mutations were detected, both inherited from the patient's healthy mother, that is a truncating mutation in the CLCN5 gene (A249fs*20) and a donor splice-site alteration in the OCRL gene (c.388+3A>G). The mRNA analysis of the patient's leukocytes revealed an aberrantly spliced OCRL mRNA caused by in-frame exon 6 skipping, leading to a shorter protein, but keeping intact the central inositol 5-phosphatase domain and the C-terminal side of the ASH-RhoGAP domain. Only wild-type mRNA was observed in the mother's leukocytes due to a completely skewed X inactivation. Our results are the first to reveal the effect of an epistatic second modifier in Dent's disease too, which can modulate its expressivity. We surmise that the severe Dent disease 2 phenotype of our patient might be due to an addictive interaction of the mutations at two different genes.
Collapse
|
27
|
Hryciw DH, Jenkin KA, Simcocks AC, Grinfeld E, McAinch AJ, Poronnik P. The interaction between megalin and ClC-5 is scaffolded by the Na⁺-H⁺ exchanger regulatory factor 2 (NHERF2) in proximal tubule cells. Int J Biochem Cell Biol 2012; 44:815-23. [PMID: 22349218 DOI: 10.1016/j.biocel.2012.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/22/2012] [Accepted: 02/05/2012] [Indexed: 11/25/2022]
Abstract
Albumin endocytosis in the proximal tubule is mediated by a number of proteins, including the scavenger receptor megalin/cubilin and the PSD-95/Dlg/ZO-1 (PDZ) scaffolds NHERF1 and NHERF2. In addition, in a number of in vitro and in vivo models, the loss of ClC-5 results in a decreased cell surface expression and whole cell level of megalin, suggesting an interaction between these two proteins in vivo. We investigated if ClC-5 and megalin interact directly, and as ClC-5 binds to NHERF2, we investigated if this PDZ scaffold was required for a megalin/ClC-5 complex. GST-pulldown and immunoprecipitation experiments using rat kidney lysate demonstrated an interaction between ClC-5 and megalin, which was mediated by their C-termini. As this interaction may be controlled by a scaffold protein, we characterised any interaction between megalin and NHERF2. Immunoprecipitation experiments indicated that megalin interacts with NHERF2 in vivo, and that this interaction was via an internal NHERF binding domain in the C-terminus of megalin and PDZ2 and the C-terminus of NHERF2. Silencing NHERF2 had no effect on megalin protein levels in the whole cell or plasma membrane. Using siRNA against NHERF2, we demonstrated that NHERF2 was required to facilitate the interaction between megalin and ClC-5. Using fusion proteins, we characterised a protein complex containing ClC-5 and megalin, which is scaffolded by NHERF2, in the absence of any other proteins. Importantly, these observations are the first to describe an interaction between megalin and ClC-5, which is scaffolded by NHERF2 in proximal tubule cells.
Collapse
Affiliation(s)
- D H Hryciw
- Biomedical and Lifestyle Diseases Unit, School of Biomedical and Health Sciences, Victoria University, St Albans, VIC 3021, Australia.
| | | | | | | | | | | |
Collapse
|
28
|
Hryciw DH, Kruger WA, Briffa JF, Slattery C, Bolithon A, Lee A, Poronnik P. Sgk-1 is a Positive Regulator of Constitutive Albumin Uptake in Renal Proximal Tubule Cells. Cell Physiol Biochem 2012; 30:1215-26. [DOI: 10.1159/000343313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2012] [Indexed: 12/12/2022] Open
|
29
|
ClC-5 mutations associated with Dent's disease: a major role of the dimer interface. Pflugers Arch 2011; 463:247-56. [PMID: 22083641 DOI: 10.1007/s00424-011-1052-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/23/2011] [Accepted: 10/24/2011] [Indexed: 12/30/2022]
Abstract
Dent's disease is an X-linked recessive disorder affecting the proximal tubules. Mutations in the 2Cl(-)/H(+) exchanger ClC-5 gene CLCN5 are frequently associated with Dent's disease. Functional characterization of mutations of CLCN5 have helped to elucidate the physiopathology of Dent's disease and provided evidence that several different mechanisms underlie the ClC-5 dysfunction in Dent's disease. Modeling studies indicate that many CLCN5 mutations are located at the interface between the monomers of ClC-5, demonstrating that this protein region plays an important role in Dent's disease. On the basis of functional data, CLCN5 mutations can be divided into three different classes. Class 1 mutations impair processing and folding, and as a result, the ClC-5 mutants are retained within the endoplasmic reticulum and targeted for degradation by quality control mechanisms. Class 2 mutations induce a delay in protein processing and reduce the stability of ClC-5. As a consequence, the cell surface expression and currents of the ClC-5 mutants are lower. Class 3 mutations do not alter the trafficking of ClC-5 to the cell surface and early endosomes but induce altered electrical activity. Here, we discuss the functional consequences of the three classes of CLCN5 mutations on ClC-5 structure and function.
Collapse
|
30
|
OCRL controls trafficking through early endosomes via PtdIns4,5P₂-dependent regulation of endosomal actin. EMBO J 2011; 30:4970-85. [PMID: 21971085 DOI: 10.1038/emboj.2011.354] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/05/2011] [Indexed: 11/08/2022] Open
Abstract
Mutations in the phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P(2)) 5-phosphatase OCRL cause Lowe syndrome, which is characterised by congenital cataracts, central hypotonia, and renal proximal tubular dysfunction. Previous studies have shown that OCRL interacts with components of the endosomal machinery; however, its role in endocytosis, and thus the pathogenic mechanisms of Lowe syndrome, have remained elusive. Here, we show that via its 5-phosphatase activity, OCRL controls early endosome (EE) function. OCRL depletion impairs the recycling of multiple classes of receptors, including megalin (which mediates protein reabsorption in the kidney) that are retained in engorged EEs. These trafficking defects are caused by ectopic accumulation of PtdIns4,5P(2) in EEs, which in turn induces an N-WASP-dependent increase in endosomal F-actin. Our data provide a molecular explanation for renal proximal tubular dysfunction in Lowe syndrome and highlight that tight control of PtdIns4,5P(2) and F-actin at the EEs is essential for exporting cargoes that transit this compartment.
Collapse
|
31
|
Beara-Lasic L, Edvardsson VO, Palsson R, Lieske JC, Goldfarb DS, Milliner DS. Genetic Causes of Kidney Stones and Kidney Failure. Clin Rev Bone Miner Metab 2011. [DOI: 10.1007/s12018-011-9113-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
ADF/cofilin regulates secretory cargo sorting at the TGN via the Ca2+ ATPase SPCA1. Dev Cell 2011; 20:652-62. [PMID: 21571222 DOI: 10.1016/j.devcel.2011.03.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/22/2011] [Accepted: 03/15/2011] [Indexed: 01/08/2023]
Abstract
Actin-severing proteins ADF/cofilin are required for the sorting of secretory cargo at the trans-Golgi network (TGN) in mammalian cells. How do these cytoplasmic proteins interact with the cargoes in the lumen of the TGN? Put simply, how are these two sets of proteins connected across the TGN membrane? Mass spectrometry of cofilin1 immunoprecipitated from HeLa cells revealed the presence of actin and the Ca(2+) ATPase SPCA1. Moreover, cofilin1 was localized to the TGN and bound to SPCA1 via dynamic actin. SPCA1 knockdown, like ADF/cofilin1 knockdown, inhibited Ca(2+) uptake into the TGN and caused missorting of secretory cargo. These defects were rescued by the overexpression of the TGN-localized SPCA1. We propose that ADF/cofilin-dependent severing of actin filaments exposes and promotes the activation of SPCA1, which pumps Ca(2+) into the lumen of the TGN for the sorting of the class of secretory cargo that binds Ca(2+).
Collapse
|
33
|
Claverie-Martín F, Ramos-Trujillo E, García-Nieto V. Dent's disease: clinical features and molecular basis. Pediatr Nephrol 2011; 26:693-704. [PMID: 20936522 DOI: 10.1007/s00467-010-1657-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/27/2010] [Accepted: 09/06/2010] [Indexed: 02/08/2023]
Abstract
Dent's disease is an X-linked recessive renal tubulopathy characterized by low-molecular-weight proteinuria (LMWP), hypercalciuria, nephrocalcinosis, nephrolithiasis, and progressive renal failure. LMWP is the most constant feature, while the other clinical manifestations show wide variability. Patients also present variable manifestations of proximal tubule dysfunctions, such as aminoaciduria, glucosuria, hyperphosphaturia, kaliuresis, and uricosuria, consistent with renal Fanconi syndrome. Dent's disease affects mainly male children, and female carriers are generally asymptomatic. In two-thirds of patients, the disease is caused by mutations in the CLCN5 gene, which encodes the electrogenic chloride/proton exchanger ClC-5. A few patients have mutations in OCRL1, the gene associated with the oculocerebrorenal syndrome of Lowe, which encodes a phosphatidylinositol-4,5-biphosphate-5-phosphatase (OCRL1). Both ClC-5 and OCRL1 are involved in the endocytic pathway for reabsorption of LMW proteins in the proximal tubule. This review will provide an overview of the important phenotypic characteristics of Dent's disease and summarize the molecular data that have significantly increased our comprehension of the mechanisms causing this disease.
Collapse
Affiliation(s)
- Félix Claverie-Martín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
| | | | | |
Collapse
|
34
|
Donowitz M, Singh S, Singh P, Chakraborty M, Chen Y, Murtazina R, Gucek M, Cole RN, Zachos NC, Salahuddin FF, Kovbasnjuk O, Broere N, Smalley-Freed WG, Reynolds AB, Hubbard AL, Seidler U, Weinman E, de Jonge HR, Hogema BM, Li X. Alterations in the proteome of the NHERF2 knockout mouse jejunal brush border membrane vesicles. Physiol Genomics 2011; 43:674-84. [PMID: 21427361 DOI: 10.1152/physiolgenomics.00258.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To identify additional potential functions for the multi-PDZ domain containing protein Na+/H+ exchanger regulatory factor 2 (NHERF2), which is present in the apical domain of intestinal epithelial cells, proteomic studies of mouse jejunal villus epithelial cell brush border membrane vesicles compared wild-type to homozygous NHERF2 knockout FVB mice by a two-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS)-iTRAQ approach. Jejunal architecture appeared normal in NHERF2 null in terms of villus length and crypt depth, Paneth cell number, and microvillus structure by electron microscopy. There was also no change in proliferative activity based on BrdU labeling. Four brush border membrane vesicles (BBMV) preparations from wild-type mouse jejunum were compared with four preparations from NHERF2 knockout mice. LC-MS/MS identified 450 proteins in both matched wild-type and NHERF2 null BBMV; 13 proteins were changed in two or more separate BBMV preparations (9 increased and 4 decreased in NHERF2 null mice), while an additional 92 proteins were changed in a single BBMV preparation (68 increased and 24 decreased in NHERF2 null mice). These proteins were categorized as 1) transport proteins (one increased and two decreased in NHERF2 null); 2) signaling molecules (2 increased in NHERF2 null); 3) cytoskeleton/junctional proteins (4 upregulated and 1 downregulated in NHERF2 null); and 4) metabolic proteins/intrinsic BB proteins) (2 upregulated and 1 downregulated in NHERF2 null). Immunoblotting of BBMV was used to validate or extend the findings, demonstrating increase in BBMV of NHERF2 null of MCT1, coronin 3, and ezrin. The proteome of the NHERF2 null mouse small intestinal BB demonstrates up- and downregulation of multiple transport proteins, signaling molecules, cytoskeletal proteins, tight junctional and adherens junction proteins, and proteins involved in metabolism, suggesting involvement of NHERF2 in multiple apical regulatory processes and interactions with luminal contents.
Collapse
Affiliation(s)
- M Donowitz
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Taylor MJ, Perrais D, Merrifield CJ. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol 2011; 9:e1000604. [PMID: 21445324 PMCID: PMC3062526 DOI: 10.1371/journal.pbio.1000604] [Citation(s) in RCA: 559] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 02/10/2011] [Indexed: 12/15/2022] Open
Abstract
The molecular dynamics of clathrin-mediated endocytosis in living cells has been mapped with an approximately ten-fold improvement in temporal accuracy, yielding new insights into the molecular mechanism. Dual colour total internal reflection fluorescence microscopy is a powerful tool for decoding the molecular dynamics of clathrin-mediated endocytosis (CME). Typically, the recruitment of a fluorescent protein–tagged endocytic protein was referenced to the disappearance of spot-like clathrin-coated structure (CCS), but the precision of spot-like CCS disappearance as a marker for canonical CME remained unknown. Here we have used an imaging assay based on total internal reflection fluorescence microscopy to detect scission events with a resolution of ∼2 s. We found that scission events engulfed comparable amounts of transferrin receptor cargo at CCSs of different sizes and CCS did not always disappear following scission. We measured the recruitment dynamics of 34 types of endocytic protein to scission events: Abp1, ACK1, amphiphysin1, APPL1, Arp3, BIN1, CALM, CIP4, clathrin light chain (Clc), cofilin, coronin1B, cortactin, dynamin1/2, endophilin2, Eps15, Eps8, epsin2, FBP17, FCHo1/2, GAK, Hip1R, lifeAct, mu2 subunit of the AP2 complex, myosin1E, myosin6, NECAP, N-WASP, OCRL1, Rab5, SNX9, synaptojanin2β1, and syndapin2. For each protein we aligned ∼1,000 recruitment profiles to their respective scission events and constructed characteristic “recruitment signatures” that were grouped, as for yeast, to reveal the modular organization of mammalian CME. A detailed analysis revealed the unanticipated recruitment dynamics of SNX9, FBP17, and CIP4 and showed that the same set of proteins was recruited, in the same order, to scission events at CCSs of different sizes and lifetimes. Collectively these data reveal the fine-grained temporal structure of CME and suggest a simplified canonical model of mammalian CME in which the same core mechanism of CME, involving actin, operates at CCSs of diverse sizes and lifetimes. The molecular machinery of clathrin-mediated endocytosis concentrates receptors at the cell surface in a patch of membrane that curves into a vesicle, pinches off, and internalizes membrane cargo and a tiny volume of extracellular fluid. We know that dozens of proteins are involved in this process, but precisely when and where they act remains poorly understood. Here we used a fluorescence imaging assay to detect the moment of scission in living cells and used this as a reference point from which to measure the characteristic recruitment signatures of 34 fluorescently tagged endocytic proteins. Pair-wise comparison of these recruitment signatures allowed us to identify seven modules of proteins that were recruited with similar kinetics. For the most part the recruitment signatures were consistent with what was previously known about the proteins' structure and their binding affinities; however, the recruitment signatures for some components (such as some BAR and F-BAR domain proteins) could not have been predicted from existing structural or biochemical data. This study provides a paradigm for mapping molecular dynamics in living cells and provides new insights into the mechanism of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Marcus J. Taylor
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - David Perrais
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Christien J. Merrifield
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Grand T, L'Hoste S, Mordasini D, Defontaine N, Keck M, Pennaforte T, Genete M, Laghmani K, Teulon J, Lourdel S. Heterogeneity in the processing of
CLCN5
mutants related to Dent disease. Hum Mutat 2011; 32:476-83. [PMID: 21305656 DOI: 10.1002/humu.21467] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Teddy Grand
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Sébastien L'Hoste
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - David Mordasini
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Nadia Defontaine
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Mathilde Keck
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Thomas Pennaforte
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Mathieu Genete
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Kamel Laghmani
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Jacques Teulon
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Stéphane Lourdel
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- INSERM, UMR_S 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
- CNRS, ERL 7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| |
Collapse
|
37
|
Polyamines are present in mast cell secretory granules and are important for granule homeostasis. PLoS One 2010; 5:e15071. [PMID: 21151498 PMCID: PMC2994821 DOI: 10.1371/journal.pone.0015071] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 10/19/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mast cell secretory granules accommodate a large number of components, many of which interact with highly sulfated serglycin proteoglycan (PG) present within the granules. Polyamines (putrescine, spermidine and spermine) are absolutely required for the survival of the vast majority of living cells. Given the reported ability of polyamines to interact with PGs, we investigated the possibility that polyamines may be components of mast cell secretory granules. METHODOLOGY/PRINCIPAL FINDINGS Spermidine was released by mouse bone marrow derived mast cells (BMMCs) after degranulation induced by IgE/anti-IgE or calcium ionophore A23187. Additionally, both spermidine and spermine were detected in isolated mouse mast cell granules. Further, depletion of polyamines by culturing BMMCs with α-difluoromethylornithine (DFMO) caused aberrant secretory granule ultrastructure, impaired histamine storage, reduced serotonin levels and increased β-hexosaminidase content. A proteomic approach revealed that DFMO-induced polyamine depletion caused an alteration in the levels of a number of proteins, many of which are connected either with the regulated exocytosis or with the endocytic system. CONCLUSIONS/SIGNIFICANCE Taken together, our results show evidence that polyamines are present in mast cell secretory granules and, furthermore, indicate an essential role of these polycations during the biogenesis and homeostasis of these organelles.
Collapse
|
38
|
Abstract
Dent's disease is a renal tubular disorder characterized by manifestations of proximal tubule dysfunction, including low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, nephrocalcinosis, and progressive renal failure. These features are generally found in males only, and may be present in early childhood, whereas female carriers may show a milder phenotype. Prevalence is unknown; the disorder has been reported in around 250 families to date. Complications such as rickets or osteomalacia may occur. The disease is caused by mutations in either the CLCN5 (Dent disease 1) or OCRL1 (Dent disease 2) genes that are located on chromosome Xp11.22 and Xq25, respectively. CLCN5 encodes the electrogenic Cl⁻/H(+) exchanger ClC-5, which belongs to the CLC family of Cl⁻ channels/transporters. OCRL1 encodes a phosphatidylinositol bisphosphate (PIP₂) 5-phosphatase and mutations are also associated with Lowe Syndrome. The phenotype of Dent's disease is explained by the predominant expression of ClC-5 in the proximal tubule segments of the kidney. No genotype-phenotype correlation has been described thus far, and there is considerable intra-familial variability in disease severity. A few patients with Dent's disease do not harbour mutations in CLCN5 and OCRL1, pointing to the involvement of other genes. Diagnosis is based on the presence of all three of the following criteria: low-molecular-weight proteinuria, hypercalciuria and at least one of the following: nephrocalcinosis, kidney stones, hematuria, hypophosphatemia or renal insufficiency. Molecular genetic testing confirms the diagnosis. The differential diagnosis includes other causes of generalized dysfunction of the proximal tubules (renal Fanconi syndrome), hereditary, acquired, or caused by exogenous substances. Antenatal diagnosis and pre-implantation genetic testing is not advised. The care of patients with Dent's disease is supportive, focusing on the treatment of hypercalciuria and the prevention of nephrolithiasis. The vital prognosis is good in the majority of patients. Progression to end-stage renal failure occurs between the 3rd and 5th decades of life in 30-80% of affected males.
Collapse
Affiliation(s)
- Olivier Devuyst
- Division of Nephrology, Université catholique de Louvain Medical School, Brussels, Belgium.
| | | |
Collapse
|
39
|
Novarino G, Weinert S, Rickheit G, Jentsch TJ. Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 2010; 328:1398-401. [PMID: 20430975 DOI: 10.1126/science.1188070] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Loss of the endosomal anion transport protein ClC-5 impairs renal endocytosis and underlies human Dent's disease. ClC-5 is thought to promote endocytosis by facilitating endosomal acidification through the neutralization of proton pump currents. However, ClC-5 is a 2 chloride (Cl-)/proton (H+) exchanger rather than a Cl- channel. We generated mice that carry the uncoupling E211A (unc) mutation that converts ClC-5 into a pure Cl- conductor. Adenosine triphosphate (ATP)-dependent acidification of renal endosomes was reduced in mice in which ClC-5 was knocked out, but normal in Clcn5(unc) mice. However, their proximal tubular endocytosis was also impaired. Thus, endosomal chloride concentration, which is raised by ClC-5 in exchange for protons accumulated by the H+-ATPase, may play a role in endocytosis.
Collapse
Affiliation(s)
- Gaia Novarino
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125 Berlin, Germany
| | | | | | | |
Collapse
|
40
|
Rickheit G, Wartosch L, Schaffer S, Stobrawa SM, Novarino G, Weinert S, Jentsch TJ. Role of ClC-5 in renal endocytosis is unique among ClC exchangers and does not require PY-motif-dependent ubiquitylation. J Biol Chem 2010; 285:17595-603. [PMID: 20351103 DOI: 10.1074/jbc.m110.115600] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inactivation of the mainly endosomal 2Cl(-)/H(+)-exchanger ClC-5 severely impairs endocytosis in renal proximal tubules and underlies the human kidney stone disorder Dent's disease. In heterologous expression systems, interaction of the E3 ubiquitin ligases WWP2 and Nedd4-2 with a "PY-motif" in the cytoplasmic C terminus of ClC-5 stimulates its internalization from the plasma membrane and may influence receptor-mediated endocytosis. We asked whether this interaction is relevant in vivo and generated mice in which the PY-motif was destroyed by a point mutation. Unlike ClC-5 knock-out mice, these knock-in mice displayed neither low molecular weight proteinuria nor hyperphosphaturia, and both receptor-mediated and fluid-phase endocytosis were normal. The abundances and localizations of the endocytic receptor megalin and of the Na(+)-coupled phosphate transporter NaPi-2a (Npt2) were not changed, either. To explore whether the discrepancy in results from heterologous expression studies might be due to heteromerization of ClC-5 with ClC-3 or ClC-4 in vivo, we studied knock-in mice additionally deleted for those related transporters. Disruption of neither ClC-3 nor ClC-4 led to proteinuria or impaired proximal tubular endocytosis by itself, nor in combination with the PY-mutant of ClC-5. Endocytosis of cells lacking ClC-5 was not impaired further when ClC-3 or ClC-4 was additionally deleted. We conclude that ClC-5 is unique among CLC proteins in being crucial for proximal tubular endocytosis and that PY-motif-dependent ubiquitylation of ClC-5 is dispensable for this role.
Collapse
Affiliation(s)
- Gesa Rickheit
- Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
ClC transporters: discoveries and challenges in defining the mechanisms underlying function and regulation of ClC-5. Pflugers Arch 2010; 460:543-57. [PMID: 20049483 DOI: 10.1007/s00424-009-0769-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 02/03/2023]
Abstract
The involvement of several members of the chloride channel (ClC) family of membrane proteins in human disease highlights the need to define the mechanisms underlying their function and the consequences of disease-causing mutations. Despite the utility of high-resolution structural models, our understanding of the molecular basis for function of the chloride channels and transporters in the family remains incomplete. In this review, we focus on recent discoveries regarding molecular mechanisms underlying the regulated chloride:proton antiporter activity of ClC-5, the protein mutated in the Dent's disease-a kidney disease presenting with proteinuria and renal failure in severe cases. We discuss the putative role of ClC-5 in receptor-mediated endocytosis and protein uptake by the proximal renal tubule and the possible molecular and cellular consequences of disease-causing mutations. However, validation of these models will require future study of the intrinsic function of this transporter, in situ, in the membranes of recycling endosomes in proximal tubule epithelial cells.
Collapse
|
42
|
Li YH, Eto K, Horikawa S, Uchida S, Sasaki S, Li XJ, Noda Y. Aquaporin-2 regulates cell volume recovery via tropomyosin. Int J Biochem Cell Biol 2009; 41:2466-76. [DOI: 10.1016/j.biocel.2009.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 07/06/2009] [Accepted: 07/23/2009] [Indexed: 12/01/2022]
|
43
|
Reed AAC, Loh NY, Terryn S, Lippiat JD, Partridge C, Galvanovskis J, Williams SE, Jouret F, Wu FTF, Courtoy PJ, Nesbit MA, Rorsman P, Devuyst O, Ashcroft FM, Thakker RV. CLC-5 and KIF3B interact to facilitate CLC-5 plasma membrane expression, endocytosis, and microtubular transport: relevance to pathophysiology of Dent's disease. Am J Physiol Renal Physiol 2009; 298:F365-80. [PMID: 19940036 PMCID: PMC2822520 DOI: 10.1152/ajprenal.00038.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal tubular reabsorption is important for extracellular fluid homeostasis and much of this occurs via the receptor-mediated endocytic pathway. This pathway is disrupted in Dent’s disease, an X-linked renal tubular disorder that is characterized by low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, and renal failure. Dent's disease is due to mutations of CLC-5, a chloride/proton antiporter, expressed in endosomes and apical membranes of renal tubules. Loss of CLC-5 function alters receptor-mediated endocytosis and trafficking of megalin and cubilin, although the underlying mechanisms remain to be elucidated. Here, we report that CLC-5 interacts with kinesin family member 3B (KIF3B), a heterotrimeric motor protein that facilitates fast anterograde translocation of membranous organelles. Using yeast two-hybrid, glutathione-S-transferase pull-down and coimmunoprecipitation assays, the COOH terminus of CLC-5 and the coiled-coil and globular domains of KIF3B were shown to interact. This was confirmed in vivo by endogenous coimmunoprecipitation of CLC-5 and KIF3B and codistribution with endosomal markers in mouse kidney fractions. Confocal live cell imaging in kidney cells further demonstrated association of CLC-5 and KIF3B, and transport of CLC-5-containing vesicles along KIF3B microtubules. KIF3B overexpression and underexpression, using siRNA, had reciprocal effects on whole cell chloride current amplitudes, CLC-5 cell surface expression, and endocytosis of albumin and transferrin. Clcn5Y/− mouse kidneys and isolated proximal tubular polarized cells showed increased KIF3B expression, whose effects on albumin endocytosis were dependent on CLC-5 expression. Thus, the CLC-5 and KIF3B interaction is important for CLC-5 plasma membrane expression and for facilitating endocytosis and microtubular transport in the kidney.
Collapse
Affiliation(s)
- Anita A C Reed
- Academic Endocrine Unit, Nuffield Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Churchill Hospital, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Novel CLCN5 mutations in patients with Dent’s disease result in altered ion currents or impaired exchanger processing. Kidney Int 2009; 76:999-1005. [DOI: 10.1038/ki.2009.305] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Physiological roles of CLC Cl−/H+ exchangers in renal proximal tubules. Pflugers Arch 2008; 458:23-37. [DOI: 10.1007/s00424-008-0597-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/22/2008] [Accepted: 09/26/2008] [Indexed: 12/19/2022]
|
46
|
Slattery C, Lee A, Zhang Y, Kelly DJ, Thorn P, Nikolic-Paterson DJ, Tesch GH, Poronnik P. In vivo visualization of albumin degradation in the proximal tubule. Kidney Int 2008; 74:1480-6. [PMID: 18800029 DOI: 10.1038/ki.2008.463] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Albuminuria is a key marker of renal injury and a major risk factor for cardiovascular disease. In vivo imaging techniques with fluorescent albumin have allowed visualization of its movement within the whole kidney but they could not distinguish between intact and degraded albumin. To visualize albumin degradation in proximal tubular cells in vivo we used an albumin conjugate (dye quenched (DQ)-albumin), which only fluoresces when it is degraded. In cultured proximal tubule cells, the fluorescent signal from DQ-albumin was dependent on endocytosis and lysosomal function and showed that at any time about 40% of endocytosed DQ-albumin was degraded. Significant accumulation of conventional Texas Red-labeled albumin and degraded DQ-albumin was found in rat proximal tubules 5 min after injection. Importantly, no hint of DQ-albumin was detected in the serum, suggesting that the fluorescent signal in the proximal tubules was derived from tubular degradation of intact albumin. Our study shows that DQ-albumin, together with conventional fluorescent conjugates of intact albumin, can be used to visualize albumin degradation by proximal tubules in vivo.
Collapse
Affiliation(s)
- Craig Slattery
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
47
|
He Y, Hryciw DH, Carroll ML, Myers SA, Whitbread AK, Kumar S, Poronnik P, Hooper JD. The ubiquitin-protein ligase Nedd4-2 differentially interacts with and regulates members of the Tweety family of chloride ion channels. J Biol Chem 2008; 283:24000-10. [PMID: 18577513 DOI: 10.1074/jbc.m803361200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tweety proteins comprise a family of chloride ion channels with three members identified in humans (TTYH1-3) and orthologues in fly and murine species. In humans, increased TTYH2 expression is associated with cancer progression, whereas fly Tweety is associated with developmental processes. Structurally, Tweety proteins are characterized by five membrane-spanning domains and N-glycan modifications important for trafficking to the plasma membrane, where these proteins are oriented with the amino terminus located extracellularly and the carboxyl terminus cytoplasmically. In addition to N-glycosylation, ubiquitination mediated by the HECT type E3 ubiquitin ligase Nedd4-2 is a post-translation modification important in regulating membrane proteins. In the present study, we performed a comprehensive analysis of the ability of each of TTYH1-3 to interact with Nedd4-2 and to be ubiquitinated and regulated by this ligase. Our data indicate that Nedd4-2 binds to two family members, TTYH2 and TTYH3, which contain consensus PY ((L/P)PXY) binding sites for HECT type E3 ubiquitin ligases, but not to TTYH1, which lacks this motif. Consistently, Nedd4-2 ubiquitinates both TTYH2 and TTYH3. Importantly, we have shown that endogenous TTYH2 and Nedd4-2 are binding partners and demonstrated that the TTYH2 PY motif is essential for these interactions. We have also shown that Nedd4-2-mediated ubiquitination of TTYH2 is a critical regulator of cell surface and total cellular levels of this protein. These data, indicating that Nedd4-2 differentially interacts with and regulates TTYH1-3, will be important for understanding mechanisms controlling Tweety proteins in physiology and disease.
Collapse
Affiliation(s)
- Yaowu He
- Institute of Health and Biomedical Innovation and School of Life Sciences, Queensland University of Technology, Musk Avenue and Blarney Street, Kelvin Grove, Queensland 4059, Australia
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wright J, Morales MM, Sousa-Menzes J, Ornellas D, Sipes J, Cui Y, Cui I, Hulamm P, Cebotaru V, Cebotaru L, Guggino WB, Guggino SE. Transcriptional adaptation to Clcn5 knockout in proximal tubules of mouse kidney. Physiol Genomics 2008; 33:341-54. [DOI: 10.1152/physiolgenomics.00024.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dent disease has multiple defects attributed to proximal tubule malfunction including low-molecular-weight proteinuria, aminoaciduria, phosphaturia, and glycosuria. To understand the changes in kidney function of the Clc5 chloride/proton exchanger gene knockout mouse model of Dent disease, we examined gene expression profiles from proximal S1 and S2 tubules of mouse kidneys. We found many changes in gene expression not known previously to be altered in this disease. Genes involved in lipid metabolism, organ development, and organismal physiological processes had the greatest number of significantly changed transcripts. In addition, genes of catalytic activity and transporter activity also had a great number of changed transcripts. Overall, 720 genes are expressed differentially in the proximal tubules of the Dent Clcn5 knockout mouse model compared with those of control wild-type mice. The fingerprint of these gene changes may help us to understand the phenotype of Dent disease.
Collapse
Affiliation(s)
- Jerry Wright
- Department of Physiology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Marcelo M. Morales
- Instituto de Biophysica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jackson Sousa-Menzes
- Instituto de Biophysica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Ornellas
- Instituto de Biophysica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jennifer Sipes
- Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Yan Cui
- Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Isabelle Cui
- Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Phuson Hulamm
- Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Valeriu Cebotaru
- Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Liudmila Cebotaru
- Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - William B. Guggino
- Instituto de Biophysica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandra E. Guggino
- Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Physiology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
49
|
Jentsch TJ. CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol 2008; 43:3-36. [PMID: 18307107 DOI: 10.1080/10409230701829110] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CLC genes are expressed in species from bacteria to human and encode Cl(-)-channels or Cl(-)/H(+)-exchangers. CLC proteins assemble to dimers, with each monomer containing an ion translocation pathway. Some mammalian isoforms need essential beta -subunits (barttin and Ostm1). Crystal structures of bacterial CLC Cl(-)/H(+)-exchangers, combined with transport analysis of mammalian and bacterial CLCs, yielded surprising insights into their structure and function. The large cytosolic carboxy-termini of eukaryotic CLCs contain CBS domains, which may modulate transport activity. Some of these have been crystallized. Mammals express nine CLC isoforms that differ in tissue distribution and subcellular localization. Some of these are plasma membrane Cl(-) channels, which play important roles in transepithelial transport and in dampening muscle excitability. Other CLC proteins localize mainly to the endosomal-lysosomal system where they may facilitate luminal acidification or regulate luminal chloride concentration. All vesicular CLCs may be Cl(-)/H(+)-exchangers, as shown for the endosomal ClC-4 and -5 proteins. Human diseases and knockout mouse models have yielded important insights into their physiology and pathology. Phenotypes and diseases include myotonia, renal salt wasting, kidney stones, deafness, blindness, male infertility, leukodystrophy, osteopetrosis, lysosomal storage disease and defective endocytosis, demonstrating the broad physiological role of CLC-mediated anion transport.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany.
| |
Collapse
|
50
|
Ishibashi F. High glucose increases phosphocofilin via phosphorylation of LIM kinase due to Rho/Rho kinase activation in cultured pig proximal tubular epithelial cells. Diabetes Res Clin Pract 2008; 80:24-33. [PMID: 18093681 DOI: 10.1016/j.diabres.2007.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 11/07/2007] [Indexed: 11/23/2022]
Abstract
In proximal tubular epithelial cells (PTECs), depolymerization of actin by cofilin plays a crucial role in maintaining polarity and function. Cofilin is inactivated when phosphorylated by p-Lin-11/Isl-1/Mec-3 kinase (LIMK) to give p-cofilin. LIMK is phosphorylated by phosphorylated p21-activated kinase (PAK), a downstream signal of phosphoinositide 3-kinase (PI3K), or by Rho kinase (ROCK), and is dephosphorylated by slingshot (SSH). However, in PTECs the signaling pathways regulating phosphorylation and dephosphorylation of cofilin, and the influence of high glucose (HG) on these pathways remain to be elucidated. Here, we show that HG in cultured porcine PTECs (LLC-PK1) increases p-cofilin and p-LIMK1 beyond 6h and that the simultaneous presence of phlorizin reverses the increase. HG did not influence the levels of PI3K-p85, downstream signals to SSH1 and p-PAK1, and mRNA of cofilin, LIMK1 and SSH1. On the other hand, wortmannin and LY294002 markedly increased p-cofilin and p-LIMK1 without influencing on the level of SSH1 protein. HG-activated RhoA and ROCK2 beyond 3h, and phlorizin attenuated this activation. GF109203X inhibited HG-induced increase in membranous RhoA and ROCK2, and phorbol ester increased these proteins. Y27632 (a ROCK inhibitor) reversed HG-induced increases of p-cofilin and p-LIMK1. We conclude that HG increases p-cofilin by phosphorylating LIMK1 through activation of Rho/Rho kinase, probably due to diacylglycerol-sensitive PKC activation resulting from increased glucose influx. HG did not alter PI3K or its downstream signals, even though PI3K has a physiological role in maintaining the cofilin level by activating SSH1.
Collapse
Affiliation(s)
- Fukashi Ishibashi
- Ishibashi Clinic, 1-9-41-2, Kushido Hatsukaichi, Hiroshima 738-0033, Japan.
| |
Collapse
|