1
|
Lehman W, Rynkiewicz MJ. Troponin-I-induced tropomyosin pivoting defines thin-filament function in relaxed and active muscle. J Gen Physiol 2023; 155:e202313387. [PMID: 37249525 PMCID: PMC10227645 DOI: 10.1085/jgp.202313387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Regulation of the crossbridge cycle that drives muscle contraction involves a reconfiguration of the troponin-tropomyosin complex on actin filaments. By comparing atomic models of troponin-tropomyosin fitted to cryo-EM structures of inhibited and Ca2+-activated thin filaments, we find that tropomyosin pivots rather than rolls or slides across actin as generally thought. We propose that pivoting can account for the Ca2+ activation that initiates muscle contraction and then relaxation influenced by troponin-I (TnI). Tropomyosin is well-known to occupy either of three meta-stable configurations on actin, regulating access of myosin motorheads to their actin-binding sites and thus the crossbridge cycle. At low Ca2+ concentrations, tropomyosin is trapped by TnI in an inhibitory B-state that sterically blocks myosin binding to actin, leading to muscle relaxation. Ca2+ binding to TnC draws TnI away from tropomyosin, while tropomyosin moves to a C-state location over actin. This partially relieves the steric inhibition and allows weak binding of myosin heads to actin, which then transition to strong actin-bound configurations, fully activating the thin filament. Nevertheless, the reconfiguration that accompanies the initial Ca2+-sensitive B-state/C-state shift in troponin-tropomyosin on actin remains uncertain and at best is described by moderate-resolution cryo-EM reconstructions. Our recent computational studies indicate that intermolecular residue-to-residue salt-bridge linkage between actin and tropomyosin is indistinguishable in B- and C-state thin filament configurations. We show here that tropomyosin can pivot about relatively fixed points on actin to accompany B-state/C-state structural transitions. We argue that at low Ca2+ concentrations C-terminal TnI domains attract tropomyosin, causing it to bend and then pivot toward the TnI, thus blocking myosin binding and contraction.
Collapse
Affiliation(s)
- William Lehman
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Michael J. Rynkiewicz
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
2
|
Aboelkassem Y, McCabe KJ, Huber GA, Regnier M, McCammon JA, McCulloch AD. A Stochastic Multiscale Model of Cardiac Thin Filament Activation Using Brownian-Langevin Dynamics. Biophys J 2019; 117:2255-2272. [PMID: 31547973 PMCID: PMC6990154 DOI: 10.1016/j.bpj.2019.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022] Open
Abstract
We use Brownian-Langevin dynamics principles to derive a coarse-graining multiscale myofilament model that can describe the thin-filament activation process during contraction. The model links atomistic molecular simulations of protein-protein interactions in the thin-filament regulatory unit to sarcomere-level activation dynamics. We first calculate the molecular interaction energy between tropomyosin and actin surface using Brownian dynamics simulations. This energy profile is then generalized to account for the observed tropomyosin transitions between its regulatory stable states. The generalized energy landscape then served as a basis for developing a filament-scale model using Langevin dynamics. This integrated analysis, spanning molecular to thin-filament scales, is capable of tracking the events of the tropomyosin conformational changes as it moves over the actin surface. The tropomyosin coil with flexible overlap regions between adjacent tropomyosins is represented in the model as a system of coupled stochastic ordinary differential equations. The proposed multiscale approach provides a more detailed molecular connection between tropomyosin dynamics, the trompomyosin-actin interaction-energy landscape, and the generated force by the sarcomere.
Collapse
Affiliation(s)
- Yasser Aboelkassem
- Department of Bioengineering, University of California San Diego, La Jolla, California.
| | - Kimberly J McCabe
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Gary A Huber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, California
| |
Collapse
|
3
|
Thin filament dysfunctions caused by mutations in tropomyosin Tpm3.12 and Tpm1.1. J Muscle Res Cell Motil 2019; 41:39-53. [PMID: 31270709 PMCID: PMC7109180 DOI: 10.1007/s10974-019-09532-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
Tropomyosin is the major regulator of the thin filament. In striated muscle its function is to bind troponin complex and control the access of myosin heads to actin in a Ca2+-dependent manner. It also participates in the maintenance of thin filament length by regulation of tropomodulin and leiomodin, the pointed end-binding proteins. Because the size of the overlap between actin and myosin filaments affects the number of myosin heads which interact with actin, the filament length is one of the determinants of force development. Numerous point mutations in genes encoding tropomyosin lead to single amino acid substitutions along the entire length of the coiled coil that are associated with various types of cardiomyopathy and skeletal muscle disease. Specific regions of tropomyosin interact with different binding partners; therefore, the mutations affect diverse tropomyosin functions. In this review, results of studies on mutations in the genes TPM1 and TPM3, encoding Tpm1.1 and Tpm3.12, are described. The paper is particularly focused on mutation-dependent alterations in the mechanisms of actin-myosin interactions and dynamics of the thin filament at the pointed end.
Collapse
|
4
|
Aboelkassem Y, Trayanova N. Tropomyosin dynamics during cardiac muscle contraction as governed by a multi-well energy landscape. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:102-115. [PMID: 30145015 PMCID: PMC6386637 DOI: 10.1016/j.pbiomolbio.2018.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 01/12/2023]
Abstract
The dynamic oscillations of tropomyosin molecules in the azimuthal direction over the surface of the actin filament during thin filament activation are studied here from an energy landscape perspective. A mathematical model based on principles from nonlinear dynamics and chaos theory is derived to describe these dynamical motions. In particular, an energy potential with three wells is proposed to govern the tropomyosin oscillations between the observed regulatory positions observed during muscle contraction, namely the blocked "B", closed "C" and open "M" states. Based on the variations in both the frequency and amplitude of the environmental (surrounding the thin filament system) driving tractions, such as the electrostatic, hydrophobic, and Ca2+-dependent forces, the tropomyosin movements are shown to be complex; they can change from being simple harmonic oscillations to being fully chaotic. Three cases (periodic, period-2, and chaotic patterns) are presented to showcase the different possible dynamic responses of tropomyosin sliding over the actin filament. A probability density function is used as a statistical measure to calculate the average residence time spanned out by the tropomyosin molecule when visiting each (B, C, M) equilibrium state. The results were found to depend strongly on the energy landscape profile and its featured barriers, which normally govern the transitions between the B-C-M states during striated muscle activation.
Collapse
Affiliation(s)
- Yasser Aboelkassem
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Natalia Trayanova
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
El-Mezgueldi M. Tropomyosin dynamics. J Muscle Res Cell Motil 2014; 35:203-10. [PMID: 24510226 DOI: 10.1007/s10974-014-9377-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 01/28/2014] [Indexed: 12/28/2022]
Abstract
Tropomyosin is a two chained α-helical coiled coil protein that binds actin filaments and interacts with various actin binding proteins. Tropomyosin function depends on its ability to move to distinct locations on the surface of actin in response to the binding of different thin filament effectors. Tropomyosin dynamics plays an important role in these fluctuating interactions with actin and is thought to be fundamental to many of its biological activities. For example tropomyosin concerted movement on the surface of actin triggered by Ca(2+) binding to troponin or myosin head binding to actin has been argued to be key to the cooperative allosteric regulation of muscle contraction. These large-scale motions are affected by tropomyosin internal dynamics and mechanical properties. Tropomyosin internal dynamics corresponding to smaller and more localised structural fluctuations are increasingly recognised to play an important role in its function. A thorough understanding of the coupling between local and global structural fluctuations in tropomyosin is required to understand how time dependent structural fluctuations in tropomyosin contribute to the overall thin filament dynamics and dictate their various biological activities.
Collapse
Affiliation(s)
- Mohammed El-Mezgueldi
- Department of Biochemistry, Faculty of Medicine and Biological Sciences, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, UK,
| |
Collapse
|
6
|
Sousa DR, Stagg SM, Stroupe ME. Cryo-EM structures of the actin:tropomyosin filament reveal the mechanism for the transition from C- to M-state. J Mol Biol 2013; 425:4544-55. [PMID: 24021812 PMCID: PMC3845445 DOI: 10.1016/j.jmb.2013.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 12/18/2022]
Abstract
Tropomyosin (Tm) is a key factor in the molecular mechanisms that regulate the binding of myosin motors to actin filaments (F-Actins) in most eukaryotic cells. This regulation is achieved by the azimuthal repositioning of Tm along the actin (Ac):Tm:troponin (Tn) thin filament to block or expose myosin binding sites on Ac. In striated muscle, including involuntary cardiac muscle, Tm regulates muscle contraction by coupling Ca(2+) binding to Tn with myosin binding to the thin filament. In smooth muscle, the switch is the posttranslational modification of the myosin. Depending on the activation state of Tn and the binding state of myosin, Tm can occupy the blocked, closed, or open position on Ac. Using native cryogenic 3DEM (three-dimensional electron microscopy), we have directly resolved and visualized cardiac and gizzard muscle Tm on filamentous Ac in the position that corresponds to the closed state. From the 8-Å-resolution structure of the reconstituted Ac:Tm filament formed with gizzard-derived Tm, we discuss two possible mechanisms for the transition from closed to open state and describe the role Tm plays in blocking myosin tight binding in the closed-state position.
Collapse
Affiliation(s)
- Duncan R. Sousa
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL, 32306 USA
- Department of Physiology and Biophysics, Boston University School of Medicine, 72 East Concord Street Boston MA 02118-2526 USA
| | - Scott M. Stagg
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL, 32306 USA
| | - M. Elizabeth Stroupe
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL, 32306 USA
| |
Collapse
|
7
|
Redwood C, Robinson P. Alpha-tropomyosin mutations in inherited cardiomyopathies. J Muscle Res Cell Motil 2013; 34:285-94. [DOI: 10.1007/s10974-013-9358-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
|
8
|
A study of tropomyosin's role in cardiac function and disease using thin-filament reconstituted myocardium. J Muscle Res Cell Motil 2013; 34:295-310. [PMID: 23700264 DOI: 10.1007/s10974-013-9343-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Tropomyosin (Tm) is the key regulatory component of the thin-filament and plays a central role in the cardiac muscle's cooperative activation mechanism. Many mutations of cardiac Tm are related to hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and left ventricular noncompaction (LVNC). Using the thin-filament extraction/reconstitution technique, we are able to incorporate various Tm mutants and protein isoforms into a muscle fiber environment to study their roles in Ca(2+) regulation, cross-bridge kinetics, and force generation. The thin-filament reconstitution technique poses several advantages compared to other in vitro and in vivo methods: (1) Tm mutants and isoforms are placed into the real muscle fiber environment to exhibit their effect on a level much higher than simple protein complexes; (2) only the primary and immediate effects of Tm mutants are studied in the thin-filament reconstituted myocardium; (3) lethal mutants of Tm can be studied without causing a problem; and (4) inexpensive. In transgenic models, various secondary effects (myocyte disarray, ECM fibrosis, altered protein phosphorylation levels, etc.) also affect the performance of the myocardium, making it very difficult to isolate the primary effect of the mutation. Our studies on Tm have demonstrated that: (1) Tm positively enhances the hydrophobic interaction between actin and myosin in the "closed state", which in turn enhances the isometric tension; (2) Tm's seven periodical repeats carry distinct functions, with the 3rd period being essential for the tension enhancement; (3) Tm mutants lead to HCM by impairing the relaxation on one hand, and lead to DCM by over inhibition of the AM interaction on the other hand. Ca(2+) sensitivity is affected by inorganic phosphate, ionic strength, and phosphorylation of constituent proteins; hence it may not be the primary cause of the pathogenesis. Here, we review our current knowledge regarding Tm's effect on the actomyosin interaction and the early molecular pathogenesis of Tm mutation related to HCM, DCM, and LVNC.
Collapse
|
9
|
Karpicheva OE, Robinson P, Piers A, Borovikov YS, Redwood CS. The nemaline myopathy-causing E117K mutation in β-tropomyosin reduces thin filament activation. Arch Biochem Biophys 2013; 536:25-30. [PMID: 23689010 DOI: 10.1016/j.abb.2013.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 01/05/2023]
Abstract
The effect of the nemaline myopathy-causing E117K mutation in β-tropomyosin (TM) on the structure and function of this regulatory protein was studied. The E117K mutant was found to have indistinguishable actin affinity compared with wild-type (WT) and similar secondary structure as measured by circular dichroism. However the E117K mutation significantly lowered maximum activation of actomyosin ATPase. To explain the molecular mechanism of impaired ATPase activation, WT and E117K TMs were covalently labeled at Cys-36 with 5-iodoacetimido-fluorescein and incorporated into ghost muscle fibers. The changes in the position and flexibility of tropomyosin strands on the thin filaments were observed at simulation of weak and strong binding states of actomyosin at high or low Ca(2+) by polarized fluorescence techniques. The E117K mutation was found to shift the tropomyosin strands towards the closed position and restrict the tropomyosin displacement during the transformation of actomyosin from weak to strong binding state thus leading to a reduction in thin filament activation.
Collapse
Affiliation(s)
- Olga E Karpicheva
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | | | | | | | | |
Collapse
|
10
|
DCM-related tropomyosin mutants E40K/E54K over-inhibit the actomyosin interaction and lead to a decrease in the number of cycling cross-bridges. PLoS One 2012; 7:e47471. [PMID: 23077624 PMCID: PMC3471818 DOI: 10.1371/journal.pone.0047471] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
Two DCM mutants (E40K and E54K) of tropomyosin (Tm) were examined using the thin-filament extraction/reconstitution technique. The effects of the Ca2+, ATP, phosphate (Pi), and ADP concentrations on isometric tension and its transients were studied at 25°C, and the results were compared to those for the WT protein. Our results indicate that both E40K and E54K have a significantly lower THC (high Ca2+ tension at pCa 4.66) (E40K: 1.21±0.06 Ta, ±SEM, N = 34; E54K: 1.24±0.07 Ta, N = 28), a significantly lower TLC (low- Ca2+ tension at pCa 7.0) (E40K: 0.07±0.02 Ta, N = 34; E54K: 0.06±0.02 Ta, N = 28), and a significantly lower Tact (Ca2+ activatable tension) (Tact = THC–TLC, E40K: 1.15±0.08 Ta, N = 34; E54K: 1.18±0.06 Ta, N = 28) than WT (THC = 1.53±0.07 Ta, TLC = 0.12±0.01 Ta, Tact = 1.40±0.07 Ta, N = 25). All tensions were normalized to Ta ( = 13.9±0.8 kPa, N = 57), the tension of actin-filament reconstituted cardiac fibers (myocardium) under the standard activating conditions. The Ca2+ sensitivity (pCa50) of E40K (5.23±0.02, N = 34) and E54K (5.24±0.03, N = 28) was similar to that of the WT protein (5.26±0.03, N = 25). The cooperativity increased significantly in E54K (3.73±0.25, N = 28) compared to WT (2.80±0.17, N = 25). Seven kinetic constants were deduced using sinusoidal analysis at pCa 4.66. These results enabled us to calculate the cross-bridge distribution in the strongly attached states, and thereby deduce the force/cross-bridge. The results indicate that the force/cross-bridge is ∼15% less in E54K than WT, but remains similar to that of the WT protein in the case of E40K. We conclude that over-inhibition of the actomyosin interaction by E40K and E54K Tm mutants leads to a decreased force-generating ability at systole, which is the main mechanism underlying the early pathogenesis of DCM.
Collapse
|
11
|
Behrmann E, Müller M, Penczek PA, Mannherz HG, Manstein DJ, Raunser S. Structure of the rigor actin-tropomyosin-myosin complex. Cell 2012; 150:327-38. [PMID: 22817895 DOI: 10.1016/j.cell.2012.05.037] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/13/2012] [Accepted: 05/20/2012] [Indexed: 01/13/2023]
Abstract
Regulation of myosin and filamentous actin interaction by tropomyosin is a central feature of contractile events in muscle and nonmuscle cells. However, little is known about molecular interactions within the complex and the trajectory of tropomyosin movement between its "open" and "closed" positions on the actin filament. Here, we report the 8 Å resolution structure of the rigor (nucleotide-free) actin-tropomyosin-myosin complex determined by cryo-electron microscopy. The pseudoatomic model of the complex, obtained from fitting crystal structures into the map, defines the large interface involving two adjacent actin monomers and one tropomyosin pseudorepeat per myosin contact. Severe forms of hereditary myopathies are linked to mutations that critically perturb this interface. Myosin binding results in a 23 Å shift of tropomyosin along actin. Complex domain motions occur in myosin, but not in actin. Based on our results, we propose a structural model for the tropomyosin-dependent modulation of myosin binding to actin.
Collapse
Affiliation(s)
- Elmar Behrmann
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Avrova SV, Rysev NA, Matusovsky OS, Shelud'ko NS, Borovikov YS. Twitchin can regulate the ATPase cycle of actomyosin in a phosphorylation-dependent manner in skinned mammalian skeletal muscle fibres. Arch Biochem Biophys 2012; 521:1-9. [PMID: 22430036 DOI: 10.1016/j.abb.2012.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 02/27/2012] [Accepted: 03/02/2012] [Indexed: 12/21/2022]
Abstract
The effect of twitchin, a thick filament protein of molluscan muscles, on the actin-myosin interaction at several mimicked sequential steps of the ATPase cycle was investigated using the polarized fluorescence of 1.5-IAEDANS bound to myosin heads, FITC-phalloidin attached to actin and acrylodan bound to twitchin in the glycerol-skinned skeletal muscle fibres of mammalian. The phosphorylation-dependent multi-step changes in mobility and spatial arrangement of myosin SH1 helix, actin subunit and twitchin during the ATPase cycle have been revealed. It was shown that nonphosphorylated twitchin inhibited the movements of SH1 helix of the myosin heads and actin subunits and decreased the affinity of myosin to actin by freezing the position and mobility of twitchin in the muscle fibres. The phosphorylation of twitchin reverses this effect by changing the spatial arrangement and mobility of the actin-binding portions of twitchin. In this case, enhanced movements of SH1 helix of the myosin heads and actin subunits are observed. The data imply a novel property of twitchin incorporated into organized contractile system: its ability to regulate the ATPase cycle in a phosphorylation-dependent fashion by changing the affinity and spatial arrangement of the actin-binding portions of twitchin.
Collapse
Affiliation(s)
- Stanislava V Avrova
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | | | | | | | | |
Collapse
|
13
|
Rysev NA, Karpicheva OE, Redwood CS, Borovikov YS. The effect of the Asp175Asn and Glu180Gly TPM1 mutations on actin-myosin interaction during the ATPase cycle. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:366-73. [PMID: 22155441 DOI: 10.1016/j.bbapap.2011.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/31/2011] [Accepted: 11/23/2011] [Indexed: 01/29/2023]
Abstract
Hypertrophic cardiomyopathy (HCM), characterized by cardiac hypertrophy and contractile dysfunction, is a major cause of heart failure. HCM can result from mutations in the gene encoding cardiac α-tropomyosin (TM). To understand how the HCM-causing Asp175Asn and Glu180Gly mutations in α-tropomyosin affect on actin-myosin interaction during the ATPase cycle, we labeled the SH1 helix of myosin subfragment-1 and the actin subdomain-1 with the fluorescent probe N-iodoacetyl-N'-(5-sulfo-1-naphtylo)ethylenediamine. These proteins were incorporated into ghost muscle fibers and their conformational states were monitored during the ATPase cycle by measuring polarized fluorescence. For the first time, the effect of these α-tropomyosins on the mobility and rotation of subdomain-1 of actin and the SH1 helix of myosin subfragment-1 during the ATP hydrolysis cycle have been demonstrated directly by polarized fluorimetry. Wild-type α-tropomyosin increases the amplitude of the SH1 helix and subdomain-1 movements during the ATPase cycle, indicating the enhancement of the efficiency of the work of cross-bridges. Both mutant TMs increase the proportion of the strong-binding sub-states, with the effect of the Glu180Gly mutation being greater than that of Asp175Asn. It is suggested that the alteration in the concerted conformational changes of actomyosin is likely to provide the structural basis for the altered cardiac muscle contraction.
Collapse
Affiliation(s)
- Nikita A Rysev
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | |
Collapse
|
14
|
Borovikov YS, Avrova SV, Karpicheva OE, Robinson P, Redwood CS. The effect of the dilated cardiomyopathy-causing Glu40Lys TPM1 mutation on actin-myosin interactions during the ATPase cycle. Biochem Biophys Res Commun 2011; 411:496-500. [PMID: 21741356 DOI: 10.1016/j.bbrc.2011.06.138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
Abstract
Dilated cardiomyopathy (DCM), characterized by cardiac dilatation and contractile dysfunction, is a major cause of heart failure. DCM can result from mutations in the gene encoding cardiac α-tropomyosin (TM). In order to understand how the dilated cardiomyopathy-causing Glu40Lys mutation in TM affects actomyosin interactions, thin filaments have been reconstituted in muscle ghost fibers by incorporation of labeled Cys707 of myosin subfragment-1 and Cys374 of actin with fluorescent probe 1.5-IAEDANS and α-tropomyosin (wild-type or Glu40Lys mutant). For the first time, the effect of these α-tropomyosins on the mobility and rotation of subdomain-1 of actin and the SH1 helix of myosin subfragment-1 during the ATP hydrolysis cycle have been demonstrated directly by polarized fluorimetry. The Glu40Lys mutant TM inhibited these movements at the transition from AM(∗∗)·ADP·Pi to AM state, indicating a decrease of the proportion of the strong-binding sub-states in the actomyosin population. These structural changes are likely to underlie the contractile deficit observed in human dilated cardiomyopathy.
Collapse
Affiliation(s)
- Yurii S Borovikov
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia.
| | | | | | | | | |
Collapse
|
15
|
Brown JH. How sequence directs bending in tropomyosin and other two-stranded alpha-helical coiled coils. Protein Sci 2010; 19:1366-75. [PMID: 20506487 PMCID: PMC2974828 DOI: 10.1002/pro.415] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/15/2010] [Accepted: 05/02/2010] [Indexed: 12/31/2022]
Abstract
A quantitative analysis of the direction of bending of two-stranded alpha-helical coiled coils in crystal structures has been carried out to help determine how the amino acid sequence of the coiled coil influences its shape and function. Change in the axial staggering of the coiled coil, occurring at the boundaries of either clusters of core alanines in tropomyosin or of clusters of core bulky residues in the myosin rod, causes bending within the plane of the local dimer. The results also reveal that large gaps in the core of the coiled coil, which are seen for small core residues near large core residues or for unbranched core residues near canonical branched core residues, are correlated with bending out of the local dimeric plane. Comparison of tropomyosin structures determined in independent crystal environments provides further evidence for the concept that sequence directs the bending of the coiled coil, but that crystal environment is at least as important as sequence for determining the magnitude of bending. Tropomyosin thus appears to consist of more directionally restrained hinge-like joints rather than directionally variable universal joints, which helps account for and predicts the geometric and dynamic nature of its binding to F-actin.
Collapse
Affiliation(s)
- Jerry H Brown
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| |
Collapse
|
16
|
Borovikov YS, Shelud’ko NS, Avrova SV. Molluscan twitchin can control actin–myosin interaction during ATPase cycle. Arch Biochem Biophys 2010; 495:122-8. [DOI: 10.1016/j.abb.2010.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/31/2009] [Accepted: 01/02/2010] [Indexed: 10/25/2022]
|
17
|
Avrova SV, Shelud'ko NS, Borovikov YS. A new property of twitchin to restrict the "rolling" of mussel tropomyosin and decrease its affinity for actin during the actomyosin ATPase cycle. Biochem Biophys Res Commun 2010; 394:126-9. [PMID: 20184863 DOI: 10.1016/j.bbrc.2010.02.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 02/19/2010] [Indexed: 11/18/2022]
Abstract
A new evidence on the regulatory function of twitchin, a titin-like protein of molluscan muscles, at muscle contraction has been obtained at studying the movements of IAF-labeled mussel tropomyosin in skeletal ghost fibers during the ATP hydrolysis cycle simulated using nucleotides and non-hydrolysable ATP analogs. For the first time, myosin-induced multistep changes in mobility and in the position of mussel tropomyosin strands on the surface of the thin filament during the ATP hydrolysis cycle have been demonstrated directly. Unphosphorylated twitchin shifts the tropomyosin towards the position typical for muscle relaxation, decreases the tropomyosin affinity to actin and inhibits its movements during the ATPase cycle. Phosphorylation of twitchin by the catalytic subunit of protein kinase A reverses this effect. These data imply that twitchin is a thin filament regulator that controls actin-myosin interaction by "freezing" tropomyosin in the blocked position, resulting in the inhibition of the transformation of weak-binding states into strong-binding ones during ATPase cycle.
Collapse
Affiliation(s)
- Stanislava V Avrova
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St Petersburg 194064, Russia
| | | | | |
Collapse
|
18
|
Borovikov YS, Karpicheva OE, Chudakova GA, Robinson P, Redwood CS. Dilated cardiomyopathy mutations in alpha-tropomyosin inhibit its movement during the ATPase cycle. Biochem Biophys Res Commun 2009; 381:403-6. [PMID: 19222994 DOI: 10.1016/j.bbrc.2009.02.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
Abstract
The Glu40Lys and Glu54Lys mutations in alpha-tropomyosin cause dilated cardiomyopathy (DCM). Functional analysis has demonstrated that both mutations decrease thin filament Ca2+-sensitivity and that Glu40Lys reduces maximum activation. To understand the molecular mechanism underlying these changes, we labeled wild type alpha-tropomyosin and both mutants at Cys190 with 5-iodoacetamide-fluorescein and incorporated the labeled proteins into ghost muscle fibers. Using the polarized fluorimetry, the position of the labeled tropomyosins on the thin filament and their affinity for actin were measured and the change in these parameters at different stages of the ATPase cycle determined. Both DCM mutations were found to shift tropomyosin towards the periphery of thin filament and to change the affinity of tropomyosin for actin; during the ATPase cycle the amplitude of tropomyosin movement was reduced and at some stages of the cycle even reversed. The correlation of these structural changes with the observed function effects is discussed.
Collapse
Affiliation(s)
- Yurii S Borovikov
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia.
| | | | | | | | | |
Collapse
|
19
|
Higashi-Fujime S, Nakamura A. Cell and molecular biology of the fastest myosins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:301-47. [PMID: 19584016 DOI: 10.1016/s1937-6448(09)76007-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chara myosin is a class XI plant myosin in green algae Chara corallina and responsible for fast cytoplasmic streaming. The Chara myosin exhibits the fastest sliding movement of F-actin at 60 mum/s as observed so far, 10-fold of the shortening speed of muscle. It has some distinct properties differing from those of muscle myosin. Although knowledge about Chara myosin is very limited at present, we have tried to elucidate functional bases of its characteristics by comparing with those of other myosins. In particular, we have built the putative atomic model of Chara myosin by using the homology-based modeling system and databases. Based on the putative structure of Chara myosin obtained, we have analyzed the relationship between structure and function of Chara myosin to understand its distinct properties from various aspects by referring to the accumulated knowledge on mechanochemical and structural properties of other classes of myosin, particularly animal and fungal myosin V. We will also discuss the functional significance of Chara myosin in a living cell.
Collapse
Affiliation(s)
- Sugie Higashi-Fujime
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | |
Collapse
|
20
|
Modulation of the effects of tropomyosin on actin and myosin conformational changes by troponin and Ca2+. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:985-94. [PMID: 19100866 DOI: 10.1016/j.bbapap.2008.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 10/09/2008] [Accepted: 11/05/2008] [Indexed: 11/24/2022]
Abstract
The molecular mechanisms by which troponin (TN)-tropomyosin (TM) regulates the myosin ATPase cycle were investigated using fluorescent probes specifically bound to Cys36 of TM, Cys707 of myosin subfragment-1, and Cys374 of actin incorporated into ghost muscle fibers. Intermediate states of actomyosin were simulated by using nucleotides and non-hydrolysable ATP analogs. Multistep changes in mobility and spatial arrangement of SH1 helix of myosin motor domain and actin subdomain-1 during the ATPase cycle were observed. Each intermediate state of actomyosin induced a definite conformational state and specific position of TM strands on the surface of thin filament. TM increased the amplitude of myosin SH1 helix and actin subdomain-1 movements at transition from weak- to strong-binding states shifting to the center of thin filament at strong-binding and to the periphery of thin filament at weak-binding states. TN modulated those movements in a capital ES, Cyrillicsmall a, Cyrillic(2+)-dependent manner. At high-Ca(2+), TN enhanced the effect of TM on SH1 helix and subdomain-1 movements by transferring TM further to the center of thin filament at strong-binding states. In contrast, at low-Ca(2+), TN inhibited the effect of TM movements, "freezing" actin structure in "OFF" state and TM in the position typical for weak-binding states, resulting in disturbing the interplay of actin and myosin.
Collapse
|
21
|
Tropomyosin and the steric mechanism of muscle regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:95-109. [PMID: 19209816 DOI: 10.1007/978-0-387-85766-4_8] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Contraction in all muscles must be precisely regulated and requisite control systems must be able to adjust to changes in physiological and myopathic stimuli. In this chapter, we outline the structural evidence for a steric mechanism that governs muscle activity. The mechanism involves calcium and myosin induced changes in the position of tropomyosin along actin-based thin filaments. This process either blocks or uncovers myosin crossbridge binding sites on actin and consequently regulates crossbridge cycling on thin filaments, the sliding of thin and thick filaments and muscle shortening and force production.
Collapse
|
22
|
Sadayappan S, Finley N, Howarth JW, Osinska H, Klevitsky R, Lorenz JN, Rosevear PR, Robbins J. Role of the acidic N' region of cardiac troponin I in regulating myocardial function. FASEB J 2007; 22:1246-57. [PMID: 17984178 DOI: 10.1096/fj.07-9458com] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiac troponin I (cTnI) phosphorylation modulates myocardial contractility and relaxation during beta-adrenergic stimulation. cTnI differs from the skeletal isoform in that it has a cardiac specific N' extension of 32 residues (N' extension). The role of the acidic N' region in modulating cardiac contractility has not been fully defined. To test the hypothesis that the acidic N' region of cTnI helps regulate myocardial function, we generated cardiac-specific transgenic mice in which residues 2-11 (cTnI(Delta2-11)) were deleted. The hearts displayed significantly decreased contraction and relaxation under basal and beta-adrenergic stress compared to nontransgenic hearts, with a reduction in maximal Ca(2+)-dependent force and maximal Ca(2+)-activated Mg(2+)-ATPase activity. However, Ca(2+) sensitivity of force development and cTnI-Ser(23/24) phosphorylation were not affected. Chemical shift mapping shows that both cTnI and cTnI(Delta2-11) interact with the N lobe of cardiac troponin C (cTnC) and that phosphorylation at Ser(23/24) weakens these interactions. These observations suggest that residues 2-11 of cTnI, comprising the acidic N' region, do not play a direct role in the calcium-induced transition in the cardiac regulatory or N lobe of cTnC. We hypothesized that phosphorylation at Ser(23/24) induces a large conformational change positioning the conserved acidic N region to compete with actin for the inhibitory region of cTnI. Consistent with this hypothesis, deletion of the conserved acidic N' region results in a decrease in myocardial contractility in the cTnI(Delta2-11) mice demonstrating the importance of acidic N' region in regulating myocardial contractility and mediating the response of the heart to beta-AR stimulation.
Collapse
Affiliation(s)
- Sakthivel Sadayappan
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Robinson P, Griffiths PJ, Watkins H, Redwood CS. Dilated and hypertrophic cardiomyopathy mutations in troponin and alpha-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments. Circ Res 2007; 101:1266-73. [PMID: 17932326 DOI: 10.1161/circresaha.107.156380] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dilated cardiomyopathy and hypertrophic cardiomyopathy (HCM) can be caused by mutations in thin filament regulatory proteins of the contractile apparatus. In vitro functional assays show that, in general, the presence of dilated cardiomyopathy mutations decreases the Ca(2+) sensitivity of contractility, whereas HCM mutations increase it. To assess whether this functional phenomenon was a direct result of altered Ca(2+) affinity or was caused by altered troponin-tropomyosin switching, we assessed Ca(2+) binding of the regulatory site of cardiac troponin C in wild-type or mutant troponin complex and thin filaments using a fluorescent probe (2-[4'-{iodoacetamido}aniline]-naphthalene-6-sulfonate) attached to Cys35 of cardiac troponin C. The Ca(2+)-binding affinity (pCa(50)=6.57+/-0.03) of reconstituted troponin complex was unaffected by all of the HCM and dilated cardiomyopathy troponin mutants tested, with the exception of the troponin I Arg145Gly HCM mutation, which caused an increase (DeltapCa(50)=+0.31+/-0.05). However, when incorporated into regulated thin filaments, all but 1 of the 10 troponin and alpha-tropomyosin mutants altered Ca(2+)-binding affinity. Both HCM mutations increased Ca(2+) affinity (DeltapCa(50)=+0.41+/-0.02 and +0.51+/-0.01), whereas the dilated cardiomyopathy mutations decreased affinity (DeltapCa(50)=-0.12+/-0.04 to -0.54+/-0.04), which correlates with our previous functional in vitro assays. The exception was the troponin T Asp270Asn mutant, which caused a significant decrease in cooperativity. Because troponin is the major Ca(2+) buffer in the cardiomyocyte sarcoplasm, we suggest that Ca(2+) affinity changes caused by cardiomyopathy mutant proteins may directly affect the Ca(2+) transient and hence Ca(2+)-sensitive disease state remodeling pathways in vivo. This represents a novel mechanism for this class of mutation.
Collapse
Affiliation(s)
- Paul Robinson
- Department of Cardiovascular Medicine, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
24
|
Mirza M, Robinson P, Kremneva E, Copeland O, Nikolaeva O, Watkins H, Levitsky D, Redwood C, El-Mezgueldi M, Marston S. The Effect of Mutations in α-Tropomyosin (E40K and E54K) That Cause Familial Dilated Cardiomyopathy on the Regulatory Mechanism of Cardiac Muscle Thin Filaments. J Biol Chem 2007; 282:13487-97. [PMID: 17360712 DOI: 10.1074/jbc.m701071200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
E40K and E54K mutations in alpha-tropomyosin cause inherited dilated cardiomyopathy. Previously we showed, using Ala-Ser alpha-tropomyosin (AS-alpha-Tm) expressed in Escherichia coli, that both mutations decrease Ca(2+) sensitivity. E40K also reduces V(max) of actin-Tm-activated S-1 ATPase by 18%. We investigated cooperative allosteric regulation by native Tm, AS-alpha-Tm, and the two dilated cardiomyopathy-causing mutants. AS-alpha-Tm has a lower cooperative unit size (6.5) than native alpha-tropomyosin (10.0). The E40K mutation reduced the size of the cooperative unit to 3.7, whereas E54K increased it to 8.0. For the equilibrium between On and Off states, the K(T) value was the same for all actin-Tm species; however, the K(T) value of actin-Tm-troponin at pCa 5 was 50% less for AS-alpha-Tm E40K than for AS-alpha-Tm and AS-alpha-Tm E54K. K(b), the "closed" to "blocked" equilibrium constant, was the same for all tropomyosin species. The E40K mutation reduced the affinity of tropomyosin for actin by 1.74-fold, but only when in the On state (in the presence of S-1). In contrast the E54K mutation reduced affinity by 3.5-fold only in the Off state. Differential scanning calorimetry measurements of AS-alpha-Tm showed that domain 3, assigned to the N terminus of tropomyosin, was strongly destabilized by both mutations. Additionally with AS-alpha-Tm E54K, we observed a unique new domain at 55 degrees C accounting for 25% of enthalpy indicating stabilization of part of the tropomyosin. The disease-causing mechanism of the E40K mutation may be accounted for by destabilization of the On state of the thin filaments; however, the E54K mutation has a more complex effect on tropomyosin structure and function.
Collapse
Affiliation(s)
- Mahmooda Mirza
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Corrêa F, Farah CS. Different effects of trifluoroethanol and glycerol on the stability of tropomyosin helices and the head-to-tail complex. Biophys J 2007; 92:2463-75. [PMID: 17218461 PMCID: PMC1864823 DOI: 10.1529/biophysj.106.098541] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tropomyosin (Tm) is a dimeric coiled-coil protein, composed of 284 amino acids (410 A), that forms linear homopolymers through head-to-tail interactions at low ionic strength. The head-to-tail complex involves the overlap of approximately nine N-terminal residues of one molecule with nine C-terminal residues of another Tm molecule. In this study, we investigate the influence of 2,2,2-trifluoroethanol (TFE) and glycerol on the stability of recombinant Tm fragments (ASTm1-142, Tm143-284(5OHW269)) and of the dimeric head-to-tail complex formed by the association of these two fragments. The C-terminal fragment (Tm143-284(5OHW269)) contains a 5-hydroxytryptophan (5OHW) probe at position 269 whose fluorescence is sensitive to the head-to-tail interaction and allows us to accompany titrations of Tm143-284(5OHW269) with ASTm1-142 to calculate the dissociation constant (Kd) and the interaction energy at TFE and glycerol concentrations between 0% and 15%. We observe that TFE, but not glycerol, reduces the stability of the head-to-tail complex. Thermal denaturation experiments also showed that the head-to-tail complex increases the overall conformational stability of the Tm fragments. Urea and thermal denaturation assays demonstrated that both TFE and glycerol increase the stability of the isolated N- and C-terminal fragments; however, only TFE caused a significant reduction in the cooperativity of unfolding these fragments. Our results show that these two cosolvents stabilize the structures of individual Tm fragments in different manners and that these differences may be related to their opposing effects on head-to-tail complex formation.
Collapse
Affiliation(s)
- Fernando Corrêa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
26
|
Fletcher KA, Fakayode SO, Lowry M, Tucker SA, Neal SL, Kimaru IW, McCarroll ME, Patonay G, Oldham PB, Rusin O, Strongin RM, Warner IM. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal Chem 2006; 78:4047-68. [PMID: 16771540 PMCID: PMC2662353 DOI: 10.1021/ac060683m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Kulikova N, Pronina OE, Dabrowska R, Borovikov YS. Caldesmon restricts the movement of both C- and N-termini of tropomyosin on F-actin in ghost fibers during the actomyosin ATPase cycle. Biochem Biophys Res Commun 2006; 345:280-6. [PMID: 16678131 DOI: 10.1016/j.bbrc.2006.04.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 04/18/2006] [Indexed: 11/19/2022]
Abstract
New data on the movements of tropomyosin singly labeled at alpha- or beta-chain during the ATP hydrolysis cycle in reconstituted ghost fibers have been obtained by using the polarized fluorescence technique which allowed us following the azimuthal movements of tropomyosin on actin filaments. Pronounced structural changes in tropomyosin evoked by myosin heads suggested the "rolling" of the tropomyosin molecule on F-actin surface during the ATP hydrolysis cycle. The movements of actin-bound tropomyosin correlated to the strength of S1 to actin binding. Weak binding of myosin to actin led to an increase in the affinity of the tropomyosin N-terminus to actin with simultaneous decrease in the affinity of the C-terminus. On the contrary, strong binding of myosin to actin resulted in the opposite changes of the affinity to actin of both ends of the tropomyosin molecule. Caldesmon inhibited the "rolling" of tropomyosin on the surface of the thin filament during the ATP hydrolysis cycle, drastically decreased the affinity of the whole tropomyosin molecule to actin, and "freezed" tropomyosin in the position characteristic of the weak binding of myosin to actin.
Collapse
Affiliation(s)
- Natalia Kulikova
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | | | | | | |
Collapse
|
28
|
Singh A, Hitchcock-DeGregori SE. Dual requirement for flexibility and specificity for binding of the coiled-coil tropomyosin to its target, actin. Structure 2006; 14:43-50. [PMID: 16407064 DOI: 10.1016/j.str.2005.09.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 09/15/2005] [Accepted: 09/16/2005] [Indexed: 11/20/2022]
Abstract
The coiled coil is a widespread motif involved in oligomerization and protein-protein interactions, but the structural requirements for binding to target proteins are poorly understood. To address this question, we measured binding of tropomyosin, the prototype coiled coil, to actin as a model system. Tropomyosin binds to the actin filament and cooperatively regulates its function. Our results support the hypothesis that coiled-coil domains that bind to other proteins are flexible. We made mutations that alter interface packing and stability as well as mutations in surface residues in a postulated actin binding site. Actin affinity, measured by cosedimentation, was correlated with coiled-coil stability and local instability and side chain flexibility, analyzed with circular dichroism and fluorescence spectroscopy. The flexibility from interruptions in the stable coiled-coil interface is essential for actin binding. The surface residues in a postulated actin binding site participate in actin binding when the coiled coil within it is poorly packed.
Collapse
Affiliation(s)
- Abhishek Singh
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
29
|
Brown JH, Zhou Z, Reshetnikova L, Robinson H, Yammani RD, Tobacman LS, Cohen C. Structure of the mid-region of tropomyosin: bending and binding sites for actin. Proc Natl Acad Sci U S A 2005; 102:18878-83. [PMID: 16365313 PMCID: PMC1323185 DOI: 10.1073/pnas.0509269102] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tropomyosin is a two-chain alpha-helical coiled coil whose periodic interactions with the F-actin helix are critical for thin filament stabilization and the regulation of muscle contraction. Here we deduce the mechanical and chemical basis of these interactions from the 2.3-A-resolution crystal structure of the middle three of tropomyosin's seven periods. Geometrically specific bends of the coiled coil, produced by clusters of core alanines, and variable bends about gaps in the core, produced by isolated alanines, occur along the molecule. The crystal packing is notable in signifying that the functionally important fifth period includes an especially favorable protein-binding site, comprising an unusual apolar patch on the surface together with surrounding charged residues. Based on these and other results, we have constructed a specific model of the thin filament, with the N-terminal halves of each period (i.e., the so-called "alpha zones") of tropomyosin axially aligned with subdomain 3 of each monomer in F-actin.
Collapse
Affiliation(s)
- Jerry H Brown
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Mirza M, Marston S, Willott R, Ashley C, Mogensen J, McKenna W, Robinson P, Redwood C, Watkins H. Dilated cardiomyopathy mutations in three thin filament regulatory proteins result in a common functional phenotype. J Biol Chem 2005; 280:28498-506. [PMID: 15923195 DOI: 10.1074/jbc.m412281200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dilated cardiomyopathy (DCM), characterized by cardiac dilatation and contractile dysfunction, is a major cause of heart failure. Inherited DCM can result from mutations in the genes encoding cardiac troponin T, troponin C, and alpha-tropomyosin; different mutations in the same genes cause hypertrophic cardiomyopathy. To understand how certain mutations lead specifically to DCM, we have investigated their effect on contractile function by comparing wild-type and mutant recombinant proteins. Because initial studies on two troponin T mutations have generated conflicting findings, we analyzed all eight published DCM mutations in troponin T, troponin C, and alpha-tropomyosin in a range of in vitro assays. Thin filaments, reconstituted with a 1:1 ratio of mutant/wild-type proteins (the likely in vivo ratio), all showed reduced Ca(2+) sensitivity of activation in ATPase and motility assays, and except for one alpha-tropomyosin mutant showed lower maximum Ca(2+) activation. Incorporation of either of two troponin T mutants in skinned cardiac trabeculae also decreased Ca(2+) sensitivity of force generation. Structure/function considerations imply that the diverse thin filament DCM mutations affect different aspects of regulatory function yet change contractility in a consistent manner. The DCM mutations depress myofibrillar function, an effect fundamentally opposite to that of hypertrophic cardiomyopathy-causing thin filament mutations, suggesting that decreased contractility may trigger pathways that ultimately lead to the clinical phenotype.
Collapse
Affiliation(s)
- Mahmooda Mirza
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Graceffa P, Mazurkie A. Effect of Caldesmon on the Position and Myosin-induced Movement of Smooth Muscle Tropomyosin Bound to Actin. J Biol Chem 2005; 280:4135-43. [PMID: 15504719 DOI: 10.1074/jbc.m410375200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is known that the actin-binding protein caldesmon inhibits actomyosin ATPase activity and might in this way take part in the thin filament regulation of smooth muscle contraction. Although the molecular mechanism of this inhibition is unknown, it is clear that the presence of actin-bound tropomyosin is necessary for full inhibition. Recent evidence also suggests that the myosin-induced movement of tropomyosin plays a key role in regulation. In this work, fluorescence studies provide evidence to show that caldesmon interacts with and alters the position of tropomyosin in a reconstituted actin thin filament and thereby limits the ability of myosin heads to move tropomyosin. Caldesmon interacts with the Cys-190 region in the COOH-terminal half of tropomyosin, resulting in the movement of this part of tropomyosin to a new position on actin. Additionally, this constrains the myosin-induced movement of this region of tropomyosin. On the other hand, caldesmon does not appear to interact with the Cys-36 region in the NH2-terminal half of tropomyosin and neither alters the position of nor significantly constrains the myosin-induced movement of this part of tropomyosin. The ability of caldesmon to limit the myosin-induced movement of tropomyosin provides a possible molecular basis for the inhibitory function of caldesmon. The different movements of the two halves of tropomyosin indicate that actin-bound tropomyosin moves as a flexible molecule and not as a rigid rod. Interestingly, caldesmon, which inhibits tropomyosin's potentiation of actomyosin ATPase activity, moves tropomyosin in one direction, whereas myosin heads, which enhance potentiation, move tropomyosin in the opposite direction.
Collapse
Affiliation(s)
- Philip Graceffa
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA.
| | | |
Collapse
|
32
|
Brown JH, Cohen C. Regulation of muscle contraction by tropomyosin and troponin: how structure illuminates function. ADVANCES IN PROTEIN CHEMISTRY 2005; 71:121-59. [PMID: 16230111 DOI: 10.1016/s0065-3233(04)71004-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jerry H Brown
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|