1
|
Fu J, Nisbett LM, Guo Y, Boon EM. NosP Detection of Heme Modulates Burkholderia thailandensis Biofilm Formation. Biochemistry 2023; 62:2426-2441. [PMID: 37498555 PMCID: PMC10478957 DOI: 10.1021/acs.biochem.3c00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Aggregated bacteria embedded within self-secreted extracellular polymeric substances, or biofilms, are resistant to antibiotics and cause chronic infections. As such, they are a significant public health threat. Heme is an abundant iron source for pathogenic bacteria during infection; many bacteria have systems to detect heme assimilated from host cells, which is correlated with the transition between acute and chronic infection states. Here, we investigate the heme-sensing function of a newly discovered multifactorial sensory hemoprotein called NosP and its role in biofilm regulation in the soil-dwelling bacterium Burkholderia thailandensis, the close surrogate of Bio-Safety-Level-3 pathogen Burkholderia pseudomallei. The NosP family protein has previously been shown to exhibit both nitric oxide (NO)- and heme-sensing functions and to regulate biofilms through NosP-associated histidine kinases and two-component systems. Our in vitro studies suggest that BtNosP exhibits heme-binding kinetics and thermodynamics consistent with a labile heme-responsive protein and that the holo-form of BtNosP acts as an inhibitor of its associated histidine kinase BtNahK. Furthermore, our in vivo studies suggest that increasing the concentration of extracellular heme decreases B. thailandensis biofilm formation, and deletion of nosP and nahK abolishes this phenotype, consistent with a model that BtNosP detects heme and exerts an inhibitory effect on BtNahK to decrease the biofilm.
Collapse
Affiliation(s)
- Jiayuan Fu
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Lisa-Marie Nisbett
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Yulong Guo
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Elizabeth M Boon
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
2
|
Vávra J, Sergunin A, Pompach P, Savchenko D, Hraníček J, Šloufová I, Shimizu T, Martínková M. Characterization of the interaction between the tumour suppressor p53 and heme and its role in the protein conformational dynamics studied by various spectroscopic techniques and hydrogen/deuterium exchange coupled with mass spectrometry. J Inorg Biochem 2023; 243:112180. [PMID: 36934467 DOI: 10.1016/j.jinorgbio.2023.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
The tumour suppressor p53 regulates the expression of a myriad of proteins that are important for numerous cellular processes, including apoptosis, cell cycle arrest, DNA repair, metabolism, and even autophagy and ferroptosis. Aside from DNA, p53 can interact with many types of partners including proteins and small organic molecules. The ability of p53 to interact with heme has been reported so far. In this study, we used various spectroscopic studies to conduct a thorough biophysical characterization of the interaction between p53 and heme concerning the oxidation, spin, coordination, and ligand state of heme iron. We found that the p53 oligomeric state and zinc biding ability are preserved upon the interaction with heme. Moreover, we described the effect of heme binding on the conformational dynamics of p53 by hydrogen/deuterium exchange coupled with mass spectrometry. Specifically, the conformational flexibility of p53 is significantly increased upon interaction with heme, while its affinity to a specific DNA sequence is reduced by heme. The inhibitory effect of DNA binding by heme is partially reversible. We discuss the potential heme binding sites in p53 with respect to the observed conformational dynamics changes and perturbed DNA-binding ability of p53 upon interaction with heme.
Collapse
Affiliation(s)
- Jakub Vávra
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic; National Radiation Protection Institute, Prague 4, 140 00, Czech Republic
| | - Artur Sergunin
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic
| | - Petr Pompach
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic
| | - Dariya Savchenko
- Institute of Physics of the Czech Academy of Sciences, Prague 8, 182 21, Czech Republic
| | - Jakub Hraníček
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic
| | - Ivana Šloufová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic.
| |
Collapse
|
3
|
Is ATP the Only Nucleoside Triphosphate among ATP, CTP, GTP, and UTP to Have a Role in Kinase Catalysis of Heme-Regulated Inhibitor toward eIF2α during Lung Cancer Development? Catalysts 2023. [DOI: 10.3390/catal13020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The heme-regulated eukaryotic initiation factor 2α (eIF2α) kinase, also known as heme-regulated inhibitor (HRI), detects misfolded proteins and induces cytoprotective response to stress, mainly caused by heme-shortage. The nucleoside triphosphate ATP serves as the main donor of phosphate for the phosphorylation of eIF2α by HRI in human cells. However, the other main nucleoside triphosphates (CTP, GTP, UTP) are also present at relatively high concentrations, especially in human tumor cells. Therefore, in this short communication we evaluate the role of four substrates (namely ATP, CTP, GTP, and UTP) on human HRI kinase activity. Additionally, for the first time, we perform a detailed kinetics study of the HRI G202S mutant, whose presence in the human lung is associated with cancer development. Here, the role of all four tested nucleoside triphosphates during cancer development is discussed from the point of view of the HRI activity. The results showed that the kcat value of GTP was lower than that of ATP but was significantly higher than those of CTP and UTP. Additionally, the kcat value of GTP for G202S was approximately 20% higher than that for wild-type, while the kcat values of ATP, CTP, and UTP for G202S were lower than those for wild-type.
Collapse
|
4
|
De Simone G, Fattibene P, Sebastiani F, Smulevich G, Coletta M, Ascenzi P. Dissociation of the proximal His-Fe bond upon NO binding to ferrous zebrafish nitrobindin. J Inorg Biochem 2022; 236:111962. [PMID: 36075159 DOI: 10.1016/j.jinorgbio.2022.111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022]
Abstract
Nitrobindins (Nbs) are all-β-barrel heme-proteins present in prokaryotes and eukaryotes. Although the physiological role(s) of Nbs are still unclear, it has been postulated that they are involved in the NO/O2 metabolism, which is particularly relevant in fishes for the oxygen supply. Here, the reactivity of ferrous Danio rerio Nb (Dr-Nb(II)) towards NO has been investigated from the spectroscopic and kinetic viewpoints and compared with those of Mycobacterium tuberculosis Nb, Arabidopsis thaliana Nb, Homo sapiens Nb, and Equus ferus caballus myoglobin. Between pH 5.5 and 9.1 at 22.0 °C, Dr-Nb(II) nitrosylation is a monophasic process; values of the second-order rate constant for Dr-Nb(II) nitrosylation and of the first-order rate constant for Dr-Nb(II)-NO denitrosylation are pH-independent ranging between 1.6 × 106 M-1 s-1 and 2.3 × 106 M-1 s-1 and between 5.3 × 10-2 s-1 and 8.2 × 10-2 s-1, respectively. Interestingly, both UV-Vis and EPR spectroscopies indicate that the heme-Fe(II) atom of Dr-Nb(II)-NO is five-coordinated. Kinetics of Dr-Nb(II) nitrosylation may reflect the ligand accessibility to the metal center, which is likely impaired by the crowded network of water molecules which shields the heme pocket from the bulk solvent. On the other hand, kinetics of Dr-Nb(II)-NO denitrosylation may reflect an easy pathway for the ligand escape into the outer solvent.
Collapse
Affiliation(s)
| | - Paola Fattibene
- Servizio Grandi Strumentazioni e Core Facilities, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, 00146 Roma, Italy.
| |
Collapse
|
5
|
Ricketts MD, Emptage RP, Blobel GA, Marmorstein R. The Heme-Regulated Inhibitor Kinase Requires Dimerization for Heme- Sensing Activity. J Biol Chem 2022; 298:102451. [PMID: 36063997 PMCID: PMC9520036 DOI: 10.1016/j.jbc.2022.102451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
The heme-regulated inhibitor (HRI) is a heme-sensing kinase that regulates mRNA translation in erythroid cells. In heme deficiency, HRI is activated to phosphorylate eukaryotic initiation factor 2α and halt production of globins, thus avoiding accumulation of heme-free globin chains. HRI is inhibited by heme via binding to one or two heme-binding domains within the HRI N-terminal and kinase domains. HRI has recently been found to inhibit fetal hemoglobin (HbF) production in adult erythroid cells. Depletion of HRI increases HbF production, presenting a therapeutically exploitable target for the treatment of patients with sickle cell disease or thalassemia, which benefit from elevated HbF levels. HRI is known to be an oligomeric enzyme that is activated through autophosphorylation, although the exact nature of the HRI oligomer, its relation to autophosphorylation, and its mode of heme regulation remain unclear. Here, we employ biochemical and biophysical studies to demonstrate that HRI forms a dimeric species that is not dependent on autophosphorylation, the C-terminal coiled-coil domain in HRI is essential for dimer formation, and dimer formation facilitates efficient autophosphorylation and activation of HRI. We also employ kinetic studies to demonstrate that the primary avenue by which heme inhibits HRI is through the heme-binding site within the kinase domain, and that this inhibition is relatively independent of binding of ATP and eukaryotic initiation factor 2α substrates. Together, these studies highlight the mode of heme inhibition and the importance of dimerization in human HRI heme-sensing activity.
Collapse
Affiliation(s)
- M Daniel Ricketts
- Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ryan P Emptage
- Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
6
|
Kapetanaki SM, Fekete Z, Dorlet P, Vos MH, Liebl U, Lukacs A. Molecular insights into the role of heme in the transcriptional regulatory system AppA/PpsR. Biophys J 2022; 121:2135-2151. [PMID: 35488435 DOI: 10.1016/j.bpj.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/07/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Heme has been shown to have a crucial role in the signal transduction mechanism of the facultative photoheterotrophic bacterium Rhodobacter sphaeroides. It interacts with the transcriptional regulatory complex AppA/PpsR in which AppA and PpsR function as the antirepressor and repressor, respectively of photosynthesis gene expression. The mechanism, however of this interaction remains incompletely understood. In this study, we combined EPR spectroscopy and FRET to demonstrate the ligation of heme in PpsR with a proposed cysteine residue. We show that heme binding in AppA affects the fluorescent properties of the dark-adapted state of the protein, suggesting a less constrained flavin environment compared to the absence of heme and the light-adapted state. We performed ultrafast transient absorption measurements in order to reveal potential differences in the dynamic processes in the full-length AppA and its heme-binding domain alone. Comparison of the CO-binding dynamics demonstrates a more open heme pocket in the holo-protein, qualitatively similar to what has been observed in the CO sensor RcoM-2, and suggests a communication path between the BLUF and SCHIC domains of AppA. We have also examined quantitatively, the affinity of PpsR to bind to individual DNA fragments of the puc promoter using fluorescence anisotropy assays. We conclude that oligomerization of PpsR is initially triggered by binding of one of the two DNA fragments and observe a ∼10-fold increase in the dissociation constant Kd for DNA binding upon heme binding to PpsR. Our study provides significant new insight at the molecular level on the regulatory role of heme that modulates the complex transcriptional regulation in R. sphaeroides and supports the two levels of heme signaling, via its binding to AppA and PpsR and via the sensing of gases like oxygen.
Collapse
Affiliation(s)
- Sofia M Kapetanaki
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; Szentagothai Research Center, University of Pecs, 7624 Pécs, Hungary.
| | - Zsuzsanna Fekete
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Pierre Dorlet
- Aix Marseille Univ, CNRS, BIP, IMM, Marseille, France
| | - Marten H Vos
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Ursula Liebl
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; Szentagothai Research Center, University of Pecs, 7624 Pécs, Hungary.
| |
Collapse
|
7
|
Khan FST, Samanta D, Chandel D, Shah SJ, Rath SP. Heme-Heme Interactions in Diheme Cytochromes: Effect of Mixed-Axial Ligation on the Electronic Structure and Electrochemical Properties. Inorg Chem 2021; 60:12870-12882. [PMID: 34370470 DOI: 10.1021/acs.inorgchem.1c01215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diheme cytochromes, the simplest members in the multiheme family, play substantial biochemical roles in enzymatic catalysis as well as in electron transfer. A series of diiron(III) porphyrin dimers have been synthesized as active site analogues of diheme cytochromes. The complexes contain six-coordinated iron(III) having thiophenol and imidazole at the fifth and sixth coordination sites, respectively. The iron centers in the complexes have been found to be in a low-spin state, as confirmed through solid-state Mössbauer and electron paramagnetic resonance (EPR) spectroscopic investigations. Mössbauer quadrupole splitting of complexes having mixed ligands is substantially larger than that observed when both axial ligands are the same. Rhombic types of EPR spectra with narrow separation between gx, gy, and gz clearly distinguish heme thiolate coordination compared to bis(imidazole)-ligated low-spin heme centers. The redox potential in diheme cytochromes has been found to be tuned by interheme interactions along with the nature of axial ligands. The effect of mixed-axial ligation within the diiron(III) porphyrin dimers is demonstrated by a positive shift in the Fe(III)/Fe(II) redox couple upon thiophenolate coordination compared to their bis(imidazole) analogues. The pKa of the imidazole also decides the extent of the shift for the Fe(III)/Fe(II) couple, while the potential of the mixed-ligated diiron(III) porphyrin dimer is more positive compared to their monomeric analogue. A variation of around 1.1 V for the Fe(III)/Fe(II) redox potential in the diiron(III) porphyrin dimer can be achieved with the combined effect of axial ligation and a metal spin state, while such a large variation in the redox potential, compared to their monomeric analogues, is attributed to the heme-heme interactions observed in dihemes. Moreover, theoretical calculations also support the experimental shifts in the redox potential values.
Collapse
Affiliation(s)
| | - Deepannita Samanta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Dolly Chandel
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Syed Jehanger Shah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
8
|
Alvarez-Castelao B, Tom Dieck S, Fusco CM, Donlin-Asp P, Perez JD, Schuman EM. The switch-like expression of heme-regulated kinase 1 mediates neuronal proteostasis following proteasome inhibition. eLife 2020; 9:52714. [PMID: 32329716 PMCID: PMC7224698 DOI: 10.7554/elife.52714] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
We examined the feedback between the major protein degradation pathway, the ubiquitin-proteasome system (UPS), and protein synthesis in rat and mouse neurons. When protein degradation was inhibited, we observed a coordinate dramatic reduction in nascent protein synthesis in neuronal cell bodies and dendrites. The mechanism for translation inhibition involved the phosphorylation of eIF2α, surprisingly mediated by eIF2α kinase 1, or heme-regulated kinase inhibitor (HRI). Under basal conditions, neuronal expression of HRI is barely detectable. Following proteasome inhibition, HRI protein levels increase owing to stabilization of HRI and enhanced translation, likely via the increased availability of tRNAs for its rare codons. Once expressed, HRI is constitutively active in neurons because endogenous heme levels are so low; HRI activity results in eIF2α phosphorylation and the resulting inhibition of translation. These data demonstrate a novel role for neuronal HRI that senses and responds to compromised function of the proteasome to restore proteostasis.
Collapse
Affiliation(s)
| | | | - Claudia M Fusco
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Paul Donlin-Asp
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Julio D Perez
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Fleischhacker AS, Gunawan AL, Kochert BA, Liu L, Wales TE, Borowy MC, Engen JR, Ragsdale SW. The heme-regulatory motifs of heme oxygenase-2 contribute to the transfer of heme to the catalytic site for degradation. J Biol Chem 2020; 295:5177-5191. [PMID: 32152224 PMCID: PMC7170523 DOI: 10.1074/jbc.ra120.012803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/03/2020] [Indexed: 11/06/2022] Open
Abstract
Heme-regulatory motifs (HRMs) are present in many proteins that are involved in diverse biological functions. The C-terminal tail region of human heme oxygenase-2 (HO2) contains two HRMs whose cysteine residues form a disulfide bond; when reduced, these cysteines are available to bind Fe3+-heme. Heme binding to the HRMs occurs independently of the HO2 catalytic active site in the core of the protein, where heme binds with high affinity and is degraded to biliverdin. Here, we describe the reversible, protein-mediated transfer of heme between the HRMs and the HO2 core. Using hydrogen-deuterium exchange (HDX)-MS to monitor the dynamics of HO2 with and without Fe3+-heme bound to the HRMs and to the core, we detected conformational changes in the catalytic core only in one state of the catalytic cycle-when Fe3+-heme is bound to the HRMs and the core is in the apo state. These conformational changes were consistent with transfer of heme between binding sites. Indeed, we observed that HRM-bound Fe3+-heme is transferred to the apo-core either upon independent expression of the core and of a construct spanning the HRM-containing tail or after a single turnover of heme at the core. Moreover, we observed transfer of heme from the core to the HRMs and equilibration of heme between the core and HRMs. We therefore propose an Fe3+-heme transfer model in which HRM-bound heme is readily transferred to the catalytic site for degradation to facilitate turnover but can also equilibrate between the sites to maintain heme homeostasis.
Collapse
Affiliation(s)
- Angela S Fleischhacker
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Amanda L Gunawan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Brent A Kochert
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Maelyn C Borowy
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606.
| |
Collapse
|
10
|
Zhang Q, Du R, Reis Monteiro Dos Santos GR, Yefidoff-Freedman R, Bohm A, Halperin J, Chorev M, Aktas BH. New activators of eIF2α Kinase Heme-Regulated Inhibitor (HRI) with improved biophysical properties. Eur J Med Chem 2019; 187:111973. [PMID: 31881453 DOI: 10.1016/j.ejmech.2019.111973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 01/21/2023]
Abstract
Heme-regulated inhibitor (HRI), a eukaryotic translation initiation factor 2 alpha (eIF2α) kinase, is critically important for coupling protein synthesis to heme availability in reticulocytes and adaptation to various environmental stressors in all cells. HRI modifies the severity of several hemoglobin misfolding disorders including β-thalassemia. Small molecule activators of HRI are essential for studying normal- and patho-biology of this kinase as well as for the treatment of various human disorders for which activation of HRI or phosphorylation of eIF2α may be beneficial. We previously reported development of 1-((1,4-trans)-4-aryloxycyclohexyl)-3-arylureas (cHAUs) as specific HRI activators and demonstrated their potential as molecular probes for studying HRI biology and as lead compounds for treatment of various human disorders. To develop more druglike cHAUs for in vivo studies and drug development and to expand the chemical space, we undertook bioassay guided structure-activity relationship studies replacing cyclohexyl ring with various 4-6-membered rings and explored further substitutions on the N-phenyl ring. We tested all analogs in the surrogate eIF2α phosphorylation and cell proliferation assays, and a subset of analogs in secondary mechanistic assays that included endogenous eIF2α phosphorylation and expression of C/EBP homologous protein (CHOP), a downstream effector. Finally, we determined specificity of these compounds for HRI by testing their anti-proliferative activity in cells transfected with siRNA targeting HRI or mock. These compounds have significantly improved cLogPs with no loss of potencies, making them excellent candidates for lead optimization for development of investigational new drugs that potently and specifically activate HRI.
Collapse
Affiliation(s)
- Qingwen Zhang
- Division of Medicinal and Process Chemistry, Shanghai Institute of Pharmaceutical Industry, Pudong, Shanghai, 201203, China; Hematology Laboratory for Translational Research, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ronghui Du
- Hematology Laboratory for Translational Research, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA; Medicine School of Nanjing University, Nanjing, Jiangsu, 210093, China
| | | | - Revital Yefidoff-Freedman
- Hematology Laboratory for Translational Research, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew Bohm
- Tufts University Medical School, Boston, MA, 02117, USA
| | - Jose Halperin
- Hematology Laboratory for Translational Research, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Chorev
- Hematology Laboratory for Translational Research, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Bertal H Aktas
- Hematology Laboratory for Translational Research, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Guix FX, Sartório CL, Ill-Raga G. BACE1 Translation: At the Crossroads Between Alzheimer's Disease Neurodegeneration and Memory Consolidation. J Alzheimers Dis Rep 2019; 3:113-148. [PMID: 31259308 PMCID: PMC6597968 DOI: 10.3233/adr-180089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human life unfolds not only in time and space, but also in the recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered under pathological conditions such as Alzheimer’s disease, which affects millions of people worldwide. Unfortunately, no effective cure exists to prevent this disorder, the impact of which will rise alarmingly within the next decades. While Alzheimer’s disease is largely considered to be the outcome of amyloid-β (Aβ) peptide accumulation in the brain, conceiving this complex disorder strictly as the result of Aβ-neurotoxicity is perhaps a too straight-line simplification. Instead, complementary to this view, the tableau of molecular disarrangements in the Alzheimer’s disease brain may be reflecting, at least in part, a loss of function phenotype in memory processing. Here we take BACE1 translation and degradation as a gateway to study molecular mechanisms putatively involved in the transition between memory and neurodegeneration. BACE1 participates in the excision of Aβ-peptide from its precursor holoprotein, but plays a role in synaptic plasticity too. Its translation is governed by eIF2α phosphorylation: a hub integrating cellular responses to stress, but also a critical switch in memory consolidation. Paralleling these dualities, the eIF2α-kinase HRI has been shown to be a nitric oxide-dependent physiological activator of hippocampal BACE1 translation. Finally, beholding BACE1 as a representative protease active in the CNS, we venture a new perspective on the cellular basis of memory, which may incorporate neurodegeneration in itself as a drift in memory consolidating systems.
Collapse
Affiliation(s)
- Francesc X Guix
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa-CSIC, Madrid, Spain
| | - Carmem L Sartório
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Gerard Ill-Raga
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
12
|
Shimizu T, Lengalova A, Martínek V, Martínková M. Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres. Chem Soc Rev 2019; 48:5624-5657. [DOI: 10.1039/c9cs00268e] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular mechanisms of unprecedented functions of exchangeable/labile heme and heme proteins including transcription, DNA binding, protein kinase activity, K+ channel functions, cis–trans isomerization, N–N bond formation, and other functions are described.
Collapse
Affiliation(s)
- Toru Shimizu
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Alzbeta Lengalova
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Václav Martínek
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Markéta Martínková
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| |
Collapse
|
13
|
Fleischhacker AS, Carter EL, Ragsdale SW. Redox Regulation of Heme Oxygenase-2 and the Transcription Factor, Rev-Erb, Through Heme Regulatory Motifs. Antioxid Redox Signal 2018; 29:1841-1857. [PMID: 28990415 PMCID: PMC6217750 DOI: 10.1089/ars.2017.7368] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
SIGNIFICANCE Heme binds to and serves as a cofactor for a myriad of proteins that are involved in diverse biological processes. Hemoproteins also exhibit varying modes of heme binding, suggesting that the protein environment contributes to the functional versatility of this prosthetic group. The subject of this review is a subset of hemoproteins that contain at least one heme regulatory motif (HRM), which is a short sequence containing a Cys-Pro core that, in many cases, binds heme with the Cys acting as an axial ligand. Recent Advances: As more details about HRM-containing proteins are uncovered, some underlying commonalities are emerging, including a role in regulating protein stability. Further, the cysteines of some HRMs have been shown to form disulfide bonds. Because the cysteines must be in the reduced, dithiol form to act as a heme axial ligand, heme binds at these sites in a redox-regulated manner, as demonstrated for heme oxygenase-2 (HO2) and Rev-erbβ. CRITICAL ISSUES HRM-containing proteins have wide variations in heme affinity, utilize different axial ligand schemes, and exhibit differences in the ability to act as a redox sensor-all while having a wide variety of biological functions. Here, we highlight HO2 and Rev-erbβ to illustrate the similarities and differences between two hemoproteins that contain HRMs acting as redox sensors. FUTURE DIRECTIONS HRMs acting as redox sensors may be applicable to other HRM-containing proteins as many contain multiple HRMs and/or other cysteine residues, which may become more evident as the functional significance of HRMs is probed in additional proteins.
Collapse
Affiliation(s)
| | - Eric L Carter
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
14
|
Zhang L, Zhou J, Ma F, Wang Q, Xu H, Ju H, Lei J. Single‐Sided Competitive Axial Coordination of G‐Quadruplex/Hemin as Molecular Switch for Imaging Intracellular Nitric Oxide. Chemistry 2018; 25:490-494. [DOI: 10.1002/chem.201804897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/03/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
- School of Chemistry and Molecular Engineering, Institute of, Advanced SynthesisJiangsu National Synergetic Innovation Center for, Advanced MaterialsNanjing Tech University Nanjing 211816 P.R. China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Fengjiao Ma
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Quanbo Wang
- Laboratory of Immunology for Environment and HealthShandong Analysis and Test CenterShandong Academy of Sciences Jinan 250014 P.R. China
| | - Hui Xu
- School of Chemistry and Molecular Engineering, Institute of, Advanced SynthesisJiangsu National Synergetic Innovation Center for, Advanced MaterialsNanjing Tech University Nanjing 211816 P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| |
Collapse
|
15
|
Ikushiro H, Nagami A, Takai T, Sawai T, Shimeno Y, Hori H, Miyahara I, Kamiya N, Yano T. Heme-dependent Inactivation of 5-Aminolevulinate Synthase from Caulobacter crescentus. Sci Rep 2018; 8:14228. [PMID: 30242198 PMCID: PMC6154995 DOI: 10.1038/s41598-018-32591-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/11/2018] [Indexed: 11/09/2022] Open
Abstract
The biosynthesis of heme is strictly regulated, probably because of the toxic effects of excess heme and its biosynthetic precursors. In many organisms, heme biosynthesis starts with the production of 5-aminolevulinic acid (ALA) from glycine and succinyl-coenzyme A, a process catalyzed by a homodimeric enzyme, pyridoxal 5′-phosphate (PLP)-dependent 5-aminolevulinate synthase (ALAS). ALAS activity is negatively regulated by heme in various ways, such as the repression of ALAS gene expression, degradation of ALAS mRNA, and inhibition of mitochondrial translocation of the mammalian precursor protein. There has been no clear evidence, however, that heme directly binds to ALAS to negatively regulate its activity. We found that recombinant ALAS from Caulobacter crescentus was inactivated via a heme-mediated feedback manner, in which the essential coenzyme PLP was rel eased to form the inactive heme-bound enzyme. The spectroscopic properties of the heme-bound ALAS showed that a histidine-thiolate hexa-coordinated ferric heme bound to each subunit with a one-to-one stoichiometry. His340 and Cys398 were identified as the axial ligands of heme, and mutant ALASs lacking either of these ligands became resistant to heme-mediated inhibition. ALAS expressed in C. crescentus was also found to bind heme, suggesting that heme-mediated feedback inhibition of ALAS is physiologically relevant in C. crescentus.
Collapse
Affiliation(s)
- Hiroko Ikushiro
- Department of Biochemistry, Faculty of Medicine, Osaka Medical College, Osaka, 569-8686, Japan.
| | - Atsushi Nagami
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Tomoko Takai
- Department of Biochemistry, Faculty of Medicine, Osaka Medical College, Osaka, 569-8686, Japan.,Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Taiki Sawai
- Department of Biochemistry, Faculty of Medicine, Osaka Medical College, Osaka, 569-8686, Japan
| | - Yuki Shimeno
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Hiroshi Hori
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Ikuko Miyahara
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Nobuo Kamiya
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, 558-8585, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical College, Osaka, 569-8686, Japan.
| |
Collapse
|
16
|
Ogura M, Endo R, Ishikawa H, Takeda Y, Uchida T, Iwai K, Kobayashi K, Ishimori K. Redox-dependent axial ligand replacement and its functional significance in heme-bound iron regulatory proteins. J Inorg Biochem 2018; 182:238-248. [PMID: 29449016 DOI: 10.1016/j.jinorgbio.2018.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 01/08/2018] [Indexed: 11/29/2022]
Abstract
Iron regulatory proteins (IRPs), regulators of iron metabolism in mammalian cells, control the translation of proteins involved in iron uptake, storage and utilization by binding to specific iron-responsive element (IRE) sequences of mRNAs. Two homologs of IRPs (IRP1 and IRP2) have a typical heme regulatory motif (HRM), a consensus sequence found in "heme-regulated proteins". However, specific heme binding to HRM has been reported only for IRP2, which is essential for oxidative modification and loss of binding to target mRNAs. In this paper, we confirmed that IRP1 also specifically binds two molar equivalents of heme, and found that the absorption and resonance Raman spectra of heme-bound IRP1 were quite similar to those of heme-bound IRP2. This shows that the heme environmental structures in IRP1 are close to those of proteins using heme as a regulatory molecule. Pulse radiolysis experiments, however, clearly revealed an axial ligand exchange from Cys to His immediately after the reduction of the heme iron to form a 5-coordinate His-ligated heme in heme-bound IRP2, whereas the 5-coordinate His-ligated heme was not observed after the reduction of heme-bound IRP1. Considering that the oxidative modification is only observed in heme-bound IRP2, but not IRP1, probably owing to the structural flexibility of IRP2, we propose that the transient 5-coordinate His-ligated heme is a prerequisite for oxidative modification of heme-bound IRP2, which functionally differentiates heme binding of IRP2 from that of IRP1.
Collapse
Affiliation(s)
- Mariko Ogura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Ryosuke Endo
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Haruto Ishikawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Yukiko Takeda
- Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8561, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazuhiro Iwai
- Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8561, Japan
| | - Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
17
|
Bhavnani V, Kaviraj S, Panigrahi P, Suresh CG, Yapara S, Pal J. Elucidation of molecular mechanism of stability of the heme-regulated eIF2α kinase upon binding of its ligand, hemin in its catalytic kinase domain. J Biomol Struct Dyn 2017; 36:2845-2861. [PMID: 28814160 DOI: 10.1080/07391102.2017.1368417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The eIF2α kinase activity of the heme-regulated inhibitor (HRI) is regulated by heme which makes it a unique member of the family of eIF2α kinases. Since heme concentrations create an equilibrium for the kinase to be active/inactive, it becomes important to study the heme binding effects upon the kinase and understanding its mechanism of functionality. In the present study, we report the thermostability achieved by the catalytic kinase domain of HRI (HRI.CKD) upon ligand (heme) binding. Our CD data demonstrates that the HRI.CKD retains its secondary structure at higher temperatures when it is in ligand bound state. HRI.CKD when incubated with hemin loses its monomeric state and attains a higher order oligomeric form resulting in its stability. The HRI.CKD fails to refold into its native conformation upon mutation of H377A/H381A, thereby confirming the necessity of these His residues for correct folding, stability, and activity of the kinase. Though our in silico study demonstrated these His being the ligand binding sites in the kinase insert region, the spectra-based study did not show significant difference in heme affinity for the wild type and His mutant HRI.CKD.
Collapse
Affiliation(s)
- Varsha Bhavnani
- a Department of Biotechnology , Savitribai Phule Pune University , Pune , Maharashtra 411007 , India
| | - Swarnendu Kaviraj
- b Vaccine Formulation & Research Centre , Gennova Biopharmaceuticals Limited , Pune , Maharashtra 411057 , India
| | - Priyabrata Panigrahi
- c Division of Biochemical Sciences , CSIR-National Chemical Laboratory , Pune 411008 , India
| | - C G Suresh
- c Division of Biochemical Sciences , CSIR-National Chemical Laboratory , Pune 411008 , India
| | - SuneelShekar Yapara
- b Vaccine Formulation & Research Centre , Gennova Biopharmaceuticals Limited , Pune , Maharashtra 411057 , India
| | - Jayanta Pal
- a Department of Biotechnology , Savitribai Phule Pune University , Pune , Maharashtra 411007 , India
| |
Collapse
|
18
|
Carter EL, Gupta N, Ragsdale SW. High Affinity Heme Binding to a Heme Regulatory Motif on the Nuclear Receptor Rev-erbβ Leads to Its Degradation and Indirectly Regulates Its Interaction with Nuclear Receptor Corepressor. J Biol Chem 2015; 291:2196-222. [PMID: 26670607 DOI: 10.1074/jbc.m115.670281] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 01/11/2023] Open
Abstract
Rev-erbα and Rev-erbβ are heme-binding nuclear receptors (NR) that repress the transcription of genes involved in regulating metabolism, inflammation, and the circadian clock. Previous gene expression and co-immunoprecipitation studies led to a model in which heme binding to Rev-erbα recruits nuclear receptor corepressor 1 (NCoR1) into an active repressor complex. However, in contradiction, biochemical and crystallographic studies have shown that heme decreases the affinity of the ligand-binding domain of Rev-erb NRs for NCoR1 peptides. One explanation for this discrepancy is that the ligand-binding domain and NCoR1 peptides used for in vitro studies cannot replicate the key features of the full-length proteins used in cellular studies. However, the combined in vitro and cellular results described here demonstrate that heme does not directly promote interactions between full-length Rev-erbβ (FLRev-erbβ) and an NCoR1 construct encompassing all three NR interaction domains. NCoR1 tightly binds both apo- and heme-replete FLRev-erbβ·DNA complexes; furthermore, heme, at high concentrations, destabilizes the FLRev-erbβ·NCoR1 complex. The interaction between FLRev-erbβ and NCoR1 as well as Rev-erbβ repression at the Bmal1 promoter appear to be modulated by another cellular factor(s), at least one of which is related to the ubiquitin-proteasome pathway. Our studies suggest that heme is involved in regulating the degradation of Rev-erbβ in a manner consistent with its role in circadian rhythm maintenance. Finally, the very slow rate constant (10(-6) s(-1)) of heme dissociation from Rev-erbβ rules out a prior proposal that Rev-erbβ acts as an intracellular heme sensor.
Collapse
Affiliation(s)
- Eric L Carter
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Nirupama Gupta
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Stephen W Ragsdale
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
19
|
Ill-Raga G, Tajes M, Busquets-García A, Ramos-Fernández E, Vargas LM, Bosch-Morató M, Guivernau B, Valls-Comamala V, Eraso-Pichot A, Guix FX, Fandos C, Rosen MD, Rabinowitz MH, Maldonado R, Alvarez AR, Ozaita A, Muñoz FJ. Physiological Control of Nitric Oxide in Neuronal BACE1 Translation by Heme-Regulated eIF2α Kinase HRI Induces Synaptogenesis. Antioxid Redox Signal 2015; 22:1295-307. [PMID: 25706765 DOI: 10.1089/ars.2014.6080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Hippocampus is the brain center for memory formation, a process that requires synaptogenesis. However, hippocampus is dramatically compromised in Alzheimer's disease due to the accumulation of amyloid β-peptide, whose production is initiated by β-site APP Cleaving Enzyme 1 (BACE1). It is known that pathological stressors activate BACE1 translation through the phosphorylation of the eukaryotic initiation factor-2α (eIF2α) by GCN2, PERK, or PKR kinases, leading to amyloidogenesis. However, BACE1 physiological regulation is still unclear. Since nitric oxide (NO) participates directly in hippocampal glutamatergic signaling, we investigated the neuronal role of the heme-regulated eukaryotic initiation factor eIF2α kinase (HRI), which can bind NO by a heme group, in BACE1 translation and its physiological consequences. RESULTS We found that BACE1 is expressed on glutamate activation with NO being the downstream effector by triggering eIF2α phosphorylation, as it was obtained by Western blot and luciferase assay. It is due to the activation of HRI by NO as assayed by Western blot and immunofluorescence with an HRI inhibitor and HRI siRNA. BACE1 expression was early detected at synaptic spines, contributing to spine growth and consolidating the hippocampal memory as assayed with mice treated with HRI or neuronal NO synthase inhibitors. INNOVATION We provide the first description that HRI and eIF2α are working in physiological conditions in the brain under the control of nitric oxide and glutamate signaling, and also that BACE1 has a physiological role in hippocampal function. CONCLUSION We conclude that BACE1 translation is controlled by NO through HRI in glutamatergic hippocampal synapses, where it plays physiological functions, allowing the spine growth and memory consolidation.
Collapse
Affiliation(s)
- Gerard Ill-Raga
- 1 Laboratory of Molecular Physiology and Channelopathies, Universitat Pompeu Fabra , Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Smith AT, Pazicni S, Marvin KA, Stevens DJ, Paulsen KM, Burstyn JN. Functional divergence of heme-thiolate proteins: a classification based on spectroscopic attributes. Chem Rev 2015; 115:2532-58. [PMID: 25763468 DOI: 10.1021/cr500056m] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron T Smith
- †Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208, United States
| | - Samuel Pazicni
- ‡Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Katherine A Marvin
- §Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Daniel J Stevens
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Katherine M Paulsen
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Judith N Burstyn
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
21
|
Ishimori K, Watanabe Y. Unique Heme Environmental Structures in Heme-regulated Proteins Using Heme as the Signaling Molecule. CHEM LETT 2014. [DOI: 10.1246/cl.140787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Yuta Watanabe
- Department of Chemistry, Faculty of Science, Hokkaido University
| |
Collapse
|
22
|
Vicente JB, Colaço HG, Mendes MIS, Sarti P, Leandro P, Giuffrè A. NO* binds human cystathionine β-synthase quickly and tightly. J Biol Chem 2014; 289:8579-87. [PMID: 24515102 DOI: 10.1074/jbc.m113.507533] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hexa-coordinate heme in the H2S-generating human enzyme cystathionine β-synthase (CBS) acts as a redox-sensitive regulator that impairs CBS activity upon binding of NO(•) or CO at the reduced iron. Despite the proposed physiological relevance of this inhibitory mechanism, unlike CO, NO(•) was reported to bind at the CBS heme with very low affinity (Kd = 30-281 μm). This discrepancy was herein reconciled by investigating the NO(•) reactivity of recombinant human CBS by static and stopped-flow UV-visible absorption spectroscopy. We found that NO(•) binds tightly to the ferrous CBS heme, with an apparent Kd ≤ 0.23 μm. In line with this result, at 25 °C, NO(•) binds quickly to CBS (k on ∼ 8 × 10(3) m(-1) s(-1)) and dissociates slowly from the enzyme (k off ∼ 0.003 s(-1)). The observed rate constants for NO(•) binding were found to be linearly dependent on [NO(•)] up to ∼ 800 μm NO(•), and >100-fold higher than those measured for CO, indicating that the reaction is not limited by the slow dissociation of Cys-52 from the heme iron, as reported for CO. For the first time the heme of human CBS is reported to bind NO(•) quickly and tightly, providing a mechanistic basis for the in vivo regulation of the enzyme by NO(•). The novel findings reported here shed new light on CBS regulation by NO(•) and its possible (patho)physiological relevance, enforcing the growing evidence for an interplay among the gasotransmitters NO(•), CO, and H2S in cell signaling.
Collapse
Affiliation(s)
- João B Vicente
- From the Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
23
|
Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2α kinases: their structures and functions. Cell Mol Life Sci 2013; 70:3493-511. [PMID: 23354059 PMCID: PMC11113696 DOI: 10.1007/s00018-012-1252-6] [Citation(s) in RCA: 617] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 12/16/2012] [Accepted: 12/20/2012] [Indexed: 01/02/2023]
Abstract
Cell signaling in response to an array of diverse stress stimuli converges on the phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2). Phosphorylation of eIF2α on serine 51 results in a severe decline in de novo protein synthesis and is an important strategy in the cell's armory against stressful insults including viral infection, the accumulation of misfolded proteins, and starvation. The phosphorylation of eIF2α is carried out by a family of four kinases, PERK (PKR-like ER kinase), PKR (protein kinase double-stranded RNA-dependent), GCN2 (general control non-derepressible-2), and HRI (heme-regulated inhibitor). Each primarily responds to a distinct type of stress or stresses. Thus, while significant sequence similarity exists between the eIF2α kinases in their kinase domains, underlying their common role in phosphorylating eIF2α, additional unique features determine the regulation of these four proteins, that is, what signals activate them. This review will describe the structure of each eIF2α kinase and discuss how this is linked to their activation and function. In parallel to the general translational attenuation elicited by eIF2α kinase activation the translation of stress-induced mRNAs, most notably activating transcription factor 4 (ATF4) is enhanced and these set in motion cascades of gene expression constituting the integrated stress response (ISR), which seek to remediate stress and restore homeostasis. Depending on the cellular context and concurrent signaling pathways active, however, translational attenuation can also facilitate apoptosis. Accordingly, the role of the kinases in determining cell fate will also be discussed.
Collapse
Affiliation(s)
- Neysan Donnelly
- Apoptosis Research Center, National University of Ireland, Galway, Ireland
- School of Natural Sciences, National University of Ireland, Galway, Ireland
- Present Address: Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, 82152 Germany
| | - Adrienne M. Gorman
- Apoptosis Research Center, National University of Ireland, Galway, Ireland
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Sanjeev Gupta
- Apoptosis Research Center, National University of Ireland, Galway, Ireland
- School of Medicine, National University of Ireland, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Center, National University of Ireland, Galway, Ireland
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
24
|
Smith AT, Marvin KA, Freeman KM, Kerby RL, Roberts GP, Burstyn JN. Identification of Cys94 as the distal ligand to the Fe(III) heme in the transcriptional regulator RcoM-2 from Burkholderia xenovorans. J Biol Inorg Chem 2012; 17:1071-82. [PMID: 22855237 PMCID: PMC3484680 DOI: 10.1007/s00775-012-0920-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
The CO-responsive transcriptional regulator RcoM from Burkholderia xenovorans (BxRcoM) was recently identified as a Cys(thiolate)-ligated heme protein that undergoes a redox-mediated ligand switch; however, the Cys bound to the Fe(III) heme was not identified. To that end, we generated and purified three Cys-to-Ser variants of BxRcoM-2--C94S, C127S, and C130S--and examined their spectroscopic properties in order to identify the native Cys(thiolate) ligand. Electronic absorption, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopies demonstrate that the C127S and C130S variants, like wild-type BxRcoM-2, bind a six-coordinate low-spin Fe(III) heme using a Cys/His ligation motif. In contrast, electronic absorption and resonance Raman spectra of the C94S variant are most consistent with a mixture of five-coordinate high-spin and six-coordinate low-spin Fe(III) heme, neither of which are ligated by a Cys(thiolate) ligand. The EPR spectrum of C94S is dominated by a large, axial high-spin Fe(III) signal, confirming that the native ligation motif is not maintained in this variant. Together, these data reveal that Cys(94) is the distal Fe(III) heme ligand in BxRcoM-2; by sequence alignment, Cys(94) is also implicated as the distal Fe(III) heme ligand in BxRcoM-1, another homologue found in the same organism.
Collapse
Affiliation(s)
- Aaron T. Smith
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Katherine A. Marvin
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Katherine M. Freeman
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Robert L. Kerby
- Department of Bacteriology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | - Gary P. Roberts
- Department of Bacteriology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| |
Collapse
|
25
|
Carrica MDC, Fernandez I, Martí MA, Paris G, Goldbaum FA. The NtrY/X two-component system of Brucella spp. acts as a redox sensor and regulates the expression of nitrogen respiration enzymes. Mol Microbiol 2012; 85:39-50. [DOI: 10.1111/j.1365-2958.2012.08095.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Gisk B, Molitor B, Frankenberg-Dinkel N, Kötting C. Heme oxygenases from Arabidopsis thaliana reveal different mechanisms of carbon monoxide binding. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 88:235-240. [PMID: 22204880 DOI: 10.1016/j.saa.2011.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/04/2011] [Indexed: 05/31/2023]
Abstract
Heme oxygenases (HO) are widely distributed enzymes involved in the degradation of heme to biliverdin, carbon monoxide and Fe(2+). The model plant Arabidopsis thaliana possesses three functional HOs (HY1, HO3 and HO4) which are thus far biochemically indistinguishable. Here, we investigate binding of the reaction product and putative inhibitor CO to these three HOs with various spectroscopic techniques: Nanosecond time-resolved absorption, millisecond time-resolved multi-wavelength absorption and Fourier-transform-infrared difference spectroscopy. Kinetics of CO rebinding were found to differ substantially among the HOs. At low CO concentrations a novel intermediate was identified for HO3 and HO4, substantially slowing down rebinding. All HOs show relatively slow geminate rebinding of CO indicating the existence of an additional transient binding niche for CO. The positions found for the IR absorptions of ν(CO) and ν(FeC) suggest a nonpolar distal binding site for all three HOs. The frequency of the ν(FeC) vibration was calculated by a combination band on which we report here for the first time. Another band in the FTIR difference spectrum could be assigned to a histidine residue, probably the proximal ligand of the heme-iron. The observed different rebinding kinetics among the HOs could indicate adaptation of the HOs to different environments.
Collapse
Affiliation(s)
- Björn Gisk
- Physiology of Microorganisms, Ruhr-University Bochum, Bochum, Germany
| | | | | | | |
Collapse
|
27
|
Rebouças JS, Patrick BO, James BR. Thiol, disulfide, and trisulfide complexes of Ru porphyrins: potential models for iron-sulfur bonds in heme proteins. J Am Chem Soc 2012; 134:3555-70. [PMID: 22224472 DOI: 10.1021/ja211226e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thirty-two Ru(porp)L(2) complexes have been synthesized, where porp = the dianion of meso-tetramesitylporphyrin (TMP) or meso-tetrakis(4-methylphenyl)porphyrin (H(2)T-pMe-PP), and L = a thiol, a sulfide, a disulfide, or a trisulfide. Species studied were with RSH [R = Me, Et, (n)Pr, (i)Pr, (t)Bu, Bn (benzyl), and Ph], RSR (R = Me, Bn), RSSR (R = Me, Et, (n)Pr, Bn) and MeSS(t)Bu, and RSSSR (R = Me, Bn). All the species except two, which were the isolated Ru(T-pMe-PP)((t)BuSH)(2) and Ru(TMP)(MeSSMe)(2), were characterized in situ. The disulfide complex was characterized by X-ray analysis. (1)H NMR data for the coordinated thiols are the first reported within metalloporphyrin systems, and are especially informative because of the upfield shifts of the axial sulfur-containing ligands due to the porphyrin π-ring current effect, which is also present in the di- and trisulfide species. The disulfide in the solid state structure of Ru(TMP)(MeSSMe)(2) is η(1)(end-on) coordinated, the first example of such bonding in a nontethered, acyclic dialkyl disulfide; (1)H-(1)H EXSY NMR data in solution show that the species undergoes 1,2-S-metallotropic shifts. Stepwise formation of the bis(disulfide) complex from Ru(TMP)(MeCN)(2) in solution occurs with a cooperativity effect, resembling behavior of Fe(II)-porphyrin systems where crystal field effects dominate, but ligand trans-effects are more likely in the Ru system. The η(1)(end-on) coordination mode is also favored for the trisulfide ligand. Discussed also are the remarkable linear correlations that exist between the ring-current shielding shifts for the axial ligand C(1) protons of Ru(porp)(RS(x)R)(2) and x (the number of S atoms). The Introduction briefly reviews literature on Ru- and Fe porphyrins (including heme proteins) with sulfur-containing ligands or substrates, and relationships between our findings and this literature are discussed throughout the paper.
Collapse
Affiliation(s)
- Júlio S Rebouças
- Departamento de Química, CCEN, Universidade Federal da Paraíba, João Pessoa, PB, 58.051-900, Brazil.
| | | | | |
Collapse
|
28
|
He C, Neya S, Knipp M. Breaking the Proximal FeII–NHis Bond in Heme Proteins through Local Structural Tension: Lessons from the Heme b Proteins Nitrophorin 4, Nitrophorin 7, and Related Site-Directed Mutant Proteins. Biochemistry 2011; 50:8559-75. [DOI: 10.1021/bi201073t] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chunmao He
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470
Mülheim an der Ruhr, Germany
| | - Saburo Neya
- Department of Physical Chemistry, Graduate School of Pharmaceutical
Sciences, Chiba University, Image-Yayoi,
Chiba 263-8522, Japan
| | - Markus Knipp
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470
Mülheim an der Ruhr, Germany
| |
Collapse
|
29
|
Tong L, Heim RA, Wu S. Nitric oxide: a regulator of eukaryotic initiation factor 2 kinases. Free Radic Biol Med 2011; 50:1717-25. [PMID: 21463677 PMCID: PMC3096732 DOI: 10.1016/j.freeradbiomed.2011.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 03/24/2011] [Accepted: 03/26/2011] [Indexed: 12/18/2022]
Abstract
Generation of nitric oxide (NO(•)) can upstream induce and downstream mediate the kinases that phosphorylate the α subunit of eukaryotic initiation factor 2 (eIF2α), which plays a critical role in regulating gene expression. There are four known eIF2α kinases (EIF2AKs), and NO(•) affects each one uniquely. Whereas NO(•) directly activates EIF2AK1 (HRI), it indirectly activates EIF2AK3 (PERK). EIF2AK4 (GCN2) is activated by depletion of l-arginine, which is used by nitric oxide synthase (NOS) during the production of NO(•). Finally EIF2AK2 (PKR), which can mediate inducible NOS expression and therefore NO(•) production, can also be activated by NO(•). The production of NO(•) and activation of EIF2AKs coordinately regulate physiological and pathological events such as innate immune response and cell apoptosis.
Collapse
Affiliation(s)
| | | | - Shiyong Wu
- Address correspondence to: Dr. Shiyong Wu, Edison Biotechnology Institute, 101 Konneker Laboratories, The Ridges, Building 25, Athens, OH 45701, Tel. (740) 597-1318, Fax (740) 593-4795;
| |
Collapse
|
30
|
A hydrogen-bonding network formed by the B10–E7–E11 residues of a truncated hemoglobin from Tetrahymena pyriformis is critical for stability of bound oxygen and nitric oxide detoxification. J Biol Inorg Chem 2011; 16:599-609. [DOI: 10.1007/s00775-011-0761-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
|
31
|
Igarashi J, Sasaki T, Kobayashi N, Yoshioka S, Matsushita M, Shimizu T. Autophosphorylation of heme-regulated eukaryotic initiation factor 2α kinase and the role of the modification in catalysis. FEBS J 2011; 278:918-28. [DOI: 10.1111/j.1742-4658.2011.08007.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Abstract
YybT family proteins (COG3887) are functionally unknown proteins that are widely distributed among the firmicutes, including the human pathogens Staphylococcus aureus and Listeria monocytogenes. Recent studies suggested that YybT family proteins are crucial for the in vivo survival of bacterial pathogens during host infection. YybT family proteins contain an N-terminal domain that shares minimum sequence homology with Per-ARNT-Sim (PAS) domains. Despite the lack of an apparent residue for heme coordination, the putative PAS domains of BsYybT and GtYybT, two representative members of the YybT family proteins from Bacillus subtilis and Geobacillus thermodenitrificans, respectively, are found to bind b-type heme with 1:1 stoichiometry. Heme binding suppresses the catalytic activity of the DHH/DHHA1 phosphodiesterase domain and the degenerate GGDEF domain. Absorption spectroscopic studies indicate that YybT proteins do not form stable oxyferrous complexes due to the rapid oxidation of the ferrous iron upon O(2) binding. The ferrous heme, however, forms a hexacoordinated complex with carbon monoxide (CO) and a pentacoordinated complex with nitric oxide (NO). The coordination of NO, but not CO, to the heme stimulates the phosphodiesterase activity. These results suggest that YybT family proteins function as stress-signaling proteins for monitoring cellular heme or the NO level by using a heme-binding PAS domain that features an unconventional heme coordination environment.
Collapse
|
33
|
de Armas-Ricard M, Levicán G, Katz A, Moser J, Jahn D, Orellana O. Cellular levels of heme affect the activity of dimeric glutamyl-tRNA reductase. Biochem Biophys Res Commun 2011; 405:134-9. [PMID: 21219871 DOI: 10.1016/j.bbrc.2011.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/04/2011] [Indexed: 01/25/2023]
Abstract
Glutamyl-tRNA reductase (GluTR) is the first enzyme committed to tetrapyrrole biosynthesis by the C(5)-pathway. This enzyme transforms glutamyl-tRNA into glutamate-1-semi-aldehyde, which is then transformed into 5-amino levulinic acid by the glutamate-1-semi-aldehyde 2,1-aminomutase. Binding of heme to GluTR seems to be relevant to regulate the enzyme function. Recombinant GluTR from Acidithiobacillus ferrooxidans an acidophilic bacterium that participates in bioleaching of minerals was expressed in Escherichia coli and purified as a soluble protein containing type b heme. Upon control of the cellular content of heme in E. coli, GluTR with different levels of bound heme was obtained. An inverse correlation between the activity of the enzyme and the level of bound heme to GluTR suggested a control of the enzyme activity by heme. Heme bound preferentially to dimeric GluTR. An intact dimerization domain was essential for the enzyme to be fully active. We propose that the cellular levels of heme might regulate the activity of GluTR and ultimately its own biosynthesis.
Collapse
Affiliation(s)
- Merly de Armas-Ricard
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
34
|
Yang F, Wang ED. Heme regulates protein homeostasis at transcription, protein translation, and degradation levels. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11515-010-7700-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
35
|
Lukat-Rodgers GS, Correia C, Botuyan MV, Mer G, Rodgers KR. Heme-based sensing by the mammalian circadian protein CLOCK. Inorg Chem 2010; 49:6349-65. [PMID: 20666392 DOI: 10.1021/ic902388q] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Heme is emerging as a key player in the synchrony of circadian-coupled transcriptional regulation. Current evidence suggests that levels of circadian-linked transcription are regulated in response to both the availability of intracellular heme and heme-based sensing of carbon monoxide (CO) and possibly nitric oxide (NO). The protein CLOCK is central to the regulation and maintenance of circadian rhythms in mammals. CLOCK comprises two PAS domains, each with a heme binding site. Our studies focus on the functionality of the murine CLOCK PAS-A domain (residues 103-265). We show that CLOCK PAS-A binds iron(III) protoporhyrin IX to form a complex with 1:1 stoichiometry. Optical absorbance and resonance Raman studies reveal that the heme of ferric CLOCK PAS-A is a six-coordinate, low-spin complex whose resonance Raman signature is insensitive to pH over the range of protein stability. Ferrous CLOCK PAS-A is a mixture of five-coordinate, high-spin and six-coordinate, low-spin complexes. Ferrous CLOCK PAS-A forms complexes with CO and NO. Ferric CLOCK PAS-A undergoes reductive nitrosylation in the presence of NO to generate a CLOCK PAS-A-NO, which is a five-coordinate {FeNO}(7) complex. Formation of the highly stable {FeNO}(7) heme complex from either ferrous or ferric heme makes possible the binding of NO at very low concentration, a characteristic of NO sensors. Comparison of the spectroscopic properties and CO-binding kinetics of CLOCK PAS-A with other CO sensor proteins reveals that CLOCK PAS-A exhibits chemical properties consistent with a heme-based gas sensor protein.
Collapse
Affiliation(s)
- Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, USA
| | | | | | | | | |
Collapse
|
36
|
Correia MA, Sinclair PR, De Matteis F. Cytochrome P450 regulation: the interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal. Drug Metab Rev 2010; 43:1-26. [PMID: 20860521 DOI: 10.3109/03602532.2010.515222] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers, with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biotransformation of both endo- and xenobiotics. This well-recognized functional role notwithstanding, heme also regulates P450 protein synthesis, assembly, repair, and disposal. These less well-appreciated aspects are reviewed herein.
Collapse
Affiliation(s)
- Maria Almira Correia
- Department of Cellular and Molecular Pharmacology, The Liver Center, University of California, San Francisco, 94158, USA.
| | | | | |
Collapse
|
37
|
Acharya P, Chen JJ, Correia MA. Hepatic heme-regulated inhibitor (HRI) eukaryotic initiation factor 2alpha kinase: a protagonist of heme-mediated translational control of CYP2B enzymes and a modulator of basal endoplasmic reticulum stress tone. Mol Pharmacol 2010; 77:575-92. [PMID: 20071449 DOI: 10.1124/mol.109.061259] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have reported previously that the hepatic heme-regulated inhibitor (HRI)-eukaryotic initiation factor 2 alpha (eIF2 alpha) kinase is activated in acute heme-deficient states, resulting in translational shut-off of global hepatic protein synthesis, including phenobarbital (PB)-mediated induction of CYP2B enzymes in rats. These findings revealed that heme regulates hepatic CYP2B synthesis at the translational level via HRI. As a proof of concept, we have now employed a genetic HRI-knockout (KO) mouse hepatocyte model. In HRI-KO hepatocytes, PB-mediated CYP2B protein induction is no longer regulated by hepatic heme availability and proceeds undeterred even after acute hepatic heme depletion. It is noteworthy that genetic ablation of HRI led to a small albeit significant elevation of basal hepatic endoplasmic reticulum (ER) stress as revealed by the activation of ER stress-inducible RNA-dependent protein kinase-like ER-integral (PERK) eIF2 alpha-kinase, and induction of hepatic protein ubiquitination and ER chaperones Grp78 and Grp94. Such ER stress was further augmented after PB-mediated hepatic protein induction. These findings suggest that HRI normally modulates the basal hepatic ER stress tone. Furthermore, because HRI exists in both human and rat liver in its heme-sensitive form and is inducible by cytochrome P450 inducers such as PB, these findings are clinically relevant to acute heme-deficient states, such as the acute hepatic porphyrias. Activation of this exquisitely sensitive heme sensor would normally protect cells by safeguarding cellular energy and nutrients during acute heme deficiency. However, similar HRI activation in genetically predisposed persons could lead to global translational arrest of physiologically relevant enzymes and proteins, resulting in the severe and often fatal clinical symptoms of the acute hepatic porphyrias.
Collapse
Affiliation(s)
- Poulomi Acharya
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
38
|
|
39
|
Ouellet H, Lang J, Couture M, Ortiz de Montellano PR. Reaction of Mycobacterium tuberculosis cytochrome P450 enzymes with nitric oxide. Biochemistry 2009; 48:863-72. [PMID: 19146393 DOI: 10.1021/bi801595t] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During the initial growth infection stage of Mycobacterium tuberculosis (Mtb), (*)NO produced by host macrophages inhibits heme-containing terminal cytochrome oxidases, inactivates iron/sulfur proteins, and promotes entry into latency. Here we evaluate the potential of (*)NO as an inhibitor of Mtb cytochrome P450 enzymes, as represented by CYP130, CYP51, and the two previously uncharacterized enzymes CYP125 and CYP142. Using UV-visible absorption, resonance Raman, and stopped-flow spectroscopy, we investigated the reactions of (*)NO with these heme proteins in their ferric resting form. (*)NO coordinates tightly to CYP125 and CYP142 (submicromolar) and with a lower affinity (micromolar) to CYP130 and CYP51. Anaerobic reduction of the ferric-NO species with sodium dithionite led to the formation of two spectrally distinct classes of five-coordinate ferrous-NO complexes. Exposure of these species to O(2) revealed that the ferrous-NO forms of CYP125 and CYP142 are labile and convert back to the ferric state within a few minutes, whereas ferrous CYP130 and CYP51 bind (*)NO almost irreversibly. This work clearly indicates that, at physiological concentrations (approximately 1 microM), (*)NO would impair the activity of CYP130 and CYP51, whereas CYP125 and CYP142 are more resistant. Selective P450 inhibition may contribute to the inhibitory effects of (*)NO on Mtb growth.
Collapse
Affiliation(s)
- Hugues Ouellet
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94158-2517, USA
| | | | | | | |
Collapse
|
40
|
Tanaka A, Shimizu T. Ligand binding to the Fe(III)-protoporphyrin IX complex of phosphodiesterase from Escherichia coli (Ec DOS) markedly enhances catalysis of cyclic di-GMP: roles of Met95, Arg97, and Phe113 of the putative heme distal side in catalytic regulation and ligand binding. Biochemistry 2009; 47:13438-46. [PMID: 19053256 DOI: 10.1021/bi8012017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphodiesterase (Ec DOS) from Escherichia coli is a gas-sensor enzyme in which binding of gas molecules, such as O(2), CO, and NO, to the Fe(II)-protoporphyrin IX complex in the sensor domain stimulates phosphodiesterase activity toward cyclic-di-GMP. In this study, we report that external axial ligands, such as cyanide or imidazole, bind to Fe(III)-protoporphyrin IX in the sensor domain and induce a 10- to 11-fold increase (from 8.1 up to 86 min(-1)) in catalysis, which is more substantial than that (6.3 to 7.2-fold) observed for other gas-stimulated Fe(II) heme-bound enzymes. Catalytic activity (50 min(-1)) of the heme-free mutant, H77A, was comparable to that of the ligand-stimulated enzymes. Accordingly, we propose that the heme at the sensor domain inhibits catalysis and that ligand binding to the heme iron complex releases this catalytic suppression. Furthermore, mutations of Met95, Arg97, and Phe113 at the putative heme distal side suppressed the ligand effects on catalysis. The rate constants (19,000 x 10(-5) microM(-1)min(-1)) for cyanide binding to the M95A and M95L mutants of the full-length enzyme were 633-fold higher than that to wild-type Ec DOS (30 x 10(-5) microM(-1)min(-1)). The absorption spectrum of the F113Y mutant suggests that the Tyr O(-) group directly coordinates to the Fe(III) complex and that the cyanide binding rate to the mutant is very slow, compared with those of the wild-type and other mutant proteins. We observed a similar trend in the binding behavior of imidazole to full-length mutant enzymes. Therefore, while Met95 and Phe113 are not direct axial ligands for the Fe(III) complex, catalytic, spectroscopic, and ligand binding evidence suggests that these residues are located in the vicinity of the heme.
Collapse
Affiliation(s)
- Atsunari Tanaka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | | |
Collapse
|
41
|
de Rosny E, de Groot A, Jullian-Binard C, Borel F, Suarez C, Le Pape L, Fontecilla-Camps JC, Jouve HM. DHR51, the Drosophila melanogaster Homologue of the Human Photoreceptor Cell-Specific Nuclear Receptor, Is a Thiolate Heme-Binding Protein. Biochemistry 2008; 47:13252-60. [DOI: 10.1021/bi801691b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eve de Rosny
- CEA, CNRS, Université Joseph Fourier, UMR 5075, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France, CEA, CNRS, Université Joseph Fourier, UMR 5249, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 38054 Grenoble, France, CEA, Université Joseph Fourier, UMR-E3, INAC, Laboratoire de Résonances Magnétiques, 38054 Grenoble, France
| | - Arjan de Groot
- CEA, CNRS, Université Joseph Fourier, UMR 5075, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France, CEA, CNRS, Université Joseph Fourier, UMR 5249, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 38054 Grenoble, France, CEA, Université Joseph Fourier, UMR-E3, INAC, Laboratoire de Résonances Magnétiques, 38054 Grenoble, France
| | - Celine Jullian-Binard
- CEA, CNRS, Université Joseph Fourier, UMR 5075, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France, CEA, CNRS, Université Joseph Fourier, UMR 5249, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 38054 Grenoble, France, CEA, Université Joseph Fourier, UMR-E3, INAC, Laboratoire de Résonances Magnétiques, 38054 Grenoble, France
| | - Franck Borel
- CEA, CNRS, Université Joseph Fourier, UMR 5075, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France, CEA, CNRS, Université Joseph Fourier, UMR 5249, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 38054 Grenoble, France, CEA, Université Joseph Fourier, UMR-E3, INAC, Laboratoire de Résonances Magnétiques, 38054 Grenoble, France
| | - Cristian Suarez
- CEA, CNRS, Université Joseph Fourier, UMR 5075, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France, CEA, CNRS, Université Joseph Fourier, UMR 5249, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 38054 Grenoble, France, CEA, Université Joseph Fourier, UMR-E3, INAC, Laboratoire de Résonances Magnétiques, 38054 Grenoble, France
| | - Laurent Le Pape
- CEA, CNRS, Université Joseph Fourier, UMR 5075, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France, CEA, CNRS, Université Joseph Fourier, UMR 5249, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 38054 Grenoble, France, CEA, Université Joseph Fourier, UMR-E3, INAC, Laboratoire de Résonances Magnétiques, 38054 Grenoble, France
| | - Juan C. Fontecilla-Camps
- CEA, CNRS, Université Joseph Fourier, UMR 5075, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France, CEA, CNRS, Université Joseph Fourier, UMR 5249, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 38054 Grenoble, France, CEA, Université Joseph Fourier, UMR-E3, INAC, Laboratoire de Résonances Magnétiques, 38054 Grenoble, France
| | - Hélène M. Jouve
- CEA, CNRS, Université Joseph Fourier, UMR 5075, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France, CEA, CNRS, Université Joseph Fourier, UMR 5249, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 38054 Grenoble, France, CEA, Université Joseph Fourier, UMR-E3, INAC, Laboratoire de Résonances Magnétiques, 38054 Grenoble, France
| |
Collapse
|
42
|
Pervin S, Tran AH, Zekavati S, Fukuto JM, Singh R, Chaudhuri G. Increased susceptibility of breast cancer cells to stress mediated inhibition of protein synthesis. Cancer Res 2008; 68:4862-74. [PMID: 18559534 DOI: 10.1158/0008-5472.can-08-0074] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein synthesis is a tightly controlled process, and its deregulation plays an important role in tumorigenesis. Protein synthesis remains poorly understood with very few well-identified validated targets for therapeutic purposes. In this study, we use nitric oxide (NO), which suppresses protein synthesis by inactivating eukaryotic initiation factor 2-alpha (eIF2-alpha), to examine the mechanism by which low and high oxidative stress inhibits protein synthesis. In breast cancer cells, low NO stress induced heme-regulated inhibitor (HRI) activation, which facilitated gradual decline in short half-life proteins. High NO stress induced HRI and protein kinase R (PKR) activation, leading to a sharp decline in protein synthesis as accessed by a decline in short and long half-life proteins and dramatic morphologic changes. In contrast, human mammary epithelial (HME) and Ras transfected untransformed HME (MCF-10A1 neo N) cells were less susceptible to NO-induced inhibition of protein synthesis and cytostasis. Our results suggest that NO-induced cytostasis in breast cancer cells was due to PKR activation and increased phosphorylation of eIF2-alpha, whereas the reduced susceptibility of normal mammary epithelial cells to NO could be due to the inaccessibility of PKR, which is bound to inhibitor p58.
Collapse
Affiliation(s)
- Shehla Pervin
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Kitanishi K, Igarashi J, Hayasaka K, Hikage N, Saiful I, Yamauchi S, Uchida T, Ishimori K, Shimizu T. Heme-binding characteristics of the isolated PAS-A domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms. Biochemistry 2008; 47:6157-68. [PMID: 18479150 DOI: 10.1021/bi7023892] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuronal PAS protein 2 (NPAS2), a heme-binding transcriptional regulatory factor, is involved in circadian rhythms. Period homologue (Per) is another important transcriptional regulatory factor that binds to cryptochrome (Cry). The resultant Per/Cry heterodimer interacts with the NPAS2/BMAL1 heterodimer to inhibit the transcription of Per and Cry. Previous cell biology experiments indicate that mouse Per2 (mPer2) is also a heme-binding protein, and heme shuttling between mPer2 and NPAS2 may regulate transcription. In the present study, we show that the isolated PAS-A domain of mPer2 (PAS-A-mPer2) binds the Fe(III) protoporphyrin IX complex (hemin) with a heme:protein stoichiometry of 1:1. Optical absorption and EPR spectroscopic findings suggest that the Fe(III)-bound PAS-A-mPer2 is a six-coordinated low-spin complex with Cys and an unknown axial ligand. A Hg (2+) binding study supports the theory that Cys is one of the axial ligands for Fe(III)-bound PAS-A-mPer2. The dissociation rate constant of the Fe(III) complex from PAS-A-mPer2 (6.3 x 10 (-4) s (-1)) was comparable to that of the heme-regulated inhibitor (HRI), a heme-sensor enzyme (1.5 x 10 (-3) s (-1)), but markedly higher than that of metmyoglobin (8.4 x 10 (-7) s (-1)). As confirmed by a Soret absorption spectral shift, heme transferred from the holo basic helix-loop-helix PAS-A of NPAS2 to apoPAS-A-mPer2. The Soret CD spectrum of the C215A mutant PAS-A-mPer2 protein was markedly different from that of the wild-type protein. On the basis of the data, we propose that PAS-A-mPer2 is a heme-sensor protein in which Cys215 is the heme axial ligand.
Collapse
Affiliation(s)
- Kenichi Kitanishi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku UniVersity, Katahira, Sendai 980-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Igarashi J, Murase M, Iizuka A, Pichierri F, Martinkova M, Shimizu T. Elucidation of the heme binding site of heme-regulated eukaryotic initiation factor 2alpha kinase and the role of the regulatory motif in heme sensing by spectroscopic and catalytic studies of mutant proteins. J Biol Chem 2008; 283:18782-91. [PMID: 18450746 DOI: 10.1074/jbc.m801400200] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Heme-regulated eukaryotic initiation factor 2alpha (eIF2alpha) kinase (HRI) functions in response to the heme iron concentration. At the appropriate heme iron concentrations under normal conditions, HRI function is suppressed by binding of the heme iron. Conversely, upon heme iron shortage, HRI autophosphorylates and subsequently phosphorylates the substrate, eIF2alpha, leading to the termination of protein synthesis. The molecular mechanism of heme sensing by HRI, including identification of the specific binding site, remains to be established. In the present study we demonstrate that His-119/His-120 and Cys-409 are the axial ligands for the Fe(III)-protoporphyrin IX complex (hemin) in HRI, based on spectral data on site-directed mutant proteins. Cys-409 is part of the heme-regulatory Cys-Pro motif in the kinase domain. A P410A full-length mutant protein displayed loss of heme iron affinity. Surprisingly, inhibitory effects of the heme iron on catalysis and changes in the heme dissociation rate constants in full-length His-119/His-120 and Cys-409 mutant proteins were marginally different to wild type. In contrast, heme-induced inhibition of Cys-409 mutants of the isolated kinase domain and N-terminal-truncated proteins was substantially weaker than that of the full-length enzyme. A pulldown assay disclosed heme-dependent interactions between the N-terminal and kinase domains. Accordingly, we propose that heme regulation is induced by interactions between heme and the catalytic domain in conjunction with global tertiary structural changes at the N-terminal domain that accompany heme coordination and not merely by coordination of the heme iron with amino acids on the protein surface.
Collapse
Affiliation(s)
- Jotaro Igarashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University at Katahira, Sendai 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Badyal SK, Metcalfe CL, Basran J, Efimov I, Moody PCE, Raven EL. Iron Oxidation State Modulates Active Site Structure in a Heme Peroxidase,. Biochemistry 2008; 47:4403-9. [DOI: 10.1021/bi702337n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandip K. Badyal
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, U.K., and Department of Biochemistry and Henry Wellcome Laboratories for Structural Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, U.K
| | - Clive L. Metcalfe
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, U.K., and Department of Biochemistry and Henry Wellcome Laboratories for Structural Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, U.K
| | - Jaswir Basran
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, U.K., and Department of Biochemistry and Henry Wellcome Laboratories for Structural Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, U.K
| | - Igor Efimov
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, U.K., and Department of Biochemistry and Henry Wellcome Laboratories for Structural Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, U.K
| | - Peter C. E. Moody
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, U.K., and Department of Biochemistry and Henry Wellcome Laboratories for Structural Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, U.K
| | - Emma Lloyd Raven
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, U.K., and Department of Biochemistry and Henry Wellcome Laboratories for Structural Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, U.K
| |
Collapse
|
46
|
Carballal S, Madzelan P, Zinola CF, Graña M, Radi R, Banerjee R, Alvarez B. Dioxygen Reactivity and Heme Redox Potential of Truncated Human Cystathionine β-Synthase. Biochemistry 2008; 47:3194-201. [DOI: 10.1021/bi700912k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastián Carballal
- Laboratorio de Enzimología and Laboratorio de Electroquímica Fundamental, Facultad de Ciencias, Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France, Redox Biology Center and the Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Biological Chemistry, University of Michigan, Ann Arbor,
| | - Peter Madzelan
- Laboratorio de Enzimología and Laboratorio de Electroquímica Fundamental, Facultad de Ciencias, Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France, Redox Biology Center and the Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Biological Chemistry, University of Michigan, Ann Arbor,
| | - Carlos F. Zinola
- Laboratorio de Enzimología and Laboratorio de Electroquímica Fundamental, Facultad de Ciencias, Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France, Redox Biology Center and the Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Biological Chemistry, University of Michigan, Ann Arbor,
| | - Martín Graña
- Laboratorio de Enzimología and Laboratorio de Electroquímica Fundamental, Facultad de Ciencias, Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France, Redox Biology Center and the Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Biological Chemistry, University of Michigan, Ann Arbor,
| | - Rafael Radi
- Laboratorio de Enzimología and Laboratorio de Electroquímica Fundamental, Facultad de Ciencias, Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France, Redox Biology Center and the Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Biological Chemistry, University of Michigan, Ann Arbor,
| | - Ruma Banerjee
- Laboratorio de Enzimología and Laboratorio de Electroquímica Fundamental, Facultad de Ciencias, Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France, Redox Biology Center and the Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Biological Chemistry, University of Michigan, Ann Arbor,
| | - Beatriz Alvarez
- Laboratorio de Enzimología and Laboratorio de Electroquímica Fundamental, Facultad de Ciencias, Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France, Redox Biology Center and the Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Biological Chemistry, University of Michigan, Ann Arbor,
| |
Collapse
|
47
|
Effects of mutations in the heme domain on the transcriptional activity and DNA-binding activity of NPAS2. Biochem Biophys Res Commun 2008; 368:292-7. [PMID: 18230344 DOI: 10.1016/j.bbrc.2008.01.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 01/13/2008] [Indexed: 11/20/2022]
Abstract
The heme domain of neuronal PAS domain protein 2 (NPAS2), a transcription factor that regulates the mammalian circadian rhythm, has been suggested to act as a sensor for carbon monoxide. To characterize the role of the heme domain in this function, we investigated the effects of PASA domain mutants, in the context of full-length NPAS2, on the transcriptional activity of the mouse Period 1 gene in NIH3T3 cells. Mutation of the endogenous ligand for ferrous heme (H119A or H171A) resulted in remarkably reduced transcriptional activity. In gel-shift assays, H119A or H171A mutants of the isolated basic helix-loop-helix (bHLH)-PASA domain impaired heterodimer formation with BMAL1, resulting in loss of DNA binding to the canonical E-box (CACGTG). These results indicate that the transcriptional activities of the mutants correlated well with their DNA-binding activities, suggesting that local conformational changes near the axial ligands of the PASA domain are responsible for its regulation of transcription.
Collapse
|
48
|
Igarashi J, Murase M, Iwashita J, Sasaki T, Shimizu T. O8. NO-induced activation of a heme-sensor, eIF2α kinase, in association with binding to cysteine and heme. Nitric Oxide 2008. [DOI: 10.1016/j.niox.2008.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Martinkova M, Igarashi J, Shimizu T. Eukaryotic initiation factor 2α kinase is a nitric oxide-responsive mercury sensor enzyme: Potent inhibition of catalysis by the mercury cation and reversal by nitric oxide. FEBS Lett 2007; 581:4109-14. [PMID: 17689536 DOI: 10.1016/j.febslet.2007.07.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 07/16/2007] [Accepted: 07/16/2007] [Indexed: 10/23/2022]
Abstract
The activity of one of the eukaryotic initiation factor 2alpha kinases, heme-regulated inhibitor (HRI), is modulated by heme binding. Here, we demonstrate for the first time that Hg2+ strongly inhibits the function of HRI (IC50=0.6 microM), and nitric oxide fully reverses this inhibition. Other divalent metal cations, such as Fe2+, Cu2+, Cd2+, Zn2+ and Pb2+, also significantly inhibit kinase activity with IC50 values of 1.9-8.5 microM. Notably, inhibition by cations other than Hg2+ is not reversed by nitric oxide. Our present data support dual roles of Hg2+ and nitric oxide in the regulation of protein synthesis during cell emergency states.
Collapse
Affiliation(s)
- Marketa Martinkova
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | | | | |
Collapse
|
50
|
Chen JJ. Regulation of protein synthesis by the heme-regulated eIF2alpha kinase: relevance to anemias. Blood 2007; 109:2693-9. [PMID: 17110456 PMCID: PMC1852217 DOI: 10.1182/blood-2006-08-041830] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During erythroid differentiation and maturation, it is critical that the 3 components of hemoglobin, alpha-globin, beta-globin, and heme, are made in proper stoichiometry to form stable hemoglobin. Heme-regulated translation mediated by the heme-regulated inhibitor kinase (HRI) provides one major mechanism that ensures balanced synthesis of globins and heme. HRI phosphorylates the alpha-subunit of eukaryotic translational initiation factor 2 (eLF2alpha) in heme deficiency, thereby inhibiting protein synthesis globally. In this manner, HRI serves as a feedback inhibitor of globin synthesis by sensing the intracellular concentration of heme through its heme-binding domains. HRI is essential not only for the translational regulation of globins, but also for the survival of erythroid precursors in iron deficiency. Recently, the protective function of HRI has also been demonstrated in murine models of erythropoietic protoporphyria and beta-thalassemia. In these 3 anemias, HRI is essential in determining red blood cell size, number, and hemoglobin content per cell. Translational regulation by HRI is critical to reduce excess synthesis of globin proteins or heme under nonoptimal disease states, and thus reduces the severity of these diseases. The protective role of HRI may be more common among red cell disorders.
Collapse
Affiliation(s)
- Jane-Jane Chen
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology (HST), MIT, Cambridge, MA 02139, USA.
| |
Collapse
|