1
|
Okura GC, Bharadwaj AG, Waisman DM. Recent Advances in Molecular and Cellular Functions of S100A10. Biomolecules 2023; 13:1450. [PMID: 37892132 PMCID: PMC10604489 DOI: 10.3390/biom13101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
S100A10 (p11, annexin II light chain, calpactin light chain) is a multifunctional protein with a wide range of physiological activity. S100A10 is unique among the S100 family members of proteins since it does not bind to Ca2+, despite its sequence and structural similarity. This review focuses on studies highlighting the structure, regulation, and binding partners of S100A10. The binding partners of S100A10 were collated and summarized.
Collapse
Affiliation(s)
- Gillian C. Okura
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| |
Collapse
|
2
|
S100A10 Promotes Pancreatic Ductal Adenocarcinoma Cells Proliferation, Migration and Adhesion through JNK/LAMB3-LAMC2 Axis. Cancers (Basel) 2022; 15:cancers15010202. [PMID: 36612197 PMCID: PMC9818352 DOI: 10.3390/cancers15010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors, characterized by diagnosis at an advanced stage and a poor prognosis. As a member of the S100 protein family, S100A10 regulates multiple biological functions related to cancer progression and metastasis. However, the role of S100A10 in PDAC is still not completely elucidated. In this study, we reported that S100A10 was significantly up-regulated in PDAC tissue and associated with a poor prognosis by integrated bioinformatic analysis and human PDAC tissue samples. In vitro, down-regulation of S100A10 reduced the proliferation, migration, and adhesion of PDAC cell lines, whereas up-regulation of S100A10 showed the opposite effect. Furthermore, LAMB3 was proved to be activated by S100A10 using RNA-sequencing and western blotting. The effect of LAMB3 on the proliferation, migration, and adhesion of PDAC cells was similar to that of S100A10. Up-regulation or down-regulation of LAMB3 could reverse the corresponding effect of S100A10. Moreover, we validated S100A10 activates LAMB3 through the JNK pathway, and LAMB3 was further proved to interact with LAMC2. Mice-bearing orthotopic pancreatic tumors showed that S100A10 knocked-down PANC-1 cells had a smaller tumor size than the control group. In conclusion, S100A10 promotes PDAC cells proliferation, migration, and adhesion through JNK/LAMB3-LAMC2 axis.
Collapse
|
3
|
Cottonseed extracts regulate gene expression in human colon cancer cells. Sci Rep 2022; 12:1039. [PMID: 35058516 PMCID: PMC8776848 DOI: 10.1038/s41598-022-05030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Cotton plant provides economically important fiber and cottonseed, but cottonseed contributes 20% of the crop value. Cottonseed value could be increased by providing high value bioactive compounds and polyphenolic extracts aimed at improving nutrition and preventing diseases because plant polyphenol extracts have been used as medicinal remedy for various diseases. The objective of this study was to investigate the effects of cottonseed extracts on cell viability and gene expression in human colon cancer cells. COLO 225 cells were treated with ethanol extracts from glanded and glandless cottonseed followed by MTT and qPCR assays. Cottonseed extracts showed minor effects on cell viability. qPCR assay analyzed 55 mRNAs involved in several pathways including DGAT, GLUT, TTP, IL, gossypol-regulated and TTP-mediated pathways. Using BCL2 mRNA as the internal reference, qPCR analysis showed minor effects of ethanol extracts from glanded seed coat and kernel and glandless seed coat on mRNA levels in the cells. However, glandless seed kernel extract significantly reduced mRNA levels of many genes involved in glucose transport, lipid biosynthesis and inflammation. The inhibitory effects of glandless kernel extract on gene expression may provide a useful opportunity for improving nutrition and healthcare associated with colon cancer. This in turn may provide the potential of increasing cottonseed value by using ethanol extract as a nutrition/health intervention agent.
Collapse
|
4
|
Bharadwaj AG, Kempster E, Waisman DM. The ANXA2/S100A10 Complex—Regulation of the Oncogenic Plasminogen Receptor. Biomolecules 2021; 11:biom11121772. [PMID: 34944416 PMCID: PMC8698604 DOI: 10.3390/biom11121772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The generation of the serine protease plasmin is initiated by the binding of its zymogenic precursor, plasminogen, to cell surface receptors. The proteolytic activity of plasmin, generated at the cell surface, plays a crucial role in several physiological processes, including fibrinolysis, angiogenesis, wound healing, and the invasion of cells through both the basement membrane and extracellular matrix. The seminal observation by Albert Fischer that cancer cells, but not normal cells in culture, produce large amounts of plasmin formed the basis of current-day observations that plasmin generation can be hijacked by cancer cells to allow tumor development, progression, and metastasis. Thus, the cell surface plasminogen-binding receptor proteins are critical to generating plasmin proteolytic activity at the cell surface. This review focuses on one of the twelve well-described plasminogen receptors, S100A10, which, when in complex with its regulatory partner, annexin A2 (ANXA2), forms the ANXA2/S100A10 heterotetrameric complex referred to as AIIt. We present the theme that AIIt is the quintessential cellular plasminogen receptor since it regulates the formation and the destruction of plasmin. We also introduce the term oncogenic plasminogen receptor to define those plasminogen receptors directly activated during cancer progression. We then discuss the research establishing AIIt as an oncogenic plasminogen receptor-regulated during EMT and activated by oncogenes such as SRC, RAS, HIF1α, and PML-RAR and epigenetically by DNA methylation. We further discuss the evidence derived from animal models supporting the role of S100A10 in tumor progression and oncogenesis. Lastly, we describe the potential of S100A10 as a biomarker for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Alamelu G. Bharadwaj
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Emma Kempster
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
| | - David M. Waisman
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Correspondence: ; Tel.: +1-(902)-494-1803; Fax: +1-(902)-494-1355
| |
Collapse
|
5
|
Li X, Qiu N, Li Q. Prognostic Values and Clinical Significance of S100 Family Member's Individualized mRNA Expression in Pancreatic Adenocarcinoma. Front Genet 2021; 12:758725. [PMID: 34804125 PMCID: PMC8595214 DOI: 10.3389/fgene.2021.758725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/14/2021] [Indexed: 12/27/2022] Open
Abstract
Objective: Pancreatic adenocarcinoma (PAAD) is a common malignant tumor worldwide. S100 family (S100s) is wildly involved in regulating the occurrence, development, invasion, metastasis, apoptosis, and drug resistance of many malignant tumors. However, the expression pattern, prognostic value, and oncological role of individual S100s members in PAAD need to be elucidated. Methods: The transcriptional expression levels of S100s were analyzed through the Oncomine and GEPIA, respectively. The protein levels of S100s members in PAAD were studied by Human Protein Atlas. The correlation between S100 mRNA expression and overall survival and tumor stage in PAAD patients was studied by GEPIA. The transcriptional expression correlation and gene mutation rate of S100s members in PAAD patients were explored by cBioPortal. The co-expression networks of S100s are identified using STRING and Gene MANIA to predict their potential functions. The correlation of S100s expression and tumor-infiltrating immune cells was tested by TIMER. Pathway activity and drug target analyzed by GSCALite. Results: 13 S100s members were upregulated in PAAD tissues. 15 S100s members were associated with TP53 mutation. Expression levels of S100A3/A5/A6/A10/A11/A14/A16/B/P/Z were significantly correlated with the pathological stage. Prognosis analysis demonstrated that PAAD patients with low mRNA levels of S100A1/B/Z or high levels of S100A2/A3/A5/A10/A11/A14/A16 had a poor prognosis. Immuno-infiltration analysis showed that the mRNA levels of S100A10/A11/A14/A16 were correlated with the infiltration degree of macrophages in PAAD. Drug sensitivity analysis showed that PAAD expressing high levels of S100A2/A6/A10/A11/A13/A14/A16 maybe resistant to small molecule drugs. Conclusion: This study identifies the clinical significance and biological functions of the S100s in PAAD, which may provide novel insights for the selection of prognostic biomarkers.
Collapse
Affiliation(s)
- Xiaomin Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ning Qiu
- Key Laboratory of Ocean and Marginal Sea Geology, Guangdong Southern Marine Science & Engineering Laboratory (Guangzhou), South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Qijuan Li
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
6
|
Plasmin and Plasminogen System in the Tumor Microenvironment: Implications for Cancer Diagnosis, Prognosis, and Therapy. Cancers (Basel) 2021; 13:cancers13081838. [PMID: 33921488 PMCID: PMC8070608 DOI: 10.3390/cancers13081838] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In this review, we present a detailed discussion of how the plasminogen-activation system is utilized by tumor cells in their unrelenting attack on the tissues surrounding them. Plasmin is an enzyme which is responsible for digesting several proteins that hold the tissues surrounding solid tumors together. In this process tumor cells utilize the activity of plasmin to digest tissue barriers in order to leave the tumour site and spread to other parts of the body. We specifically focus on the role of plasminogen receptor—p11 which is an important regulatory protein that facilitates the conversion of plasminogen to plasmin and by this means promotes the attack by the tumour cells on their surrounding tissues. Abstract The tumor microenvironment (TME) is now being widely accepted as the key contributor to a range of processes involved in cancer progression from tumor growth to metastasis and chemoresistance. The extracellular matrix (ECM) and the proteases that mediate the remodeling of the ECM form an integral part of the TME. Plasmin is a broad-spectrum, highly potent, serine protease whose activation from its precursor plasminogen is tightly regulated by the activators (uPA, uPAR, and tPA), the inhibitors (PAI-1, PAI-2), and plasminogen receptors. Collectively, this system is called the plasminogen activation system. The expression of the components of the plasminogen activation system by malignant cells and the surrounding stromal cells modulates the TME resulting in sustained cancer progression signals. In this review, we provide a detailed discussion of the roles of plasminogen activation system in tumor growth, invasion, metastasis, and chemoresistance with specific emphasis on their role in the TME. We particularly review the recent highlights of the plasminogen receptor S100A10 (p11), which is a pivotal component of the plasminogen activation system.
Collapse
|
7
|
Ito D, Ito H, Ideta T, Kanbe A, Ninomiya S, Shimizu M. Systemic and topical administration of spermidine accelerates skin wound healing. Cell Commun Signal 2021; 19:36. [PMID: 33752688 PMCID: PMC7986284 DOI: 10.1186/s12964-021-00717-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo. METHODS A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography. RESULTS Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro. CONCLUSION These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing. Video Abstract.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Yanagido, Gifu City, 501-1194 Japan
| | - Hiroyasu Ito
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi City, 470-1192 Japan
| | - Takayasu Ideta
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Yanagido, Gifu City, 501-1194 Japan
| | - Ayumu Kanbe
- Department of Clinical Laboratory, Gifu University Hospital, Yanagido, Gifu City, 501-1194 Japan
| | - Soranobu Ninomiya
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Yanagido, Gifu City, 501-1194 Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Yanagido, Gifu City, 501-1194 Japan
| |
Collapse
|
8
|
Bharadwaj AG, Dahn ML, Liu RZ, Colp P, Thomas LN, Holloway RW, Marignani PA, Too CKL, Barnes PJ, Godbout R, Marcato P, Waisman DM. S100A10 Has a Critical Regulatory Function in Mammary Tumor Growth and Metastasis: Insights Using MMTV-PyMT Oncomice and Clinical Patient Sample Analysis. Cancers (Basel) 2020; 12:cancers12123673. [PMID: 33297495 PMCID: PMC7762402 DOI: 10.3390/cancers12123673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/05/2023] Open
Abstract
Simple Summary The key challenges that face patients during breast cancer therapy is the metastatic spread and aggressiveness of the disease. Thus, the goal of current breast cancer research is to discover new therapeutic and diagnostic targets that limit the aggressive spread of the cancer. In this study, we investigated the role of protein S100A10 (p11) in breast tumor growth, progression, and metastasis using mouse cancer models and patient tumor sample analysis. We have demonstrated in our previous studies that p11 is critical for the function of a proteolytic enzyme–plasmin, which aids in the digestion of the tissues surrounding the tumor and allows the escape of the cancer cells from the breast tissue to organs such as the lungs and bone. Here, we present evidence that genetic deletion of p11 results in smaller and less aggressive mammary tumors in mice. We also observed that the cancer spread to the lungs is dramatically reduced in the absence of p11 gene in mice. Subsequent analysis of breast cancer patient tissues showed a correlation between higher p11 expression and both poor survival and aggressive cancer. Abstract S100A10 (p11) is a plasminogen receptor that regulates cellular plasmin generation by cancer cells. In the current study, we used the MMTV-PyMT mouse breast cancer model, patient tumor microarray, and immunohistochemical (IHC) analysis to investigate the role of p11 in oncogenesis. The genetic deletion of p11 resulted in significantly decreased tumor onset, growth rate, and spontaneous pulmonary metastatic burden in the PyMT/p11-KO (knock-out) mice. This phenotype was accompanied by substantial reduction in Ki67 positivity, macrophage infiltration, decreased vascular density in the primary tumors, and decrease in invasive carcinoma and pulmonary metastasis. Surprisingly, IHC analysis of wild-type MMTV-PyMT mice failed to detect p11 expression in the tumors or metastatic tumor cells and loss of p11 did not decrease plasmin generation in the PyMT tumors and cells. Furthermore, tumor cells expressing p11 displayed dramatically reduced lung metastasis when injected into p11-depleted mice, further strengthening the stromal role of p11 in tumor growth and metastasis. Transcriptome analysis of the PyMT tumors from p11-KO mice showed marked reduction in genes such as Areg, Muc1, and S100a8 involved in breast cancer development, progression, and inflammation. The PyMT/p11-KO tumors displayed a remarkable increase in inflammatory cytokines such as interleukin (Il)-6, Il-10, and interferon (Ifn)-γ. Gene expression profiling and IHC of primary breast cancer samples showed that p11 mRNA and protein levels were significantly higher in tumor tissues compared to normal mammary tissue. P11 mRNA expression was significantly associated with poor patient prognosis and significantly elevated in high grade, triple negative (TN) tumors, and tumors with high proliferative index. This is the first study examining the crucial role of p11 in breast tumor development and metastasis, thus emphasizing its potential as a diagnostic and prognostic biomarker in breast cancer.
Collapse
Affiliation(s)
- Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
| | - Margaret L. Dahn
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
| | - Rong-Zong Liu
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2Z1, Canada; (R.-Z.L.); (R.G.)
| | - Patricia Colp
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
| | - Lynn N. Thomas
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (L.N.T.); (R.W.H.); (P.A.M.); (C.K.L.T.)
| | - Ryan W. Holloway
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (L.N.T.); (R.W.H.); (P.A.M.); (C.K.L.T.)
| | - Paola A. Marignani
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (L.N.T.); (R.W.H.); (P.A.M.); (C.K.L.T.)
| | - Catherine K. L. Too
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (L.N.T.); (R.W.H.); (P.A.M.); (C.K.L.T.)
| | - Penelope J. Barnes
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2Z1, Canada; (R.-Z.L.); (R.G.)
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
- Department of Microbiology and Immunology, Dalhousie University, NS B3H 4R2, Canada
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (L.N.T.); (R.W.H.); (P.A.M.); (C.K.L.T.)
- Correspondence:
| |
Collapse
|
9
|
An Integrated Bioinformatic Analysis of the S100 Gene Family for the Prognosis of Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4746929. [PMID: 33294444 PMCID: PMC7718059 DOI: 10.1155/2020/4746929] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/28/2020] [Indexed: 11/23/2022]
Abstract
Background S100 family genes exclusively encode at least 20 calcium-binding proteins, which possess a wide spectrum of intracellular and extracellular functions in vertebrates. Multiple lines of evidences suggest that dysregulated S100 proteins are associated with human malignancies including colorectal cancer (CRC). However, the diverse expression patterns and prognostic roles of distinct S100 genes in CRC have not been fully elucidated. Methods In the current study, we analyzed the mRNA expression levels of S100 family genes and proteins and their associations with the survival of CRC patients using the Oncomine analysis and GEPIA databases. Expressions and mutations of S100 family genes were analyzed using the cBioPortal, and protein-protein interaction (PPI) networks of S100 proteins and their mutation-related coexpressed genes were analyzed using STRING and Cytoscape. Results We observed that the mRNA expression levels of S100A2, S100A3, S100A9, S100A11, and S100P were higher and the level of S100B was lower in CRC tissues than those in normal colon mucosa. A high S100A10 levels was associated with advanced-stage CRC. Results from GEPIA database showed that highly expressed S100A1 was correlated with worse overall survival (OS) and disease-free survival (DFS) and that overexpressions of S100A2 and S100A11 were associated with poor DFS of CRC, indicating that S100A1, S100A2, and S100A11 are potential prognostic markers. Unexpectedly, most of S100 family genes showed no significant prognostic values in CRC. Conclusions Our findings, though still need to be ascertained, offer novel insights into the prognostic implications of the S100 family in CRC and will inspire more clinical trials to explore potential S100-targeted inhibitors for the treatment of CRC.
Collapse
|
10
|
Quan X, Zhang N, Chen Y, Zeng H, Deng J. Development of an immune-related prognostic model for pediatric acute lymphoblastic leukemia patients. Mol Genet Genomic Med 2020; 8:e1404. [PMID: 32666718 PMCID: PMC7507390 DOI: 10.1002/mgg3.1404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 01/12/2023] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is the most common hematological malignancy in pediatrics, and immune‐related genes (IRGs) play crucial role in its development. Our study aimed to identify prognostic immune biomarkers of pediatric ALL and construct a risk assessment model. Methods Pediatric ALL patients’ gene expression data were downloaded from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. We screened differentially expressed IRGs (DEIRGs) between the relapse and non‐relapse groups. Cox regression analysis was used to identify optimal prognostic genes, then, a risk model was constructed, and its accuracy was verified in different cohorts. Results We screened 130 DEIRGs from 251 pediatric ALL samples. The top three pathways that DEIRGs may influence tumor progression are NABA matrisome‐associated, chemotaxis, and antimicrobial humoral response. A set of 84 prognostic DEIRGs was identified by using univariate Cox analysis. Then, Lasso regression and multivariate Cox regression analysis screened four optimal genes (PRDX2, S100A10, RORB, and SDC1), which were used to construct the prognostic risk model. The risk score was calculated and the survival analysis results showed that high‐risk score was associated with poor overall survival (OS) (p = 3.195 × 10−7). The time‐dependent survival receiver operating characteristic curves showed good prediction accuracy (Area Under Curves for 3‐year, 5‐year OS were 0.892 and 0.89, respectively). And the predictive performance of our risk model was successfully verified in testing cohort and entire cohort. Conclusions Our prognostic risk model can effectively divide pediatric ALL patients into high‐risk and low‐risk groups, which may help predict clinical prognosis and optimize individualized treatment.
Collapse
Affiliation(s)
- Xi Quan
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Nan Zhang
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Ying Chen
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Hanqing Zeng
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Jianchuan Deng
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
11
|
Tao X, Wu X, Huang T, Mu D. Identification and Analysis of Dysfunctional Genes and Pathways in CD8 + T Cells of Non-Small Cell Lung Cancer Based on RNA Sequencing. Front Genet 2020; 11:352. [PMID: 32457792 PMCID: PMC7227791 DOI: 10.3389/fgene.2020.00352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/23/2020] [Indexed: 12/26/2022] Open
Abstract
Lung cancer, the most common of malignant tumors, is typically of the non-small cell (NSCLC) type. T-cell-based immunotherapies are a promising and powerful approach to treating NSCLCs. To characterize the CD8+ T cells of non-small cell lung cancer, we re-analyzed the published RNA-Seq gene expression profiles of 36 CD8+ T cell isolated from tumor (TIL) samples and 32 adjacent uninvolved lung (NTIL) samples. With an advanced Monte Carlo method of feature selection, we identified the CD8+ TIL specific expression patterns. These patterns revealed the key dysfunctional genes and pathways in CD8+ TIL and shed light on the molecular mechanisms of immunity and use of immunotherapy.
Collapse
Affiliation(s)
- Xuefang Tao
- Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Xiaotang Wu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Deguang Mu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
12
|
Saiki Y, Horii A. Multiple functions of S100A10, an important cancer promoter. Pathol Int 2019; 69:629-636. [PMID: 31612598 DOI: 10.1111/pin.12861] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
The S100 group of calcium binding proteins is composed of 21 members that exhibit tissue/cell specific expressions. These S100 proteins bind a diverse range of targets and regulate multiple cellular processes, including proliferation, migration and differentiation. S100A10, also known as p11, binds mainly to annexin A2 and mediates the conversion of plasminogen to an active protease, plasmin. Higher S100A10 expression has been reported to link to worse outcome and/or chemoresistance in a number of cancer types in lung, breast, ovary, pancreas, gall bladder and colorectum and leukemia although some discrepancy was reported. In this review, we focused on the roles of the S100A10 in cancer. We summarized its biological functions, role in cancer progression, prognostic value and targeting of S100A10 for cancer therapy.
Collapse
Affiliation(s)
- Yuriko Saiki
- Department of Molecular Pathology, Tohoku University School of Medicine, Miyagi, Japan
| | - Akira Horii
- Department of Molecular Pathology, Tohoku University School of Medicine, Miyagi, Japan
| |
Collapse
|
13
|
Lou Y, Han M, Liu H, Niu Y, Liang Y, Guo J, Zhang W, Wang H. Essential roles of S100A10 in Toll-like receptor signaling and immunity to infection. Cell Mol Immunol 2019; 17:1053-1062. [PMID: 31467414 PMCID: PMC7608084 DOI: 10.1038/s41423-019-0278-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/12/2019] [Indexed: 11/09/2022] Open
Abstract
Toll-like receptors (TLRs) are key pattern recognition receptors that mediate innate immune responses to infection. However, uncontrolled TLR activation can lead to severe inflammatory disorders such as septic shock. The molecular mechanisms through which TLR responses are regulated are not fully understood. Here, we demonstrate an essential function of S100A10 in TLR signaling. S100A10 was constitutively expressed in macrophages, but was significantly downregulated upon TLR activation. S100A10-deficient macrophages were hyperresponsive to TLR stimulation, and S100A10-deficient mice were more sensitive to endotoxin-induced lethal shock and Escherichia coli-induced abdominal sepsis. Mechanistically, S100A10 regulated macrophage inflammatory responses by interfering with the appropriate recruitment and activation of the receptor-proximal signaling components and eventually inhibited TLR-triggered downstream signaling. These findings expand our understanding of TLR signaling and establish S100A10 as an essential negative regulator of TLR function and a potential therapeutic target for treating inflammatory diseases.
Collapse
Affiliation(s)
- Yunwei Lou
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China
| | - Meijuan Han
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China
| | - Huandi Liu
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China
| | - Yuna Niu
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China
| | - Yinming Liang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China.,Laboratory of Genetic Regulators in the Immune System, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China
| | - Jiqiang Guo
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China.,Department of Immunology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, 453000, People's Republic of China
| | - Wen Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China
| | - Hui Wang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China. .,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China.
| |
Collapse
|
14
|
S100A10 and Cancer Hallmarks: Structure, Functions, and its Emerging Role in Ovarian Cancer. Int J Mol Sci 2018; 19:ijms19124122. [PMID: 30572596 PMCID: PMC6321037 DOI: 10.3390/ijms19124122] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022] Open
Abstract
S100A10, which is also known as p11, is located in the plasma membrane and forms a heterotetramer with annexin A2. The heterotetramer, comprising of two subunits of annexin A2 and S100A10, activates the plasminogen activation pathway, which is involved in cellular repair of normal tissues. Increased expression of annexin A2 and S100A10 in cancer cells leads to increased levels of plasmin—which promotes the degradation of the extracellular matrix—increased angiogenesis, and the invasion of the surrounding organs. Although many studies have investigated the functional role of annexin A2 in cancer cells, including ovarian cancer, S100A10 has been less studied. We recently demonstrated that high stromal annexin A2 and high cytoplasmic S100A10 expression is associated with a 3.4-fold increased risk of progression and 7.9-fold risk of death in ovarian cancer patients. Other studies have linked S100A10 with multidrug resistance in ovarian cancer; however, no functional studies to date have been performed in ovarian cancer cells. This article reviews the current understanding of S100A10 function in cancer with a particular focus on ovarian cancer.
Collapse
|
15
|
Bai Y, Li LD, Li J, Lu X. Prognostic values of S100 family members in ovarian cancer patients. BMC Cancer 2018; 18:1256. [PMID: 30558666 PMCID: PMC6296138 DOI: 10.1186/s12885-018-5170-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/02/2018] [Indexed: 01/06/2023] Open
Abstract
Objective Exhibiting high consistence in sequence and structure, S100 family members are interchangeable in function and they show a wide spectrum of biological processes, including proliferation, apoptosis, migration, inflammation and differentiation and the like. While the prognostic value of each individual S100 in ovarian cancer is still elusive. In current study, we investigated the prognostic value of S100 family members in the ovarian cancer. Methods We used the Kaplan Meier plotter (KM plotter) database, in which updated gene expression data and survival information are from 1657 ovarian cancer patients, to assess the relevance of individual S100 family mRNA expression to overall survival in various ovarian cancer subtypes and different clinicopathological features. Results It was found that high expression of S100A2 (HR = 1.18, 95%CI: 1.04–1.34, P = 0.012), S100A7A (HR = 1.3, 95%CI: 1.04–1.63, P = 0.02),S100A10 (HR = 1.2, 95%CI: 1.05–1.38, P = 0.0087),and S100A16 (HR = 1.23, 95%CI: 1–1.51, P = 0.052) were significantly correlated with worse OS in all ovarian cancer patients, while the expression of S100A1 (HR = 0.87, 95%CI: 0.77–0.99, P = 0.039), S100A3 (HR = 0.83, 95%CI: 0.71–0.96, P = 0.0011), S100A5 (HR = 0.84, 95%CI: 0.73–0.97, P = 0.017), S100A6 (HR = 0.84, 95%CI: 0.72–0.98, P = 0.024), S100A13 (HR = 0.85, 95%CI:0.75–0.97, P = 0.014) and S100G (HR = 0.86, 95%CI: 0.74–0.99, P = 0.041) were associated with better prognosis. Furthermore, we assessed the prognostic value of S100 expression in different subtypes and the clinicopathological features, including pathological grades, clinical stages and TP53 mutation status, of ovarian cancer patients. Conclusion Comprehensive understanding of the S100 family members may have guiding significance for the diagnosis and outcome of ovarian cancer patients. Electronic supplementary material The online version of this article (10.1186/s12885-018-5170-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Bai
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Liang-Dong Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200030, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Jun Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Xin Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China. .,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China. .,Present Address: Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, No.419, Fangxie Road, Shanghai, 200011, China.
| |
Collapse
|
16
|
Wang C, Zhang C, Li X, Shen J, Xu Y, Shi H, Mu X, Pan J, Zhao T, Li M, Geng B, Xu C, Wen H, You Q. CPT1A-mediated succinylation of S100A10 increases human gastric cancer invasion. J Cell Mol Med 2018; 23:293-305. [PMID: 30394687 PMCID: PMC6307794 DOI: 10.1111/jcmm.13920] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/31/2018] [Accepted: 08/26/2018] [Indexed: 12/29/2022] Open
Abstract
Gastric cancer (GC) is a malignancy of the lining of the stomach and is prone to distant metastasis, which involves a variety of complex molecules. The S100 proteins are a family of calcium-binding cytosolic proteins that possess a wide range of intracellular and extracellular functions and play pivotal roles in the invasion and migration of tumour cells. Among these, S100A10 is known to be overexpressed in GC. Lysine succinylation, a recently identified form of protein post-translational modification, is an important regulator of cellular processes. Here, we demonstrated that S100A10 was succinylated at lysine residue 47 (K47), and levels of succinylated S100A10 were increased in human GC. Moreover, K47 succinylation of S100A10 was stabilized by suppression of ubiquitylation and subsequent proteasomal degradation. Furthermore, carnitine palmitoyltransferase 1A (CPT1A) was found to function as a lysine succinyltransferase that interacts with S100A10. Succinylation of S100A10 is regulated by CPT1A, while desuccinylation is regulated by SIRT5. Overexpression of a succinylation mimetic mutant, K47E S100A10, increased cell invasion and migration. Taken together, this study reveals a novel mechanism of S100A10 accumulation mediated by succinylation in GC, which promotes GC progression and is regulated by the succinyltransferase CPT1A and SIRT5-mediated desuccinylation.
Collapse
Affiliation(s)
- Chao Wang
- Department of Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Zhang
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Li
- Department of Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiajia Shen
- Department of Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Xu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xianmin Mu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinshun Pan
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ting Zhao
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengjing Li
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Biao Geng
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Che Xu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Wen
- Department of Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiang You
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.,Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.,Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Bydoun M, Sterea A, Liptay H, Uzans A, Huang WY, Rodrigues GJ, Weaver ICG, Gu H, Waisman DM. S100A10, a novel biomarker in pancreatic ductal adenocarcinoma. Mol Oncol 2018; 12:1895-1916. [PMID: 30009399 PMCID: PMC6210040 DOI: 10.1002/1878-0261.12356] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/05/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023] Open
Abstract
Pancreatic cancer is arguably the deadliest cancer type. The efficacy of current therapies is often hindered by the inability to predict patient outcome. As such, the development of tools for early detection and risk prediction is key for improving outcome and quality of life. Here, we introduce the plasminogen receptor S100A10 as a novel predictive biomarker and a driver of pancreatic tumor growth and invasion. We demonstrated that S100A10 mRNA and protein are overexpressed in human pancreatic tumors compared to normal ducts and nonductal stroma. S100A10 mRNA and methylation status were predictive of overall survival and recurrence-free survival across multiple patient cohorts. S100A10 expression was driven by promoter methylation and the oncogene KRAS. S100A10 knockdown reduced surface plasminogen activation, invasiveness, and in vivo growth of pancreatic cancer cell lines. These findings delineate the clinical and functional contribution of S100A10 as a biomarker in pancreatic cancer.
Collapse
Affiliation(s)
- Moamen Bydoun
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andra Sterea
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Henry Liptay
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrea Uzans
- Dalhousie Medical School, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Weei-Yuarn Huang
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gloria J Rodrigues
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian C G Weaver
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hong Gu
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David M Waisman
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
18
|
Holloway RW, Thomas ML, Cohen AM, Bharadwaj AG, Rahman M, Marcato P, Marignani PA, Waisman DM. Regulation of cell surface protease receptor S100A10 by retinoic acid therapy in acute promyelocytic leukemia (APL) ☆. Cell Death Dis 2018; 9:920. [PMID: 30206209 PMCID: PMC6134137 DOI: 10.1038/s41419-018-0954-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/31/2018] [Indexed: 01/18/2023]
Abstract
S100A10 (p11), a member of the S100 family of small dimeric EF-hand-type Ca2+-binding proteins, plays a role in a variety of both intracellular and extracellular processes. Previous studies have suggested that p11 is intrinsically unstable and requires binding to annexin A2 (p36) to prevent its rapid ubiquitylation and degradation. Our laboratory has shown that p11 levels are stimulated by the expression of the oncoprotein, PML/RARα. Furthermore, treatment of the APL cell line, NB4 with all-trans retinoic acid (ATRA) causes the rapid loss of p36 and p11 protein. However, the mechanism by which ATRA regulates p11 levels has not been established. Here, we show that the proteasomal inhibitor, lactacystin reversed the ATRA-dependent loss of p11, but did not cause an accumulation of ubiquitylated forms of p11, suggesting that ATRA promotes the proteasomal degradation of p11 in an ubiquitin-independent manner. ATRA treatment of MCF-7 breast cancer cells reduced p11 but not p36 transcript and protein levels, thus indicating that ATRA can regulate p11 levels independently of PML/RARα and p36. Overexpression of p36 upregulated p11 protein but not mRNA levels, indicating that p36 affects p11 post translationally. The forced expression of ubiquitin and p11 in 293 T cells resulted in ubiquitylation of p11 that was blocked by mutagenesis of lysine 57. This study highlights the complex regulation of p11 by retinoid signaling and challenges the hypothesis that ubiquitin-mediated proteasomal degradation of p11 represents a universal mechanism of regulation of this protein.
Collapse
Affiliation(s)
- Ryan W Holloway
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 1X5, Canada
| | - Margaret L Thomas
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 1X5, Canada
| | - Alejandro M Cohen
- Proteomic Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 1X5, Canada
| | | | - Mushfiqur Rahman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 1X5, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 1X5, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5, Canada
| | - Paola A Marignani
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 1X5, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 1X5, Canada
| | - David M Waisman
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 1X5, Canada. .,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 1X5, Canada.
| |
Collapse
|
19
|
Cell surface protease activation during RAS transformation: Critical role of the plasminogen receptor, S100A10. Oncotarget 2018; 7:47720-47737. [PMID: 27351226 PMCID: PMC5216974 DOI: 10.18632/oncotarget.10279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/12/2016] [Indexed: 12/28/2022] Open
Abstract
The link between oncogenic RAS expression and the acquisition of the invasive phenotype has been attributed to alterations in cellular activities that control degradation of the extracellular matrix. Oncogenic RAS-mediated upregulation of matrix metalloproteinase 2 (MMP-2), MMP-9 and urokinase-type plasminogen activator (uPA) is critical for invasion through the basement membrane and extracellular matrix. The uPA converts cell surface-bound plasminogen to plasmin, a process that is regulated by the binding of plasminogen to specific receptors on the cell surface, however, the identity of the plasminogen receptors that function in this capacity is unclear. We have observed that transformation of cancer cells with oncogenic forms of RAS increases plasmin proteolytic activity by 2- to 4-fold concomitant with a 3-fold increase in cell invasion. Plasminogen receptor profiling revealed RAS-dependent increases in both S100A10 and cytokeratin 8. Oncogenic RAS expression increased S100A10 gene expression which resulted in an increase in S100A10 protein levels. Analysis with the RAS effector-loop mutants that interact specifically with Raf, Ral GDS pathways highlighted the importance of the RalGDS pathways in the regulation of S100A10 gene expression. Depletion of S100A10 from RAS-transformed cells resulted in a loss of both cellular plasmin generation and invasiveness. These results strongly suggest that increases in cell surface levels of S100A10, by oncogenic RAS, plays a critical role in RAS-stimulated plasmin generation, and subsequently, in the invasiveness of oncogenic RAS expressing cancer cells.
Collapse
|
20
|
Prognostic Roles of mRNA Expression of S100 in Non-Small-Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9815806. [PMID: 29607329 PMCID: PMC5828052 DOI: 10.1155/2018/9815806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022]
Abstract
The S100 protein family is involved in cancer cell invasion and metastasis, but its prognostic value in non-small-cell lung cancer (NSCLC) has not been elucidated. In the present study we investigated the prognostic role of mRNA expression of each individual S100 in NSCLC patients through the Kaplan-Meier plotter (KM plotter) database. Expression of 14 members of the S100 family correlated with overall survival (OS) for all NSCLC patients; 18 members were associated with OS in adenocarcinoma, but none were associated with OS in squamous cell carcinoma. In particular, high mRNA expression level of S100B was associated with better OS in NSCLC patients. The prognostic value of S100 according to smoking status, pathological grades, clinical stages, and chemotherapeutic treatment of NSCLC was further assessed. Although the results should be further verified in clinical trials our findings provide new insights into the prognostic roles of S100 proteins in NSCLC and might promote development of S100-targeted inhibitors for the treatment of NSCLC.
Collapse
|
21
|
Foley K, Muth S, Jaffee E, Zheng L. Hedgehog signaling stimulates Tenascin C to promote invasion of pancreatic ductal adenocarcinoma cells through Annexin A2. Cell Adh Migr 2017; 11:514-523. [PMID: 28152318 PMCID: PMC5810754 DOI: 10.1080/19336918.2016.1259057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 01/17/2023] Open
Abstract
Pancreatic adenocarcinoma (PDA) is characterized by a dense desmoplastic reaction that comprises 60-90% of the tumor, while only 10-40% of the tumor is composed of malignant epithelial cells. This desmoplastic reaction is composed of stromal fibroblast cells, extracellular matrix proteins, and immune cells. Accumulating evidence has suggested that the stromal and epithelial cell compartments interact during the pathogenesis of this disease. Therefore, it is important to identify the signaling pathways responsible for this interaction to better understand the mechanisms by which PDA invades and metastasizes. Here, we show that secreted stromal factors induce invasion of PDA cells. Specifically, hedgehog signaling from the tumor cells induces tenascin C (TnC) secretion from the stromal cells that acts back upon the tumor cells in a paracrine fashion to induce the invasion of PDA cells through its' receptor annexin A2 (AnxA2). Therefore, blocking the interaction between TnC and AnxA2 has the potential to prevent liver metastasis in PDA.
Collapse
Affiliation(s)
- Kelly Foley
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen Muth
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Jaffee
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Miller VA, Madureira PA, Kamaludin AA, Komar J, Sharma V, Sahni G, Thelwell C, Longstaff C, Waisman DM. Mechanism of plasmin generation by S100A10. Thromb Haemost 2017; 117:1058-1071. [PMID: 28382372 DOI: 10.1160/th16-12-0936] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/19/2017] [Indexed: 12/21/2022]
Abstract
Plasminogen (Pg) is cleaved to form plasmin by the action of specific plasminogen activators such as the tissue plasminogen activator (tPA). Although the interaction of tPA and Pg with the surface of the fibrin clot has been well characterised, their interaction with cell surface Pg receptors is poorly understood. S100A10 is a cell surface Pg receptor that plays a key role in cellular plasmin generation. In the present report, we have utilised domain-switched/deleted variants of tPA, truncated plasminogen variants and S100A10 site-directed mutant proteins to define the regions responsible for S100A10-dependent plasmin generation. In contrast to the established role of the finger domain of tPA in fibrin-stimulated plasmin generation, we show that the kringle-2 domain of tPA plays a key role in S100A10-dependent plasmin generation. The kringle-1 domain of plasminogen, indispensable for fibrin-binding, is also critical for S100A10-dependent plasmin generation. S100A10 retains activity after substitution or deletion of the carboxyl-terminal lysine suggesting that internal lysine residues contribute to its plasmin generating activity. These studies define a new paradigm for plasminogen activation by the plasminogen receptor, S100A10.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David M Waisman
- David M. Waisman*, Departments of Biochemistry & Molecular Biology and Pathology, Sir Charles Tupper Medical Building, 5850 College Street, room 11-N2, PO Box 15000, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada, Tel.: +1 902 494 1803, Fax: +1 902 494 1355, E-mail:
| |
Collapse
|
23
|
Chauhan AS, Kumar M, Chaudhary S, Patidar A, Dhiman A, Sheokand N, Malhotra H, Iyengar Raje C, Raje M. Moonlighting glycolytic protein glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells. FASEB J 2017; 31:2638-2648. [DOI: 10.1096/fj.201600982r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/21/2017] [Indexed: 01/02/2023]
Affiliation(s)
| | - Manoj Kumar
- Institute of Microbial Technology Chandigarh India
| | | | - Anil Patidar
- Institute of Microbial Technology Chandigarh India
| | | | | | | | | | - Manoj Raje
- Institute of Microbial Technology Chandigarh India
- National Institute of Pharmaceutical Education and Research Sahibzada Ajit Singh Nagar Punjab India
| |
Collapse
|
24
|
Zhong J, Liu C, Chen YJ, Zhang QH, Yang J, Kang X, Chen SR, Wen GB, Zu XY, Cao RX. The association between S100A13 and HMGA1 in the modulation of thyroid cancer proliferation and invasion. J Transl Med 2016; 14:80. [PMID: 27008379 PMCID: PMC4804518 DOI: 10.1186/s12967-016-0824-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/02/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND S100A13 and high mobility group A (HMGA1) are known to play essential roles in the carcinogenesis and progression of cancer. However, the correlation between S100A13 and HMGA1 during cancer progression is not yet well understood. In this study, we determined the effects of S100A13 on HMGA1 expression in thyroid cancer cells and examined the role of HMGA1 in thyroid cancer progression. METHODS Stable ectopic S100A13 expression TT cellular proliferation was evaluated by nude mice xenografts assays. The effect of lentivirus-mediated S100A13 knockdown on thyroid cancer cellular oncogenic properties were evaluated by MTT, colony formation assays and transwell assays in TPC1 and SW579 cells. The effect of siRNA-mediated HMGA1 knockdown on thyroid cancer cellular proliferation and invasion were evaluated by MTT, colony formation assays and transwell assays. The tissue microarray was performed to investigate the correlation between S100A13 and HMGA1 expression in tumor tissues. RESULTS The ectopic expression of S100A13 could increase tumor growth in a TT cell xenograft mouse model. Moreover, lentivirus-mediated S100A13 knockdown led to the inhibition of cellular oncogenic properties in thyroid cancer cells, and HMGA1 was found to be involved in the effect of S100A13 on thyroid cancer growth and invasion. Furthermore, siRNA-mediated HMGA1 knockdown was proved to inhibit the growth of TPC1 cells and invasive abilities of SW579 cells. Clinically, it was revealed that both S100A13 and HMGA1 showed a higher expression levels in thyroid cancer cases compared with those in matched normal thyroid cases (P = 0.007 and P = 0.000); S100A13 and HMGA1 expressions were identified to be positively correlated (P = 0.004, R = 0.316) when analyzed regardless of thyroid cancer types. CONCLUSIONS This is the first report for the association between HMGA1 and S100A13 expression in the modulation of thyroid cancer growth and invasion. Those results would provide an essential insight into the effect of S100A13 on carcinogenesis of thyroid tumor, rending S100A13 to be potential biological marker for the diagnosis of thyroid cancer.
Collapse
Affiliation(s)
- Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Chang Liu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China.,Department of Metabolism and Endocrinology, The First People's Hospital of Chenzhou, Luojiajing Road, 102, 423000, Chenzhou, Hunan, People's Republic of China
| | - Ya-jun Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China.,Department of Metabolism and Endocrinology, The Second Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Qing-hai Zhang
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Jing Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Xuan Kang
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Si-Rui Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Ge-bo Wen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China.,Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Xu-yu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China.
| | - Ren-xian Cao
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China. .,Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China.
| |
Collapse
|
25
|
Katono K, Sato Y, Jiang SX, Kobayashi M, Saito K, Nagashio R, Ryuge S, Satoh Y, Saegusa M, Masuda N. Clinicopathological Significance of S100A10 Expression in Lung Adenocarcinomas. Asian Pac J Cancer Prev 2016; 17:289-94. [DOI: 10.7314/apjcp.2016.17.1.289] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
26
|
Gopalakrishnapillai A, Kolb EA, Dhanan P, Mason RW, Napper A, Barwe SP. Disruption of Annexin II /p11 Interaction Suppresses Leukemia Cell Binding, Homing and Engraftment, and Sensitizes the Leukemia Cells to Chemotherapy. PLoS One 2015; 10:e0140564. [PMID: 26465153 PMCID: PMC4605480 DOI: 10.1371/journal.pone.0140564] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/27/2015] [Indexed: 01/08/2023] Open
Abstract
The bone marrow microenvironment plays an important role in acute lymphoblastic leukemia (ALL) cell proliferation, maintenance, and resistance to chemotherapy. Annexin II (ANX2) is abundantly expressed on bone marrow cells and complexes with p11 to form ANX2/p11-hetero-tetramer (ANX2T). We present evidence that p11 is upregulated in refractory ALL cell lines and patient samples. A small molecule inhibitor that disrupts ANX2/p11 interaction (ANX2T inhibitor), an anti-ANX2 antibody, and knockdown of p11, abrogated ALL cell adhesion to osteoblasts, indicating that ANX2/p11 interaction facilitates binding and retention of ALL cells in the bone marrow. Furthermore, ANX2T inhibitor increased the sensitivity of primary ALL cells co-cultured with osteoblasts to dexamethasone and vincristine induced cell death. Finally, in an orthotopic leukemia xenograft mouse model, the number of ALL cells homing to the bone marrow was reduced by 40-50% in mice injected with anti-ANX2 antibody, anti-p11 antibody or ANX2T inhibitor compared to respective controls. In a long-term engraftment assay, the percentage of ALL cells in mouse blood, bone marrow and spleen was reduced in mice treated with agents that disrupt ANX2/p11 interaction. These data show that disruption of ANX2/p11 interaction results in reduced ALL cell adhesion to osteoblasts, increased ALL cell sensitization to chemotherapy, and suppression of ALL cell homing and engraftment.
Collapse
Affiliation(s)
- Anilkumar Gopalakrishnapillai
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, United States of America
| | - E. Anders Kolb
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, United States of America
| | - Priyanka Dhanan
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, United States of America
| | - Robert W. Mason
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, United States of America
| | - Andrew Napper
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, United States of America
| | - Sonali P. Barwe
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, United States of America
- * E-mail:
| |
Collapse
|
27
|
Bydoun M, Waisman DM. On the contribution of S100A10 and annexin A2 to plasminogen activation and oncogenesis: an enduring ambiguity. Future Oncol 2014; 10:2469-79. [DOI: 10.2217/fon.14.163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT Plasminogen receptors are becoming increasingly relevant in regulating many diseases such as cancer, stroke and inflammation. However, controversy has emerged concerning the putative role of some receptors, in particular annexin A2, in binding plasminogen. Several reports failed to account for the effects of annexin A2 on the stability and conformation of its binding partner S100A10. This has created an enduring ambiguity as to the actual function of annexin A2 in plasmin regulation. Supported by a long line of evidence, we conclude that S100A10, and not annexin A2, is the primary plasminogen receptor within the annexin A2-S100A10 complex and contributes to the plasmin-mediated effects that were originally ascribed to annexin A2.
Collapse
Affiliation(s)
- Moamen Bydoun
- Department of Pathology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 1500, Halifax, Nova Scotia, B3H 4R2, Canada
| | - David M Waisman
- Department of Pathology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 1500, Halifax, Nova Scotia, B3H 4R2, Canada
- Department of Biochemistry & Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 1500, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
28
|
Hu H, Ding X, Yang Y, Zhang H, Li H, Tong S, An X, Zhong Q, Liu X, Ma L, Liu Q, Liu B, Lu Z, Zhang D, Hu P, Ren H. Changes in glucose-6-phosphate dehydrogenase expression results in altered behavior of HBV-associated liver cancer cells. Am J Physiol Gastrointest Liver Physiol 2014; 307:G611-22. [PMID: 24994855 DOI: 10.1152/ajpgi.00160.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocellular carcinoma (HCC) is regarded as a major global health care issue, and chronic hepatitis B virus (HBV) infection is considered to be involved in pathogenesis of HCC. To increase knowledge of HCC pathogenesis, as well as discover potential novel molecules for anti-cancer therapy, mass spectrometry and isobaric tag for relative and absolute quantitation (iTARQ) were employed. The differences between nine HBV-related HCC and adjacent non-HCC tissue specimens were studied. In total, 222 proteins were analyzed for differential expression in the two types of samples. Among these proteins, several were further confirmed by immunohistochemical, immunoblotting, and real-time RT-PCR analysis. RNA interference induced downregulation of glucose-6-phosphate dehydrogenase (G6PD) and decreased HBV replication by fivefold by the IFN pathway. Decreased G6PD expression resulted in decreased hepatoma cell migration and invasion in cell culture. In summary, the investigation provides new information on pathogenesis of HBV infection and suggests G6PD as a novel anti-HCC target. G6PD suppression may contribute to treatment strategies for inhibiting tumor progression.
Collapse
Affiliation(s)
- Huaidong Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiangchun Ding
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China; and
| | - Yixuan Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmin Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiwen Tong
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan An
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Zhong
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Liu
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China; and
| | - Lina Ma
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China; and
| | - Qing Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China
| | - Bin Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China
| | - Zhenhui Lu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China
| | - Dazhi Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China;
| |
Collapse
|
29
|
Zhang HH, Li SZ, Zhang ZY, Hu XM, Hou PN, Gao L, Du RL, Zhang XD. Nemo-like kinase is critical for p53 stabilization and function in response to DNA damage. Cell Death Differ 2014; 21:1656-63. [PMID: 24926618 DOI: 10.1038/cdd.2014.78] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 12/26/2022] Open
Abstract
The DNA damage response (DDR) acts as a protective mechanism for maintaining cell homeostasis. Nemo-like kinase (NLK) is a serine/threonine-protein kinase that has an important role in many pathways; however, its function in the DDR has not yet been defined. In our study, NLK-deficient HCT116 cells were found to be resistant to etoposide-induced cell death. We demonstrated that NLK is required for p53 activation in response to DNA damage. Remarkably, mechanistic studies revealed that NLK interacts with p53 and stabilizes p53 by blocking MDM2-mediated p53 ubiquitination and degradation. Furthermore, NLK enhances p53 activity and affects expression downstream of p53. Interestingly, these functions of NLK are not related to its kinase activity. Consistent with these results, NLK-deficient cells have a resistance effect on DNA damage. Therefore, these findings emphasize that NLK is a novel factor in DDR mechanisms.
Collapse
Affiliation(s)
- H-H Zhang
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - S-Z Li
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Z-Y Zhang
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - X-M Hu
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - P-N Hou
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - L Gao
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, China
| | - R-L Du
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - X-D Zhang
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Dynamic reciprocity: the role of annexin A2 in tissue integrity. J Cell Commun Signal 2014; 8:125-33. [PMID: 24838661 DOI: 10.1007/s12079-014-0231-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/29/2014] [Indexed: 01/09/2023] Open
Abstract
Interactions between cells and the extracellular matrix are integral to tissue development, remodelling and pathogenesis. This is underlined by bi-directional flow of information signalling, referred to as dynamic reciprocity. Annexin A2 is a complex and multifunctional protein that belongs to a large family of Ca(2+)-dependent anionic phospholipid and membrane-binding proteins. It has been implicated in diverse cellular processes at the nuclear, cytoplasmic and extracellular compartments including Ca(2+)-dependent regulation of endocytosis and exocytosis, focal adhesion dynamics, transcription and translation, cell proliferation, oxidative stress and apoptosis. Most of these functions are mediated by the annexin A2-S100A10 heterotetramer (AIIt) via its ability to simultaneously interact with cytoskeletal, membrane and extracellular matrix components, thereby mediating regulatory effects of extracellular matrix adhesion on cell behaviour and vice versa. While Src kinase-mediated phosphorylation of filamentous actin-bound AIIt results in membrane-cytoskeletal remodelling events which control cell polarity, cell morphology and cell migration, AIIt at the cell surface can bind to a number of extracellular matrix proteins and catalyse the activation of serine and cysteine proteases which are important in facilitating tissue remodelling during tissue repair, neoangiogenesis and pathological situations. This review will focus on the role of annexin A2 in regulating tissue integrity through intercellular and cell-extracellular matrix interaction. Annexin A2 is differentially expressed in various tissue types as well as in many pathologies, particularly in several types of cancer. These together suggest that annexin A2 acts as a central player during dynamic reciprocity in tissue homeostasis.
Collapse
|
31
|
Gross SR, Sin CGT, Barraclough R, Rudland PS. Joining S100 proteins and migration: for better or for worse, in sickness and in health. Cell Mol Life Sci 2014; 71:1551-79. [PMID: 23811936 PMCID: PMC11113901 DOI: 10.1007/s00018-013-1400-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/12/2022]
Abstract
The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used.
Collapse
Affiliation(s)
- Stephane R. Gross
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET UK
| | - Connie Goh Then Sin
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET UK
| | - Roger Barraclough
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Philip S. Rudland
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| |
Collapse
|
32
|
Yin L, Zhao X, Ji S, He C, Wang G, Tang C, Gu S, Yin C. The use of gene activated matrix to mediate effective SMAD2 gene silencing against hypertrophic scar. Biomaterials 2013; 35:2488-98. [PMID: 24388384 DOI: 10.1016/j.biomaterials.2013.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/08/2013] [Indexed: 10/25/2022]
Abstract
Hypertrophic scar (HS) originates from the over-expression of transforming growth factor β (TGF-β) and downstream SMAD2. With attempts to rectify HS by RNA interference (RNAi) against SMAD2, we report the design of plasmid DNA encoding SMAD2 siRNA (pSUPER-SMAD2), and identify the optimal siRNA sequence toward maximal RNAi efficiency. To realize effective and sustained RNAi, we developed gene activated matrix (GAM) based on porous atelocollagen scaffold and embedded trimethyl chitosan-cysteine (TMCC)/pSUPER-SMAD2 polyplexes for promoting cell growth and gene transfection. The GAM exhibited porosity higher than 80%, pore size of 200-250 μm, desired mechanical strength, and sustained pSUPER-SMAD2 release profiles. Normal skin fibroblasts (NSFs) and hypertrophic scar fibroblasts (HSFs) were allowed to infiltrate and proliferate in GAM; at the meantime they were transfected with TMCC/pSUPER-SMAD2 polyplexes to display remarkably reduced SMAD2 levels that lasted for up to 10 days, consequently inhibiting the over-production of type I and type III collagen. We further unraveled the notably higher transfection levels of GAM in three-dimensional (3D) than in 2D environment, which was attributed to the improved cell-matrix interactions that promote cell proliferation and polyplex internalization. This highly safe and effective GAM may serve as a promising candidate towards HS treatment.
Collapse
Affiliation(s)
- Lichen Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xin Zhao
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Shizhao Ji
- Center of Burns and Traumatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chunbai He
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Guangyi Wang
- Center of Burns and Traumatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Shaohua Gu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
33
|
S100A10 as a novel biomarker in colorectal cancer. Tumour Biol 2013; 34:3785-90. [DOI: 10.1007/s13277-013-0962-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 06/20/2013] [Indexed: 11/25/2022] Open
|
34
|
Annexin A2 heterotetramer: structure and function. Int J Mol Sci 2013; 14:6259-305. [PMID: 23519104 PMCID: PMC3634455 DOI: 10.3390/ijms14036259] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022] Open
Abstract
Annexin A2 is a pleiotropic calcium- and anionic phospholipid-binding protein that exists as a monomer and as a heterotetrameric complex with the plasminogen receptor protein, S100A10. Annexin A2 has been proposed to play a key role in many processes including exocytosis, endocytosis, membrane organization, ion channel conductance, and also to link F-actin cytoskeleton to the plasma membrane. Despite an impressive list of potential binding partners and regulatory activities, it was somewhat unexpected that the annexin A2-null mouse should show a relatively benign phenotype. Studies with the annexin A2-null mouse have suggested important functions for annexin A2 and the heterotetramer in fibrinolysis, in the regulation of the LDL receptor and in cellular redox regulation. However, the demonstration that depletion of annexin A2 causes the depletion of several other proteins including S100A10, fascin and affects the expression of at least sixty-one genes has confounded the reports of its function. In this review we will discuss the annexin A2 structure and function and its proposed physiological and pathological roles.
Collapse
|
35
|
Giráldez MD, Lozano JJ, Cuatrecasas M, Alonso-Espinaco V, Maurel J, Mármol M, Hörndler C, Ortego J, Alonso V, Escudero P, Ramírez G, Petry C, LaSalvia L, Bohmann K, Wirtz R, Mira A, Castells A. Gene-expression signature of tumor recurrence in patients with stage II and III colon cancer treated with 5′fluoruracil-based adjuvant chemotherapy. Int J Cancer 2013; 132:1090-1097. [DOI: 10.1002/ijc.27747] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
36
|
O'Connell PA, Waisman DM. Regulation of plasmin generation by the annexin A2 heterotetramer: a shift in perspective. Future Oncol 2013; 8:763-5. [PMID: 22830395 DOI: 10.2217/fon.12.67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
37
|
The biochemistry and regulation of S100A10: a multifunctional plasminogen receptor involved in oncogenesis. J Biomed Biotechnol 2012; 2012:353687. [PMID: 23118506 PMCID: PMC3479961 DOI: 10.1155/2012/353687] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/01/2012] [Indexed: 12/16/2022] Open
Abstract
The plasminogen receptors mediate the production and localization to the cell surface of the broad spectrum proteinase, plasmin. S100A10 is a key regulator of cellular plasmin production and may account for as much as 50% of cellular plasmin generation. In parallel to plasminogen, the plasminogen-binding site on S100A10 is highly conserved from mammals to fish. S100A10 is constitutively expressed in many cells and is also induced by many diverse factors and physiological stimuli including dexamethasone, epidermal growth factor, transforming growth factor-α, interferon-γ, nerve growth factor, keratinocyte growth factor, retinoic acid, and thrombin. Therefore, S100A10 is utilized by cells to regulate plasmin proteolytic activity in response to a wide diversity of physiological stimuli. The expression of the oncogenes, PML-RARα and KRas, also stimulates the levels of S100A10, suggesting a role for S100A10 in pathophysiological processes such as in the oncogenic-mediated increases in plasmin production. The S100A10-null mouse model system has established the critical role that S100A10 plays as a regulator of fibrinolysis and oncogenesis. S100A10 plays two major roles in oncogenesis, first as a regulator of cancer cell invasion and metastasis and secondly as a regulator of the recruitment of tumor-associated cells, such as macrophages, to the tumor site.
Collapse
|
38
|
Cell surface remodeling by plasmin: a new function for an old enzyme. J Biomed Biotechnol 2012; 2012:564259. [PMID: 23097597 PMCID: PMC3477900 DOI: 10.1155/2012/564259] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/01/2012] [Indexed: 12/23/2022] Open
Abstract
Plasmin, one of the most potent and reactive serine proteases, is involved in various physiological processes, including embryo development, thrombolysis, wound healing and cancer progression. The proteolytic activity of plasmin is tightly regulated through activation of its precursor, plasminogen, only at specific times and in defined locales as well as through inhibition of active plasmin by its abundant natural inhibitors. By exploiting the plasminogen activating system and overexpressing distinct components of the plasminogen activation cascade, such as pro-uPA, uPAR and plasminogen receptors, malignant cells can enhance the generation of plasmin which in turn, modifies the tumor microenvironment to sustain cancer progression. While plasmin-mediated degradation and modification of extracellular matrix proteins, release of growth factors and cytokines from the stroma as well as activation of several matrix metalloproteinase zymogens, all have been a focus of cancer research studies for decades, the ability of plasmin to cleave transmembrane molecules and thereby to generate functionally important cleaved products which induce outside-in signal transduction, has just begun to receive sufficient attention. Herein, we highlight this relatively understudied, but important function of the plasmin enzyme as it is generated de novo at the interface between cross-talking cancer and host cells.
Collapse
|
39
|
Maletzki C, Bodammer P, Breitrück A, Kerkhoff C. S100 proteins as diagnostic and prognostic markers in colorectal and hepatocellular carcinoma. HEPATITIS MONTHLY 2012; 12:e7240. [PMID: 23166536 PMCID: PMC3500829 DOI: 10.5812/hepatmon.7240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 12/11/2022]
Abstract
CONTEXT Clinical and experimental studies have suggested a link between S100 gene ex-pression and neoplastic disorders, however, the molecular mechanisms of this associa-tion are not well understood. The aim of this review was to conduct a comprehensive literature search in order to understand the possible underlying molecular mechanisms of this association. We also discuss their application as diagnostic and prognostic mark-ers in colorectal and hepatocellular carcinoma. EVIDENCE ACQUISITIONS We searched Pubmed (NLM) and Web of Science (ISI Web of Knowledge). RESULTS S100 genes display a complex expression pattern in colorectal and hepatocel- lular carcinoma. They are expressed in tumor and/or tumor stroma cells, and they exert both pro- and antitumorigenic actions. In view of this complexity, it becomes clear that S100 proteins might act as both friend and foe. The biological role of the S100 genes is predicted to depend on the relative contributions of the different cell types at specific stages of tumor progression. CONCLUSIONS Further research is required in order to uncover the functional role of S100 genes in tumorigenesis. Answers to this issue are needed before we can more fully un-derstand the clinical relevance of S100 protein expression within epithelial tumors, with regard to their potential applicability as biomarkers for diagnosis and therapy decisions.
Collapse
Affiliation(s)
- Claudia Maletzki
- Department of General Surgery, Division of Molecular Oncology and Immunotherapy, University of Rostock, Rostock, Germany
| | - Peggy Bodammer
- Department of General Surgery, Division of Gastroenterology, University of Rostock, Rostock, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Immunology, AG “Extracorporeal Immune Modulation (EXIM)”, Rostock, Germany
| | - Anne Breitrück
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Immunology, AG “Extracorporeal Immune Modulation (EXIM)”, Rostock, Germany
- Department of Internal Medicine, Division of Nephrology, University of Rostock, Rostock, Germany
| | - Claus Kerkhoff
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Immunology, AG “Extracorporeal Immune Modulation (EXIM)”, Rostock, Germany
- Department of Internal Medicine, Division of Nephrology, University of Rostock, Rostock, Germany
- Corresponding author: Claus Kerkhoff, Fraunhofer Institute for Cell Therapy and Immunology, Department of Immunology, AG EXIM, Schillingallee 68/69, 18057 Rostock, Germany. Tel.: +49-3814947368, Fax: +49-32122701962, E-mail:
| |
Collapse
|
40
|
Phipps KD, Surette AP, O'Connell PA, Waisman DM. Plasminogen receptor S100A10 is essential for the migration of tumor-promoting macrophages into tumor sites. Cancer Res 2012; 71:6676-83. [PMID: 22042827 DOI: 10.1158/0008-5472.can-11-1748] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Macrophages are critical drivers of tumor growth, invasion, and metastasis. Movement of macrophages into tumors requires the activity of cell surface proteases such as plasmin. In this study, we offer genetic evidence that plasminogen receptor S100A10 is essential for recruitment of macrophages to the tumor site. Growth of murine Lewis lung carcinomas or T241 fibrosarcomas was dramatically reduced in S100A10-deficient mice compared with wild-type mice. The tumor growth deficit corresponded with a decrease in macrophage density that could be rescued by intraperitoneal injection of wild-type but not S100A10-deficient macrophages. Notably, macrophages of either genotype could rescue tumor growth if they were injected into the tumor itself, establishing that S100A10 was required specifically for the migratory capability needed for tumor homing. Conversely, selective depletion of macrophages from wild-type mice phenocopied the tumor growth deficit seen in S100A10-deficient mice. Together, our findings show that S100A10 is essential and sufficient for macrophage migration to tumor sites, and they define a novel rate-limiting step in tumor progression.
Collapse
Affiliation(s)
- Kyle D Phipps
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
41
|
Suzuki S, Yamayoshi Y, Nishimuta A, Tanigawara Y. S100A10 protein expression is associated with oxaliplatin sensitivity in human colorectal cancer cells. Proteome Sci 2011; 9:76. [PMID: 22206547 PMCID: PMC3317844 DOI: 10.1186/1477-5956-9-76] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/30/2011] [Indexed: 12/27/2022] Open
Abstract
Background Individual responses to oxaliplatin (L-OHP)-based chemotherapy remain unpredictable. The objective of our study was to find candidate protein markers for tumor sensitivity to L-OHP from intracellular proteins of human colorectal cancer (CRC) cell lines. We performed expression difference mapping (EDM) analysis of whole cell lysates from 11 human CRC cell lines with different sensitivities to L-OHP by using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS), and identified a candidate protein by liquid chromatography/mass spectrometry ion trap time-of-flight (LCMS-IT-TOF). Results Of the qualified mass peaks obtained by EDM analysis, 41 proteins were differentially expressed in 11 human colorectal cancer cell lines. Among these proteins, the peak intensity of 11.1 kDa protein was strongly correlated with the L-OHP sensitivity (50% inhibitory concentrations) (P < 0.001, R2 = 0.80). We identified this protein as Protein S100-A10 (S100A10) by MS/MS ion search using LCMS-IT-TOF. We verified its differential expression and the correlation between S100A10 protein expression levels in drug-untreated CRC cells and their L-OHP sensitivities by Western blot analyses. In addition, S100A10 protein expression levels were not correlated with sensitivity to 5-fluorouracil, suggesting that S100A10 is more specific to L-OHP than to 5-fluorouracil in CRC cells. S100A10 was detected in cell culture supernatant, suggesting secretion out of cells. Conclusions By proteomic approaches including SELDI technology, we have demonstrated that intracellular S100A10 protein expression levels in drug-untreated CRC cells differ according to cell lines and are significantly correlated with sensitivity of CRC cells to L-OHP exposure. Our findings provide a new clue to searching predictive markers of the response to L-OHP, suggesting that S100A10 is expected to be one of the candidate protein markers.
Collapse
Affiliation(s)
- Sayo Suzuki
- Department of Clinical Pharmacokinetics and Pharmacodynamics, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | |
Collapse
|
42
|
Zhao W, Han HB, Zhang ZQ. Suppression of lung cancer cell invasion and metastasis by connexin43 involves the secretion of follistatin-like 1 mediated via histone acetylation. Int J Biochem Cell Biol 2011; 43:1459-68. [DOI: 10.1016/j.biocel.2011.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/28/2011] [Accepted: 06/14/2011] [Indexed: 11/30/2022]
|
43
|
Abstract
The vascular endothelial cells line the inner surface of blood vessels and function to maintain blood fluidity by producing the protease plasmin that removes blood clots from the vasculature, a process called fibrinolysis. Plasminogen receptors play a central role in the regulation of plasmin activity. The protein complex annexin A2 heterotetramer (AIIt) is an important plasminogen receptor at the surface of the endothelial cell. AIIt is composed of 2 molecules of annexin A2 (ANXA2) bound together by a dimer of the protein S100A10. Recent work performed by our laboratory allowed us to clarify the specific roles played by ANXA2 and S100A10 subunits within the AIIt complex, which has been the subject of debate for many years. The ANXA2 subunit of AIIt functions to stabilize and anchor S100A10 to the plasma membrane, whereas the S100A10 subunit initiates the fibrinolytic cascade by colocalizing with the urokinase type plasminogen activator and receptor complex and also providing a common binding site for both tissue-type plasminogen activator and plasminogen via its C-terminal lysine residue. The AIIt mediated colocalization of the plasminogen activators with plasminogen results in the rapid and localized generation of plasmin to the endothelial cell surface, thereby regulating fibrinolysis.
Collapse
|
44
|
Tsai YS, Aguan K, Pal NR, Chung IF. Identification of single- and multiple-class specific signature genes from gene expression profiles by group marker index. PLoS One 2011; 6:e24259. [PMID: 21909426 PMCID: PMC3164723 DOI: 10.1371/journal.pone.0024259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 08/06/2011] [Indexed: 01/06/2023] Open
Abstract
Informative genes from microarray data can be used to construct prediction model and investigate biological mechanisms. Differentially expressed genes, the main targets of most gene selection methods, can be classified as single- and multiple-class specific signature genes. Here, we present a novel gene selection algorithm based on a Group Marker Index (GMI), which is intuitive, of low-computational complexity, and efficient in identification of both types of genes. Most gene selection methods identify only single-class specific signature genes and cannot identify multiple-class specific signature genes easily. Our algorithm can detect de novo certain conditions of multiple-class specificity of a gene and makes use of a novel non-parametric indicator to assess the discrimination ability between classes. Our method is effective even when the sample size is small as well as when the class sizes are significantly different. To compare the effectiveness and robustness we formulate an intuitive template-based method and use four well-known datasets. We demonstrate that our algorithm outperforms the template-based method in difficult cases with unbalanced distribution. Moreover, the multiple-class specific genes are good biomarkers and play important roles in biological pathways. Our literature survey supports that the proposed method identifies unique multiple-class specific marker genes (not reported earlier to be related to cancer) in the Central Nervous System data. It also discovers unique biomarkers indicating the intrinsic difference between subtypes of lung cancer. We also associate the pathway information with the multiple-class specific signature genes and cross-reference to published studies. We find that the identified genes participate in the pathways directly involved in cancer development in leukemia data. Our method gives a promising way to find genes that can involve in pathways of multiple diseases and hence opens up the possibility of using an existing drug on other diseases as well as designing a single drug for multiple diseases.
Collapse
Affiliation(s)
- Yu-Shuen Tsai
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North Eastern Hill University, Shillong, India
| | - Nikhil R. Pal
- Electronics & Communication Sciences Unit, Indian Statistical Institute, Calcutta, India
- * E-mail: (I-FC); (NRP)
| | - I-Fang Chung
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
- Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (I-FC); (NRP)
| |
Collapse
|
45
|
Abstract
Endothelial cells form the inner lining of vascular networks and maintain blood fluidity by inhibiting blood coagulation and promoting blood clot dissolution (fibrinolysis). Plasmin, the primary fibrinolytic enzyme, is generated by the cleavage of the plasma protein, plasminogen, by its activator, tissue plasminogen activator. This reaction is regulated by plasminogen receptors at the surface of the vascular endothelial cells. Previous studies have identified the plasminogen receptor protein S100A10 as a key regulator of plasmin generation by cancer cells and macrophages. Here we examine the role of S100A10 and its annexin A2 binding partner in endothelial cell function using a homozygous S100A10-null mouse. Compared with wild-type mice, S100A10-null mice displayed increased deposition of fibrin in the vasculature and reduced clearance of batroxobin-induced vascular thrombi, suggesting a role for S100A10 in fibrinolysis in vivo. Compared with wild-type cells, endothelial cells from S100A10-null mice demonstrated a 40% reduction in plasminogen binding and plasmin generation in vitro. Furthermore, S100A10-deficient endothelial cells demonstrated impaired neovascularization of Matrigel plugs in vivo, suggesting a role for S100A10 in angiogenesis. These results establish an important role for S100A10 in the regulation of fibrinolysis and angiogenesis in vivo, suggesting S100A10 plays a critical role in endothelial cell function.
Collapse
|
46
|
Oh BY, Lee RA, Kim KH. siRNA targeting Livin decreases tumor in a xenograft model for colon cancer. World J Gastroenterol 2011; 17:2563-71. [PMID: 21633662 PMCID: PMC3103815 DOI: 10.3748/wjg.v17.i20.2563] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 02/15/2011] [Accepted: 02/22/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of silencing Livin gene expression with siRNA to apoptosis and proliferation in a colon cancer cell line.
METHODS: To investigate the anticancer effect of silencing Livin gene expression, we established an siRNA transfected cell line using the HCT116 colon cancer cell line. After confirming the successful transfection, MTT assay, flow cytometry and annexin V staining were employed to evaluate the antiapoptotic effect. To confirm the in vivo effect of Livin-siRNA, different doses of Livin-siRNA were injected into xenografted tumors in BALB/c nude mice model.
RESULTS: Livin expression was dramatically decreased after siRNA transfection, especially at 25 μmol/L of siRNA, but this suppression was not dose-dependent. The cell count at 18 h after transfection was significantly reduced as compared with controls (P < 0.01), but tended not to decrease proportionally depending on transfected dose or time. MTT assay revealed that silencing the Livin gene suppressed cellular proliferation at 18 h after transfection (P = 0.04); however, the inhibitory effect disappeared thereafter. Also, there was no significant difference in cellular proliferation depending on siRNA dose. The rate of apoptosis also increased with silencing of the Livin gene. In vivo, the tumor size significantly decreased after Livin-siRNA injection at 20 μmol/L concentration (P = 0.03). There were no significant body weight changes of mice after siRNA injection. Histologic examination revealed no significant toxic reaction in kidney, liver and brain of mice.
CONCLUSION: siRNA-mediated downregulation of Livin expression can induce apoptosis in colon cancer in vitro and in vivo, which suggests the possibility of new cancer therapeutics using siRNA.
Collapse
|
47
|
Yang X, Popescu NC, Zimonjic DB. DLC1 interaction with S100A10 mediates inhibition of in vitro cell invasion and tumorigenicity of lung cancer cells through a RhoGAP-independent mechanism. Cancer Res 2011; 71:2916-25. [PMID: 21372205 DOI: 10.1158/0008-5472.can-10-2158] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The DLC1 gene encodes a Rho GTPase-activating protein (RhoGAP) that functions as a tumor suppressor in several common human cancers. The multidomain structure of DLC1 enables interaction with a number of other proteins. Here we report that the proinflammatory protein S100A10 (also known as p11), a key cell surface receptor for plasminogen which regulates pericellular proteolysis and tumor cell invasion, is a new binding partner of DLC1 in human cells. We determined that the 2 proteins colocalize in the cell cytoplasm and that their binding is mediated by central sequences in the central domain of DLC1 and the C-terminus of S100A10. Because the same S100A10 sequence also mediates binding to Annexin 2, we found that DLC1 competed with Annexin 2 for interaction with S100A10. DLC1 binding to S100A10 did not affect DLC1's RhoGAP activity, but it decreased the steady-state level of S100A10 expression in a dose-dependent manner by displacing it from Annexin 2 and making it accessible to ubiquitin-dependent degradation. This process attenuated plasminogen activation and resulted in inhibition of in vitro cell migration, invasion, colony formation, and anchorage-independent growth of aggressive lung cancer cells. These results suggest that a novel GAP-independent mechanism contributes to the tumor suppressive activity of DLC1, and highlight the importance and complexity of protein-protein interactions involving DLC1 in certain cancers.
Collapse
Affiliation(s)
- Xuyu Yang
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | | |
Collapse
|
48
|
Illien F, Finet S, Lambert O, Ayala-Sanmartin J. Different molecular arrangements of the tetrameric annexin 2 modulate the size and dynamics of membrane aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1790-6. [PMID: 20471359 DOI: 10.1016/j.bbamem.2010.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/28/2010] [Accepted: 05/04/2010] [Indexed: 12/23/2022]
Abstract
Annexin 2, a member of the annexin family of Ca2+-dependent membrane binding proteins is found in monomeric and heterotetrameric forms and has been involved in different membrane related functions. The heterotetrameric annexin 2 is composed of a dimer of S100A10, a member of the S100 family of Ca2+ binding proteins and two annexin 2 molecules ((Anx2-S100A10)2). Different molecular models including tetramers and octamers in which S100A10 is localized in the centre of the complex with the annexin 2 molecules positioned around S100A10 had been proposed. Herein, the organization of the (Anx2-S100A10)2 complex in conditions in which membranes are able to bridge was studied. We performed Cryo-electron microscopy observations of the tetrameric annexin 2 on the membrane surface, and study the S100A10 accessibility to antibodies by flow "cytometry". We also studied the kinetics and size evolution of vesicle aggregates by dynamic light scattering. The results show that the protein is able to organize in three different arrangements depending on the presence of Ca2+ and pH and that the aggregation is faster in the presence of Ca2+ compared with the aggregation in its absence. In one arrangement the S100A10 molecule is exposed to the solvent allowing its interaction with other proteins. The presented results will serve as a molecular basis to explain some of the functions of the tetrameric annexin 2.
Collapse
Affiliation(s)
- Françoise Illien
- CNRS, UMR 7203, Laboratoire des Biomolécules, Groupe N. J. Conté, Paris, France; Université Pierre et Marie Curie, CHU Saint Antoine, Paris, France; Ecole Normale Supérieure, Département de Chimie, Paris France
| | | | | | | |
Collapse
|
49
|
Abstract
The plasminogen activation system plays an integral role in the migration of macrophages in response to an inflammatory stimulus, and the binding of plasminogen to its cell-surface receptor initiates this process. Although previous studies from our laboratory have shown the importance of the plasminogen receptor S100A10 in cancer cell plasmin production, the potential role of this protein in macrophage migration has not been investigated. Using thioglycollate to induce a peritoneal inflammatory response, we demonstrate, for the first time, that compared with wild-type (WT) mice, macrophage migration across the peritoneal membrane into the peritoneal cavity in S100A10-deficient (S100A10(-/-)) mice was decreased by up to 53% at 24, 48, and 72 hours. Furthermore, the number of S100A10-deficient macrophages that infiltrated Matrigel plugs was reduced by 8-fold compared with their WT counterpart in vivo. Compared with WT macrophages, macrophages from S100A10(-/-) mice demonstrated a 50% reduction in plasmin-dependent invasion across a Matrigel barrier and a 45% reduction in plasmin generation in vitro. This loss in plasmin-dependent invasion was in part the result of a decreased generation of plasmin and a decreased activation of pro-MMP-9 by S100A10-deficient macrophages. This study establishes a direct involvement of S100A10 in macrophage recruitment in response to inflammatory stimuli.
Collapse
|
50
|
Jung MJ, Murzik U, Wehder L, Hemmerich P, Melle C. Regulation of cellular actin architecture by S100A10. Exp Cell Res 2010; 316:1234-40. [PMID: 20100475 DOI: 10.1016/j.yexcr.2010.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/15/2010] [Accepted: 01/20/2010] [Indexed: 12/29/2022]
Abstract
Actin structures are involved in several biological processes and the disruption of actin polymerisation induces impaired motility of eukaryotic cells. Different factors are involved in regulation and maintenance of the cytoskeletal actin architecture. Here we show that S100A10 participates in the particular organisation of actin filaments. Down-regulation of S100A10 by specific siRNA triggered a disorganisation of filamentous actin structures without a reduction of the total cellular actin concentration. In contrast, the formation of cytoskeleton structures containing tubulin was unhindered in S100A10 depleted cells. Interestingly, the cellular distribution of annexin A2, an interaction partner of S100A10, was unaffected in S100A10 depleted cells. Cells lacking S100A10 showed an impaired migration activity and were unable to close a scratched wound. Our data provide first insights of S100A10 function as a regulator of the filamentous actin network.
Collapse
Affiliation(s)
- M Juliane Jung
- Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, University Hospital Jena, Jena, Germany
| | | | | | | | | |
Collapse
|