1
|
Mandal S, Rameez MJ, Chatterjee S, Sarkar J, Pyne P, Bhattacharya S, Shaw R, Ghosh W. Molecular mechanism of sulfur chemolithotrophy in the betaproteobacterium Pusillimonas ginsengisoli SBSA. MICROBIOLOGY-SGM 2020; 166:386-397. [PMID: 31999239 DOI: 10.1099/mic.0.000890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chemolithotrophic sulfur oxidation represents a significant part of the biogeochemical cycling of this element. Due to its long evolutionary history, this ancient metabolism is well known for its extensive mechanistic and phylogenetic diversification across a diverse taxonomic spectrum. Here we carried out whole-genome sequencing and analysis of a new betaproteobacterial isolate, Pusillimonas ginsengisoli SBSA, which is found to oxidize thiosulfate via the formation of tetrathionate as an intermediate. The 4.7 Mb SBSA genome was found to encompass a soxCDYZAXOB operon, plus single thiosulfate dehydrogenase (tsdA) and sulfite : acceptor oxidoreductase (sorAB) genes. Recombination-based knockout of tsdA revealed that the entire thiosulfate is first converted to tetrathionate by the activity of thiosulfate dehydrogenase (TsdA) and the Sox pathway is not functional in this bacterium despite the presence of all necessary sox genes. The ∆soxYZ and ∆soxXA knockout mutants exhibited a wild-type-like phenotype for thiosulfate/tetrathionate oxidation, whereas ∆soxB, ∆soxCD and soxO::KanR mutants only oxidized thiosulfate up to tetrathionate intermediate and had complete impairment in tetrathionate oxidation. The substrate-dependent O2 consumption rate of whole cells and the sulfur-oxidizing enzyme activities of cell-free extracts, measured in the presence/absence of thiol inhibitors/glutathione, indicated that glutathione plays a key role in SBSA tetrathionate oxidation. The present findings collectively indicate that the potential glutathione : tetrathionate coupling in P. ginsengisoli involves a novel enzymatic component, which is different from the dual-functional thiol dehydrotransferase (ThdT), while subsequent oxidation of the sulfur intermediates produced (e.g. glutathione : sulfodisulfane molecules) may proceed via the iterative action of soxBCD .
Collapse
Affiliation(s)
- Subhrangshu Mandal
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | - Moidu Jameela Rameez
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | - Sumit Chatterjee
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | - Jagannath Sarkar
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | - Prosenjit Pyne
- Present address: National Institute of Cholera and Enteric Diseases (NICED), P- C.I.T. Scheme XM, Beleghata, 33, CIT Rd, Beleghata, Kolkata - 700054, India.,Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | | | - Rahul Shaw
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| |
Collapse
|
2
|
Rameez MJ, Pyne P, Mandal S, Chatterjee S, Alam M, Bhattacharya S, Mondal N, Sarkar J, Ghosh W. Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST. Microbiol Res 2019; 230:126345. [PMID: 31585234 DOI: 10.1016/j.micres.2019.126345] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/08/2019] [Accepted: 09/21/2019] [Indexed: 02/02/2023]
Abstract
Chemolithotrophic bacteria oxidize various sulfur species for energy and electrons, thereby operationalizing biogeochemical sulfur cycles in nature. The best-studied pathway of bacterial sulfur-chemolithotrophy involves direct oxidation of thiosulfate (S2O32-) to sulfate (SO42-) without any free intermediate. This pathway mediated by SoxXAYZBCD is apparently the exclusive mechanism of thiosulfate oxidation in facultatively chemolithotrophic alphaproteobacteria. Here we explore the molecular mechanisms of sulfur oxidation in the thiosulfate- and tetrathionate(S4O62-)-oxidizing alphaproteobacterium Paracoccus thiocyanatus SST, and compare them with the prototypical Sox process of Paracoccus pantotrophus. Our results reveal a unique case where an alphaproteobacterium has Sox as its secondary pathway of thiosulfate oxidation converting ∼10% of the thiosulfate supplied, whilst ∼90% of the substrate is oxidized via a pathway that produces tetrathionate as an intermediate. Sulfur oxidation kinetics of a deletion mutant showed that thiosulfate-to-tetrathionate conversion, in SST, is catalyzed by a thiosulfate dehydrogenase (TsdA) homolog that has far-higher substrate-affinity than the Sox system of this bacterium, which in turn is also less efficient than the P. pantotrophus Sox. Deletion of soxB abolished sulfate-formation from thiosulfate/tetrathionate, while thiosulfate-to-tetrathionate conversion remained unperturbed. Physiological studies revealed the involvement of glutathione in SST tetrathionate oxidation. However, zero impact of the insertional mutation of a thiol dehydrotransferase (thdT) homolog, together with the absence of sulfite as an intermediate, indicated that SST tetrathionate oxidation is mechanistically novel, and distinct from its betaproteobacterial counterpart mediated by glutathione, ThdT, SoxBCD and sulfite:acceptor oxidoreductase. The present findings highlight extensive functional diversification of sulfur-oxidizing enzymes across phylogenetically close, as well as distant, bacteria.
Collapse
Affiliation(s)
- Moidu Jameela Rameez
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Prosenjit Pyne
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Subhrangshu Mandal
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Sumit Chatterjee
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Masrure Alam
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | | | - Nibendu Mondal
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Jagannath Sarkar
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India.
| |
Collapse
|
3
|
Complete genome sequence of the haloalkaliphilic, obligately chemolithoautotrophic thiosulfate and sulfide-oxidizing γ-proteobacterium Thioalkalimicrobium cyclicum type strain ALM 1 (DSM 14477(T)). Stand Genomic Sci 2016; 11:38. [PMID: 27274784 PMCID: PMC4891895 DOI: 10.1186/s40793-016-0162-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/24/2016] [Indexed: 02/01/2023] Open
Abstract
Thioalkalimicrobium cyclicum Sorokin et al. 2002 is a member of the family Piscirickettsiaceae in the order Thiotrichales. The γ-proteobacterium belongs to the colourless sulfur-oxidizing bacteria isolated from saline soda lakes with stable alkaline pH, such as Lake Mono (California) and Soap Lake (Washington State). Strain ALM 1T is characterized by its adaptation to life in the oxic/anoxic interface towards the less saline aerobic waters (mixolimnion) of the stable stratified alkaline salt lakes. Strain ALM 1T is the first representative of the genus Thioalkalimicrobium whose genome sequence has been deciphered and the fourth genome sequence of a type strain of the Piscirickettsiaceae to be published. The 1,932,455 bp long chromosome with its 1,684 protein-coding and 50 RNA genes was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program (CSP) 2008.
Collapse
|
4
|
Pintscher S, Kuleta P, Cieluch E, Borek A, Sarewicz M, Osyczka A. Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer. J Biol Chem 2016; 291:6872-81. [PMID: 26858251 PMCID: PMC4807273 DOI: 10.1074/jbc.m115.712307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 11/22/2022] Open
Abstract
In biological energy conversion, cross-membrane electron transfer often involves an assembly of two hemes b. The hemes display a large difference in redox midpoint potentials (ΔEm_b), which in several proteins is assumed to facilitate cross-membrane electron transfer and overcome a barrier of membrane potential. Here we challenge this assumption reporting on heme b ligand mutants of cytochrome bc1 in which, for the first time in transmembrane cytochrome, one natural histidine has been replaced by lysine without loss of the native low spin type of heme iron. With these mutants we show that ΔEm_b can be markedly increased, and the redox potential of one of the hemes can stay above the level of quinone pool, or ΔEm_b can be markedly decreased to the point that two hemes are almost isopotential, yet the enzyme retains catalytically competent electron transfer between quinone binding sites and remains functional in vivo. This reveals that cytochrome bc1 can accommodate large changes in ΔEm_b without hampering catalysis, as long as these changes do not impose overly endergonic steps on downhill electron transfer from substrate to product. We propose that hemes b in this cytochrome and in other membranous cytochromes b act as electronic connectors for the catalytic sites with no fine tuning in ΔEm_b required for efficient cross-membrane electron transfer. We link this concept with a natural flexibility in occurrence of several thermodynamic configurations of the direction of electron flow and the direction of the gradient of potential in relation to the vector of the electric membrane potential.
Collapse
Affiliation(s)
- Sebastian Pintscher
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Patryk Kuleta
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Ewelina Cieluch
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Marcin Sarewicz
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Artur Osyczka
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
5
|
Brito JA, Denkmann K, Pereira IAC, Archer M, Dahl C. Thiosulfate dehydrogenase (TsdA) from Allochromatium vinosum: structural and functional insights into thiosulfate oxidation. J Biol Chem 2015; 290:9222-38. [PMID: 25673691 DOI: 10.1074/jbc.m114.623397] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Indexed: 11/06/2022] Open
Abstract
Although the oxidative condensation of two thiosulfate anions to tetrathionate constitutes a well documented and significant part of the natural sulfur cycle, little is known about the enzymes catalyzing this reaction. In the purple sulfur bacterium Allochromatium vinosum, the reaction is catalyzed by the periplasmic diheme c-type cytochrome thiosulfate dehydrogenase (TsdA). Here, we report the crystal structure of the "as isolated" form of A. vinosum TsdA to 1.98 Å resolution and those of several redox states of the enzyme to different resolutions. The protein contains two typical class I c-type cytochrome domains wrapped around two hemes axially coordinated by His(53)/Cys(96) and His(164)/Lys(208). These domains are very similar, suggesting a gene duplication event during evolution. A ligand switch from Lys(208) to Met(209) is observed upon reduction of the enzyme. Cys(96) is an essential residue for catalysis, with the specific activity of the enzyme being completely abolished in several TsdA-Cys(96) variants. TsdA-K208N, K208G, and M209G variants were catalytically active in thiosulfate oxidation as well as in tetrathionate reduction, pointing to heme 2 as the electron exit point. In this study, we provide spectroscopic and structural evidence that the TsdA reaction cycle involves the transient presence of heme 1 in the high-spin state caused by movement of the Sγ atom of Cys(96) out of the iron coordination sphere. Based on the presented data, we draw important conclusions about the enzyme and propose a possible reaction mechanism for TsdA.
Collapse
Affiliation(s)
- José A Brito
- From the Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Avenida da República, 2780-157 Oeiras, Portugal and
| | - Kevin Denkmann
- the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany
| | - Inês A C Pereira
- From the Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Avenida da República, 2780-157 Oeiras, Portugal and
| | - Margarida Archer
- From the Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Avenida da República, 2780-157 Oeiras, Portugal and
| | - Christiane Dahl
- the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany
| |
Collapse
|
6
|
Kappler U, Nouwens AS. Metabolic adaptation and trophic strategies of soil bacteria-C1- metabolism and sulfur chemolithotrophy in Starkeya novella. Front Microbiol 2013; 4:304. [PMID: 24146664 PMCID: PMC3797975 DOI: 10.3389/fmicb.2013.00304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/23/2013] [Indexed: 11/22/2022] Open
Abstract
The highly diverse and metabolically versatile microbial communities found in soil environments are major contributors to the global carbon, nitrogen, and sulfur cycles. We have used a combination of genome -based pathway analysis with proteomics and gene expression studies to investigate metabolic adaptation in a representative of these bacteria, Starkeya novella, which was originally isolated from agricultural soil. This bacterium was the first facultative sulfur chemolithoautotroph that was isolated and it is also able to grow with methanol and on over 39 substrates as a heterotroph. However, using glucose, fructose, methanol, thiosulfate as well as combinations of the carbon compounds with thiosulfate as growth substrates we have demonstrated here that contrary to the previous classification, S. novella is not a facultative sulfur chemolitho- and methylotroph, as the enzyme systems required for these two growth modes are always expressed at high levels. This is typical for key metabolic pathways. In addition enzymes for various pathways of carbon dioxide fixation were always expressed at high levels, even during heterotrophic growth on glucose or fructose, which suggests a role for these pathways beyond the generation of reduced carbon units for cell growth, possibly in redox balancing of metabolism. Our results then indicate that S. novella, a representative of the Xanthobacteraceae family of methylotrophic soil and freshwater dwelling bacteria, employs a mixotrophic growth strategy under all conditions tested here. As a result the contribution of this bacterium to either carbon sequestration or the release of climate active substances could vary very quickly, which has direct implications for the modeling of such processes if mixotrophy proves to be the main growth strategy for large populations of soil bacteria.
Collapse
Affiliation(s)
- Ulrike Kappler
- School of Chemistry and Molecular Biosciences, The University of Queensland, St LuciaQLD, Australia
| | | |
Collapse
|
7
|
Kappler U, Maher MJ. The bacterial SoxAX cytochromes. Cell Mol Life Sci 2013; 70:977-92. [PMID: 22907414 PMCID: PMC11113948 DOI: 10.1007/s00018-012-1098-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 07/09/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
SoxAX cytochromes are heme-thiolate proteins that play a key role in bacterial thiosulfate oxidation, where they initiate the reaction cycle of a multi-enzyme complex by catalyzing the attachment of sulfur substrates such as thiosulfate to a conserved cysteine present in a carrier protein. SoxAX proteins have a wide phylogenetic distribution and form a family with at least three distinct types of SoxAX protein. The types of SoxAX cytochromes differ in terms of the number of heme groups present in the proteins (there are diheme and triheme versions) as well as in their subunit structure. While two of the SoxAX protein types are heterodimers, the third group contains an additional subunit, SoxK, that stabilizes the complex of the SoxA and SoxX proteins. Crystal structures are available for representatives of the two heterodimeric SoxAX protein types and both of these have shown that the cysteine ligand to the SoxA active site heme carries a modification to a cysteine persulfide that implicates this ligand in catalysis. EPR studies of SoxAX proteins have also revealed a high complexity of heme dependent signals associated with this active site heme; however, the exact mechanism of catalysis is still unclear at present, as is the exact number and types of redox centres involved in the reaction.
Collapse
Affiliation(s)
- Ulrike Kappler
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | | |
Collapse
|
8
|
Bradley JM, Marritt SJ, Kihlken MA, Haynes K, Hemmings AM, Berks BC, Cheesman MR, Butt JN. Redox and chemical activities of the hemes in the sulfur oxidation pathway enzyme SoxAX. J Biol Chem 2012; 287:40350-9. [PMID: 23060437 DOI: 10.1074/jbc.m112.396192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND SoxAX enzymes initiate microbial oxidation of reduced inorganic sulfur compounds. Their catalytic mechanism is unknown. RESULTS Cyanide displaces the CysS(-) ligand to the active site heme following reduction by S(2)O(4)(2-) but not Eu(II). CONCLUSION An active site heme ligand becomes labile on exposure to substrate analogs. SIGNIFICANCE Elucidation of SoxAX mechanism is necessary to understand a widespread pathway for sulfur compound oxidation. SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (E(m)) at pH 7.0 of approximately +210, -340, and -400 mV for the His/Met, His/Cys(-), and active site His/CysS(-)-ligated heme, respectively. Exposing SoxAX to S(2)O(4)(2-), a substrate analog with E(m) ~-450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (E(m) ~-1140 mV), allows cyanide to displace the cysteine persulfide (CysS(-)) ligand to the active site heme. This provides the first evidence for the dissociation of CysS(-) that has been proposed as a key event in SoxAX catalysis.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Denkmann K, Grein F, Zigann R, Siemen A, Bergmann J, van Helmont S, Nicolai A, Pereira IAC, Dahl C. Thiosulfate dehydrogenase: a widespread unusual acidophilicc-type cytochrome. Environ Microbiol 2012; 14:2673-88. [DOI: 10.1111/j.1462-2920.2012.02820.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Kilmartin JR, Maher MJ, Krusong K, Noble CJ, Hanson GR, Bernhardt PV, Riley MJ, Kappler U. Insights into structure and function of the active site of SoxAX cytochromes. J Biol Chem 2011; 286:24872-81. [PMID: 21592966 PMCID: PMC3137062 DOI: 10.1074/jbc.m110.212183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/20/2011] [Indexed: 11/06/2022] Open
Abstract
SoxAX cytochromes catalyze the formation of heterodisulfide bonds between inorganic sulfur compounds and a carrier protein, SoxYZ. They contain unusual His/Cys-ligated heme groups with complex spectroscopic signatures. The heme-ligating cysteine has been implicated in SoxAX catalysis, but neither the SoxAX spectroscopic properties nor its catalysis are fully understood at present. We have solved the first crystal structure for a group 2 SoxAX protein (SnSoxAX), where an N-terminal extension of SoxX forms a novel structure that supports dimer formation. Crystal structures of SoxAX with a heme ligand substitution (C236M) uncovered an inherent flexibility of this SoxA heme site, with both bonding distances and relative ligand orientation differing between asymmetric units and the new residue, Met(236), representing an unusual rotamer of methionine. The flexibility of the SnSoxAX(C236M) SoxA heme environment is probably the cause of the four distinct, new EPR signals, including a high spin ferric heme form, that were observed for the enzyme. Despite the removal of the catalytically active cysteine heme ligand and drastic changes in the redox potential of the SoxA heme (WT, -479 mV; C236M, +85 mV), the substituted enzyme was catalytically active in glutathione-based assays although with reduced turnover numbers (WT, 3.7 s(-1); C236M, 2.0 s(-1)). SnSoxAX(C236M) was also active in assays using SoxYZ and thiosulfate as the sulfur substrate, suggesting that Cys(236) aids catalysis but is not crucial for it. The SoxYZ-based SoxAX assay is the first assay for an isolated component of the Sox multienzyme system.
Collapse
Affiliation(s)
- James R. Kilmartin
- From the Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, and
| | - Megan J. Maher
- the Structural Biology Program, Centenary Institute, Locked Bag 6, Sydney, New South Wales 2042, Australia
- the School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia, and
| | - Kuakarun Krusong
- the Department of Biochemistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Christopher J. Noble
- the Centre for Advanced Imaging, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Graeme R. Hanson
- the Centre for Advanced Imaging, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Paul V. Bernhardt
- From the Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, and
| | - Mark J. Riley
- From the Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, and
| | - Ulrike Kappler
- From the Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, and
| |
Collapse
|
11
|
Grein F, Venceslau SS, Schneider L, Hildebrandt P, Todorovic S, Pereira IAC, Dahl C. DsrJ, an Essential Part of the DsrMKJOP Transmembrane Complex in the Purple Sulfur Bacterium Allochromatium vinosum, Is an Unusual Triheme Cytochrome c. Biochemistry 2010; 49:8290-9. [DOI: 10.1021/bi1007673] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fabian Grein
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| | - Sofia S. Venceslau
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da Republica, EAN, Apt 127, 2780-157 Oeiras, Portugal
| | - Lilian Schneider
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da Republica, EAN, Apt 127, 2780-157 Oeiras, Portugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da Republica, EAN, Apt 127, 2780-157 Oeiras, Portugal
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| |
Collapse
|
12
|
Sakurai H, Ogawa T, Shiga M, Inoue K. Inorganic sulfur oxidizing system in green sulfur bacteria. PHOTOSYNTHESIS RESEARCH 2010; 104:163-176. [PMID: 20143161 DOI: 10.1007/s11120-010-9531-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 01/16/2010] [Indexed: 05/28/2023]
Abstract
Green sulfur bacteria use various reduced sulfur compounds such as sulfide, elemental sulfur, and thiosulfate as electron donors for photoautotrophic growth. This article briefly summarizes what is known about the inorganic sulfur oxidizing systems of these bacteria with emphasis on the biochemical aspects. Enzymes that oxidize sulfide in green sulfur bacteria are membrane-bound sulfide-quinone oxidoreductase, periplasmic (sometimes membrane-bound) flavocytochrome c sulfide dehydrogenase, and monomeric flavocytochrome c (SoxF). Some green sulfur bacteria oxidize thiosulfate by the multienzyme system called either the TOMES (thiosulfate oxidizing multi-enzyme system) or Sox (sulfur oxidizing system) composed of the three periplasmic proteins: SoxB, SoxYZ, and SoxAXK with a soluble small molecule cytochrome c as the electron acceptor. The oxidation of sulfide and thiosulfate by these enzymes in vitro is assumed to yield two electrons and result in the transfer of a sulfur atom to persulfides, which are subsequently transformed to elemental sulfur. The elemental sulfur is temporarily stored in the form of globules attached to the extracellular surface of the outer membranes. The oxidation pathway of elemental sulfur to sulfate is currently unclear, although the participation of several proteins including those of the dissimilatory sulfite reductase system etc. is suggested from comparative genomic analyses.
Collapse
Affiliation(s)
- Hidehiro Sakurai
- Research Institute for Photosynthetic Hydrogen Production, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | | | | | | |
Collapse
|
13
|
Hirano Y, Higuchi M, Azai C, Oh-Oka H, Miki K, Wang ZY. Crystal structure of the electron carrier domain of the reaction center cytochrome c(z) subunit from green photosynthetic bacterium Chlorobium tepidum. J Mol Biol 2010; 397:1175-87. [PMID: 20156447 DOI: 10.1016/j.jmb.2010.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/02/2010] [Accepted: 02/09/2010] [Indexed: 11/18/2022]
Abstract
In green sulfur photosynthetic bacteria, the cytochrome c(z) (cyt c(z)) subunit in the reaction center complex mediates electron transfer mainly from menaquinol/cytochrome c oxidoreductase to the special pair (P840) of the reaction center. The cyt c(z) subunit consists of an N-terminal transmembrane domain and a C-terminal soluble domain that binds a single heme group. The periplasmic soluble domain has been proposed to be highly mobile and to fluctuate between oxidoreductase and P840 during photosynthetic electron transfer. We have determined the crystal structure of the oxidized form of the C-terminal functional domain of the cyt c(z) subunit (C-cyt c(z)) from thermophilic green sulfur bacterium Chlorobium tepidum at 1.3-A resolution. The overall fold of C-cyt c(z) consists of four alpha-helices and is similar to that of class I cytochrome c proteins despite the low similarity in their amino acid sequences. The N-terminal structure of C-cyt c(z) supports the swinging mechanism previously proposed in relation with electron transfer, and the surface properties provide useful information on possible interaction sites with its electron transfer partners. Several characteristic features are observed for the heme environment: These include orientation of the axial ligands with respect to the heme plane, surface-exposed area of the heme, positions of water molecules, and hydrogen-bond network involving heme propionate groups. These structural features are essential for elucidating the mechanism for regulating the redox state of cyt c(z).
Collapse
Affiliation(s)
- Yu Hirano
- Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Emesh S, Rapson TD, Rajapakshe A, Kappler U, Bernhardt PV, Tollin G, Enemark JH. Intramolecular electron transfer in sulfite-oxidizing enzymes: elucidating the role of a conserved active site arginine. Biochemistry 2009; 48:2156-63. [PMID: 19226119 DOI: 10.1021/bi801553q] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All reported sulfite-oxidizing enzymes have a conserved arginine in their active site which hydrogen bonds to the equatorial oxygen ligand on the Mo atom. Previous studies on the pathogenic R160Q mutant of human sulfite oxidase (HSO) have shown that Mo-heme intramolecular electron transfer (IET) is dramatically slowed when positive charge is lost at this position. To improve our understanding of the function that this conserved positively charged residue plays in IET, we have studied the equivalent uncharged substitutions R55Q and R55M as well as the positively charged substitution R55K in bacterial sulfite dehydrogenase (SDH). The heme and molybdenum cofactor (Moco) subunits are tightly associated in SDH, which makes it an ideal system for improving our understanding of residue function in IET without the added complexity of the interdomain movement that occurs in HSO. Unexpectedly, the uncharged SDH variants (R55Q and R55M) exhibited increased IET rate constants relative to that of the wild type (3-4-fold) when studied by laser flash photolysis. The gain in function observed in SDH(R55Q) and SDH(R55M) suggests that the reduction in the level of IET seen in HSO(R160Q) is not due to a required role of this residue in the IET pathway itself, but to the fact that it plays an important role in heme orientation during the interdomain movement necessary for IET in HSO (as seen in viscosity experiments). The pH profiles of SDH(WT), SDH(R55M), and SDH(R55Q) show that the arginine substitution also alters the behavior of the Mo-heme IET equilibrium (K(eq)) and rate constants (k(et)) of both variants with respect to the SDH(WT) enzyme. SDH(WT) has a k(et) that is independent of pH and a K(eq) that increases as pH decreases; on the other hand, both SDH(R55M) and SDH(R55Q) have a k(et) that increases as pH decreases, and SDH(R55M) has a K(eq) that is pH-independent. IET in the SDH(R55Q) variant is inhibited by sulfate in laser flash photolysis experiments, a behavior that differs from that of SDH(WT), but which also occurs in HSO. IET in SDH(R55K) is slower than in SDH(WT). A new analysis of the possible mechanistic pathways for sulfite-oxidizing enzymes is presented and related to available kinetic and EPR results for these enzymes.
Collapse
Affiliation(s)
- Safia Emesh
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Sulfite oxidation in Sinorhizobium meliloti. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1516-25. [DOI: 10.1016/j.bbabio.2009.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/16/2009] [Accepted: 07/16/2009] [Indexed: 11/21/2022]
|
16
|
Ghosh W, Mallick S, DasGupta SK. Origin of the Sox multienzyme complex system in ancient thermophilic bacteria and coevolution of its constituent proteins. Res Microbiol 2009; 160:409-20. [PMID: 19616092 DOI: 10.1016/j.resmic.2009.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/05/2009] [Accepted: 07/07/2009] [Indexed: 11/17/2022]
Abstract
The multienzyme complex SoxXABYZ(CD)(2), characteristic of facultatively chemolithotrophic Alphaproteobacteria, oxidizes both sulfone and sulfane sulfur species directly to sulfate, while a truncated SoxXABYZ oxidizes only sulfone sulfur in species of Chromatiaceae and Chlorobi. Here we phylogenetically analyzed SoxXA, SoxYZ and SoxCD sequences, correlated the results with earlier SoxB-based data, and postulated that the system originated in putatively common ancestors of Aquificae and Epsilonproteobacteria, and evolved through extensive horizontal gene transfer, accompanied by gain and/or loss of constituents by different lineages. However, in several Sox systems, particularly those from Alphaproteobacteria (and also Chromatiaceae and Chlorobi), there has been no extra gain or loss of constituents and all their proteins have similar evolutionary paths. This implies that the components of these systems have coevolved parallel to each other without any shuffling with other divergent systems. This, however, holds good only for those Sox systems, which render sulfur oxidation functions equivalent to the typical alphaproteobacterial process. We postulate that coevolution of all the proteins is essential for the typical modular function of Sox. Conversely, mosaic Sox systems (where constituents have disparate phylogenetic paths) are either nonfunctional or with activities deviated from typical systems. Monomeric Sox subunits of the mosaic systems, however, possess almost all the motifs and conserved domains critical for their designated activity and heterodimer formation. So what could be the basis of the functional discrepancies of the mosaic Sox systems? It appears that their discretely evolved heterodimers cannot interact among themselves in the same way as ideally envisaged in the modular Sox system, which in turn, may in some cases lead to novel adventitious reactions.
Collapse
Affiliation(s)
- Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12, C. I. T. Scheme VII-M, Kolkata-700 054, India.
| | | | | |
Collapse
|
17
|
Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 2009; 33:999-1043. [PMID: 19645821 DOI: 10.1111/j.1574-6976.2009.00187.x] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Lithotrophic sulfur oxidation is an ancient metabolic process. Ecologically and taxonomically diverged prokaryotes have differential abilities to utilize different reduced sulfur compounds as lithotrophic substrates. Different phototrophic or chemotrophic species use different enzymes, pathways and mechanisms of electron transport and energy conservation for the oxidation of any given substrate. While the mechanisms of sulfur oxidation in obligately chemolithotrophic bacteria, predominantly belonging to Beta- (e.g. Thiobacillus) and Gammaproteobacteria (e.g. Thiomicrospira), are not well established, the Sox system is the central pathway in the facultative bacteria from Alphaproteobacteria (e.g. Paracoccus). Interestingly, photolithotrophs such as Rhodovulum belonging to Alphaproteobacteria also use the Sox system, whereas those from Chromatiaceae and Chlorobi use a truncated Sox complex alongside reverse-acting sulfate-reducing systems. Certain chemotrophic magnetotactic Alphaproteobacteria allegedly utilize such a combined mechanism. Sulfur-chemolithotrophic metabolism in Archaea, largely restricted to Sulfolobales, is distinct from those in Bacteria. Phylogenetic and biomolecular fossil data suggest that the ubiquity of sox genes could be due to horizontal transfer, and coupled sulfate reduction/sulfide oxidation pathways, originating in planktonic ancestors of Chromatiaceae or Chlorobi, could be ancestral to all sulfur-lithotrophic processes. However, the possibility that chemolithotrophy, originating in deep sea, is the actual ancestral form of sulfur oxidation cannot be ruled out.
Collapse
Affiliation(s)
- Wriddhiman Ghosh
- Department of Microbiology, University of Burdwan, West Bengal, India.
| | | |
Collapse
|
18
|
SoxAX binding protein, a novel component of the thiosulfate-oxidizing multienzyme system in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 2008; 190:6097-110. [PMID: 18641134 DOI: 10.1128/jb.00634-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From the photosynthetic green sulfur bacterium Chlorobium tepidum (pro synon. Chlorobaculum tepidum), we have purified three factors indispensable for the thiosulfate-dependent reduction of the small, monoheme cytochrome c(554). These are homologues of sulfur-oxidizing (Sox) system factors found in various thiosulfate-oxidizing bacteria. The first factor is SoxYZ that serves as the acceptor for the reaction intermediates. The second factor is monomeric SoxB that is proposed to catalyze the hydrolytic cleavage of sulfate from the SoxYZ-bound oxidized product of thiosulfate. The third factor is the trimeric cytochrome c(551), composed of the monoheme cytochrome SoxA, the monoheme cytochrome SoxX, and the product of the hypothetical open reading frame CT1020. The last three components were expressed separately in Escherichia coli cells and purified to homogeneity. In the presence of the other two Sox factors, the recombinant SoxA and SoxX showed a low but discernible thiosulfate-dependent cytochrome c(554) reduction activity. The further addition of the recombinant CT1020 protein greatly increased the activity, and the total activity was as high as that of the native SoxAX-CT1020 protein complex. The recombinant CT1020 protein participated in the formation of a tight complex with SoxA and SoxX and will be referred to as SAXB (SoxAX binding protein). Homologues of the SAXB gene are found in many strains, comprising roughly about one-third of the thiosulfate-oxidizing bacteria whose sox gene cluster sequences have been deposited so far and ranging over the Chlorobiaciae, Chromatiaceae, Hydrogenophilaceae, Oceanospirillaceae, etc. Each of the deduced SoxA and SoxX proteins of these bacteria constitute groups that are distinct from those found in bacteria that apparently lack SAXB gene homologues.
Collapse
|
19
|
Kappler U, Bernhardt PV, Kilmartin J, Riley MJ, Teschner J, McKenzie KJ, Hanson GR. SoxAX cytochromes, a new type of heme copper protein involved in bacterial energy generation from sulfur compounds. J Biol Chem 2008; 283:22206-14. [PMID: 18552405 DOI: 10.1074/jbc.m800315200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SoxAX cytochromes are essential for the function of the only confirmed pathway for bacterial thiosulfate oxidation, the so-called "Sox pathway," in which they catalyze the initial formation of a S-S bond between thiosulfate and the SoxYZ carrier protein. Our work using the Starkeya novella diheme SoxAX protein reveals for the first time that in addition to two active site heme groups, SoxAX contains a mononuclear Cu(II) center with a distorted tetragonal geometry and three to four nitrogen ligands, one of which is a histidine. The Cu(II) center enhanced SoxAX activity in a newly developed, glutathione-based assay system that mimics the natural reaction of SoxAX with SoxYZ. EPR spectroscopy confirmed that the SoxAX Cu(II) center is reduced by glutathione. At pH 7 a K(m) (app) of 0.19+/-0.028 mm and a k(cat) (app) of 5.7+/-0.25s(-1) were determined for glutathione. We propose that SoxAX cytochromes are a new type of heme-copper proteins, with SoxAX-mediated S-S bond formation involving both the copper and heme centers.
Collapse
Affiliation(s)
- Ulrike Kappler
- School of Molecular & Microbial Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Reijerse EJ, Sommerhalter M, Hellwig P, Quentmeier A, Rother D, Laurich C, Bothe E, Lubitz W, Friedrich CG. The Unusal Redox Centers of SoxXA, a Novel c-Type Heme-Enzyme Essential for Chemotrophic Sulfur-Oxidation of Paracoccus pantotrophus. Biochemistry 2007; 46:7804-10. [PMID: 17547421 DOI: 10.1021/bi7003526] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heterodimeric hemoprotein SoxXA, essential for lithotrophic sulfur oxidation of the aerobic bacterium Paracoccus pantotrophus, was examined by a combination of spectroelectrochemistry and EPR spectroscopy. The EPR spectra for SoxXA showed contributions from three paramagnetic heme iron centers. One highly anisotropic low-spin (HALS) species (gmax = 3.45) and two "standard" cytochrome-like low-spin heme species with closely spaced g-tensor values were identified, LS1 (gz = 2.54, gy = 2.30, and gx = 1.87) and LS2 (gz = 2.43, gy = 2.26, and gx = 1.90). The crystal structure of SoxXA from P. pantotrophus confirmed the presence of three heme groups, one of which (heme 3) has a His/Met axial coordination and is located on the SoxX subunit [Dambe et al. (2005) J. Struct. Biol. 152, 229-234]. This heme was assigned to the HALS species in the EPR spectra of the isolated SoxX subunit. The LS1 and LS2 species were associated with heme 1 and heme 2 located on the SoxA subunit, both of which have EPR parameters characteristic for an axial His/thiolate coordination. Using thin-layer spectroelectrochemistry the midpoint potentials of heme 3 and heme 2 were determined: Em3 = +189 +/- 15 mV and Em2 = -432 +/- 15 mV (vs NHE, pH 7.0). Heme 1 was not reducible even with 20 mM titanium(III) citrate. The Em2 midpoint potential turned out to be pH dependent. It is proposed that heme 2 participates in the catalysis and that the cysteine persulfide ligation leads to the unusually low redox potential (-436 mV). The pH dependence of its redox potential may be due to (de)protonation of the Arg247 residue located in the active site.
Collapse
Affiliation(s)
- Edward J Reijerse
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim/Ruhr, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Miyake D, Ichiki SI, Tanabe M, Oda T, Kuroda H, Nishihara H, Sambongi Y. Thiosulfate oxidation by a moderately thermophilic hydrogen-oxidizing bacterium, Hydrogenophilus thermoluteolus. Arch Microbiol 2007; 188:199-204. [PMID: 17516047 DOI: 10.1007/s00203-007-0244-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 03/29/2007] [Accepted: 04/02/2007] [Indexed: 10/23/2022]
Abstract
The moderately thermophilic Betaproteobacterium, Hydrogenophilus thermoluteolus, not only oxidizes hydrogen, the principal electron donor for growth, but also sulfur compounds including thiosulfate, a process enabled by sox genes. A periplasmic extract of H. thermoluteolus showed significant thiosulfate oxidation activity. Ten genes apparently involved in thiosulfate oxidation (soxEFCDYZAXBH) were found on a 9.7-kb DNA fragment of the H. thermoluteolus chromosome. The proteins SoxAX, which represent c-type cytochromes, were co-purified from the cells of H. thermoluteolus; they enhanced the thiosulfate oxidation activity of the periplasmic extract when added to the latter.
Collapse
Affiliation(s)
- Daisuke Miyake
- Graduate School of Biosphere Science, Hiroshima University, CREST of Japan Science and Technology Corporation, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan,
| | | | | | | | | | | | | |
Collapse
|
22
|
Santini JM, Kappler U, Ward SA, Honeychurch MJ, vanden Hoven RN, Bernhardt PV. The NT-26 cytochrome c552 and its role in arsenite oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:189-96. [PMID: 17306216 DOI: 10.1016/j.bbabio.2007.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 01/09/2007] [Accepted: 01/16/2007] [Indexed: 10/23/2022]
Abstract
Arsenite oxidation by the facultative chemolithoautotroph NT-26 involves a periplasmic arsenite oxidase. This enzyme is the first component of an electron transport chain which leads to reduction of oxygen to water and the generation of ATP. Involved in this pathway is a periplasmic c-type cytochrome that can act as an electron acceptor to the arsenite oxidase. We identified the gene that encodes this protein downstream of the arsenite oxidase genes (aroBA). This protein, a cytochrome c(552), is similar to a number of c-type cytochromes from the alpha-Proteobacteria and mitochondria. It was therefore not surprising that horse heart cytochrome c could also serve, in vitro, as an alternative electron acceptor for the arsenite oxidase. Purification and characterisation of the c(552) revealed the presence of a single heme per protein and that the heme redox potential is similar to that of mitochondrial c-type cytochromes. Expression studies revealed that synthesis of the cytochrome c gene was not dependent on arsenite as was found to be the case for expression of aroBA.
Collapse
|
23
|
Hensen D, Sperling D, Trüper HG, Brune DC, Dahl C. Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum. Mol Microbiol 2006; 62:794-810. [PMID: 16995898 DOI: 10.1111/j.1365-2958.2006.05408.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two different pathways for thiosulphate oxidation are present in the purple sulphur bacterium Allochromatium vinosum: oxidation to tetrathionate and complete oxidation to sulphate with obligatory formation of sulphur globules as intermediates. The tetrathionate:sulphate ratio is strongly pH-dependent with tetrathionate formation being preferred under acidic conditions. Thiosulphate dehydrogenase, a constitutively expressed monomeric 30 kDa c-type cytochrome with a pH optimum at pH 4.2 catalyses tetrathionate formation. A periplasmic thiosulphate-oxidizing multienzyme complex (Sox) has been described to be responsible for formation of sulphate from thiosulphate in chemotrophic and phototrophic sulphur oxidizers that do not form sulphur deposits. In the sulphur-storing A. vinosum we identified five sox genes in two independent loci (soxBXA and soxYZ). For SoxA a thiosulphate-dependent induction of expression, above a low constitutive level, was observed. Three sox-encoded proteins were purified: the heterodimeric c-type cytochrome SoxXA, the monomeric SoxB and the heterodimeric SoxYZ. Gene inactivation and complementation experiments proved these proteins to be indispensable for thiosulphate oxidation to sulphate. The intermediary formation of sulphur globules in A. vinosum appears to be related to the lack of soxCD genes, the products of which are proposed to oxidize SoxY-bound sulphane sulphur. In their absence the latter is instead transferred to growing sulphur globules.
Collapse
Affiliation(s)
- Daniela Hensen
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
24
|
Pires RH, Venceslau SS, Morais F, Teixeira M, Xavier AV, Pereira IAC. Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP ComplexA Membrane-Bound Redox Complex Involved in the Sulfate Respiratory Pathway. Biochemistry 2005; 45:249-62. [PMID: 16388601 DOI: 10.1021/bi0515265] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfate-reducing organisms use sulfate as an electron acceptor in an anaerobic respiratory process. Despite their ubiquitous occurrence, sulfate respiration is still poorly characterized. Genome analysis of sulfate-reducing organisms sequenced to date permitted the identification of only two strictly conserved membrane complexes. We report here the purification and characterization of one of these complexes, DsrMKJOP, from Desulfovibrio desulfuricans ATCC 27774. The complex has hemes of the c and b types and several iron-sulfur centers. The corresponding genes in the genome of Desulfovibrio vulgaris were analyzed. dsrM encodes an integral membrane cytochrome b; dsrK encodes a protein homologous to the HdrD subunit of heterodisulfide reductase; dsrJ encodes a triheme periplasmic cytochrome c; dsrO encodes a periplasmic FeS protein; and dsrM encodes another integral membrane protein. Sequence analysis and EPR studies indicate that DsrJ belongs to a novel family of multiheme cytochromes c and that its three hemes have different types of coordination, one bis-His, one His/Met, and the third a very unusual His/Cys coordination. The His/Cys-coordinated heme is only partially reduced by dithionite. About 40% of the hemes are reduced by menadiol, but no reduction is observed upon treatment with H2 and hydrogenase, irrespective of the presence of cytochrome c3. The aerobically isolated Dsr complex displays an EPR signal with similar characteristics to the catalytic [4Fe-4S]3+ species observed in heterodisulfide reductases. Further five different [4Fe-4S](2+/1+) centers are observed during a redox titration followed by EPR. The role of the DsrMKJOP complex in the sulfate respiratory chain of Desulfovibrio spp. is discussed.
Collapse
Affiliation(s)
- Ricardo H Pires
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | | | | |
Collapse
|
26
|
Dambe T, Quentmeier A, Rother D, Friedrich C, Scheidig AJ. Structure of the cytochrome complex SoxXA of Paracoccus pantotrophus, a heme enzyme initiating chemotrophic sulfur oxidation. J Struct Biol 2005; 152:229-34. [PMID: 16297640 DOI: 10.1016/j.jsb.2005.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/12/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
The sulfur-oxidizing enzyme system (Sox) of the chemotroph Paracoccus pantotrophus is composed of several proteins, which together oxidize hydrogen sulfide, sulfur, thiosulfate or sulfite and transfers the gained electrons to the respiratory chain. The hetero-dimeric cytochrome c complex SoxXA functions as heme enzyme and links covalently the sulfur substrate to the thiol of the cysteine-138 residue of the SoxY protein of the SoxYZ complex. Here, we report the crystal structure of the c-type cytochrome complex SoxXA. The structure could be solved by molecular replacement and refined to a resolution of 1.9A identifying the axial heme-iron coordination involving an unusual Cys-251 thiolate of heme2. Distance measurements between the three heme groups provide deeper insight into the electron transport inside SoxXA and merge in a better understanding of the initial step of the aerobic sulfur oxidation process in chemotrophic bacteria.
Collapse
Affiliation(s)
- Tresfore Dambe
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Physikalische Biochemie, Otto-Hahn-Strasse 11, D-44225 Dortmund, Germany
| | | | | | | | | |
Collapse
|
27
|
Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. Prokaryotic sulfur oxidation. Curr Opin Microbiol 2005; 8:253-9. [PMID: 15939347 DOI: 10.1016/j.mib.2005.04.005] [Citation(s) in RCA: 315] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 04/20/2005] [Indexed: 11/28/2022]
Abstract
Recent biochemical and genomic data differentiate the sulfur oxidation pathway of Archaea from those of Bacteria. From these data it is evident that members of the Alphaproteobacteria harbor the complete sulfur-oxidizing Sox enzyme system, whereas members of the beta and gamma subclass and the Chlorobiaceae contain sox gene clusters that lack the genes encoding sulfur dehydrogenase. This indicates a different pathway for oxidation of sulfur to sulfate. Acidophilic bacteria oxidize sulfur by a system different from the Sox enzyme system, as do chemotrophic endosymbiotic bacteria.
Collapse
Affiliation(s)
- Cornelius G Friedrich
- Department of Biochemical and Chemical Engineering, University of Dortmund, D-44221 Dortmund, Germany.
| | | | | | | | | |
Collapse
|
28
|
Kappler U, Hanson GR, Jones A, McEwan AG. A recombinant diheme SoxAX cytochrome - Implications for the relationship between EPR signals and modified heme-ligands. FEBS Lett 2005; 579:2491-8. [PMID: 15848194 DOI: 10.1016/j.febslet.2005.03.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 03/07/2005] [Accepted: 03/08/2005] [Indexed: 11/25/2022]
Abstract
The multiheme SoxAX proteins are notable for their unusual heme ligation (His/Cys-persulfide in the SoxA subunit) and the complexity of their EPR spectra. The diheme SoxAX protein from Starkeya novella has been expressed using Rhodobacter capsulatus as a host expression system. rSoxAX was correctly formed in the periplasm of the host and contained heme c in similar amounts as the native SoxAX. ESI-MS showed that the full length rSoxA, in spite of never having undergone catalytic turnover, existed in several forms, with the two major forms having masses of 28687 +/- 4 and 28718 +/- 4 Da. The latter form exceeds the expected mass of rSoxA by 31 +/- 4 Da, a mass close to that of a sulfur atom and indicating that a fraction of the recombinant protein contains a cysteine persulfide modification. EPR spectra of rSoxAX contained all four heme-dependent EPR signals (LS1a, LS1b, LS2, LS3) found in the native SoxAX proteins isolated from bacteria grown under sulfur chemolithotrophic conditions. Exposure of the recombinant SoxAX to different sulfur compounds lead to changes in the SoxA mass profile as determined by ESI while maintaining a fully oxidized SoxAX visible spectrum. Thiosulfate, the proposed SoxAX substrate, did not cause any mass changes while after exposure to dimethylsulfoxide a +112 +/- 4 Da form of SoxA became dominant in the mass spectrum.
Collapse
Affiliation(s)
- Ulrike Kappler
- Centre for Metals in Biology, School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, Australia.
| | | | | | | |
Collapse
|