1
|
Lim Y, Cho YB, Seo YJ. Emerging roles of cytoskeletal transport and scaffold systems in human viral propagation. Anim Cells Syst (Seoul) 2024; 28:506-518. [PMID: 39439927 PMCID: PMC11494721 DOI: 10.1080/19768354.2024.2418332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Viruses have long been recognized as significant pathogens, contributing to multiple global pandemics throughout human history. Recent examples include the 2009 influenza pandemic and the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019. Despite ongoing experimental and clinical efforts, the development of effective antiviral treatments and vaccines remains challenging due to the high mutation rates of many human pathogenic viruses including influenza virus and SARS-CoV-2. As an alternative approach, antiviral strategies targeting host factors shared by multiple viruses could provide a more universally applicable solution. Emerging evidence suggests that viruses exploit the host cytoskeletal network to facilitate efficient viral replication and propagation. Therefore, a comprehensive understanding of the interactions between viral components and the cytoskeletal machinery may offer valuable insights for the development of broad-spectrum antiviral therapeutics. This review compiles and discusses current knowledge on the interactions between viruses and cytoskeletal elements, including kinesin, dynein, myosin, and vimentin, and explores their potential as therapeutic targets. The potential for these cytoskeletal components to serve as targets for new antiviral interventions is discussed in the context of diverse human viruses, including influenza virus, SARS-CoV-2, herpes simplex virus, human papillomavirus, and human immunodeficiency virus.
Collapse
Affiliation(s)
- Younghyun Lim
- Department of Life Science, Chung-Ang University, Dongjak-gu, Republic of Korea
| | - Yong-Bin Cho
- Department of Life Science, Chung-Ang University, Dongjak-gu, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Dongjak-gu, Republic of Korea
| |
Collapse
|
2
|
Cui Y, Wang M, Cheng A, Zhang W, Yang Q, Tian B, Ou X, Huang J, Wu Y, Zhang S, Sun D, He Y, Zhao X, Wu Z, Zhu D, Jia R, Chen S, Liu M. The precise function of alphaherpesvirus tegument proteins and their interactions during the viral life cycle. Front Microbiol 2024; 15:1431672. [PMID: 39015737 PMCID: PMC11250606 DOI: 10.3389/fmicb.2024.1431672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024] Open
Abstract
Alphaherpesvirus is a widespread pathogen that causes diverse diseases in humans and animals and can severely damage host health. Alphaherpesvirus particles comprise a DNA core, capsid, tegument and envelope; the tegument is located between the nuclear capsid and envelope. According to biochemical and proteomic analyses of alphaherpesvirus particles, the tegument contains at least 24 viral proteins and plays an important role in the alphaherpesvirus life cycle. This article reviews the important role of tegument proteins and their interactions during the viral life cycle to provide a reference and inspiration for understanding alphaherpesvirus infection pathogenesis and identifying new antiviral strategies.
Collapse
Affiliation(s)
- Yuxi Cui
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Döhner K, Serrero MC, Sodeik B. The role of nuclear pores and importins for herpes simplex virus infection. Curr Opin Virol 2023; 62:101361. [PMID: 37672874 DOI: 10.1016/j.coviro.2023.101361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
Microtubule transport and nuclear import are functionally connected, and the nuclear pore complex (NPC) can interact with microtubule motors. For several alphaherpesvirus proteins, nuclear localization signals (NLSs) and their interactions with specific importin-α proteins have been characterized. Here, we review recent insights on the roles of microtubule motors, capsid-associated NLSs, and importin-α proteins for capsid transport, capsid docking to NPCs, and genome release into the nucleoplasm, as well as the role of importins for nuclear viral transcription, replication, capsid assembly, genome packaging, and nuclear capsid egress. Moreover, importin-α proteins exert antiviral effects by promoting the nuclear import of transcription factors inducing the expression of interferons (IFN), cytokines, and IFN-stimulated genes, and the IFN-inducible MxB restricts capsid docking to NPCs.
Collapse
Affiliation(s)
- Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany; Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany.
| | - Manutea C Serrero
- Institute of Virology, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany; DZIF - German Centre for Infection Research, Braunschweig, Hannover, Germany.
| |
Collapse
|
4
|
da Silva ES, Naghavi MH. Microtubules and viral infection. Adv Virus Res 2023; 115:87-134. [PMID: 37173066 DOI: 10.1016/bs.aivir.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Microtubules (MTs) form rapidly adaptable, complex intracellular networks of filaments that not only provide structural support, but also form the tracks along which motors traffic macromolecular cargos to specific sub-cellular sites. These dynamic arrays play a central role in regulating various cellular processes including cell shape and motility as well as cell division and polarization. Given their complex organization and functional importance, MT arrays are carefully controlled by many highly specialized proteins that regulate the nucleation of MT filaments at distinct sites, their dynamic growth and stability, and their engagement with other subcellular structures and cargoes destined for transport. This review focuses on recent advances in our understanding of how MTs and their regulatory proteins function, including their active targeting and exploitation, during infection by viruses that utilize a wide variety of replication strategies that occur within different cellular sub-compartments or regions of the cell.
Collapse
Affiliation(s)
- Eveline Santos da Silva
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; HIV Clinical and Translational Research, Luxembourg Institute of Health, Department of Infection and Immunity, Esch-sur-Alzette, Luxembourg
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
5
|
Hasanzadeh A, Hamblin MR, Kiani J, Noori H, Hardie JM, Karimi M, Shafiee H. Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? NANO TODAY 2022; 47:101665. [PMID: 37034382 PMCID: PMC10081506 DOI: 10.1016/j.nantod.2022.101665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gene therapy enables the introduction of nucleic acids like DNA and RNA into host cells, and is expected to revolutionize the treatment of a wide range of diseases. This growth has been further accelerated by the discovery of CRISPR/Cas technology, which allows accurate genomic editing in a broad range of cells and organisms in vitro and in vivo. Despite many advances in gene delivery and the development of various viral and non-viral gene delivery vectors, the lack of highly efficient non-viral systems with low cellular toxicity remains a challenge. The application of cutting-edge technologies such as artificial intelligence (AI) has great potential to find new paradigms to solve this issue. Herein, we review AI and its major subfields including machine learning (ML), neural networks (NNs), expert systems, deep learning (DL), computer vision and robotics. We discuss the potential of AI-based models and algorithms in the design of targeted gene delivery vehicles capable of crossing extracellular and intracellular barriers by viral mimicry strategies. We finally discuss the role of AI in improving the function of CRISPR/Cas systems, developing novel nanobots, and mRNA vaccine carriers.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Joseph M. Hardie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 141556559, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 1584743311, Iran
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| |
Collapse
|
6
|
Marshall EM, Koopmans MPG, Rockx B. A Journey to the Central Nervous System: Routes of Flaviviral Neuroinvasion in Human Disease. Viruses 2022; 14:2096. [PMID: 36298652 PMCID: PMC9611789 DOI: 10.3390/v14102096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Many arboviruses, including viruses of the Flavivirus genera, are known to cause severe neurological disease in humans, often with long-lasting, debilitating sequalae in surviving patients. These emerging pathogens impact millions of people worldwide, yet still relatively little is known about the exact mechanisms by which they gain access to the human central nervous system. This review focusses on potential haematogenous and transneural routes of neuroinvasion employed by flaviviruses and identifies numerous gaps in knowledge, especially regarding lesser-studied interfaces of possible invasion such as the blood-cerebrospinal fluid barrier, and novel routes such as the gut-brain axis. The complex balance of pro-inflammatory and antiviral immune responses to viral neuroinvasion and pathology is also discussed, especially in the context of the hypothesised Trojan horse mechanism of neuroinvasion. A greater understanding of the routes and mechanisms of arboviral neuroinvasion, and how they differ between viruses, will aid in predictive assessments of the neuroinvasive potential of new and emerging arboviruses, and may provide opportunity for attenuation, development of novel intervention strategies and rational vaccine design for highly neurovirulent arboviruses.
Collapse
Affiliation(s)
| | | | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
7
|
Talà A, Guerra F, Calcagnile M, Romano R, Resta SC, Paiano A, Chiariello M, Pizzolante G, Bucci C, Alifano P. HrpA anchors meningococci to the dynein motor and affects the balance between apoptosis and pyroptosis. J Biomed Sci 2022; 29:45. [PMID: 35765029 PMCID: PMC9241232 DOI: 10.1186/s12929-022-00829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Neisseria meningitidis the HrpA/HrpB two-partner secretion system (TPS) was implicated in diverse functions including meningococcal competition, biofilm formation, adherence to epithelial cells, intracellular survival and vacuolar escape. These diverse functions could be attributed to distinct domains of secreted HrpA. METHODS A yeast two-hybrid screening, in vitro pull-down assay and immunofluorescence microscopy experiments were used to investigate the interaction between HrpA and the dynein light-chain, Tctex-type 1 (DYNLT1). In silico modeling was used to analyze HrpA structure. Western blot analysis was used to investigate apoptotic and pyroptotic markers. RESULTS The HrpA carboxy-terminal region acts as a manganese-dependent cell lysin, while the results of a yeast two-hybrid screening demonstrated that the HrpA middle region has the ability to bind the dynein light-chain, Tctex-type 1 (DYNLT1). This interaction was confirmed by in vitro pull-down assay and immunofluorescence microscopy experiments showing co-localization of N. meningitidis with DYNLT1 in infected epithelial cells. In silico modeling revealed that the HrpA-M interface interacting with the DYNLT1 has similarity with capsid proteins of neurotropic viruses that interact with the DYNLT1. Indeed, we found that HrpA plays a key role in infection of and meningococcal trafficking within neuronal cells, and is implicated in the modulation of the balance between apoptosis and pyroptosis. CONCLUSIONS Our findings revealed that N. meningitidis is able to effectively infect and survive in neuronal cells, and that this ability is dependent on HrpA, which establishes a direct protein-protein interaction with DYNLTI in these cells, suggesting that the HrpA interaction with dynein could be fundamental for N. meningitidis spreading inside the neurons. Moreover, we found that the balance between apoptotic and pyroptotic pathways is heavily affected by HrpA.
Collapse
Affiliation(s)
- Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Aurora Paiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Mario Chiariello
- Core Research Laboratory-Siena, Institute for Cancer Research and Prevention (ISPRO), 53100, Siena, Italy.,Institute of Clinical Physiology (IFC), National Research Council (CNR), 53100, Siena, Italy
| | - Graziano Pizzolante
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy.
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy.
| |
Collapse
|
8
|
Richards A, Berth SH, Brady S, Morfini G. Engagement of Neurotropic Viruses in Fast Axonal Transport: Mechanisms, Potential Role of Host Kinases and Implications for Neuronal Dysfunction. Front Cell Neurosci 2021; 15:684762. [PMID: 34234649 PMCID: PMC8255969 DOI: 10.3389/fncel.2021.684762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022] Open
Abstract
Much remains unknown about mechanisms sustaining the various stages in the life cycle of neurotropic viruses. An understanding of those mechanisms operating before their replication and propagation could advance the development of effective anti-viral strategies. Here, we review our current knowledge of strategies used by neurotropic viruses to undergo bidirectional movement along axons. We discuss how the invasion strategies used by specific viruses might influence their mode of interaction with selected components of the host’s fast axonal transport (FAT) machinery, including specialized membrane-bounded organelles and microtubule-based motor proteins. As part of this discussion, we provide a critical evaluation of various reported interactions among viral and motor proteins and highlight limitations of some in vitro approaches that led to their identification. Based on a large body of evidence documenting activation of host kinases by neurotropic viruses, and on recent work revealing regulation of FAT through phosphorylation-based mechanisms, we posit a potential role of host kinases on the engagement of viruses in retrograde FAT. Finally, we briefly describe recent evidence linking aberrant activation of kinase pathways to deficits in FAT and neuronal degeneration in the context of human neurodegenerative diseases. Based on these findings, we speculate that neurotoxicity elicited by viral infection may involve deregulation of host kinases involved in the regulation of FAT and other cellular processes sustaining neuronal function and survival.
Collapse
Affiliation(s)
- Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
| | - Sarah H Berth
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Scott Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
A role for Dynlt3 in melanosome movement, distribution, acidity and transfer. Commun Biol 2021; 4:423. [PMID: 33772156 PMCID: PMC7997999 DOI: 10.1038/s42003-021-01917-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Skin pigmentation is dependent on cellular processes including melanosome biogenesis, transport, maturation and transfer to keratinocytes. However, how the cells finely control these processes in space and time to ensure proper pigmentation remains unclear. Here, we show that a component of the cytoplasmic dynein complex, Dynlt3, is required for efficient melanosome transport, acidity and transfer. In Mus musculus melanocytes with decreased levels of Dynlt3, pigmented melanosomes undergo a more directional motion, leading to their peripheral location in the cell. Stage IV melanosomes are more acidic, but still heavily pigmented, resulting in a less efficient melanosome transfer. Finally, the level of Dynlt3 is dependent on β-catenin activity, revealing a function of the Wnt/β-catenin signalling pathway during melanocyte and skin pigmentation, by coupling the transport, positioning and acidity of melanosomes required for their transfer.
Collapse
|
10
|
Cellular and Viral Determinants of HSV-1 Entry and Intracellular Transport towards Nucleus of Infected Cells. J Virol 2021; 95:JVI.02434-20. [PMID: 33472938 PMCID: PMC8092704 DOI: 10.1128/jvi.02434-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
HSV-1 employs cellular motor proteins and modulates kinase pathways to facilitate intracellular virion capsid transport. Previously, we and others have shown that the Akt inhibitor miltefosine inhibited virus entry. Herein, we show that the protein kinase C inhibitors staurosporine (STS) and gouml inhibited HSV-1 entry into Vero cells, and that miltefosine prevents HSV-1 capsid transport toward the nucleus. We have reported that the HSV-1 UL37 tegument protein interacts with the dynein motor complex during virus entry and virion egress, while others have shown that the UL37/UL36 protein complex binds dynein and kinesin causing a saltatory movement of capsids in neuronal axons. Co-immoprecipitation experiments confirmed previous findings from our laboratory that the UL37 protein interacted with the dynein intermediate chain (DIC) at early times post infection. This UL37-DIC interaction was concurrent with DIC phosphorylation in infected, but not mock-infected cells. Miltefosine inhibited dynein phosphorylation when added before, but not after virus entry. Inhibition of motor accessory protein dynactins (DCTN2, DCTN3), the adaptor proteins EB1 and the Bicaudal D homolog 2 (BICD2) expression using lentiviruses expressing specific shRNAs, inhibited intracellular transport of virion capsids toward the nucleus of human neuroblastoma (SK-N-SH) cells. Co-immunoprecipitation experiments revealed that the major capsid protein Vp5 interacted with dynactins (DCTN1/p150 and DCTN4/p62) and the end-binding protein (EB1) at early times post infection. These results show that Akt and kinase C are involved in virus entry and intracellular transport of virion capsids, but not in dynein activation via phosphorylation. Importantly, both the UL37 and Vp5 viral proteins are involved in dynein-dependent transport of virion capsids to the nuclei of infected cells.Importance. Herpes simplex virus type-1 enter either via fusion at the plasma membranes or endocytosis depositing the virion capsids into the cytoplasm of infected cells. The viral capsids utilize the dynein motor complex to move toward the nuclei of infected cells using the microtubular network. This work shows that inhibitors of the Akt kinase and kinase C inhibit not only viral entry into cells but also virion capsid transport toward the nucleus. In addition, the work reveals that the virion protein ICP5 (VP5) interacts with the dynein cofactor dynactin, while the UL37 protein interacts with the dynein intermediate chain (DIC). Importantly, neither Akt nor Kinase C was found to be responsible for phosphorylation/activation of dynein indicating that other cellular or viral kinases may be involved.
Collapse
|
11
|
Denes CE, Newsome TP, Miranda-Saksena M, Cunningham AL, Diefenbach RJ. A putative WAVE regulatory complex (WRC) interacting receptor sequence (WIRS) in the cytoplasmic tail of HSV-1 gE does not function in WRC recruitment or neuronal transport. Access Microbiol 2021; 3:000206. [PMID: 34151161 PMCID: PMC8209697 DOI: 10.1099/acmi.0.000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/04/2021] [Indexed: 11/18/2022] Open
Abstract
HSV-1 envelope glycoprotein E (gE) is important for viral egress and cell-to-cell spread but the host protein(s) involved in these functions have yet to be determined. We aimed to investigate a role for the Arp2/3 complex and actin regulation in viral egress based on the identification of a WAVE Regulatory Complex (WRC) Interacting Receptor Sequence (WIRS) in the cytoplasmic tail (CT) of gE. A WIRS-dependent interaction between the gE(CT) and subunits of the WRC was demonstrated by GST-pulldown assay and a role for the Arp2/3 complex in cell-to-cell spread was also observed by plaque assay. Subsequent study of a recombinant HSV-1 gE WIRS-mutant found no significant changes to viral production and release based on growth kinetics studies, or changes to plaque and comet size in various cell types, suggesting no function for the motif in cell-to-cell spread. GFP-Trap pulldown and proximity ligation assays were unable to confirm a WIRS-dependent interaction between gE and the WRC in human cell lines though the WIRS-independent interaction observed in situ warrants further study. Confocal microscopy of infected cells of neuronal origin identified no impairment of gE WIRS-mutant HSV-1 anterograde transport along axons. We propose that the identified gE WIRS motif does not function directly in recruitment of the WRC in human cells, in cell-to-cell spread of virus or in anterograde transport along axons. Further studies are needed to understand how HSV-1 manipulates and traverses the actin cytoskeleton and how gE may contribute to these processes in a WIRS-independent manner.
Collapse
Affiliation(s)
- Christopher E Denes
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Timothy P Newsome
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Russell J Diefenbach
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.,Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
12
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
13
|
Xu JJ, Gao F, Wu JQ, Zheng H, Tong W, Cheng XF, Liu Y, Zhu H, Fu X, Jiang Y, Li L, Kong N, Li G, Tong G. Characterization of Nucleocytoplasmic Shuttling of Pseudorabies Virus Protein UL46. Front Vet Sci 2020; 7:484. [PMID: 32974393 PMCID: PMC7472561 DOI: 10.3389/fvets.2020.00484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
Pseudorabies virus (PRV) is the etiological agent of Aujeszky's disease, which has caused severe economic loss in China since its re-emergence in 2011. UL46, a late gene of herpesvirus, codes for the abundant but non-essential viral phosphoproteins 11 and 12 (VP11/12). In this study, VP11/12 was found to localize inside both the nucleus and cytoplasm. The nuclear localization signal (NLS) of VP11/12 was identified as 3RRARGTRRASWKDASR18. Further research identified α5 and α7 to be the receptors for NLS and the chromosome region maintenance 1 (CRM1) to be the receptor for the nuclear export signal. Moreover, we found that PRV VP11/12 interacts with EP0 and the stimulator of interferon genes protein (STING), whereas the NLS of VP11/12 is the important part for VP11/12 to interact with UL48. To our knowledge, this is the first study to provide reliable evidence verifying the nuclear localization of VP11/12 and its role as an additional shuttling tegument protein for PRV. In addition, this is also the first study to elucidate the interactions between PRV VP11/12 and EP0 as well as between PRV VP11/12 and STING, while identifying the precise interaction sites of PRV VP11/12 and VP16.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ji-Qiang Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xue-Fei Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yuting Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haojie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xinling Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Qi H, Wu H, Abid M, Qiu HJ, Sun Y. Establishment of a Fosmid Library for Pseudorabies Virus SC Strain and Application in Viral Neuronal Tracing. Front Microbiol 2020; 11:1168. [PMID: 32595620 PMCID: PMC7300229 DOI: 10.3389/fmicb.2020.01168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/07/2020] [Indexed: 01/30/2023] Open
Abstract
Pseudorabies virus (PRV) is a member of Alphaherpesvirinae subfamily, its neurotropism and latency infection attract the attention of many scientists. PRV tagged with a fluorescent reporter gene as a tracker has been used to analyze neuronal circuits, including anterograde and retrograde. In this study, we used fosmid library to construct a rapid and efficient platform to generate recombinant PRV. Firstly, the highly purified PRV ShuangCheng (SC) genomic DNA was sheared randomly into approximately 30–49-kb DNA fragments. After end-blunting and phosphorylation, the DNA fragments were cloned into the fosmid vector and transformed into Escherichia coli. A total of 200 fosmids that cover the complete genome of PRV SC was sequenced. Thirteen fosmid combinations in five groups were transfected into Vero cells, respectively, and each group can successfully rescue PRV strain SC. There was no significant difference between wild type and recombinant in both morphology and growth kinetics. In the next step, an enhanced green fluorescent protein (EGFP) was fused into the amino-terminal of UL36 protein by Red/ET recombination technology, and recombinant rPRV SC-UL36-EGFP was rescued successfully. At last, the single viral particles with green fluorescent were monitored retrograde moving in the axon with an average velocity of 0.71 ± 0.43 μm/s at 0.5–2 h post infection (hpi) and anterograde moving with an average velocity of 0.75 ± 0.49 μm/s at eight hpi. Integration of fosmid library and Red/ET recombination technology in our work was highly efficient and stable for constructing PRV recombinants. This study will accelerate understanding the biology of PRV and the development of novel vaccines.
Collapse
Affiliation(s)
- Hansong Qi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongxia Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Muhammad Abid
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
15
|
Banerjee A, Kulkarni S, Mukherjee A. Herpes Simplex Virus: The Hostile Guest That Takes Over Your Home. Front Microbiol 2020; 11:733. [PMID: 32457704 PMCID: PMC7221137 DOI: 10.3389/fmicb.2020.00733] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Alpha (α)-herpesviruses (HSV-1 and HSV-2), like other viruses, are obligate intracellular parasites. They hijack the cellular machinery to survive and replicate through evading the defensive responses by the host. The viral genome of herpes simplex viruses (HSVs) contains viral genes, the products of which are destined to exploit the host apparatus for their own existence. Cellular modulations begin from the entry point itself. The two main gateways that the virus has to penetrate are the cell membrane and the nuclear membrane. Changes in the cell membrane are triggered when the glycoproteins of HSV interact with the surface receptors of the host cell, and from here, the components of the cytoskeleton take over. The rearrangement in the cytoskeleton components help the virus to enter as well as transport to the nucleus and back to the cell membrane to spread out to the other cells. The entire carriage process is also mediated by the motor proteins of the kinesin and dynein superfamily and is directed by the viral tegument proteins. Also, the virus captures the cell’s most efficient cargo carrying system, the endoplasmic reticulum (ER)–Golgi vesicular transport machinery for egress to the cell membrane. For these reasons, the host cell has its own checkpoints where the normal functions are halted once a danger is sensed. However, a cell may be prepared for the adversities from an invading virus, and it is simply commendable that the virus has the antidote to these cellular strategies as well. The HSV viral proteins are capable of limiting the use of the transcriptional and translational tools for the cell itself, so that its own transcription and translation pathways remain unhindered. HSV prefers to constrain any self-destruction process of the cell—be it autophagy in the lysosome or apoptosis by the mitochondria, so that it can continue to parasitize the cell for its own survival. This review gives a detailed account of the significance of compartmentalization during HSV pathogenesis. It also highlights the undiscovered areas in the HSV cell biology research which demand attention for devising improved therapeutics against the infection.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| | - Smita Kulkarni
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| | - Anupam Mukherjee
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| |
Collapse
|
16
|
Microtubules in Influenza Virus Entry and Egress. Viruses 2020; 12:v12010117. [PMID: 31963544 PMCID: PMC7020094 DOI: 10.3390/v12010117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Influenza viruses are respiratory pathogens that represent a significant threat to public health, despite the large-scale implementation of vaccination programs. It is necessary to understand the detailed and complex interactions between influenza virus and its host cells in order to identify successful strategies for therapeutic intervention. During viral entry, the cellular microenvironment presents invading pathogens with a series of obstacles that must be overcome to infect permissive cells. Influenza hijacks numerous host cell proteins and associated biological pathways during its journey into the cell, responding to environmental cues in order to successfully replicate. The cellular cytoskeleton and its constituent microtubules represent a heavily exploited network during viral infection. Cytoskeletal filaments provide a dynamic scaffold for subcellular viral trafficking, as well as virus-host interactions with cellular machineries that are essential for efficient uncoating, replication, and egress. In addition, influenza virus infection results in structural changes in the microtubule network, which itself has consequences for viral replication. Microtubules, their functional roles in normal cell biology, and their exploitation by influenza viruses will be the focus of this review.
Collapse
|
17
|
Diwaker D, Wilson DW. Microtubule-Dependent Trafficking of Alphaherpesviruses in the Nervous System: The Ins and Outs. Viruses 2019; 11:v11121165. [PMID: 31861082 PMCID: PMC6950448 DOI: 10.3390/v11121165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022] Open
Abstract
The Alphaherpesvirinae include the neurotropic pathogens herpes simplex virus and varicella zoster virus of humans and pseudorabies virus of swine. These viruses establish lifelong latency in the nuclei of peripheral ganglia, but utilize the peripheral tissues those neurons innervate for productive replication, spread, and transmission. Delivery of virions from replicative pools to the sites of latency requires microtubule-directed retrograde axonal transport from the nerve terminus to the cell body of the sensory neuron. As a corollary, during reactivation newly assembled virions must travel along axonal microtubules in the anterograde direction to return to the nerve terminus and infect peripheral tissues, completing the cycle. Neurotropic alphaherpesviruses can therefore exploit neuronal microtubules and motors for long distance axonal transport, and alternate between periods of sustained plus end- and minus end-directed motion at different stages of their infectious cycle. This review summarizes our current understanding of the molecular details by which this is achieved.
Collapse
Affiliation(s)
- Drishya Diwaker
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Correspondence: ; Tel.: +1-(718)-430-2305
| |
Collapse
|
18
|
Lloyd J, Copaciu R, Yahyabeik A, DeWit C, Cummings K, Lacey M, Su Q. Characterization of polyclonal antibodies to Herpes Simplex Virus types 1 and 2. J Histotechnol 2019; 42:202-214. [PMID: 31680648 DOI: 10.1080/01478885.2019.1683132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Infections with herpes simplex virus (HSV) types 1 and 2 have been linked to oral, facial, genital lesions, as well as some visceral organ changes in patients under immunosuppressed conditions. Immunohistochemistry (IHC) with HSV antibodies is used for identification of the viruses in tissue samples. In this study, two polyclonal antibodies, prepared separately with HSV-1 and HSV-2 immunogens, were characterized in comparison to a monoclonal antibody to HSV-1 (10A3). The polyclonal anti-HSV-1 and monoclonal antibody 10A3 were shown to be reactive to viral proteins of both HSV-1 and HSV-2 on Western blots, while the polyclonal anti-HSV-2 was reactive to HSV-2 proteins, but not to those of HSV-1. Cross-reactivity was not observed to proteins of six other frequently encountered herpes viruses. IHC characterization was performed on 29 cases of HSV-infected tissue samples, 61 samples infected with other herpes viruses and 35 samples without known infection. By IHC, the polyclonal anti-HSV-1 and a monoclonal antibody 10A3 exhibited a signal, mainly in a nuclear pattern, in all of the HSV-infected samples and not in other tissue types. A positive signal, mainly in the cytoplasm, was identified with the polyclonal anti-HSV-2 in 21 of the 29 HSV-infected samples. Genotyping analysis was successful in 14 of the HSV-infected samples, with IHC HSV-2 positivity correlative to the HSV-2 genotype. The results demonstrate that these antibodies are useful tools for identification of HSV-1 and HSV-2, and their combinatorial application may help to distinguish between these two types of infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Mike Lacey
- Cell Marque, MilliporeSigma, Rocklin, CA, USA
| | - Qin Su
- Cell Marque, MilliporeSigma, Rocklin, CA, USA
| |
Collapse
|
19
|
Bearer EL, Wu C. Herpes Simplex Virus, Alzheimer's Disease and a Possible Role for Rab GTPases. Front Cell Dev Biol 2019; 7:134. [PMID: 31448273 PMCID: PMC6692634 DOI: 10.3389/fcell.2019.00134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/04/2019] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus (HSV) is a common pathogen, infecting 85% of adults in the United States. After reaching the nucleus of the long-lived neuron, HSV may enter latency to persist throughout the life span. Re-activation of latent herpesviruses is associated with progressive cognitive impairment and Alzheimer's disease (AD). As an enveloped DNA virus, HSV exploits cellular membrane systems for its life cycle, and thereby comes in contact with the Rab family of GTPases, master regulators of intracellular membrane dynamics. Knock-down and overexpression of specific Rabs reduce HSV production. Disheveled membrane compartments could lead to AD because membrane sorting and trafficking are crucial for synaptic vesicle formation, neuronal survival signaling and Abeta production. Amyloid precursor protein (APP), a transmembrane glycoprotein, is the parent of Abeta, the major component of senile plaques in AD. Up-regulation of APP expression due to HSV is significant since excess APP interferes with Rab5 endocytic trafficking in neurons. Here, we show that purified PC12-cell endosomes transport both anterograde and retrograde when injected into the squid giant axon at rates similar to isolated HSV. Intracellular HSV co-fractionates with these endosomes, contains APP, Rab5 and TrkA, and displays a second membrane. HSV infected PC12 cells up-regulate APP expression. Whether interference with Rabs has a specific effect on HSV or indirectly affects membrane compartment dynamics co-opted by virus needs further study. Ultimately Rabs, their effectors or their membrane-binding partners may serve as handles to reduce the impact of viral re-activation on cognitive function, or even as more general-purpose anti-microbial therapies.
Collapse
Affiliation(s)
- Elaine L. Bearer
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
20
|
Ni R, Feng R, Chau Y. Synthetic Approaches for Nucleic Acid Delivery: Choosing the Right Carriers. Life (Basel) 2019; 9:E59. [PMID: 31324016 PMCID: PMC6789897 DOI: 10.3390/life9030059] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of the genetic roots of various human diseases has motivated the exploration of different exogenous nucleic acids as therapeutic agents to treat these genetic disorders (inherited or acquired). However, the physicochemical properties of nucleic acids render them liable to degradation and also restrict their cellular entrance and gene translation/inhibition at the correct cellular location. Therefore, gene condensation/protection and guided intracellular trafficking are necessary for exogenous nucleic acids to function inside cells. Diversified cationic formulation materials, including natural and synthetic lipids, polymers, and proteins/peptides, have been developed to facilitate the intracellular transportation of exogenous nucleic acids. The chemical properties of different formulation materials determine their special features for nucleic acid delivery, so understanding the property-function correlation of the formulation materials will inspire the development of next-generation gene delivery carriers. Therefore, in this review, we focus on the chemical properties of different types of formulation materials and discuss how these formulation materials function as protectors and cellular pathfinders for nucleic acids, bringing them to their destination by overcoming different cellular barriers.
Collapse
Affiliation(s)
- Rong Ni
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Institute for Advanced Study, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ruilu Feng
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ying Chau
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| |
Collapse
|
21
|
Wu Y, Wei F, Tang L, Liao Q, Wang H, Shi L, Gong Z, Zhang W, Zhou M, Xiang B, Wu X, Li X, Li Y, Li G, Xiong W, Zeng Z, Xiong F, Guo C. Herpesvirus acts with the cytoskeleton and promotes cancer progression. J Cancer 2019; 10:2185-2193. [PMID: 31258722 PMCID: PMC6584404 DOI: 10.7150/jca.30222] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/14/2019] [Indexed: 12/26/2022] Open
Abstract
The cytoskeleton is a complex fibrous reticular structure composed of microfilaments, microtubules and intermediate filaments. These components coordinate morphology support and intracellular transport that is involved in a variety of cell activities, such as cell proliferation, migration and differentiation. In addition, the cytoskeleton also plays an important role in viral infection. During an infection by a Herpesvirus, the virus utilizes microfilaments to enter cells and travel to the nucleus by microtubules; the viral DNA replicates with the help of host microfilaments; and the virus particles start assembling with a capsid in the cytoplasm before egress. The cytoskeleton changes in cells infected with Herpesvirus are made to either counteract or obey the virus, thereby promote cell transforming into cancerous ones. This article aims to clarify the interaction between the virus and cytoskeleton components in the process of Herpesvirus infection and the molecular motor, cytoskeleton-associated proteins and drugs that play an important role in the process of a Herpesvirus infection and carcinogenesis process.
Collapse
Affiliation(s)
- Yingfen Wu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Le Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lei Shi
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Carnes SK, Aiken C. Host proteins involved in microtubule-dependent HIV-1 intracellular transport and uncoating. Future Virol 2019. [DOI: 10.2217/fvl-2019-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microtubules and microtubule-associated proteins are critical for cargo transport throughout the cell. Many viruses are able to usurp these transport systems for their own replication and spread. HIV-1 utilizes these proteins for many of its early events postentry, including transport, uncoating and reverse transcription. The molecular motor proteins dynein and kinesin-1 are the primary drivers of cargo transport, and HIV-1 utilizes these proteins for infection. In this Review, we highlight recent developments in the understanding of how HIV-1 hijacks motor transport, the key cellular and viral proteins involved, and the ways that transport influences other steps in the HIV-1 lifecycle.
Collapse
Affiliation(s)
- Stephanie K Carnes
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
23
|
The Carboxyl Terminus of Tegument Protein pUL21 Contributes to Pseudorabies Virus Neuroinvasion. J Virol 2019; 93:JVI.02052-18. [PMID: 30651360 DOI: 10.1128/jvi.02052-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022] Open
Abstract
Following its entry into cells, pseudorabies virus (PRV) utilizes microtubules to deliver its nucleocapsid to the nucleus. Previous studies have shown that PRV VP1/2 is an effector of dynein-mediated capsid transport. However, the mechanism of PRV for recruiting microtubule motor proteins for successful neuroinvasion and neurovirulence is not well understood. Here, we provide evidence that PRV pUL21 is an inner tegument protein. We tested its interaction with the cytoplasmic light chains using a bimolecular fluorescence complementation (BiFC) assay and observed that PRV pUL21 interacts with Roadblock-1. This interaction was confirmed by coimmunoprecipitation (co-IP) assays. We also determined the efficiency of retrograde and anterograde axonal transport of PRV strains in explanted neurons using a microfluidic chamber system and investigated pUL21's contribution to PRV neuroinvasion in vivo Further data showed that the carboxyl terminus of pUL21 is essential for its interaction with Roadblock-1, and this domain contributes to PRV retrograde axonal transport in vitro and in vivo Our findings suggest that the carboxyl terminus of pUL21 contributes to PRV neuroinvasion.IMPORTANCE Herpesviruses are a group of DNA viruses that infect both humans and animals. Alphaherpesviruses are distinguished by their ability to establish latent infection in peripheral neurons. After entering neurons, the herpesvirus capsid interacts with cellular motor proteins and undergoes retrograde transport on axon microtubules. This elaborate process is vital to the herpesvirus lifecycle, but the underlying mechanism remains poorly understood. Here, we determined that pUL21 is an inner tegument protein of pseudorabies virus (PRV) and that it interacts with the cytoplasmic dynein light chain Roadblock-1. We also observed that pUL21 promotes retrograde transport of PRV in neuronal cells. Furthermore, our findings confirm that pUL21 contributes to PRV neuroinvasion in vivo Importantly, the carboxyl terminus of pUL21 is responsible for interaction with Roadblock-1, and this domain contributes to PRV neuroinvasion. This study offers fresh insights into alphaherpesvirus neuroinvasion and the interaction between virus and host during PRV infection.
Collapse
|
24
|
Ibáñez FJ, Farías MA, Gonzalez-Troncoso MP, Corrales N, Duarte LF, Retamal-Díaz A, González PA. Experimental Dissection of the Lytic Replication Cycles of Herpes Simplex Viruses in vitro. Front Microbiol 2018; 9:2406. [PMID: 30386309 PMCID: PMC6198116 DOI: 10.3389/fmicb.2018.02406] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022] Open
Abstract
Herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) produce lifelong infections and are highly prevalent in the human population. Both viruses elicit numerous clinical manifestations and produce mild-to-severe diseases that affect the skin, eyes, and brain, among others. Despite the existence of numerous antivirals against HSV, such as acyclovir and acyclovir-related analogs, virus variants that are resistant to these compounds can be isolated from immunosuppressed individuals. For such isolates, second-line drugs can be used, yet they frequently produce adverse side effects. Furthermore, topical antivirals for treating cutaneous HSV infections usually display poor to moderate efficacy. Hence, better or novel anti-HSV antivirals are needed and details on their mechanisms of action would be insightful for improving their efficacy and identifying specific molecular targets. Here, we review and dissect the lytic replication cycles of herpes simplex viruses, discussing key steps involved in cell infection and the processes that yield new virions. Additionally, we review and discuss rapid, easy-to-perform and simple experimental approaches for studying key steps involved in HSV replication to facilitate the identification of the mechanisms of action of anti-HSV compounds.
Collapse
Affiliation(s)
- Francisco J Ibáñez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria P Gonzalez-Troncoso
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
Promyelocytic leukemia (PML) nuclear bodies (NBs) induce latent/quiescent HSV-1 genomes chromatinization through a PML NB/Histone H3.3/H3.3 Chaperone Axis. PLoS Pathog 2018; 14:e1007313. [PMID: 30235352 PMCID: PMC6168178 DOI: 10.1371/journal.ppat.1007313] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/02/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) latency establishment is tightly controlled by promyelocytic leukemia (PML) nuclear bodies (NBs) (or ND10), although their exact contribution is still elusive. A hallmark of HSV-1 latency is the interaction between latent viral genomes and PML NBs, leading to the formation of viral DNA-containing PML NBs (vDCP NBs), and the complete silencing of HSV-1. Using a replication-defective HSV-1-infected human primary fibroblast model reproducing the formation of vDCP NBs, combined with an immuno-FISH approach developed to detect latent/quiescent HSV-1, we show that vDCP NBs contain both histone H3.3 and its chaperone complexes, i.e., DAXX/ATRX and HIRA complex (HIRA, UBN1, CABIN1, and ASF1a). HIRA also co-localizes with vDCP NBs present in trigeminal ganglia (TG) neurons from HSV-1-infected wild type mice. ChIP and Re-ChIP show that vDCP NBs-associated latent/quiescent viral genomes are chromatinized almost exclusively with H3.3 modified on its lysine (K) 9 by trimethylation, consistent with an interaction of the H3.3 chaperones with multiple viral loci and with the transcriptional silencing of HSV-1. Only simultaneous inactivation of both H3.3 chaperone complexes has a significant impact on the deposition of H3.3 on viral genomes, suggesting a compensation mechanism. In contrast, the sole depletion of PML significantly impacts the chromatinization of the latent/quiescent viral genomes with H3.3 without any overall replacement with H3.1. vDCP NBs-associated HSV-1 genomes are not definitively silenced since the destabilization of vDCP NBs by ICP0, which is essential for HSV-1 reactivation in vivo, allows the recovery of a transcriptional lytic program and the replication of viral genomes. Consequently, the present study demonstrates a specific chromatin regulation of vDCP NBs-associated latent/quiescent HSV-1 through an H3.3-dependent HSV-1 chromatinization involving the two H3.3 chaperones DAXX/ATRX and HIRA complexes. Additionally, the study reveals that PML NBs are major actors in latent/quiescent HSV-1 H3.3 chromatinization through a PML NB/histone H3.3/H3.3 chaperone axis. An understanding of the molecular mechanisms contributing to the persistence of a virus in its host is essential to be able to control viral reactivation and its associated diseases. Herpes simplex virus 1 (HSV-1) is a human pathogen that remains latent in the PNS and CNS of the infected host. The latency is unstable, and frequent reactivations of the virus are responsible for PNS and CNS pathologies. It is thus crucial to understand the physiological, immunological and molecular levels of interplay between latent HSV-1 and the host. Promyelocytic leukemia (PML) nuclear bodies (NBs) control viral infections by preventing the onset of lytic infection. In previous studies, we showed a major role of PML NBs in favoring the establishment of a latent state for HSV-1. A hallmark of HSV-1 latency establishment is the formation of PML NBs containing the viral genome, which we called “viral DNA-containing PML NBs” (vDCP NBs). The genome entrapped in the vDCP NBs is transcriptionally silenced. This naturally occurring latent/quiescent state could, however, be transcriptionally reactivated. Therefore, understanding the role of PML NBs in controlling the establishment of HSV-1 latency and its reactivation is essential to design new therapeutic approaches based on the prevention of viral reactivation.
Collapse
|
26
|
Imaging, Tracking and Computational Analyses of Virus Entry and Egress with the Cytoskeleton. Viruses 2018; 10:v10040166. [PMID: 29614729 PMCID: PMC5923460 DOI: 10.3390/v10040166] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Viruses have a dual nature: particles are “passive substances” lacking chemical energy transformation, whereas infected cells are “active substances” turning-over energy. How passive viral substances convert to active substances, comprising viral replication and assembly compartments has been of intense interest to virologists, cell and molecular biologists and immunologists. Infection starts with virus entry into a susceptible cell and delivers the viral genome to the replication site. This is a multi-step process, and involves the cytoskeleton and associated motor proteins. Likewise, the egress of progeny virus particles from the replication site to the extracellular space is enhanced by the cytoskeleton and associated motor proteins. This overcomes the limitation of thermal diffusion, and transports virions and virion components, often in association with cellular organelles. This review explores how the analysis of viral trajectories informs about mechanisms of infection. We discuss the methodology enabling researchers to visualize single virions in cells by fluorescence imaging and tracking. Virus visualization and tracking are increasingly enhanced by computational analyses of virus trajectories as well as in silico modeling. Combined approaches reveal previously unrecognized features of virus-infected cells. Using select examples of complementary methodology, we highlight the role of actin filaments and microtubules, and their associated motors in virus infections. In-depth studies of single virion dynamics at high temporal and spatial resolutions thereby provide deep insight into virus infection processes, and are a basis for uncovering underlying mechanisms of how cells function.
Collapse
|
27
|
Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton. Viruses 2018; 10:v10020092. [PMID: 29473915 PMCID: PMC5850399 DOI: 10.3390/v10020092] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections. This review will focus on the currently known mechanisms utilized by HSV-1 to harness the neuronal cytoskeleton, molecular motors, and the secretory and exocytic pathways for efficient virus entry, axonal transport, replication, assembly, and exit from the distinct functional compartments (cell body and axon) of the highly polarized sensory neurons.
Collapse
|
28
|
Cytoskeletons in the Closet-Subversion in Alphaherpesvirus Infections. Viruses 2018; 10:v10020079. [PMID: 29438303 PMCID: PMC5850386 DOI: 10.3390/v10020079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022] Open
Abstract
Actin filaments, microtubules and intermediate filaments form the cytoskeleton of vertebrate cells. Involved in maintaining cell integrity and structure, facilitating cargo and vesicle transport, remodelling surface structures and motility, the cytoskeleton is necessary for the successful life of a cell. Because of the broad range of functions these filaments are involved in, they are common targets for viral pathogens, including the alphaherpesviruses. Human-tropic alphaherpesviruses are prevalent pathogens carried by more than half of the world’s population; comprising herpes simplex virus (types 1 and 2) and varicella-zoster virus, these viruses are characterised by their ability to establish latency in sensory neurons. This review will discuss the known mechanisms involved in subversion of and transport via the cytoskeleton during alphaherpesvirus infections, focusing on protein-protein interactions and pathways that have recently been identified. Studies on related alphaherpesviruses whose primary host is not human, along with comparisons to more distantly related beta and gammaherpesviruses, are also presented in this review. The need to decipher as-yet-unknown mechanisms exploited by viruses to hijack cytoskeletal components—to reveal the hidden cytoskeletons in the closet—will also be addressed.
Collapse
|
29
|
Takamatsu Y, Kolesnikova L, Becker S. Ebola virus proteins NP, VP35, and VP24 are essential and sufficient to mediate nucleocapsid transport. Proc Natl Acad Sci U S A 2018; 115:1075-1080. [PMID: 29339477 PMCID: PMC5798334 DOI: 10.1073/pnas.1712263115] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The intracytoplasmic movement of nucleocapsids is a crucial step in the life cycle of enveloped viruses. Determination of the viral components necessary for viral nucleocapsid transport competency is complicated by the dynamic and complex nature of nucleocapsid assembly and the lack of appropriate model systems. Here, we established a live-cell imaging system based on the ectopic expression of fluorescent Ebola virus (EBOV) fusion proteins, allowing the visualization and analysis of the movement of EBOV nucleocapsid-like structures with different protein compositions. Only three of the five EBOV nucleocapsid proteins-nucleoprotein, VP35, and VP24-were necessary and sufficient to form transport-competent nucleocapsid-like structures. The transport of these structures was found to be dependent on actin polymerization and to have dynamics that were undistinguishable from those of nucleocapsids in EBOV-infected cells. The intracytoplasmic movement of nucleocapsid-like structures was completely independent of the viral matrix protein VP40 and the viral surface glycoprotein GP. However, VP40 greatly enhanced the efficiency of nucleocapsid recruitment into filopodia, the sites of EBOV budding.
Collapse
Affiliation(s)
- Yuki Takamatsu
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35037 Marburg, Germany
| | - Larissa Kolesnikova
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35037 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35037 Marburg, Germany;
- Thematic Translational Unit Emerging Infections, German Center of Infection Research (DZIF), 35037 Marburg, Germany
| |
Collapse
|
30
|
Intracellular trafficking of a dynein-based nanoparticle designed for gene delivery. Eur J Pharm Sci 2018; 112:71-78. [DOI: 10.1016/j.ejps.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/09/2017] [Accepted: 11/01/2017] [Indexed: 12/29/2022]
|
31
|
Milev MP, Yao X, Berthoux L, Mouland AJ. Impacts of virus-mediated manipulation of host Dynein. DYNEINS 2018. [PMCID: PMC7150161 DOI: 10.1016/b978-0-12-809470-9.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In general viruses' modus operandi to propagate is achieved by the co-opting host cell components, membranes, proteins, and machineries to their advantage. This is true for virtually every aspect of a virus' replication cycle from virus entry to the budding or release of progeny virus particles. In this chapter, we will discuss new information on the impacts of virus-mediated manipulation of Dynein motor complexes and associated machineries and factors. We will highlight how these host cell components impact on pathogenicity and immune responses, as many of the virus-mediated hijacked components also play pivotal roles in immune responses to pathogen insult. There are several comprehensive reviews that define virus–Dynein interactions including the first edition of this book that describes how viruses manipulate the host cell machineries their advantage. An updated table is included to summarize these virus–host interactions. Notably, barriers to intracellular translocation represent major hurdles to viral components during de novo infection and during active replication and the generation of progeny virus particles. Clearly, the subversion of host cell molecular motor protein activities takes advantage of constitutive and regulated membrane trafficking events and will target virus components to intracytoplasmic locales and membrane assembly. Broadening our understanding of the interplay between viruses, Dynein and the cytoskeleton will likely inform on new types of therapies. Continual enhancement of the breadth of new information on how viruses manipulate host cell biology will inevitably aid in the identification of new targets that can be poisoned to block old, new, and emerging viruses alike in their tracks.
Collapse
|
32
|
Brocard J, Dufour F, Gory-Fauré S, Arnoult C, Bosc C, Denarier E, Peris L, Saoudi Y, De Waard M, Andrieux A. MAP6 interacts with Tctex1 and Ca v 2.2/N-type calcium channels to regulate calcium signalling in neurons. Eur J Neurosci 2017; 46:2754-2767. [PMID: 29094416 PMCID: PMC5765474 DOI: 10.1111/ejn.13766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/29/2022]
Abstract
MAP6 proteins were first described as microtubule‐stabilizing agents, whose properties were thought to be essential for neuronal development and maintenance of complex neuronal networks. However, deletion of all MAP6 isoforms in MAP6 KO mice does not lead to dramatic morphological aberrations of the brain but rather to alterations in multiple neurotransmissions and severe behavioural impairments. A search for protein partners of MAP6 proteins identified Tctex1 – a dynein light chain with multiple non‐microtubule‐related functions. The involvement of Tctex1 in calcium signalling led to investigate it in MAP6 KO neurons. In this study, we show that functional Cav2.2/N‐type calcium channels are deficient in MAP6 KO neurons, due to improper location. We also show that MAP6 proteins interact directly with both Tctex1 and the C‐terminus of Cav2.2/N‐type calcium channels. A balance of these two interactions seems to be crucial for MAP6 to modulate calcium signalling in neurons.
Collapse
Affiliation(s)
- Jacques Brocard
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Fabrice Dufour
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Sylvie Gory-Fauré
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Christophe Arnoult
- U1209, INSERM, Grenoble, France.,UMR 5309, CNRS, Grenoble, France.,Institute for Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
| | - Christophe Bosc
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Eric Denarier
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France.,CEA, BIG-GPC, Grenoble, France
| | - Leticia Peris
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Yasmina Saoudi
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Michel De Waard
- U1087, INSERM, Nantes, France.,UMR 6291, CNRS, Nantes, France.,Université Nantes, Nantes, France
| | - Annie Andrieux
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France.,CEA, BIG-GPC, Grenoble, France
| |
Collapse
|
33
|
Peptides mediating DNA transport on microtubules and their impact on non-viral gene transfer efficiency. Biosci Rep 2017; 37:BSR20170995. [PMID: 28899926 PMCID: PMC5643739 DOI: 10.1042/bsr20170995] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 11/17/2022] Open
Abstract
Synthetic vectors such as cationic polymers and cationic lipids remain attractive tools for non-viral gene transfer which is a complex process whose effectiveness relies on the ability to deliver a plasmid DNA (pDNA) into the nucleus of non-dividing cells. Once in the cytosol, the transport of pDNAs towards the nuclear envelope is strongly impaired by their very low cytosolic mobility due to their large size. To promote their movement towards the cell nucleus, few strategies have been implemented to exploit dynein, the microtubule’s (MT’s) motor protein, for propagation of cytosolic pDNA along the MTs towards the cell nucleus. In the first part of this review, an overview on MTs, dynein, dynein/virus interaction feature is presented followed by a summary of the results obtained by exploitation of LC8 and TCTEL1 dynein light chain association sequence (DLC-AS) for non-viral transfection. The second part dedicated to the adenoviral protein E3-14.7K, reports the transfection efficiency of polyplexes and lipoplexes containing the E3-14.7K-derived P79-98 peptide linked to pDNA. Here, several lines of evidence are given showing that dynein can be targeted to improve cytosolic pDNA mobility and accumulate pDNA near nuclear envelope in order to facilitate its transport through the nuclear pores. The linkage of various DLC-AS to pDNA carriers led to modest transfection improvements and their direct interaction with MTs was not demonstrated. In contrast, pDNA linked to the P79-98 peptide interacting with TCTEL1 via a cytosolic protein (fourteen seven K-interacting protein-1 (FIP-1)), interaction with MTs is evidenced in cellulo and transfection efficiency is improved.
Collapse
|
34
|
Flatt JW, Greber UF. Viral mechanisms for docking and delivering at nuclear pore complexes. Semin Cell Dev Biol 2017; 68:59-71. [PMID: 28506891 DOI: 10.1016/j.semcdb.2017.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022]
Abstract
Some viruses possess the remarkable ability to transport their genomes across nuclear pore complexes (NPCs) for replication inside the host cell's intact nuclear compartment. Viral mechanisms for crossing the restrictive NPC passageway are highly complex and astonishingly diverse, requiring in each case stepwise interaction between incoming virus particles and components of the nuclear transport machinery. Exactly how a large viral genome loaded with accessory proteins is able to pass through the relatively narrow central channel of the NPC without causing catastrophic structural damage is not yet fully understood. It appears likely, however, that the overall structure of the NPC changes in response to the cargo. Translocation may result in nucleic acids being misdelivered to the cytoplasm. Here we consider in detail the diverse strategies that viruses have evolved to target and subvert NPCs during infection. For decades, this process has both captivated and confounded researchers in the fields of virology, cell biology, and structural biology.
Collapse
Affiliation(s)
- Justin W Flatt
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
35
|
Vasilevska J, De Souza GA, Stensland M, Skrastina D, Zhulenvovs D, Paplausks R, Kurena B, Kozlovska T, Zajakina A. Comparative protein profiling of B16 mouse melanoma cells susceptible and non-susceptible to alphavirus infection: Effect of the tumor microenvironment. Cancer Biol Ther 2016; 17:1035-1050. [PMID: 27636533 DOI: 10.1080/15384047.2016.1219813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Alphavirus vectors are promising tools for cancer treatment. However, relevant entry mechanisms and interactions with host cells are still not clearly understood. The first step toward a more effective therapy is the identification of novel intracellular alterations that could be associated with cancer aggressiveness and could affect the therapeutic potential of these vectors. In this study, we observed that alphaviruses efficiently infected B16 mouse melanoma tumors/tumor cells in vivo, whereas their transduction efficiency in B16 cells under in vitro conditions was blocked. Therefore, we further aimed to understand the mechanisms pertaining to the differential transduction efficacy of alphaviruses in B16 tumor cells under varying growth conditions. We hypothesized that the tumor microenvironment might alter gene expression in B16 cells, leading to an up-regulation of the expression of virus-binding receptors or factors associated with virus entry and replication. To test our hypothesis, we performed a proteomics analysis of B16 cells cultured in vitro and of B16 cells isolated from tumors, and we identified 277 differentially regulated proteins. A further in-depth analysis to identify the biological and molecular functions of the detected proteins revealed a set of candidate genes that could affect virus infectivity. Importantly, we observed a decrease in the expression of interferon α (IFN-α) in tumor-isolated cells that resulted in the suppression of several IFN-regulated genes, thereby abrogating host cell antiviral defense. Additionally, differences in the expression of genes that regulate cytoskeletal organization caused significant alterations in cell membrane elasticity. Taken together, our findings demonstrated favorable intracellular conditions for alphavirus transduction/replication that occurred during tumor transformation. These results pave the way for optimizing the development of strategies for the application of alphaviral vectors as a potent cancer therapy.
Collapse
Affiliation(s)
- Jelena Vasilevska
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| | | | - Maria Stensland
- b Department of Immunology , Oslo University Hospital , Oslo , Norway
| | - Dace Skrastina
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| | - Dmitry Zhulenvovs
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| | | | - Baiba Kurena
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| | - Tatjana Kozlovska
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| | - Anna Zajakina
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| |
Collapse
|
36
|
Rüdiger AT, Mayrhofer P, Ma-Lauer Y, Pohlentz G, Müthing J, von Brunn A, Schwegmann-Weßels C. Tubulins interact with porcine and human S proteins of the genus Alphacoronavirus and support successful assembly and release of infectious viral particles. Virology 2016; 497:185-197. [PMID: 27479465 PMCID: PMC7111311 DOI: 10.1016/j.virol.2016.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 01/05/2023]
Abstract
Coronavirus spike proteins mediate host-cell-attachment and virus entry. Virus replication takes place within the host cell cytosol, whereas assembly and budding occur at the endoplasmic reticulum-Golgi intermediate compartment. In this study we demonstrated that the last 39 amino acid stretches of Alphacoronavirus spike cytoplasmic domains of the human coronavirus 229E, NL63, and the porcine transmissible gastroenteritis virus TGEV interact with tubulin alpha and beta chains. In addition, a partial co-localization of TGEV spike proteins with authentic host cell β-tubulin was observed. Furthermore, drug-induced microtubule depolymerization led to changes in spike protein distribution, a reduction in the release of infectious virus particles and less amount of spike protein incorporated into virions. These data demonstrate that interaction of Alphacoronavirus spike proteins with tubulin supports S protein transport and incorporation into virus particles. The cytoplasmic domain of coronavirus S proteins interacts with tubulin. Microtubule depolymerization influences S protein distribution. Viral titers are reduced after microtubule depolymerization. S protein incorporation into virus particles depends on intact microtubule.
Collapse
Affiliation(s)
- Anna-Theresa Rüdiger
- Institute of Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Peter Mayrhofer
- Virology Department, Max-von-Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstraße 9a, 80336 Munich, Germany
| | - Yue Ma-Lauer
- Virology Department, Max-von-Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstraße 9a, 80336 Munich, Germany
| | - Gottfried Pohlentz
- Institute for Hygiene, University of Münster, Robert-Koch-Straße 41, 48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Straße 41, 48149 Münster, Germany
| | - Albrecht von Brunn
- Virology Department, Max-von-Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstraße 9a, 80336 Munich, Germany; German Centers for Infection Research (DZIF), Ludwig-Maximilians-University Munich, Germany.
| | - Christel Schwegmann-Weßels
- Institute of Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
37
|
Ashford P, Hernandez A, Greco TM, Buch A, Sodeik B, Cristea IM, Grünewald K, Shepherd A, Topf M. HVint: A Strategy for Identifying Novel Protein-Protein Interactions in Herpes Simplex Virus Type 1. Mol Cell Proteomics 2016; 15:2939-53. [PMID: 27384951 PMCID: PMC5013309 DOI: 10.1074/mcp.m116.058552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 11/12/2022] Open
Abstract
Human herpesviruses are widespread human pathogens with a remarkable impact on worldwide public health. Despite intense decades of research, the molecular details in many aspects of their function remain to be fully characterized. To unravel the details of how these viruses operate, a thorough understanding of the relationships between the involved components is key. Here, we present HVint, a novel protein-protein intraviral interaction resource for herpes simplex virus type 1 (HSV-1) integrating data from five external sources. To assess each interaction, we used a scoring scheme that takes into consideration aspects such as the type of detection method and the number of lines of evidence. The coverage of the initial interactome was further increased using evolutionary information, by importing interactions reported for other human herpesviruses. These latter interactions constitute, therefore, computational predictions for potential novel interactions in HSV-1. An independent experimental analysis was performed to confirm a subset of our predicted interactions. This subset covers proteins that contribute to nuclear egress and primary envelopment events, including VP26, pUL31, pUL40, and the recently characterized pUL32 and pUL21. Our findings support a coordinated crosstalk between VP26 and proteins such as pUL31, pUS9, and the CSVC complex, contributing to the development of a model describing the nuclear egress and primary envelopment pathways of newly synthesized HSV-1 capsids. The results are also consistent with recent findings on the involvement of pUL32 in capsid maturation and early tegumentation events. Further, they open the door to new hypotheses on virus-specific regulators of pUS9-dependent transport. To make this repository of interactions readily accessible for the scientific community, we also developed a user-friendly and interactive web interface. Our approach demonstrates the power of computational predictions to assist in the design of targeted experiments for the discovery of novel protein-protein interactions.
Collapse
Affiliation(s)
- Paul Ashford
- From the: ‡Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK
| | - Anna Hernandez
- From the: ‡Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK; §Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Todd Michael Greco
- ¶Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544
| | - Anna Buch
- ‖Institute of Virology, Hannover Medical School, OE 4310, Carl-Neuberg-Str. 1, D-30623, Hannover, Germany
| | - Beate Sodeik
- ‖Institute of Virology, Hannover Medical School, OE 4310, Carl-Neuberg-Str. 1, D-30623, Hannover, Germany
| | - Ileana Mihaela Cristea
- ¶Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544;
| | - Kay Grünewald
- §Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Adrian Shepherd
- From the: ‡Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK
| | - Maya Topf
- From the: ‡Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK;
| |
Collapse
|
38
|
Jovasevic V, Naghavi MH, Walsh D. Microtubule plus end-associated CLIP-170 initiates HSV-1 retrograde transport in primary human cells. J Cell Biol 2016; 211:323-37. [PMID: 26504169 PMCID: PMC4621836 DOI: 10.1083/jcb.201505123] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Herpes simplex virus particles that enter the cell do not randomly associate with microtubule filaments, but require plus end–binding proteins EB1, CLIP-170, and dynactin to initiate retrograde transport to the nucleus. Dynamic microtubules (MTs) continuously explore the intracellular environment and, through specialized plus end–tracking proteins (+TIPs), engage a variety of targets. However, the nature of cargoes that require +TIP-mediated capture for their movement on MTs remains poorly understood. Using RNA interference and dominant-negative approaches, combined with live cell imaging, we show that herpes simplex virus particles that have entered primary human cells exploit a +TIP complex comprising end-binding protein 1 (EB1), cytoplasmic linker protein 170 (CLIP-170), and dynactin-1 (DCTN1) to initiate retrograde transport. Depletion of these +TIPs completely blocked post-entry long-range transport of virus particles and suppressed infection ∼5,000-fold, whereas transferrin uptake, early endosome organization, and dynein-dependent movement of lysosomes and mitochondria remained unaffected. These findings provide the first insights into the earliest stages of viral engagement of MTs through specific +TIPs, akin to receptors, with therapeutic implications, and identify herpesvirus particles as one of a very limited number of cargoes absolutely dependent on CLIP-170–mediated capture to initiate transport in primary human cells.
Collapse
Affiliation(s)
- Vladimir Jovasevic
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 Department of Microbiology, School of Medicine, New York University, New York, NY 10016
| |
Collapse
|
39
|
Caly L, Kassouf VT, Moseley GW, Diefenbach RJ, Cunningham AL, Jans DA. Fast track, dynein-dependent nuclear targeting of human immunodeficiency virus Vpr protein; impaired trafficking in a clinical isolate. Biochem Biophys Res Commun 2016; 470:735-740. [PMID: 26792716 DOI: 10.1016/j.bbrc.2016.01.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/08/2016] [Indexed: 12/23/2022]
Abstract
Nuclear import of the accessory protein Vpr is central to infection by human immunodeficiency virus (HIV). We previously identified the Vpr F72L mutation in a HIV-infected, long-term non-progressor, showing that it resulted in reduced Vpr nuclear accumulation and altered cytoplasmic localisation. Here we demonstrate for the first time that the effects of nuclear accumulation of the F72L mutation are due to impairment of microtubule-dependent-enhancement of Vpr nuclear import. We use high resolution imaging approaches including fluorescence recovery after photobleaching and other approaches to document interaction between Vpr and the dynein light chain protein, DYNLT1, and impaired interaction of the F72L mutant with DYNLT1. The results implicate MTs/DYNLT1 as drivers of Vpr nuclear import and HIV infection, with important therapeutic implications.
Collapse
Affiliation(s)
- Leon Caly
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia
| | - Vicki T Kassouf
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia
| | - Russell J Diefenbach
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia.
| |
Collapse
|
40
|
Rowles DL, Tsai YC, Greco TM, Lin AE, Li M, Yeh J, Cristea IM. DNA methyltransferase DNMT3A associates with viral proteins and impacts HSV-1 infection. Proteomics 2015; 15:1968-82. [PMID: 25758154 DOI: 10.1002/pmic.201500035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/17/2015] [Accepted: 03/07/2015] [Indexed: 01/21/2023]
Abstract
Viral infections can alter the cellular epigenetic landscape, through modulation of either DNA methylation profiles or chromatin remodeling enzymes and histone modifications. These changes can act to promote viral replication or host defense. Herpes simplex virus type 1 (HSV-1) is a prominent human pathogen, which relies on interactions with host factors for efficient replication and spread. Nevertheless, the knowledge regarding its modulation of epigenetic factors remains limited. Here, we used fluorescently-labeled viruses in conjunction with immunoaffinity purification and MS to study virus-virus and virus-host protein interactions during HSV-1 infection in primary human fibroblasts. We identified interactions among viral capsid and tegument proteins, detecting phosphorylation of the capsid protein VP26 at sites within its UL37-binding domain, and an acetylation within the major capsid protein VP5. Interestingly, we found a nuclear association between viral capsid proteins and the de novo DNA methyltransferase DNA (cytosine-5)-methyltransferase 3A (DNMT3A), which we confirmed by reciprocal isolations and microscopy. We show that drug-induced inhibition of DNA methyltransferase activity, as well as siRNA- and shRNA-mediated DNMT3A knockdowns trigger reductions in virus titers. Altogether, our results highlight a functional association of viral proteins with the mammalian DNA methyltransferase machinery, pointing to DNMT3A as a host factor required for effective HSV-1 infection.
Collapse
Affiliation(s)
- Daniell L Rowles
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yuan-Chin Tsai
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Todd M Greco
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Aaron E Lin
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Minghao Li
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Justin Yeh
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
41
|
Ebola virus VP35 interaction with dynein LC8 regulates viral RNA synthesis. J Virol 2015; 89:5148-53. [PMID: 25741013 DOI: 10.1128/jvi.03652-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/19/2015] [Indexed: 11/20/2022] Open
Abstract
Ebola virus VP35 inhibits alpha/beta interferon production and functions as a viral polymerase cofactor. Previously, the 8-kDa cytoplasmic dynein light chain (LC8) was demonstrated to interact with VP35, but the functional consequences were unclear. Here we demonstrate that the interaction is direct and of high affinity and that binding stabilizes the VP35 N-terminal oligomerization domain and enhances viral RNA synthesis. Mutational analysis demonstrates that VP35 interaction is required for the functional effects of LC8.
Collapse
|
42
|
Abstract
Virus genomes are condensed and packaged inside stable proteinaceous capsids that serve to protect them during transit from one cell or host organism, to the next. During virus entry, capsid shells are primed and disassembled in a complex, tightly-regulated, multi-step process termed uncoating. Here we compare the uncoating-programs of DNA viruses of the pox-, herpes-, adeno-, polyoma-, and papillomavirus families. Highlighting the chemical and mechanical cues virus capsids respond to, we review the conformational changes that occur during stepwise disassembly of virus capsids and how these culminate in the release of viral genomes at the right time and cellular location to assure successful replication.
Collapse
|
43
|
Work TM, Dagenais J, Balazs GH, Schettle N, Ackermann M. Dynamics of Virus Shedding and In Situ Confirmation of Chelonid Herpesvirus 5 in Hawaiian Green Turtles With Fibropapillomatosis. Vet Pathol 2014; 52:1195-201. [PMID: 25445320 DOI: 10.1177/0300985814560236] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancers in humans and animals can be caused by viruses, but virus-induced tumors are considered to be poor sites for replication of intact virions (lytic replication). Fibropapillomatosis (FP) is a neoplastic disease associated with a herpesvirus, chelonid herpesvirus 5 (ChHV5), that affects green turtles globally. ChHV5 probably replicates in epidermal cells of tumors, because epidermal intranuclear inclusions (EIIs) contain herpesvirus-like particles. However, although EIIs are a sign of herpesvirus replication, they have not yet been firmly linked to ChHV5. Moreover, the dynamics of viral shedding in turtles are unknown, and there are no serological reagents to confirm actual presence of the specific ChHV5 virus in tissues. The investigators analyzed 381 FP tumors for the presence of EIIs and found that overall, about 35% of green turtles had lytic replication in skin tumors with 7% of tumors showing lytic replication. A few (11%) turtles accounted for more than 30% cases having lytic viral replication, and lytic replication was more likely in smaller tumors. To confirm that turtles were actively replicating ChHV5, a prerequisite for shedding, the investigators used antiserum raised against F-VP26, a predicted capsid protein of ChHV5 that localizes to the host cell nucleus during viral replication. This antiserum revealed F-VP26 in EIIs of tumors, thus confirming the presence of replicating ChHV5. In this light, it is proposed that unlike other virus-induced neoplastic diseases, FP is a disease that may depend on superspreaders, a few highly infectious individuals growing numerous small tumors permissive to viral production, for transmission of ChHV5.
Collapse
Affiliation(s)
- T M Work
- U.S. Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, HI, USA
| | - J Dagenais
- U.S. Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, HI, USA
| | - G H Balazs
- NOAA, National Marine Fisheries Service, Pacific Islands Fisheries Science Center, Honolulu, HI, USA
| | - N Schettle
- Institute of Virology, University of Zurich, Switzerland
| | - M Ackermann
- Institute of Virology, University of Zurich, Switzerland
| |
Collapse
|
44
|
Feng J, Tang X, Zhan W. Cloning and characterization of cytoplasmic dynein intermediate chain in Fenneropenaeus chinensis and its essential role in white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2014; 39:407-414. [PMID: 24925758 DOI: 10.1016/j.fsi.2014.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 06/03/2023]
Abstract
To investigate the role of cytoplasmic dynein in white spot syndrome virus (WSSV) infection, the full-length cDNA of cytoplasmic dynein intermediate chain (FcDYNCI) was cloned in Fenneropenaeus chinensis, which consists of 2582 bp and encodes a polypeptide of 660 amino acids. Sequence analysis and multiple sequence alignment displayed that FcDYNCI was a member of cytoplasmic dynein 1 family. The FcDYNCI mRNA was most highly expressed in hemocytes, which was significantly up-regulated post WSSV infection. At 12 h post infection (hpi), confocal microscopic observation showed that WSSV could be co-localized with cytoplasmic dynein in hemocytes. After silencing by specific FcDYNCI dsRNA, the FcDYNCI mRNA level and the protein amount of FcDYNCI in hemocytes both exhibited a significant reduction, and the expression levels of three WSSV genes ie1, wsv477 and vp28 all exhibited the greatest decreases at 24 hpi. These results suggested that cytoplasmic dynein was involved in WSSV infection.
Collapse
Affiliation(s)
- Jixing Feng
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, Qingdao 266003, PR China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, Qingdao 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
45
|
Zhong M, Zheng K, Chen M, Xiang Y, Jin F, Ma K, Qiu X, Wang Q, Peng T, Kitazato K, Wang Y. Heat-shock protein 90 promotes nuclear transport of herpes simplex virus 1 capsid protein by interacting with acetylated tubulin. PLoS One 2014; 9:e99425. [PMID: 24901434 PMCID: PMC4047101 DOI: 10.1371/journal.pone.0099425] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/14/2014] [Indexed: 01/04/2023] Open
Abstract
Although it is known that inhibitors of heat shock protein 90 (Hsp90) can inhibit herpes simplex virus type 1 (HSV-1) infection, the role of Hsp90 in HSV-1 entry and the antiviral mechanisms of Hsp90 inhibitors remain unclear. In this study, we found that Hsp90 inhibitors have potent antiviral activity against standard or drug-resistant HSV-1 strains and viral gene and protein synthesis are inhibited in an early phase. More detailed studies demonstrated that Hsp90 is upregulated by virus entry and it interacts with virus. Hsp90 knockdown by siRNA or treatment with Hsp90 inhibitors significantly inhibited the nuclear transport of viral capsid protein (ICP5) at the early stage of HSV-1 infection. In contrast, overexpression of Hsp90 restored the nuclear transport that was prevented by the Hsp90 inhibitors, suggesting that Hsp90 is required for nuclear transport of viral capsid protein. Furthermore, HSV-1 infection enhanced acetylation of α-tubulin and Hsp90 interacted with the acetylated α-tubulin, which is suppressed by Hsp90 inhibition. These results demonstrate that Hsp90, by interacting with acetylated α-tubulin, plays a crucial role in viral capsid protein nuclear transport and may provide novel insight into the role of Hsp90 in HSV-1 infection and offer a promising strategy to overcome drug-resistance.
Collapse
Affiliation(s)
- Meigong Zhong
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China; College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Kai Zheng
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China
| | - Maoyun Chen
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China; College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Yangfei Xiang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China; College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Kaiqi Ma
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China
| | - Xianxiu Qiu
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China; College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Qiaoli Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Kaio Kitazato
- Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China
| |
Collapse
|
46
|
Bigley NJ. Complexity of Interferon-γ Interactions with HSV-1. Front Immunol 2014; 5:15. [PMID: 24567732 PMCID: PMC3915238 DOI: 10.3389/fimmu.2014.00015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/09/2014] [Indexed: 12/12/2022] Open
Abstract
The intricacies involving the role of interferon-gamma (IFN-γ) in herpesvirus infection and persistence are complex. Herpes simplex virus type 1 (HSV-1) uses a variety of receptors to enter cells and is transported to and from the host cell nucleus over the microtubule railroad via retrograde and anterograde transport. IFN-γ exerts dual but conflicting effects on microtubule organization. IFN-γ stimulates production of suppressors of cytokine signaling 1 and 3 (SOCS1 and SOCS3), which are involved in microtubule stability and are negative regulators of IFN-γ signaling when overexpressed. IFN-γ also interferes with the correct assembly of microtubules causing them to undergo severe bundling, contributing to its anti-viral effect. Factors leading to the decision for a replicative virus lytic cycle or latency in the trigeminal ganglion (TG) occur on histone 3 (H3), involve IFN-γ produced by natural killer cells and non-cytolytic CD8+T cells, SOCS1, SOCS3, and M2 anti-inflammatory microglia/macrophages maintained by inhibitory interleukin 10 (IL-10). Both M2 microglia and CD4+CD25+Foxp3+ Treg cells produce IL-10. Histone deacetylases (HDACs) are epigenetic regulators maintaining chromatin in an inactive state necessary for transcription of IFN-γ-activated genes and their anti-viral effect. Following inhibition of HDACs by stressors such as ultraviolet light, SOCS1 and SOCS3 are acetylated, and chromatin is relaxed and available for virus replication. SOCS1 prevents expression of MHC class 1 molecules on neuronal cells and SOCS3 attenuates cytokine-induced inflammation in the area. A model is presented to unify the effects of IFN-γ, SOCS1, SOCS3, and HSV-1 on H3 and chromatin structure in virus latency or reactivation. HSV-1 latency in the TG is viewed as an active ongoing process involving maintenance of microglia in an M2 anti-inflammatory state by IL-10. IL-10 is produced in an autocrine manner by the M2 microglia/macrophages and by virus-specific CD4+Foxp3+ Treg cells interacting with virus-specific non-cytolytic CD8+ T cells.
Collapse
Affiliation(s)
- Nancy J Bigley
- Microbiology and Immunology Program, Department of Neuroscience, Cell Biology and Physiology, Wright State University , Dayton, OH , USA
| |
Collapse
|
47
|
Favaro MTP, de Toledo MAS, Alves RF, Santos CA, Beloti LL, Janissen R, de la Torre LG, Souza AP, Azzoni AR. Development of a non-viral gene delivery vector based on the dynein light chain Rp3 and the TAT peptide. J Biotechnol 2014; 173:10-8. [PMID: 24417903 DOI: 10.1016/j.jbiotec.2014.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 02/02/2023]
Abstract
Gene therapy and DNA vaccination trials are limited by the lack of gene delivery vectors that combine efficiency and safety. Hence, the development of modular recombinant proteins able to mimic mechanisms used by viruses for intracellular trafficking and nuclear delivery is an important strategy. We designed a modular protein (named T-Rp3) composed of the recombinant human dynein light chain Rp3 fused to an N-terminal DNA-binding domain and a C-terminal membrane active peptide, TAT. The T-Rp3 protein was successfully expressed in Escherichia coli and interacted with the dynein intermediate chain in vitro. It was also proven to efficiently interact and condense plasmid DNA, forming a stable, small (∼100nm) and positively charged (+28.6mV) complex. Transfection of HeLa cells using T-Rp3 revealed that the vector is highly dependent on microtubule polarization, being 400 times more efficient than protamine, and only 13 times less efficient than Lipofectamine 2000™, but with a lower cytotoxicity. Confocal laser scanning microcopy studies revealed perinuclear accumulation of the vector, most likely as a result of transport via microtubules. This study contributes to the development of more efficient and less cytotoxic proteins for non-viral gene delivery.
Collapse
Affiliation(s)
- M T P Favaro
- Laboratório de Análise Genética e Molecular, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - M A S de Toledo
- Laboratório de Análise Genética e Molecular, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - R F Alves
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - C A Santos
- Laboratório de Análise Genética e Molecular, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - L L Beloti
- Laboratório de Análise Genética e Molecular, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - R Janissen
- Instituto de Física Aplicada "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - L G de la Torre
- Faculdade de Engenharia Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - A P Souza
- Laboratório de Análise Genética e Molecular, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - A R Azzoni
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
48
|
Bernhard OK, Diefenbach RJ, Cunningham AL. New insights into viral structure and virus–cell interactions through proteomics. Expert Rev Proteomics 2014; 2:577-88. [PMID: 16097890 DOI: 10.1586/14789450.2.4.577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although genomics techniques such as DNA microarrays have been widely used in virology, much more limited use has been made of proteomics. Although difficult, proteomics can greatly contribute to an understanding of virus-cell interactions, including the ternary structure of viral receptors at the cell surface, post-translational modifications and isoforms of critical viral and cellular proteins and even to the structure of viruses. Proteomics techniques also offer the potential for discovering markers for diagnostic and prognostic tests of viral infections in vivo. This review describes the use of several proteomic approaches for the analysis of HIV-cellular receptor interactions, the molecular mechanisms of transport of herpes simplex virus within neurons, and the structure of the tegument of herpes simplex virus.
Collapse
Affiliation(s)
- Oliver K Bernhard
- Joint ProteomicS Laboratory, The Ludwig Institute for Cancer Research & The Walter and Eliza Hall Institute for Medical Research, Royal Melbourne Hospital, Royal Parade, Parkville, VIC 3050, Australia.
| | | | | |
Collapse
|
49
|
Toledo MAS, Favaro MTP, Alves RF, Santos CA, Beloti LL, Crucello A, Santiago AS, Mendes JS, Horta MAC, Aparicio R, Souza AP, Azzoni AR. Characterization of the human dynein light chain Rp3 and its use as a non-viral gene delivery vector. Appl Microbiol Biotechnol 2013; 98:3591-602. [PMID: 24077724 DOI: 10.1007/s00253-013-5239-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 08/30/2013] [Accepted: 09/04/2013] [Indexed: 12/01/2022]
Abstract
Dynein light chains mediate the interaction between the cargo and the dynein motor complex during retrograde microtubule-mediated transport in eukaryotic cells. In this study, we expressed and characterized the recombinant human dynein light chain Rp3 and developed a modified variant harboring an N-terminal DNA-binding domain (Rp3-Db). Our approach aimed to explore the retrograde cell machinery based on dynein to enhance plasmid DNA (pDNA) traffic along the cytosol toward the nucleus. In the context of non-viral gene delivery, Rp3-Db is expected to simultaneously interact with DNA and dynein, thereby enabling a more rapid and efficient transport of the genetic material across the cytoplasm. We successfully purified recombinant Rp3 and obtained a low-resolution structural model using small-angle X-ray scattering. Additionally, we observed that Rp3 is a homodimer under reducing conditions and remains stable over a broad pH range. The ability of Rp3 to interact with the dynein intermediate chain in vitro was also observed, indicating that the recombinant Rp3 is correctly folded and functional. Finally, Rp3-Db was successfully expressed and purified and exhibited the ability to interact with pDNA and mediate the transfection of cultured HeLa cells. Rp3-Db was also capable of interacting in vitro with dynein intermediate chains, indicating that the addition of the N-terminal DNA-binding domain does not compromise its function. The transfection level observed for Rp3-Db is far superior than that reported for protamine and is comparable to that of the cationic lipid Lipofectamine™. This report presents an initial characterization of a non-viral delivery vector based on the dynein light chain Rp3 and demonstrates the potential use of modified human light chains as gene delivery vectors.
Collapse
|
50
|
Zaichick SV, Bohannon KP, Hughes A, Sollars PJ, Pickard GE, Smith GA. The herpesvirus VP1/2 protein is an effector of dynein-mediated capsid transport and neuroinvasion. Cell Host Microbe 2013; 13:193-203. [PMID: 23414759 DOI: 10.1016/j.chom.2013.01.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/13/2012] [Accepted: 01/11/2013] [Indexed: 12/23/2022]
Abstract
Microtubule transport of herpesvirus capsids from the cell periphery to the nucleus is imperative for viral replication and, in the case of many alphaherpesviruses, transmission into the nervous system. Using the neuroinvasive herpesvirus, pseudorabies virus (PRV), we show that the viral protein 1/2 (VP1/2) tegument protein associates with the dynein/dynactin microtubule motor complex and promotes retrograde microtubule transport of PRV capsids. Functional activation of VP1/2 requires binding to the capsid protein pUL25 or removal of the capsid-binding domain. A proline-rich sequence within VP1/2 is required for the efficient interaction with the dynein/dynactin microtubule motor complex as well as for PRV virulence and retrograde axon transport in vivo. Additionally, in the absence of infection, functionally active VP1/2 is sufficient to move large surrogate cargoes via the dynein/dynactin microtubule motor complex. Thus, VP1/2 tethers PRV capsids to dynein/dynactin to enhance microtubule transport, neuroinvasion, and pathogenesis.
Collapse
Affiliation(s)
- Sofia V Zaichick
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|