1
|
Giuraniuc CV, Parkin C, Almeida MC, Fricker M, Shadmani P, Nye S, Wehmeier S, Chawla S, Bedekovic T, Lehtovirta-Morley L, Richards DM, Gow NA, Brand AC. Dynamic calcium-mediated stress response and recovery signatures in the fungal pathogen, Candida albicans. mBio 2023; 14:e0115723. [PMID: 37750683 PMCID: PMC10653887 DOI: 10.1128/mbio.01157-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Intracellular calcium signaling plays an important role in the resistance and adaptation to stresses encountered by fungal pathogens within the host. This study reports the optimization of the GCaMP fluorescent calcium reporter for live-cell imaging of dynamic calcium responses in single cells of the pathogen, Candida albicans, for the first time. Exposure to membrane, osmotic or oxidative stress generated both specific changes in single cell intracellular calcium spiking and longer calcium transients across the population. Repeated treatments showed that calcium dynamics become unaffected by some stresses but not others, consistent with known cell adaptation mechanisms. By expressing GCaMP in mutant strains and tracking the viability of individual cells over time, the relative contributions of key signaling pathways to calcium flux, stress adaptation, and cell death were demonstrated. This reporter, therefore, permits the study of calcium dynamics, homeostasis, and signaling in C. albicans at a previously unattainable level of detail.
Collapse
Affiliation(s)
- C. V. Giuraniuc
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - C. Parkin
- MRC Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - M. C. Almeida
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - M. Fricker
- School of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - P. Shadmani
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - S. Nye
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - S. Wehmeier
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - S. Chawla
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - T. Bedekovic
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - L. Lehtovirta-Morley
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - D. M. Richards
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - N. A. Gow
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - A. C. Brand
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
2
|
Yan Y, Huang X, Zhou Y, Li J, Liu F, Li X, Hu X, Wang J, Guo L, Liu R, Takaya N, Zhou S. Cytosol Peroxiredoxin and Cell Surface Catalase Differentially Respond to H 2O 2 Stress in Aspergillus nidulans. Antioxidants (Basel) 2023; 12:1333. [PMID: 37507873 PMCID: PMC10376852 DOI: 10.3390/antiox12071333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Both catalase and peroxiredoxin show high activities of H2O2 decomposition and coexist in the same organism; however, their division of labor in defense against H2O2 is unclear. We focused on the major peroxiredoxin (PrxA) and catalase (CatB) in Aspergillus nidulans at different growth stages to discriminate their antioxidant roles. The dormant conidia lacking PrxA showed sensitivity to high concentrations of H2O2 (>100 mM), revealing that PrxA is one of the important antioxidants in dormant conidia. Once the conidia began to swell and germinate, or further develop to young hyphae (9 h to old age), PrxA-deficient cells (ΔprxA) did not survive on plates containing H2O2 concentrations higher than 1 mM, indicating that PrxA is an indispensable antioxidant in the early growth stage. During these early growth stages, absence of CatB did not affect fungal resistance to either high (>1 mM) or low (<1 mM) concentrations of H2O2. In the mature hyphae stage (24 h to old age), however, CatB fulfills the major antioxidant function, especially against high doses of H2O2. PrxA is constitutively expressed throughout the lifespan, whereas CatB levels are low in the early growth stage of the cells developing from swelling conidia to early growth hyphae, providing a molecular basis for their different contributions to H2O2 resistance in different growth stages. Further enzyme activity and cellular localization analysis indicated that CatB needs to be secreted to be functionalized, and this process is confined to the growth stage of mature hyphae. Our results revealed differences in effectiveness and timelines of two primary anti-H2O2 enzymes in fungus.
Collapse
Affiliation(s)
- Yunfeng Yan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaofei Huang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Yao Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyi Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Feiyun Liu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xueying Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaotao Hu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Lingyan Guo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Renning Liu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Naoki Takaya
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Liu Z, Yang X, Xue H, Bi Y, Zhang Q, Liu Q, Chen J, Nan M, Dov P. Reactive Oxygen Species Metabolism and Diacetoxyscirpenol Biosynthesis Modulation in Potato Tuber Inoculated with Ozone-Treated Fusarium sulphureum. J FOOD PROCESS PRES 2023. [DOI: 10.1155/2023/4823679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Potato dry rot, caused by Fusarium species, is a devastating fungal decay that seriously impacts the yield and quality of potato tubers worldwide. Fusarium sulphureum is a major causal agent causing potato tuber dry rot that leads to trichothecene accumulation in Gansu Province of China. Ozone (O3), a strong oxidant, is widely applied to prevent postharvest disease in fruits and vegetables. In this study, F. sulphureum was first treated with 2 mg L-1 ozone for 0, 30 s, 1 min, and 2 min, then inoculated with the potato tubers. The impact of ozone application on dry rot development and diacetoxyscirpenol (DIA) accumulation and the possible mechanisms involved were analyzed. The results showed that ozone treatment significantly inhibited the development of potato tuber dry rot by activating reactive oxygen species (ROS) metabolism and increased the activities of antioxidant enzymes NADPH oxidase (NOX), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) by 24.2%, 13.1%, 45.4%, and 15.8%, respectively, compared with their corresponding control. The activities of key enzymes involved in ascorbate-glutathione cycle (AsA-GSH) of ascorbic peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR) also increased by 26.6%, 41.5%, 56%, and 24.1%, respectively, compared with the control group, and their corresponding gene expressions. In addition, ozone treatment markedly suppressed DIA accumulation in potato tubers by downregulating the expression of genes associated with DIA biosynthesis pathway. These results suggest that ozone treatment inhibited the occurrence of potato dry rot and the accumulation of DIA in potato tubers inoculated with F. sulphureum by promoting ROS metabolism and modulating DIA biosynthesis pathway.
Collapse
Affiliation(s)
- Zhiguang Liu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Xi Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qianqian Zhang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Qili Liu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangyang Chen
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Mina Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Prusky Dov
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| |
Collapse
|
4
|
Wang T, Lv JL, Xu J, Wang XW, Zhu XQ, Guo LY. The catalase-peroxidase PiCP1 plays a critical role in abiotic stress resistance, pathogenicity and asexual structure development in Phytophthora infestans. Environ Microbiol 2023; 25:532-547. [PMID: 36495132 DOI: 10.1111/1462-2920.16305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Catalase-peroxidase is a heme oxidoreductase widely distributed in bacteria and lower eukaryotes. In this study, we identified a catalase-peroxidase PiCP1 (PITG_05579) in Phytophthora infestans. PiCP1 had catalase/peroxidase and secretion activities and was highly expressed in sporangia and upregulated in response to oxidative and heat stresses. Compared with wild type, PiCP1-silenced transformants (STs) had decreased catalase activity, reduced oxidant stress resistance and damped cell wall integrity. In contrast, PiCP1-overexpression transformants (OTs) demonstrated increased tolerance to abiotic stresses and induced the upregulation of PR genes in the host salicylic acid pathway. The high concentration of PiCP1 can also induced callose deposition in plant tissue. Importantly, both STs and OTs have severely reduced sporangia formation and zoospore releasing rate, but the sporangia germination rate and type varied depending on environmental conditions. Comparative sequence analyses show that catalase-peroxidases are broadly distributed and highly conserved among soil-borne plant parasitic oomycetes, but not in freshwater-inhabiting or strictly plants-inhabiting oomycetes. In addition, we found that silencing PiCP1 downregulated the expression of PiCAT2. These results revealed the important roles of PiCP1 in abiotic stress resistance, pathogenicity and in regulating asexual structure development in response to environmental change. Our findings provide new insights into catalase-peroxidase functions in eukaryotic pathogens.
Collapse
Affiliation(s)
- Tuhong Wang
- College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, PR China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Genetic Breeding and Microbial Processing for Bast Fiber Product of Hunan Province and Key Laboratory of Biological and Processing for Bast Fiber Crops, MOAR, Changsha, PR China
| | - Jia-Lu Lv
- College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, PR China
| | - Jianping Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Genetic Breeding and Microbial Processing for Bast Fiber Product of Hunan Province and Key Laboratory of Biological and Processing for Bast Fiber Crops, MOAR, Changsha, PR China
- Department of Biology, McMaster University, Hamilton, Canada
| | - Xiao-Wen Wang
- College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, PR China
| | - Xiao-Qiong Zhu
- College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, PR China
| | - Li-Yun Guo
- College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, PR China
| |
Collapse
|
5
|
Liu J, Huang T, Hong W, Peng F, Lu Z, Peng G, Fu X, Liu G, Wang Z, Peng Q, Gong X, Zhou L, Li L, Li B, Xu Z, Lan H. A comprehensive study on ultrasonic deactivation of opportunistic pathogen Saccharomyces cerevisiae in food processing: From transcriptome to phenotype. Lebensm Wiss Technol 2022; 170:114069. [DOI: 10.1016/j.lwt.2022.114069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junyan Liu
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Tengyi Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fang Peng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zerong Lu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Fu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gongliang Liu
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Zhi Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qingmei Peng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiangjun Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Lizhen Zhou
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Zhenbo Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Haifeng Lan
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Zhao C, Bu H, Zhu J, Wang Y, Oliver KM, Hu F, Huang B, Li Z, Peng F. Integration of Untargeted Metabolomics with Transcriptomics Provides Insights into Beauvericin Biosynthesis in Cordyceps chanhua under H 2O 2-Induced Oxidative Stress. J Fungi (Basel) 2022; 8:484. [PMID: 35628740 PMCID: PMC9143143 DOI: 10.3390/jof8050484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Cordyceps chanhua is an important cordycipitoid mushroom widely used in Asia and beyond. Beauvericin (BEA), one of the bioactive compounds of C. chanhua, has attracted much attention because of its medicinal value and food safety risk. In order to clear up the relationship between oxidative stress and BEA synthesis, we investigated the impact of H2O2-induced oxidative stress on the secondary metabolism of C. chanhua using untargeted metabolomics and a transcript profiling approach. Metabolic profiling of C. chanhua mycelia found that in total, 73 differential metabolites were identified, including organic acids, phospholipids, and non-ribosomal peptides (NRPs), especially the content of BEA, increasing 13-fold under oxidative stress treatment. Combining transcriptomic and metabolomic analyses, we found that the genes and metabolites associated with the NRP metabolism, especially the BEA biosynthesis, were highly significantly enriched under H2O2-induced stress, which indicated that the BEA metabolism might be positive in the resistance of C. chanhua to oxidative stress. These results not only aid in better understanding of the resistance mechanisms of C. chanhua against oxidative stress but also might be helpful for molecular breeding of C. chanhua with low BEA content.
Collapse
Affiliation(s)
- Cheng Zhao
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Haifen Bu
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Jiahua Zhu
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Yulong Wang
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Kerry M. Oliver
- Department of Entomology, University of Georgia, Athens, GA 30602, USA;
| | - Fenglin Hu
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Bo Huang
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Zengzhi Li
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Fan Peng
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| |
Collapse
|
7
|
Rodrigues O, Shan L. Stomata in a state of emergency: H 2O 2 is the target locked. TRENDS IN PLANT SCIENCE 2022; 27:274-286. [PMID: 34756808 DOI: 10.1016/j.tplants.2021.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Stomatal movements are essential for plants to regulate photosynthesis rate, water status, and immunity. Upon stress stimulation, the production of hydrogen peroxide (H2O2) in the apoplasts and its accumulation within the guard cells are among key determinatives for stomatal closure. The regulatory mechanisms of H2O2 production and transport under plant-pathogen interaction and drought stress response in stomata are important fields of research. Specifically, the regulation of NADPH oxidases and aquaporins appears to be crucial in H2O2-controlled stomatal closure. In this review, we summarize how the calcium-dependent and calcium-independent mechanisms activate RESPIRATORY BURST OXIDASE HOMOLOG (RBOH)D/F NADPH oxidases and the aquaporin PIP2;1 to induce stomatal closure, and highlight how the H2O2 production is targeted by pathogen toxins and effectors to counteract plant immunity.
Collapse
Affiliation(s)
- Olivier Rodrigues
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université Fédérale Toulouse Midi-Pyrénées, INP-PURPAN, F-31076 Toulouse, France.
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
8
|
Chornyi S, IJlst L, van Roermund CWT, Wanders RJA, Waterham HR. Peroxisomal Metabolite and Cofactor Transport in Humans. Front Cell Dev Biol 2021; 8:613892. [PMID: 33505966 PMCID: PMC7829553 DOI: 10.3389/fcell.2020.613892] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are membrane-bound organelles involved in many metabolic pathways and essential for human health. They harbor a large number of enzymes involved in the different pathways, thus requiring transport of substrates, products and cofactors involved across the peroxisomal membrane. Although much progress has been made in understanding the permeability properties of peroxisomes, there are still important gaps in our knowledge about the peroxisomal transport of metabolites and cofactors. In this review, we discuss the different modes of transport of metabolites and essential cofactors, including CoA, NAD+, NADP+, FAD, FMN, ATP, heme, pyridoxal phosphate, and thiamine pyrophosphate across the peroxisomal membrane. This transport can be mediated by non-selective pore-forming proteins, selective transport proteins, membrane contact sites between organelles, and co-import of cofactors with proteins. We also discuss modes of transport mediated by shuttle systems described for NAD+/NADH and NADP+/NADPH. We mainly focus on current knowledge on human peroxisomal metabolite and cofactor transport, but also include knowledge from studies in plants, yeast, fruit fly, zebrafish, and mice, which has been exemplary in understanding peroxisomal transport mechanisms in general.
Collapse
Affiliation(s)
- Serhii Chornyi
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carlo W T van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Sousa C, Santos FC, Bento-Oliveira A, Mestre B, Silva LC, de Almeida RFM. Biophysical Analysis of Lipid Domains in Mammalian and Yeast Membranes by Fluorescence Spectroscopy. Methods Mol Biol 2021; 2187:247-269. [PMID: 32770511 DOI: 10.1007/978-1-0716-0814-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The use of steady-state and time-resolved fluorescence spectroscopy to study sterol and sphingolipid-enriched lipid domains as diverse as the ones found in mammalian and fungal membranes is herein described. We first address how to prepare liposomes that mimic raft-containing membranes of mammalian cells and how to use fluorescence spectroscopy to characterize the biophysical properties of these membrane model systems. We further illustrate the application of Förster resonance energy transfer (FRET) to study nanodomain reorganization upon interaction with small bioactive molecules, phenolic acids, an important group of phytochemical compounds. This methodology overcomes the resolution limits of conventional fluorescence microscopy allowing for the identification and characterization of lipid domains at the nanoscale.We continue by showing how to use fluorescence spectroscopy in the biophysical analysis of more complex biological systems, namely the plasma membrane of Saccharomyces cerevisiae yeast cells and the necessary adaptations to the filamentous fungus Neurospora crassa , evaluating the global order of the membrane, sphingolipid-enriched domains rigidity and abundance, and ergosterol-dependent properties.
Collapse
Affiliation(s)
- Carla Sousa
- Research Institute for medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa C Santos
- Centro de Química e Bioquímica, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Bento-Oliveira
- Centro de Química e Bioquímica, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Beatriz Mestre
- Research Institute for medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Liana C Silva
- Research Institute for medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química e Bioquímica, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
10
|
Khmelinskaia A, Marquês JMT, Bastos AEP, Antunes CAC, Bento-Oliveira A, Scolari S, Lobo GMDS, Malhó R, Herrmann A, Marinho HS, de Almeida RFM. Liquid-Ordered Phase Formation by Mammalian and Yeast Sterols: A Common Feature With Organizational Differences. Front Cell Dev Biol 2020; 8:337. [PMID: 32596234 PMCID: PMC7304482 DOI: 10.3389/fcell.2020.00337] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
Here, biophysical properties of membranes enriched in three metabolically related sterols are analyzed both in vitro and in vivo. Unlike cholesterol and ergosterol, the common metabolic precursor zymosterol is unable to induce the formation of a liquid ordered (l o) phase in model lipid membranes and can easily accommodate in a gel phase. As a result, Zym has a marginal ability to modulate the passive membrane permeability of lipid vesicles with different compositions, contrary to cholesterol and ergosterol. Using fluorescence-lifetime imaging microscopy of an aminostyryl dye in living mammalian and yeast cells we established a close parallel between sterol-dependent membrane biophysical properties in vivo and in vitro. This approach unraveled fundamental differences in yeast and mammalian plasma membrane organization. It is often suggested that, in eukaryotes, areas that are sterol-enriched are also rich in sphingolipids, constituting highly ordered membrane regions. Our results support that while cholesterol is able to interact with saturated lipids, ergosterol seems to interact preferentially with monounsaturated phosphatidylcholines. Taken together, we show that different eukaryotic kingdoms developed unique solutions for the formation of a sterol-rich plasma membrane, a common evolutionary trait that accounts for sterol structural diversity.
Collapse
Affiliation(s)
- Alena Khmelinskaia
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M T Marquês
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - André E P Bastos
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina A C Antunes
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Bento-Oliveira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Silvia Scolari
- Department of Biology, Molecular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerson M da S Lobo
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Rui Malhó
- Faculdade de Ciências, BioISI, Universidade de Lisboa, Lisbon, Portugal
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - H Susana Marinho
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Bento-Oliveira A, Santos FC, Marquês JT, Paulo PMR, Korte T, Herrmann A, Marinho HS, de Almeida RFM. Yeast Sphingolipid-Enriched Domains and Membrane Compartments in the Absence of Mannosyldiinositolphosphorylceramide. Biomolecules 2020; 10:biom10060871. [PMID: 32517183 PMCID: PMC7356636 DOI: 10.3390/biom10060871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
The relevance of mannosyldiinositolphosphorylceramide [M(IP)2C] synthesis, the terminal complex sphingolipid class in the yeast Saccharomyces cerevisiae, for the lateral organization of the plasma membrane, and in particular for sphingolipid-enriched gel domains, was investigated by fluorescence spectroscopy and microscopy. We also addressed how changing the complex sphingolipid profile in the plasma membrane could influence the membrane compartments (MC) containing either the arginine/ H+ symporter Can1p (MCC) or the proton ATPase Pma1p (MCP). To achieve these goals, wild-type (wt) and ipt1Δ cells, which are unable to synthesize M(IP)2C accumulating mannosylinositolphosphorylceramide (MIPC), were compared. Living cells, isolated plasma membrane and giant unilamellar vesicles reconstituted from plasma membrane lipids were labelled with various fluorescent membrane probes that report the presence and organization of distinct lipid domains, global order, and dielectric properties. Can1p and Pma1p were tagged with GFP and mRFP, respectively, in both yeast strains, to evaluate their lateral organization using confocal fluorescence intensity and fluorescence lifetime imaging. The results show that IPT1 deletion strongly affects the rigidity of gel domains but not their relative abundance, whereas no significant alterations could be perceived in ergosterol-enriched domains. Moreover, in these cells lacking M(IP)2C, a clear alteration in Pma1p membrane distribution, but no significant changes in Can1p distribution, were observed. Thus, this work reinforces the notion that sphingolipid-enriched domains distinct from ergosterol-enriched regions are present in the S. cerevisiae plasma membrane and suggests that M(IP)2C is important for a proper hydrophobic chain packing of sphingolipids in the gel domains of wt cells. Furthermore, our results strongly support the involvement of sphingolipid domains in the formation and stability of the MCP, possibly being enriched in this compartment.
Collapse
Affiliation(s)
- Andreia Bento-Oliveira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Filipa C. Santos
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Joaquim Trigo Marquês
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Pedro M. R. Paulo
- Centro de Química Estrutural, Instituto Superior Técnico, 1049-001 Lisbon, Portugal;
| | - Thomas Korte
- Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (T.K.); (A.H.)
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (T.K.); (A.H.)
| | - H. Susana Marinho
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Rodrigo F. M. de Almeida
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
- Correspondence: ; Tel.: +351-217-500-925
| |
Collapse
|
12
|
Wang T, Wang X, Zhu X, He Q, Guo L. A proper PiCAT2 level is critical for sporulation, sporangium function, and pathogenicity of Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2020; 21:460-474. [PMID: 31997544 PMCID: PMC7060140 DOI: 10.1111/mpp.12907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 05/04/2023]
Abstract
Catalase is present in prokaryotic and eukaryotic organisms and is important for the protective effects of the antioxidant system against free radicals. Many studies have confirmed that catalase is required for the growth, development, and pathogenesis of bacteria, plants, animals, and fungi. However, there has been relatively little research on the catalases in oomycetes, which form an important group of fungus-like eukaryotes that produce zoosporangia. In this study, we detected two Phytophthora infestans genes encoding catalases, but only PiCAT2 exhibited catalase activity in the sporulation stage and was highly produced during asexual reproduction and in the late infection stage. Compared with the wild-type strain, the PiCAT2-silenced P. infestans transformants were more sensitive to abiotic stress, were less pathogenic, and had a lower colony expansion rate and lower PiMPK7, PiVPS1, and PiGPG1 expression levels. In contrast, the PiCAT2-overexpressed transformants were slightly less sensitive to abiotic stress. Interestingly, increasing and decreasing PiCAT2 expression from the normal level inhibited sporulation, germination, and infectivity, and down-regulated PiCdc14 expression, but up-regulated PiSDA1 expression. These results suggest that PiCAT2 is required for P. infestans mycelial growth, asexual reproduction, abiotic stress tolerance, and pathogenicity. However, a proper PiCAT2 level is critical for the formation and normal function of sporangia. Furthermore, PiCAT2 affects P. infestans sporangial formation and function, pathogenicity, and abiotic stress tolerance by regulating the expression of cell cycle-related genes (PiCdc14 and PiSDA1) and MAPK pathway genes. Our findings provide new insights into catalase functions in eukaryotic pathogens.
Collapse
Affiliation(s)
- Tu‐Hong Wang
- College of Plant Protection and Key Lab of Pest Monitoring and Green ManagementMOAChina Agricultural UniversityBeijingChina
| | - Xiao‐Wen Wang
- College of Plant Protection and Key Lab of Pest Monitoring and Green ManagementMOAChina Agricultural UniversityBeijingChina
| | - Xiao‐Qiong Zhu
- College of Plant Protection and Key Lab of Pest Monitoring and Green ManagementMOAChina Agricultural UniversityBeijingChina
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Li‐Yun Guo
- College of Plant Protection and Key Lab of Pest Monitoring and Green ManagementMOAChina Agricultural UniversityBeijingChina
| |
Collapse
|
13
|
Romauch M. Zinc-α2-glycoprotein as an inhibitor of amine oxidase copper-containing 3. Open Biol 2020; 10:190035. [PMID: 32315567 PMCID: PMC6685929 DOI: 10.1098/rsob.190035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Zinc-α2-glycoprotein (ZAG) is a major plasma protein whose levels increase in chronic energy-demanding diseases and thus serves as an important clinical biomarker in the diagnosis and prognosis of the development of cachexia. Current knowledge suggests that ZAG mediates progressive weight loss through β-adrenergic signalling in adipocytes, resulting in the activation of lipolysis and fat mobilization. Here, through cross-linking experiments, amine oxidase copper-containing 3 (AOC3) is identified as a novel ZAG binding partner. AOC3-also known as vascular adhesion protein 1 (VAP-1) and semicarbazide sensitive amine oxidase (SSAO)-deaminates primary amines, thereby generating the corresponding aldehyde, H2O2 and NH3. It is an ectoenzyme largely expressed by adipocytes and induced in endothelial cells during inflammation. Extravasation of immune cells depends on amine oxidase activity and AOC3-derived H2O2 has an insulinogenic effect. The observations described here suggest that ZAG acts as an allosteric inhibitor of AOC3 and interferes with the associated pro-inflammatory and anti-lipolytic functions. Thus, inhibition of the deamination of lipolytic hormone octopamine by AOC3 represents a novel mechanism by which ZAG might stimulate lipolysis. Furthermore, experiments involving overexpression of recombinant ZAG reveal that its glycosylation is co-regulated by oxygen availability and that the pattern of glycosylation affects its inhibitory potential. The newly identified protein interaction between AOC3 and ZAG highlights a previously unknown functional relationship, which may be relevant to inflammation, energy metabolism and the development of cachexia.
Collapse
Affiliation(s)
- Matthias Romauch
- Institute of Molecular Biosciences, Karl-Franzens-University, Graz, Austria
| |
Collapse
|
14
|
Oliveira FFM, Paes HC, Peconick LDF, Fonseca FL, Marina CLF, Bocca AL, Homem-de-Mello M, Rodrigues ML, Albuquerque P, Nicola AM, Alspaugh JA, Felipe MSS, Fernandes L. Erg6 affects membrane composition and virulence of the human fungal pathogen Cryptococcus neoformans. Fungal Genet Biol 2020; 140:103368. [PMID: 32201128 DOI: 10.1016/j.fgb.2020.103368] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Ergosterol is the most important membrane sterol in fungal cells and a component not found in the membranes of human cells. We identified the ERG6 gene in the AIDS-associated fungal pathogen, Cryptococcus neoformans, encoding the sterol C-24 methyltransferase of fungal ergosterol biosynthesis. In this work, we have explored its relationship with high-temperature growth and virulence of C. neoformans by the construction of a loss-of-function mutant. In contrast to other genes involved in ergosterol biosynthesis, C. neoformans ERG6 is not essential for growth under permissive conditions in vitro. However, the erg6 mutant displayed impaired thermotolerance and increased susceptibility to osmotic and oxidative stress, as well as to different antifungal drugs. Total lipid analysis demonstrated a decrease in the erg6Δ strain membrane ergosterol content. In addition, this mutant strain was avirulent in an invertebrate model of C. neoformans infection. C. neoformans Erg6 was cyto-localized in the endoplasmic reticulum and Golgi complex. Our results demonstrate that Erg6 is crucial for growth at high temperature and virulence, likely due to its effects on C. neoformans membrane integrity and dynamics. These pathogen-focused investigations into ergosterol biosynthetic pathway components reinforce the multiple roles of ergosterol in the response of diverse fungal species to alterations in the environment, especially that of the infected host. These studies open perspectives to understand the participation of ergosterol in mechanism of resistance to azole and polyene drugs. Observed synergistic growth defects with co-inhibition of Erg6 and other components of the ergosterol biosynthesis pathway suggests novel approaches to treatment in human fungal infections.
Collapse
Affiliation(s)
- Fabiana Freire M Oliveira
- Faculty of Medicine, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District 70910-900, Brazil
| | - Hugo Costa Paes
- Faculty of Medicine, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District 70910-900, Brazil
| | - Luísa Defranco F Peconick
- Faculty of Ceilândia, Campus UnB Ceilândia, University of Brasília, Ceilândia Sul, Centro Metropolitano, Brasília, Federal District 72220-275, Brazil
| | - Fernanda L Fonseca
- Center for Technological Development in Health (CDTS), Fiocruz-RJ, Rio de Janeiro 21045-360, Brazil.
| | - Clara Luna Freitas Marina
- Laboratory of Applied Immunology, Institute of Biology, Room J1 28/8, Building J, 2nd Floor, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasilia, Federal District 70910-900, Brazil
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Institute of Biology, Room J1 28/8, Building J, 2nd Floor, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasilia, Federal District 70910-900, Brazil.
| | - Mauricio Homem-de-Mello
- Faculty of Health Science, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District 70910-900, Brazil.
| | - Márcio Lourenço Rodrigues
- Carlos Chagas Institute, Fiocruz-PR, Curitiba 81310-020, Brazil; Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Patrícia Albuquerque
- Faculty of Ceilândia, Campus UnB Ceilândia, University of Brasília, Ceilândia Sul, Centro Metropolitano, Brasília, Federal District 72220-275, Brazil
| | - André Moraes Nicola
- Faculty of Medicine, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District 70910-900, Brazil
| | - J Andrew Alspaugh
- Duke University School of Medicine, Dept. of Medicine, Durham, DUMC Box 102359, 303 Sands Building, Research Drive, Durham, NC 27710, USA.
| | - Maria Sueli S Felipe
- Catolic University of Brasilia, Campus Asa Norte, SGAN 916 Módulo B Avenida W5, Asa Norte, Brasília, Federal District 70790-160, Brazil
| | - Larissa Fernandes
- Faculty of Ceilândia, Campus UnB Ceilândia, University of Brasília, Ceilândia Sul, Centro Metropolitano, Brasília, Federal District 72220-275, Brazil; Laboratory of Applied Immunology, Institute of Biology, Room J1 28/8, Building J, 2nd Floor, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasilia, Federal District 70910-900, Brazil.
| |
Collapse
|
15
|
Geltinger F, Tevini J, Briza P, Geiser A, Bischof J, Richter K, Felder T, Rinnerthaler M. The transfer of specific mitochondrial lipids and proteins to lipid droplets contributes to proteostasis upon stress and aging in the eukaryotic model system Saccharomyces cerevisiae. GeroScience 2019; 42:19-38. [PMID: 31676965 PMCID: PMC7031196 DOI: 10.1007/s11357-019-00103-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/11/2019] [Indexed: 01/12/2023] Open
Abstract
Originally Lipid droplets (LDs) were considered as being droplets for lipid storage only. Increasing evidence, however, demonstrates that LDs fulfill a pleiotropy of additional functions. Among them is the modulation of protein as well as lipid homeostasis. Under unfavorable pro-oxidative conditions, proteins can form aggregates which may exceed the overall proteolytic capacity of the proteasome. After stress termination LDs can adjust and support the removal of these aggregates. Additionally, LDs interact with mitochondria, specifically take over certain proteins and thus prevent apoptosis. LDs, which are loaded with these harmful proteins, are subsequently eliminated via lipophagy. Recently it was demonstrated that this autophagic process is a modulator of longevity. LDs do not only eliminate potentially dangerous proteins, but they are also able to prevent lipotoxicity by storing specific lipids. In the present study we used the model organism Saccharomyces cerevisiae to compare the proteome as well as lipidome of mitochondria and LDs under different conditions: replicative aging, stress and apoptosis. In this context we found an accumulation of proteins at LDs, supporting the role of LDs in proteostasis. Additionally, the composition of main lipid classes such as phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, phosphatidylglycerols, triacylglycerols, ceramides, phosphatidic acids and ergosterol of LDs and mitochondria changed during stress conditions and aging.
Collapse
Affiliation(s)
- Florian Geltinger
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Julia Tevini
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Peter Briza
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Amrito Geiser
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Johannes Bischof
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Klaus Richter
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Thomas Felder
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria.
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria.
| | - Mark Rinnerthaler
- Department of Biosciences, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
16
|
Lismont C, Koster J, Provost S, Baes M, Van Veldhoven PP, Waterham HR, Fransen M. Deciphering the potential involvement of PXMP2 and PEX11B in hydrogen peroxide permeation across the peroxisomal membrane reveals a role for PEX11B in protein sorting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182991. [DOI: 10.1016/j.bbamem.2019.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
|
17
|
Diffusion and Transport of Reactive Species Across Cell Membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:3-19. [PMID: 31140168 DOI: 10.1007/978-3-030-11488-6_1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This chapter includes an overview of the structure of cell membranes and a review of the permeability of membranes to biologically relevant oxygen and nitrogen reactive species, namely oxygen, singlet oxygen, superoxide, hydrogen peroxide, hydroxyl radical, nitric oxide, nitrogen dioxide, peroxynitrite and also hydrogen sulfide. Physical interactions of these species with cellular membranes are discussed extensively, but also their relevance to chemical reactions such as lipid peroxidation. Most of these species are involved in different cellular redox processes ranging from physiological pathways to damaging reactions against biomolecules. Cell membranes separate and compartmentalize different processes, inside or outside cells, and in different organelles within cells. The permeability of these membranes to reactive species varies according to the physicochemical properties of each molecule. Some of them, such as nitric oxide and oxygen, are small and hydrophobic and can traverse cellular membranes virtually unhindered. Nitrogen dioxide and hydrogen sulfide find a slightly higher barrier to permeation, but still their diffusion is largely unimpeded by cellular membranes. In contrast, the permeability of cellular membranes to the more polar hydrogen peroxide, is up to five orders of magnitude lower, allowing the formation of concentration gradients, directionality and effective compartmentalization of its actions which can be further regulated by specific aquaporins that facilitate its diffusion through membranes. The compartmentalizing effect on anionic species such as superoxide and peroxynitrite is even more accentuated because of the large energetic barrier that the hydrophobic interior of membranes presents to ions that may be overcome by protonation or the use of anion channels. The large difference in cell membrane permeability for different reactive species indicates that compartmentalization is possible for some but not all of them.
Collapse
|
18
|
CRISPR-Cas9-mediated disruption of the HMG-CoA reductase genes of Mucor circinelloides and subcellular localization of the encoded enzymes. Fungal Genet Biol 2019; 129:30-39. [PMID: 30991115 DOI: 10.1016/j.fgb.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023]
|
19
|
Peroxisomal Hydrogen Peroxide Metabolism and Signaling in Health and Disease. Int J Mol Sci 2019; 20:ijms20153673. [PMID: 31357514 PMCID: PMC6695606 DOI: 10.3390/ijms20153673] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022] Open
Abstract
Hydrogen peroxide (H2O2), a non-radical reactive oxygen species generated during many (patho)physiological conditions, is currently universally recognized as an important mediator of redox-regulated processes. Depending on its spatiotemporal accumulation profile, this molecule may act as a signaling messenger or cause oxidative damage. The focus of this review is to comprehensively evaluate the evidence that peroxisomes, organelles best known for their role in cellular lipid metabolism, also serve as hubs in the H2O2 signaling network. We first briefly introduce the basic concepts of how H2O2 can drive cellular signaling events. Next, we outline the peroxisomal enzyme systems involved in H2O2 metabolism in mammals and reflect on how this oxidant can permeate across the organellar membrane. In addition, we provide an up-to-date overview of molecular targets and biological processes that can be affected by changes in peroxisomal H2O2 metabolism. Where possible, emphasis is placed on the molecular mechanisms and factors involved. From the data presented, it is clear that there are still numerous gaps in our knowledge. Therefore, gaining more insight into how peroxisomes are integrated in the cellular H2O2 signaling network is of key importance to unravel the precise role of peroxisomal H2O2 production and scavenging in normal and pathological conditions.
Collapse
|
20
|
Proteomic Response of Three Marine Ammonia-Oxidizing Archaea to Hydrogen Peroxide and Their Metabolic Interactions with a Heterotrophic Alphaproteobacterium. mSystems 2019; 4:4/4/e00181-19. [PMID: 31239395 PMCID: PMC6593220 DOI: 10.1128/msystems.00181-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Ammonia-oxidizing archaea (AOA) are the most abundant chemolithoautotrophic microorganisms in the oxygenated water column of the global ocean. Although H2O2 appears to be a universal by-product of aerobic metabolism, genes encoding the hydrogen peroxide (H2O2)-detoxifying enzyme catalase are largely absent in genomes of marine AOA. Here, we provide evidence that closely related marine AOA have different degrees of sensitivity to H2O2, which may contribute to niche differentiation between these organisms. Furthermore, our results suggest that marine AOA rely on H2O2 detoxification during periods of high metabolic activity and release organic compounds, thereby potentially attracting heterotrophic prokaryotes that provide this missing function. In summary, this report provides insights into the metabolic interactions between AOA and heterotrophic bacteria in marine environments and suggests that AOA play an important role in the biogeochemical carbon cycle by making organic carbon available for heterotrophic microorganisms. Ammonia-oxidizing archaea (AOA) play an important role in the nitrogen cycle and account for a considerable fraction of the prokaryotic plankton in the ocean. Most AOA lack the hydrogen peroxide (H2O2)-detoxifying enzyme catalase, and some AOA have been shown to grow poorly under conditions of exposure to H2O2. However, differences in the degrees of H2O2 sensitivity of different AOA strains, the physiological status of AOA cells exposed to H2O2, and their molecular response to H2O2 remain poorly characterized. Further, AOA might rely on heterotrophic bacteria to detoxify H2O2, and yet the extent and variety of costs and benefits involved in these interactions remain unclear. Here, we used a proteomics approach to compare the protein profiles of three Nitrosopumilus strains grown in the presence and absence of catalase and in coculture with the heterotrophic alphaproteobacterium Oceanicaulis alexandrii. We observed that most proteins detected at a higher relative abundance in H2O2-exposed Nitrosopumilus cells had no known function in oxidative stress defense. Instead, these proteins were putatively involved in the remodeling of the extracellular matrix, which we hypothesize to be a strategy limiting the influx of H2O2 into the cells. Using RNA-stable isotope probing, we confirmed that O. alexandrii cells growing in coculture with the Nitrosopumilus strains assimilated Nitrosopumilus-derived organic carbon, suggesting that AOA could recruit H2O2-detoxifying bacteria through the release of labile organic matter. Our results contribute new insights into the response of AOA to H2O2 and highlight the potential ecological importance of their interactions with heterotrophic free-living bacteria in marine environments. IMPORTANCE Ammonia-oxidizing archaea (AOA) are the most abundant chemolithoautotrophic microorganisms in the oxygenated water column of the global ocean. Although H2O2 appears to be a universal by-product of aerobic metabolism, genes encoding the hydrogen peroxide (H2O2)-detoxifying enzyme catalase are largely absent in genomes of marine AOA. Here, we provide evidence that closely related marine AOA have different degrees of sensitivity to H2O2, which may contribute to niche differentiation between these organisms. Furthermore, our results suggest that marine AOA rely on H2O2 detoxification during periods of high metabolic activity and release organic compounds, thereby potentially attracting heterotrophic prokaryotes that provide this missing function. In summary, this report provides insights into the metabolic interactions between AOA and heterotrophic bacteria in marine environments and suggests that AOA play an important role in the biogeochemical carbon cycle by making organic carbon available for heterotrophic microorganisms.
Collapse
|
21
|
Zhou DR, Eid R, Miller KA, Boucher E, Mandato CA, Greenwood MT. Intracellular second messengers mediate stress inducible hormesis and Programmed Cell Death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:773-792. [DOI: 10.1016/j.bbamcr.2019.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
|
22
|
Nitrofurantoin-Microbial Degradation and Interactions with Environmental Bacterial Strains. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091526. [PMID: 31052168 PMCID: PMC6539117 DOI: 10.3390/ijerph16091526] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
The continuous exposure of living organisms and microorganisms to antibiotics that have increasingly been found in various environmental compartments may be perilous. One group of antibacterial agents that have an environmental impact that has been very scarcely studied is nitrofuran derivatives. Their representative is nitrofurantoin (NFT)-a synthetic, broad-spectrum antibiotic that is often overdosed. The main aims of the study were to: (a) isolate and characterize new microbial strains that are able to grow in the presence of NFT, (b) investigate the ability of isolates to decompose NFT, and (c) study the impact of NFT on microbial cell properties. As a result, five microbial species were isolated. A 24-h contact of bacteria with NFT provoked modifications in microbial cell properties. The greatest differences were observed in Sphingobacterium thalpophilum P3d, in which a decrease in both total and inner membrane permeability (from 86.7% to 48.3% and from 0.49 to 0.42 µM min-1) as well as an increase in cell surface hydrophobicity (from 28.3% to 39.7%) were observed. Nitrofurantoin removal by selected microbial cultures ranged from 50% to 90% in 28 days, depending on the bacterial strain. Although the isolates were able to decompose the pharmaceutical, its presence significantly affected the bacterial cells. Hence, the environmental impact of NFT should be investigated to a greater extent.
Collapse
|
23
|
Sokolov SS, Trushina NI, Severin FF, Knorre DA. Ergosterol Turnover in Yeast: An Interplay between Biosynthesis and Transport. BIOCHEMISTRY (MOSCOW) 2019; 84:346-357. [DOI: 10.1134/s0006297919040023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Cruz RGD, Beney L, Gervais P, Lira SPD, Vieira TMFDS, Dupont S. Comparison of the antioxidant property of acerola extracts with synthetic antioxidants using an in vivo method with yeasts. Food Chem 2019; 277:698-705. [DOI: 10.1016/j.foodchem.2018.10.099] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 12/16/2022]
|
25
|
Santomartino R, Camponeschi I, Polo G, Immesi A, Rinaldi T, Mazzoni C, Brambilla L, Bianchi MM. The hypoxic transcription factor KlMga2 mediates the response to oxidative stress and influences longevity in the yeast Kluyveromyces lactis. FEMS Yeast Res 2019; 19:5365995. [DOI: 10.1093/femsyr/foz020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/26/2019] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Hypoxia is defined as the decline of oxygen availability, depending on environmental supply and cellular consumption rate. The decrease in O2 results in reduction of available energy in facultative aerobes. The response and/or adaptation to hypoxia and other changing environmental conditions can influence the properties and functions of membranes by modifying lipid composition. In the yeast Kluyveromyces lactis, the KlMga2 gene is a hypoxic regulatory factor for lipid biosynthesis—fatty acids and sterols—and is also involved in glucose signaling, glucose catabolism and is generally important for cellular fitness.
In this work we show that, in addition to the above defects, the absence of the KlMGA2 gene caused increased resistance to oxidative stress and extended lifespan of the yeast, associated with increased expression levels of catalase and SOD genes. We propose that KlMga2 might also act as a mediator of the oxidative stress response/adaptation, thus revealing connections among hypoxia, glucose signaling, fatty acid biosynthesis and ROS metabolism in K. lactis.
Collapse
Affiliation(s)
- Rosa Santomartino
- Department Biology and Biotechnology C. Darwin, University of Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Ilaria Camponeschi
- Department Biology and Biotechnology C. Darwin, University of Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Germano Polo
- Department Biology and Biotechnology C. Darwin, University of Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Alessio Immesi
- Department Biology and Biotechnology C. Darwin, University of Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Teresa Rinaldi
- Department Biology and Biotechnology C. Darwin, University of Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Cristina Mazzoni
- Department Biology and Biotechnology C. Darwin, University of Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Luca Brambilla
- Department Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Michele M Bianchi
- Department Biology and Biotechnology C. Darwin, University of Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| |
Collapse
|
26
|
Malacrida L, Gratton E. LAURDAN fluorescence and phasor plots reveal the effects of a H 2O 2 bolus in NIH-3T3 fibroblast membranes dynamics and hydration. Free Radic Biol Med 2018; 128:144-156. [PMID: 29885356 PMCID: PMC6175669 DOI: 10.1016/j.freeradbiomed.2018.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
Fluorescence spectroscopy, coupled with microscopy, opens new frontiers for the study of dynamic processes with high spatio-temporal resolution. The application of phasor plots to FLIM and hyperspectral imaging demonstrate unprecedented capabilities to study complex photophysics at the subcellular level. Using these approaches we studied the effects of an H2O2 bolus on NIH-3T3 membranes dynamics monitored by LAURDAN fluorescence. Exposure of NIH-3T3 cells to a bolus of H2O2 modifies the cell membranes and, in particular, the plasma membrane in a complex manner. The LAURDAN results reveal that the peroxide treatment decreases membrane fluidity but surprisingly increases dipolar relaxation around the excited probe. Using the Multidimensional-phasor approach we elucidated the complex photophysics of LAURDAN incorporated into cell membrane after H2O2 exposure. The results indicate the occurrence of LAURDAN fast-diffusion from gel↔ld phases in membranes exposed to a H2O2 bolus. An ad hoc hypothesis is presented to interpret the results in the context of H2O2 oxidative distress/eustress.
Collapse
Affiliation(s)
- Leonel Malacrida
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, 3208 Natural Sciences II, Irvine, CA 92697‑2715, USA; Área de Investigación Respiratoria, Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Av. Italia s/n, Piso 15, Montevideo 11600, Uruguay.
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, 3208 Natural Sciences II, Irvine, CA 92697‑2715, USA.
| |
Collapse
|
27
|
Regulation of the inositol transporter Itr1p by hydrogen peroxide in Saccharomyces cerevisiae. Arch Microbiol 2018; 201:123-134. [PMID: 30283989 DOI: 10.1007/s00203-018-1584-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Myo-inositol is a precursor of several membrane phospholipids and sphingolipids and plays a key role in gene regulation in Saccharomyces cerevisiae (S. cerevisiae). Here, we tested whether H2O2 was affecting the levels of the inositol transporters and thus inositol uptake. In S. cerevisiae cells adapted to H2O2 Itr1-GFPp accumulated in the plasma membrane until 20 min, concomitantly with an inhibition of its internalization. Exposure to H2O2 did not alter Itr2-GFPp cellular levels and induced only an 8% decrease at 10 min in the plasma membrane. Therefore, decreased inositol intracellular levels are not caused by decreased levels of inositol transporters in the plasma membrane. However, results show that H2O2 adaptation affects Itr1p turnover and, consequently, H2O2-adapted yeast cells display an inositol transporter phenotype comparable to cells grown in the absence of inositol in growth medium, i.e. accumulation in the plasma membrane and decreased degradation.
Collapse
|
28
|
Tran K, Jethmalani Y, Jaiswal D, Green EM. Set4 is a chromatin-associated protein, promotes survival during oxidative stress, and regulates stress response genes in yeast. J Biol Chem 2018; 293:14429-14443. [PMID: 30082318 PMCID: PMC6139553 DOI: 10.1074/jbc.ra118.003078] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/31/2018] [Indexed: 01/14/2023] Open
Abstract
The Set4 protein in the yeast Saccharomyces cerevisiae contains both a PHD finger and a SET domain, a common signature of chromatin-associated proteins, and shares sequence homology with the yeast protein Set3, the fly protein UpSET, and the human protein mixed-lineage leukemia 5 (MLL5). However, the biological role for Set4 and its potential function in chromatin regulation has not been well defined. Here, we analyzed yeast cell phenotypes associated with loss of Set4 or its overexpression, which revealed that Set4 protects against oxidative stress induced by hydrogen peroxide. Gene expression analysis indicated that Set4 promotes the activation of stress response genes in the presence of oxidative insults. Using ChIP analysis and other biochemical assays, we also found that Set4 interacts with chromatin and directly localizes to stress response genes upon oxidative stress. However, recombinant Set4 did not show detectable methyltransferase activity on histones. Our findings also suggest that Set4 abundance in the cell is balanced under normal and stress conditions to promote survival. Overall, these results suggest a model in which Set4 is a stress-responsive, chromatin-associated protein that activates gene expression programs required for cellular protection against oxidative stress. This work advances our understanding of mechanisms that protect cells during oxidative stress and further defines the role of the Set3-Set4 subfamily of SET domain-containing proteins in controlling gene expression in response to adverse environmental conditions.
Collapse
Affiliation(s)
- Khoa Tran
- From the Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Yogita Jethmalani
- From the Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Deepika Jaiswal
- From the Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Erin M Green
- From the Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| |
Collapse
|
29
|
Marquês JT, Marinho HS, de Almeida RF. Sphingolipid hydroxylation in mammals, yeast and plants – An integrated view. Prog Lipid Res 2018; 71:18-42. [DOI: 10.1016/j.plipres.2018.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/11/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
|
30
|
Effect of heat shock protein 90 against ROS-induced phospholipid oxidation. Food Chem 2018; 240:642-647. [DOI: 10.1016/j.foodchem.2017.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/05/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
|
31
|
Cuillerier A, Honarmand S, Cadete VJJ, Ruiz M, Forest A, Deschênes S, Beauchamp C, Charron G, Rioux JD, Des Rosiers C, Shoubridge EA, Burelle Y. Loss of hepatic LRPPRC alters mitochondrial bioenergetics, regulation of permeability transition and trans-membrane ROS diffusion. Hum Mol Genet 2018; 26:3186-3201. [PMID: 28575497 DOI: 10.1093/hmg/ddx202] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022] Open
Abstract
The French-Canadian variant of Leigh Syndrome (LSFC) is an autosomal recessive oxidative phosphorylation (OXPHOS) disorder caused by a mutation in LRPPRC, coding for a protein involved in the stability of mitochondrially-encoded mRNAs. Low levels of LRPPRC are present in all patient tissues, but result in a disproportionately severe OXPHOS defect in the brain and liver, leading to unpredictable subacute metabolic crises. To investigate the impact of the OXPHOS defect in the liver, we analyzed the mitochondrial phenotype in mice harboring an hepatocyte-specific inactivation of Lrpprc. Loss of LRPPRC in the liver caused a generalized growth delay, and typical histological features of mitochondrial hepatopathy. At the molecular level, LRPPRC deficiency caused destabilization of polyadenylated mitochondrial mRNAs, altered mitochondrial ultrastructure, and a severe complex IV (CIV) and ATP synthase (CV) assembly defect. The impact of LRPPRC deficiency was not limited to OXPHOS, but also included impairment of long-chain fatty acid oxidation, a striking dysregulation of the mitochondrial permeability transition pore, and an unsuspected alteration of trans-membrane H2O2 diffusion, which was traced to the ATP synthase assembly defect, and to changes in the lipid composition of mitochondrial membranes. This study underscores the value of mitochondria phenotyping to uncover complex and unexpected mechanisms contributing to the pathophysiology of mitochondrial disorders.
Collapse
Affiliation(s)
| | - Shamisa Honarmand
- Department of Human Genetics, Montreal Neurological Institute McGill University, Montreal, QC H3A 2B4, Canada
| | | | - Matthieu Ruiz
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - Anik Forest
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - Sonia Deschênes
- Faculty of Pharmacy, University of Montreal, Montreal, QC H3C 3J7, Canada.,Faculty of Medicine and Department of Nutrition, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | | | | | - Guy Charron
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - John D Rioux
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - Christine Des Rosiers
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada.,Faculty of Medicine and Department of Nutrition, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Eric A Shoubridge
- Department of Human Genetics, Montreal Neurological Institute McGill University, Montreal, QC H3A 2B4, Canada
| | - Yan Burelle
- Faculty of Pharmacy, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
32
|
Nagy G, Szebenyi C, Csernetics Á, Vaz AG, Tóth EJ, Vágvölgyi C, Papp T. Development of a plasmid free CRISPR-Cas9 system for the genetic modification of Mucor circinelloides. Sci Rep 2017; 7:16800. [PMID: 29196656 PMCID: PMC5711797 DOI: 10.1038/s41598-017-17118-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/22/2017] [Indexed: 12/31/2022] Open
Abstract
Mucor circinelloides and other members of Mucorales are filamentous fungi, widely used as model organisms in basic and applied studies. Although genetic manipulation methods have been described for some Mucoral fungi, construction of stable integrative transformants by homologous recombination has remained a great challenge in these organisms. In the present study, a plasmid free CRISPR-Cas9 system was firstly developed for the genetic modification of a Mucoral fungus. The described method offers a rapid but robust tool to obtain mitotically stable mutants of M. circinelloides via targeted integration of the desired DNA. It does not require plasmid construction and its expression in the recipient organism. Instead, it involves the direct introduction of the guide RNA and the Cas9 enzyme and, in case of homology directed repair (HDR), the template DNA into the recipient strain. Efficiency of the method for non-homologous end joining (NHEJ) and HDR was tested by disrupting two different genes, i.e. carB encoding phytoene dehydrogenase and hmgR2 encoding 3-hydroxy-3-methylglutaryl-CoA reductase, of M. circinelloides. Both NHEJ and HDR resulted in stable gene disruption mutants. While NHEJ caused extensive deletions upstream from the protospacer adjacent motif, HDR assured the integration of the deletion cassette at the targeted site.
Collapse
Affiliation(s)
- Gábor Nagy
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Csilla Szebenyi
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Árpád Csernetics
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Amanda Grace Vaz
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Eszter Judit Tóth
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Tamás Papp
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| |
Collapse
|
33
|
Staudacher V, Trujillo M, Diederichs T, Dick TP, Radi R, Morgan B, Deponte M. Redox-sensitive GFP fusions for monitoring the catalytic mechanism and inactivation of peroxiredoxins in living cells. Redox Biol 2017; 14:549-556. [PMID: 29128826 PMCID: PMC5684490 DOI: 10.1016/j.redox.2017.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022] Open
Abstract
Redox-sensitive green fluorescent protein 2 (roGFP2) is a valuable tool for redox measurements in living cells. Here, we demonstrate that roGFP2 can also be used to gain mechanistic insights into redox catalysis in vivo. In vitro enzyme properties such as the rate-limiting reduction of wild type and mutant forms of the model peroxiredoxin PfAOP are shown to correlate with the ratiometrically measured degree of oxidation of corresponding roGFP2 fusion proteins. Furthermore, stopped-flow kinetic measurements of the oxidative half-reaction of PfAOP support the interpretation that changes in the roGFP2 signal can be used to map hyperoxidation-based inactivation of the attached peroxidase. Potential future applications of our system include the improvement of redox sensors, the estimation of absolute intracellular peroxide concentrations and the in vivo assessment of protein structure-function relationships that cannot easily be addressed with recombinant enzymes, for example, the effect of post-translational protein modifications on enzyme catalysis.
Collapse
Affiliation(s)
- Verena Staudacher
- University of Kaiserslautern, Erwin-Schrödinger-Straße 54, D-67663 Kaiserslautern, Germany; Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany; Departamento de Bioquímica, Facultad de Medicina and Center for Free Radical and Biomedical Research, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina and Center for Free Radical and Biomedical Research, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Tim Diederichs
- Department of Biology/Cellular Biochemistry, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Tobias P Dick
- German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina and Center for Free Radical and Biomedical Research, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay.
| | - Bruce Morgan
- Department of Biology/Cellular Biochemistry, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany.
| | - Marcel Deponte
- University of Kaiserslautern, Erwin-Schrödinger-Straße 54, D-67663 Kaiserslautern, Germany; Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.
| |
Collapse
|
34
|
Camelo C, Vilas-Boas F, Cepeda AP, Real C, Barros-Martins J, Pinto F, Soares H, Marinho HS, Cyrne L. Opi1p translocation to the nucleus is regulated by hydrogen peroxide in Saccharomyces cerevisiae. Yeast 2017; 34:383-395. [PMID: 28581036 DOI: 10.1002/yea.3240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 01/12/2023] Open
Abstract
During exposure of yeast cells to low levels of hydrogen peroxide (H2 O2 ), the expression of several genes is regulated for cells to adapt to the surrounding oxidative environment. Such adaptation involves modification of plasma membrane lipid composition, reorganization of ergosterol-rich microdomains and altered gene expression of proteins involved in lipid and vesicle traffic, to decrease permeability to exogenous H2 O2 . Opi1p is a transcriptional repressor that is inactive when present at the nuclear membrane/endoplasmic reticulum, but represseses transcription of inositol upstream activating sequence (UASINO )-containing genes, many of which are involved in the synthesis of phospholipids and fatty acids, when it is translocated to the nucleus. We investigated whether H2 O2 in concentrations inducing adaptation regulates Opi1p function. We found that, in the presence of H2 O2 , GFP-Opi1p fusion protein translocates to the nucleus and, concomitantly, the expression of UASINO -containing genes is affected. We also investigated whether cysteine residues of Opi1p were implicated in the H2 O2 -mediated translocation of this protein to the nucleus and identified cysteine residue 159 as essential for this process. Our work shows that Opi1p is redox-regulated and establishes a new mechanism of gene regulation involving Opi1p, which is important for adaptation to H2 O2 in yeast cells. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Carolina Camelo
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Filipe Vilas-Boas
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Andreia Pereira Cepeda
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Carla Real
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Joana Barros-Martins
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Francisco Pinto
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.,BioISI - Biosystems and Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| | - Helena Soares
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, 1990-096, Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Luisa Cyrne
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
35
|
Goulev Y, Morlot S, Matifas A, Huang B, Molin M, Toledano MB, Charvin G. Nonlinear feedback drives homeostatic plasticity in H 2O 2 stress response. eLife 2017; 6. [PMID: 28418333 PMCID: PMC5438251 DOI: 10.7554/elife.23971] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/14/2017] [Indexed: 12/20/2022] Open
Abstract
Homeostatic systems that rely on genetic regulatory networks are intrinsically limited by the transcriptional response time, which may restrict a cell’s ability to adapt to unanticipated environmental challenges. To bypass this limitation, cells have evolved mechanisms whereby exposure to mild stress increases their resistance to subsequent threats. However, the mechanisms responsible for such adaptive homeostasis remain largely unknown. Here, we used live-cell imaging and microfluidics to investigate the adaptive response of budding yeast to temporally controlled H2O2 stress patterns. We demonstrate that acquisition of tolerance is a systems-level property resulting from nonlinearity of H2O2 scavenging by peroxiredoxins and our study reveals that this regulatory scheme induces a striking hormetic effect of extracellular H2O2 stress on replicative longevity. Our study thus provides a novel quantitative framework bridging the molecular architecture of a cellular homeostatic system to the emergence of nonintuitive adaptive properties. DOI:http://dx.doi.org/10.7554/eLife.23971.001 Harmful external conditions, such as extreme heat or radiation, can cause stress to cells that may lead to permanent damage and even death. Cell stress is responsible for some cancers and degenerative diseases, and is involved in the process of aging. Cells respond to stress by modifying their activities in order to prevent damage from occurring. Some studies have suggested that the ability of cells to survive a stressful situation might depend both on the severity of the stress and also on the way in which the stress is applied. For example, the stress might start suddenly or develop more gradually. Cells exposed to a mild level of stress develop a tolerance that enables them to survive stronger doses of the same stress in the future. However, it is not clear how cells acquire such tolerance, and whether mild levels of stress can have more general benefits to cells, such as increased lifespan. Hydrogen peroxide and other “oxidative” compounds play important roles in cells, but they are also capable of causing damage so their levels must be tightly controlled. Goulev et al. developed a “microfluidic” device to study the effects of oxidative stress on yeast cells. The device made it possible to precisely control the level of hydrogen peroxide in the cells’ environment while monitoring the cells’ stress responses. The experiments show that exposing yeast cells to gradually increasing levels of hydrogen peroxide can train the cells to be able to survive when they are exposed to high levels of this compound. This ability depends on the activity of specific enzymes called peroxidases that are known to be able to destroy hydrogen peroxide inside the cells. The experiments suggest that gradually increasing levels of hydrogen peroxide trigger increases in the production of peroxidases that protect the cells against future oxidative stress. Further experiments show that even a very low dose of hydrogen peroxide is sufficient to activate the production of the enzymes, leading to an increase in the lifespan of the cells. A future challenge will be to investigate whether the principles identified in this work also apply to other stress responses in yeast. DOI:http://dx.doi.org/10.7554/eLife.23971.002
Collapse
Affiliation(s)
- Youlian Goulev
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Sandrine Morlot
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Audrey Matifas
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Bo Huang
- Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, Gif-sur-Yvette, France
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Michel B Toledano
- Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, Gif-sur-Yvette, France
| | - Gilles Charvin
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
36
|
|
37
|
Huang YM, Zou YN, Wu QS. Alleviation of drought stress by mycorrhizas is related to increased root H 2O 2 efflux in trifoliate orange. Sci Rep 2017; 7:42335. [PMID: 28176859 PMCID: PMC5296721 DOI: 10.1038/srep42335] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/10/2017] [Indexed: 12/20/2022] Open
Abstract
The Non-invasive Micro-test Technique (NMT) is used to measure dynamic changes of specific ions/molecules non-invasively, but information about hydrogen peroxide (H2O2) fluxes in different classes of roots by mycorrhiza is scarce in terms of NMT. Effects of Funneliformis mosseae on plant growth, H2O2, superoxide radical (O2·−), malondialdehyde (MDA) concentrations, and H2O2 fluxes in the taproot (TR) and lateral roots (LRs) of trifoliate orange seedlings under well-watered (WW) and drought stress (DS) conditions were studied. DS strongly inhibited mycorrhizal colonization in the TR and LRs, whereas mycorrhizal inoculation significantly promoted plant growth and biomass production. H2O2, O2·−, and MDA concentrations in leaves and roots were dramatically lower in mycorrhizal seedlings than in non-mycorrhizal seedlings under DS. Compared with non-mycorrhizal seedlings, mycorrhizal seedlings had relatively higher net root H2O2 effluxes in the TR and LRs especially under WW, as well as significantly higher total root H2O2 effluxes in the TR and LRs under WW and DS. Total root H2O2 effluxes were significantly positively correlated with root colonization but negatively with root H2O2 and MDA concentrations. It suggested that mycorrhizas induces more H2O2 effluxes of the TR and LRs, thus, alleviating oxidative damage of DS in the host plant.
Collapse
Affiliation(s)
- Yong-Ming Huang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China.,Institute of Root Biology, Yangtze University, Jingzhou, Hubei 434025, China.,Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Ying-Ning Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China.,Institute of Root Biology, Yangtze University, Jingzhou, Hubei 434025, China
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China.,Institute of Root Biology, Yangtze University, Jingzhou, Hubei 434025, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| |
Collapse
|
38
|
Mitochondrial Superoxide Dismutase and Yap1p Act as a Signaling Module Contributing to Ethanol Tolerance of the Yeast Saccharomyces cerevisiae. Appl Environ Microbiol 2017; 83:AEM.02759-16. [PMID: 27864171 DOI: 10.1128/aem.02759-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/11/2016] [Indexed: 12/26/2022] Open
Abstract
There are two superoxide dismutases in the yeast Saccharomyces cerevisiae-cytoplasmic and mitochondrial enzymes. Inactivation of the cytoplasmic enzyme, Sod1p, renders the cells sensitive to a variety of stresses, while inactivation of the mitochondrial isoform, Sod2p, typically has a weaker effect. One exception is ethanol-induced stress. Here we studied the role of Sod2p in ethanol tolerance of yeast. First, we found that repression of SOD2 prevents ethanol-induced relocalization of yeast hydrogen peroxide-sensing transcription factor Yap1p, one of the key stress resistance proteins. In agreement with this, the levels of Trx2p and Gsh1p, proteins encoded by Yap1 target genes, were decreased in the absence of Sod2p. Analysis of the ethanol sensitivities of the cells lacking Sod2p, Yap1p, or both indicated that the two proteins act in the same pathway. Moreover, preconditioning with hydrogen peroxide restored the ethanol resistance of yeast cells with repressed SOD2 Interestingly, we found that mitochondrion-to-nucleus signaling by Rtg proteins antagonizes Yap1p activation. Together, our data suggest that hydrogen peroxide produced by Sod2p activates Yap1p and thus plays a signaling role in ethanol tolerance. IMPORTANCE Baker's yeast harbors multiple systems that ensure tolerance to high concentrations of ethanol. Still, the role of mitochondria under severe ethanol stress in yeast is not completely clear. Our study revealed a signaling function of mitochondria which contributes significantly to the ethanol tolerance of yeast cells. We found that mitochondrial superoxide dismutase Sod2p and cytoplasmic hydrogen peroxide sensor Yap1p act together as a module of the mitochondrion-to-nucleus signaling pathway. We also report cross talk between this pathway and the conventional retrograde signaling cascade activated by dysfunctional mitochondria.
Collapse
|
39
|
Rat Aquaporin-5 Is pH-Gated Induced by Phosphorylation and Is Implicated in Oxidative Stress. Int J Mol Sci 2016; 17:ijms17122090. [PMID: 27983600 PMCID: PMC5187890 DOI: 10.3390/ijms17122090] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/25/2016] [Accepted: 12/06/2016] [Indexed: 12/02/2022] Open
Abstract
Aquaporin-5 (AQP5) is a membrane water channel widely distributed in human tissues that was found up-regulated in different tumors and considered implicated in carcinogenesis in different organs and systems. Despite its wide distribution pattern and physiological importance, AQP5 short-term regulation was not reported and mechanisms underlying its involvement in cancer are not well defined. In this work, we expressed rat AQP5 in yeast and investigated mechanisms of gating, as well as AQP5’s ability to facilitate H2O2 plasma membrane diffusion. We found that AQP5 can be gated by extracellular pH in a phosphorylation-dependent manner, with higher activity at physiological pH 7.4. Moreover, similar to other mammalian AQPs, AQP5 is able to increase extracellular H2O2 influx and to affect oxidative cell response with dual effects: whereas in acute oxidative stress conditions AQP5 induces an initial higher sensitivity, in chronic stress AQP5 expressing cells show improved cell survival and resistance. Our findings support the involvement of AQP5 in oxidative stress and suggest AQP5 modulation by phosphorylation as a novel tool for therapeutics.
Collapse
|
40
|
Altıntaş A, Davidsen K, Garde C, Mortensen UH, Brasen JC, Sams T, Workman CT. High-resolution kinetics and modeling of hydrogen peroxide degradation in live cells. Free Radic Biol Med 2016; 101:143-153. [PMID: 27742413 DOI: 10.1016/j.freeradbiomed.2016.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/25/2016] [Accepted: 10/10/2016] [Indexed: 11/20/2022]
Abstract
Although the role of oxidative stress factors and their regulation is well studied, the temporal dynamics of stress recovery is still poorly understood. In particular, measuring the kinetics of stress recovery in the first minutes after acute exposure provides a powerful technique for assessing the role of regulatory proteins or enzymes through the use of mutant backgrounds. This project endeavors to screen the temporal dynamics of intracellular oxidant levels in live cells as a function of gene deletion in the budding yeast, Saccharomyces cerevisiae. Using the detailed time dynamics of extra- and intra-cellular peroxide we have developed a mathematical model that describes two distinct kinetic processes, an initial rapid degradation in the first 10-20min followed by a slower process. Using this model, a qualitative comparison allowed us to assign the dependence of temporal events to genetic factors. Surprisingly, we found that the deletion of transcription factors Yap1p or Skn7p was sufficient to disrupt the establishment of the second degradation phase but not the initial phase. A better fundamental understanding of the role protective factors play in the recovery from oxidative stress may lead to strategies for protecting or sensitizing cell to this stress.
Collapse
Affiliation(s)
- Ali Altıntaş
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Kristian Davidsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Christian Garde
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Uffe H Mortensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - J Christian Brasen
- Biomedical Engineering, Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Thomas Sams
- Biomedical Engineering, Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| |
Collapse
|
41
|
Unraveling Fungal Radiation Resistance Regulatory Networks through the Genome-Wide Transcriptome and Genetic Analyses of Cryptococcus neoformans. mBio 2016; 7:mBio.01483-16. [PMID: 27899501 PMCID: PMC5137497 DOI: 10.1128/mbio.01483-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans. Although there are no natural environments under intense radiation, some living organisms have been found to show high radiation resistance. Organisms harboring the ability of radiation resistance have unique regulatory networks to overcome this stress. Cryptococcus neoformans is one of the radiation-resistant fungi and is found in highly radioactive environments. However, it remains elusive how radiation-resistant eukaryotic microorganisms work differentially from radiation-sensitive ones. Here, we performed transcriptome analysis of C. neoformans to explore gene expression profiles after gamma radiation exposure and functionally characterized some of identified radiation resistance genes. Notably, we identified a novel regulator of radiation resistance, named Bdr1 (a bZIP TF for DNA damage response 1), which is a transcription factor (TF) that is not closely homologous to any known TF and is transcriptionally controlled by the Rad53 kinase. Therefore, our work could shed light on understanding not only the radiation response but also the radiation resistance mechanism of C. neoformans.
Collapse
|
42
|
Sultana ST, Call DR, Beyenal H. Maltodextrin enhances biofilm elimination by electrochemical scaffold. Sci Rep 2016; 6:36003. [PMID: 27782161 PMCID: PMC5080540 DOI: 10.1038/srep36003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023] Open
Abstract
Electrochemical scaffolds (e-scaffolds) continuously generate low concentrations of H2O2 suitable for damaging wound biofilms without damaging host tissue. Nevertheless, retarded diffusion combined with H2O2 degradation can limit the efficacy of this potentially important clinical tool. H2O2 diffusion into biofilms and bacterial cells can be increased by damaging the biofilm structure or by activating membrane transportation channels by exposure to hyperosmotic agents. We hypothesized that e-scaffolds would be more effective against Acinetobacter baumannii and Staphylococcus aureus biofilms in the presence of a hyperosmotic agent. E-scaffolds polarized at -600 mVAg/AgCl were overlaid onto preformed biofilms in media containing various maltodextrin concentrations. E-scaffold alone decreased A. baumannii and S. aureus biofilm cell densities by (3.92 ± 0.15) log and (2.31 ± 0.12) log, respectively. Compared to untreated biofilms, the efficacy of the e-scaffold increased to a maximum (8.27 ± 0.05) log reduction in A. baumannii and (4.71 ± 0.12) log reduction in S. aureus biofilm cell densities upon 10 mM and 30 mM maltodextrin addition, respectively. Overall ~55% decrease in relative biofilm surface coverage was achieved for both species. We conclude that combined treatment with electrochemically generated H2O2 from an e-scaffold and maltodextrin is more effective in decreasing viable biofilm cell density.
Collapse
Affiliation(s)
- Sujala T. Sultana
- School of Chemical Engineering & Bioengineering, Washington State University, Pullman, 99164, WA, USA
| | - Douglas R. Call
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, 99164, WA, USA
| | - Haluk Beyenal
- School of Chemical Engineering & Bioengineering, Washington State University, Pullman, 99164, WA, USA
| |
Collapse
|
43
|
Molavian HR, Goldman A, Phipps CJ, Kohandel M, Wouters BG, Sengupta S, Sivaloganathan S. Drug-induced reactive oxygen species (ROS) rely on cell membrane properties to exert anticancer effects. Sci Rep 2016; 6:27439. [PMID: 27278439 PMCID: PMC4899687 DOI: 10.1038/srep27439] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 05/13/2016] [Indexed: 11/09/2022] Open
Abstract
Pharmacological concentrations of small molecule natural products, such as ascorbic acid, have exhibited distinct cell killing outcomes between cancer and normal cells whereby cancer cells undergo apoptosis or necrosis while normal cells are not adversely affected. Here, we develop a mathematical model for ascorbic acid that can be utilized as a tool to understand the dynamics of reactive oxygen species (ROS) induced cell death. We determine that not only do endogenous antioxidants such as catalase contribute to ROS-induced cell death, but also cell membrane properties play a critical role in the efficacy of ROS as a cytotoxic mechanism against cancer cells vs. normal cells. Using in vitro assays with breast cancer cells, we have confirmed that cell membrane properties are essential for ROS, in the form of hydrogen peroxide (H2O2), to induce cell death. Interestingly, we did not observe any correlation between intracellular H2O2 and cell survival, suggesting that cell death by H2O2 is triggered by interaction with the cell membrane and not necessarily due to intracellular levels of H2O2. These findings provide a putative mechanistic explanation for the efficacy and selectivity of therapies such as ascorbic acid that rely on ROS-induced cell death for their anti-tumor properties.
Collapse
Affiliation(s)
- Hamid R Molavian
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aaron Goldman
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Colin J Phipps
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Bradly G Wouters
- Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5T 2M9, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - Shiladitya Sengupta
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sivabal Sivaloganathan
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.,Center for Mathematical Medicine, Fields Institute for Research in Mathematical Sciences, Toronto, Ontario M5T 3J1, Canada
| |
Collapse
|
44
|
Netto LES, Antunes F. The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction. Mol Cells 2016; 39:65-71. [PMID: 26813662 PMCID: PMC4749877 DOI: 10.14348/molcells.2016.2349] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 01/03/2023] Open
Abstract
A challenge in the redox field is the elucidation of the molecular mechanisms, by which H2O2 mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the H2O2 sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in H2O2 signaling that are not mutually exclusive. In the simplest pathway, H2O2 signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by H2O2 is too slow (10(1) M(-1)s(-1) range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high H2O2 concentrations, making the direct oxidation feasible. Alternatively, high H2O2 levels can hyperoxidize peroxiredoxins leading to local building up of H2O2 that then could oxidize a signaling protein (floodgate hypothesis). In a second model, H2O2 oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches.
Collapse
Affiliation(s)
- Luis E. S. Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo – SP,
Brazil
| | - Fernando Antunes
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa,
Portugal
| |
Collapse
|
45
|
Komalapriya C, Kaloriti D, Tillmann AT, Yin Z, Herrero-de-Dios C, Jacobsen MD, Belmonte RC, Cameron G, Haynes K, Grebogi C, de Moura APS, Gow NAR, Thiel M, Quinn J, Brown AJP, Romano MC. Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans. PLoS One 2015; 10:e0137750. [PMID: 26368573 PMCID: PMC4569071 DOI: 10.1371/journal.pone.0137750] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/20/2015] [Indexed: 11/18/2022] Open
Abstract
The major fungal pathogen of humans, Candida albicans, mounts robust responses to oxidative stress that are critical for its virulence. These responses counteract the reactive oxygen species (ROS) that are generated by host immune cells in an attempt to kill the invading fungus. Knowledge of the dynamical processes that instigate C. albicans oxidative stress responses is required for a proper understanding of fungus-host interactions. Therefore, we have adopted an interdisciplinary approach to explore the dynamical responses of C. albicans to hydrogen peroxide (H2O2). Our deterministic mathematical model integrates two major oxidative stress signalling pathways (Cap1 and Hog1 pathways) with the three major antioxidant systems (catalase, glutathione and thioredoxin systems) and the pentose phosphate pathway, which provides reducing equivalents required for oxidative stress adaptation. The model encapsulates existing knowledge of these systems with new genomic, proteomic, transcriptomic, molecular and cellular datasets. Our integrative approach predicts the existence of alternative states for the key regulators Cap1 and Hog1, thereby suggesting novel regulatory behaviours during oxidative stress. The model reproduces both existing and new experimental observations under a variety of scenarios. Time- and dose-dependent predictions of the oxidative stress responses for both wild type and mutant cells have highlighted the different temporal contributions of the various antioxidant systems during oxidative stress adaptation, indicating that catalase plays a critical role immediately following stress imposition. This is the first model to encapsulate the dynamics of the transcriptional response alongside the redox kinetics of the major antioxidant systems during H2O2 stress in C. albicans.
Collapse
Affiliation(s)
- Chandrasekaran Komalapriya
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Despoina Kaloriti
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Anna T. Tillmann
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Zhikang Yin
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Carmen Herrero-de-Dios
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Mette D. Jacobsen
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Rodrigo C. Belmonte
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Gary Cameron
- School of Medicine and Dentistry, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Ken Haynes
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Celso Grebogi
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom
| | - Alessandro P. S. de Moura
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom
| | - Neil A. R. Gow
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Marco Thiel
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Alistair J. P. Brown
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- * E-mail: (MCR); (AJPB)
| | - M. Carmen Romano
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- * E-mail: (MCR); (AJPB)
| |
Collapse
|
46
|
Lennicke C, Rahn J, Lichtenfels R, Wessjohann LA, Seliger B. Hydrogen peroxide - production, fate and role in redox signaling of tumor cells. Cell Commun Signal 2015; 13:39. [PMID: 26369938 PMCID: PMC4570748 DOI: 10.1186/s12964-015-0118-6] [Citation(s) in RCA: 341] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023] Open
Abstract
Hydrogen peroxide (H2O2) is involved in various signal transduction pathways and cell fate decisions. The mechanism of the so called “redox signaling” includes the H2O2-mediated reversible oxidation of redox sensitive cysteine residues in enzymes and transcription factors thereby altering their activities. Depending on its intracellular concentration and localization, H2O2 exhibits either pro- or anti-apoptotic activities. In comparison to normal cells, cancer cells are characterized by an increased H2O2 production rate and an impaired redox balance thereby affecting the microenvironment as well as the anti-tumoral immune response. This article reviews the current knowledge about the intracellular production of H2O2 along with redox signaling pathways mediating either the growth or apoptosis of tumor cells. In addition it will be discussed how the targeting of H2O2-linked sources and/or signaling components involved in tumor progression and survival might lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Claudia Lennicke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle/Saale, Germany
| | - Jette Rahn
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle/Saale, Germany
| | - Rudolf Lichtenfels
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle/Saale, Germany
| | - Ludger A Wessjohann
- Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120, Halle /Saale, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle/Saale, Germany.
| |
Collapse
|
47
|
Ball R, Brindley J. The life story of hydrogen peroxide II: a periodic pH and thermochemical drive for the RNA world. J R Soc Interface 2015; 12:20150366. [PMID: 26202683 PMCID: PMC4535408 DOI: 10.1098/rsif.2015.0366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/01/2015] [Indexed: 12/22/2022] Open
Abstract
It is now accepted that primordial non-cellular RNA communities must have been subject to a periodic drive in order to replicate and prosper. We have proposed the oxidation of thiosulfate by hydrogen peroxide as this drive. This reaction system behaves as (i) a thermochemical and (ii) a pH oscillator, and in this work, we unify (i) and (ii) for the first time. We report thermally self-consistent, dynamical simulations in which the system transitions smoothly from nearly isothermal pH to fully developed thermo-pH oscillatory regimes. We use this oscillator to drive simulated replication of a 39-bp RNA species. Production of replicated duplex under thermo-pH drive was significantly enhanced compared with that under purely thermochemical drive, effectively allowing longer strands to replicate. Longer strands are fitter, with more potential to evolve enzyme activity and resist degradation. We affirm that concern over the alleged toxicity of hydrogen peroxide to life is largely misplaced in the current context, we survey its occurrence in the solar system to motivate its inclusion as a biosignature in the search for life on other worlds and highlight that pH oscillations in a spatially extended, bounded system manifest as the fundamental driving force of life: a proton gradient.
Collapse
Affiliation(s)
- Rowena Ball
- Mathematical Sciences Institute and Research School of Chemistry, The Australian National University, Canberra 2602, Australia
| | - John Brindley
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
48
|
Mahdi Z, Habiboallh G, Mahbobeh NN, Mina ZJ, Majid Z, Nooshin A. Lethal effect of blue light-activated hydrogen peroxide, curcumin and erythrosine as potential oral photosensitizers on the viability of Porphyromonas gingivalis and Fusobacterium nucleatum. Laser Ther 2015; 24:103-11. [PMID: 26246690 DOI: 10.5978/islsm.15-or-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/08/2015] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Recently, photodynamic therapy (PDT) has been introduced as a new modality in oral bacterial decontamination. Current research aims to evaluate the effect of photodynamic killing of visible blue light in the presence of hydrogen peroxide, curcumin and erythrosine as potential oral photosensitizers on Porphyromonas gingivalis associated with periodontal bone loss and Fusobacterium nucleatum associated with soft tissue inflammation. MATERIALS AND METHODS Standard suspension of P. gingivalis and F. nucleatum were exposed to Light Emitting Diode (LED) (440-480 nm) in combination with erythrosine (22 µm), curcumin (60 µM) and hydrogen peroxide (0.3 mM) for 5 min. Bacterial samples from each treatment groups (radiation-only group, photosensitizer-only group and blue light-activated photosensitizer group) were subcultured onto the surface of agar plates. Survival of these bacteria was determined by counting the number of colony forming units (CFU) after incubation. RESULTS RESULTS for antibacterial assays on P. gingivalis confirmed that curcumin, Hydrogen peroxide and erythrosine alone exerted a moderate bactericidal effect which enhanced noticeably in conjugation with visible light. The survival rate of P. gingivalis reached zero present when the suspension exposed to blue light-activated curcumin and hydrogen peroxide for 2 min. Besides, curcumin exerted a remarkable antibacterial activity against F. nucleatum in comparison with erythrosine and hydrogen peroxide (P=0.00). Furthermore, the bactericidal effect of visible light alone on P. gingivalis as black-pigmented bacteria was significant. CONCLUSION Our result suggested that visible blue light in the presence of erythrosine, curcumin and hydrogen peroxide would be consider as a potential approach of PDT to kill the main gramnegative periodontal pathogens. From a clinical standpoint, this regimen could be established as an additional minimally invasive antibacterial treatment of plaque induced periodontal pathologies.
Collapse
Affiliation(s)
- Zakeri Mahdi
- School of Dentistry and Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghanbari Habiboallh
- Department of Periodontics, School of Dentistry and Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naderi Nasab Mahbobeh
- Department of Medical Bacteriology & Virology, Emam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Zakeri Majid
- School of Dentistry and Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arjmand Nooshin
- Department of Restorative, School of Dentistry and Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Nasution O, Lee J, Srinivasa K, Choi IG, Lee YM, Kim E, Choi W, Kim W. Loss of Dfg5 glycosylphosphatidylinositol-anchored membrane protein confers enhanced heat tolerance in Saccharomyces cerevisiae. Environ Microbiol 2015; 17:2721-34. [PMID: 25297926 DOI: 10.1111/1462-2920.12649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/21/2022]
Abstract
The protein product of Saccharomyces cerevisiae DFG5 gene is a glycosylphosphatidylinositol (GPI)-anchored plasma membrane protein and a putative glycosidase/glycosyltransferase that links other GPI-anchored proteins to β-glucans in the cell wall. Upon exposure to heat (41°C), DFG5 deletion mutant dfg5Δ displayed significantly enhanced heat tolerance as well as lowered level of reactive oxygen species and decreased membrane permeability compared with those in the control (BY4741). Comparative transcriptome profiles of BY4741 and dfg5Δ revealed that 38 and 23 genes were up- and down-regulated in dfg5Δ respectively. Of the 23 down-regulated genes, 11 of 13 viable deletion mutants were identified to be tolerant to heat, suggesting that the down-regulation of those genes might have contributed to the enhanced heat tolerance in dfg5Δ. Deletion of DFG5 caused slight activation of mitogen-activated protein kinases Hog1 in the high-osmolarity glycerol pathway and Slt2 in the cell wall integrity pathway. Therefore, a model is proposed on the signal transduction pathways associated with deletion of DFG5 upon heat stress.
Collapse
Affiliation(s)
- Olviyani Nasution
- Division of Ecological Sciences, Ewha Womans University, Seoul, 120-750, Korea
| | - Jaok Lee
- Division of Ecological Sciences, Ewha Womans University, Seoul, 120-750, Korea
| | - Kavitha Srinivasa
- Division of Ecological Sciences, Ewha Womans University, Seoul, 120-750, Korea
| | - In-Geol Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Young Mi Lee
- Microbial Resources Research Center, College of Natural Sciences, Ewha Womans University, Seoul, 120-750, Korea
| | - Eunjung Kim
- Department of Pharmacology, School of Medicine, Ajou University, Suwon, 442-749, Korea
| | - Wonja Choi
- Division of Ecological Sciences, Ewha Womans University, Seoul, 120-750, Korea.,Microbial Resources Research Center, College of Natural Sciences, Ewha Womans University, Seoul, 120-750, Korea
| | - Wankee Kim
- Department of Pharmacology, School of Medicine, Ajou University, Suwon, 442-749, Korea
| |
Collapse
|
50
|
Li SJ, Dhaenens M, Garmyn A, Verbrugghe E, Van Rooij P, De Saeger S, Eeckhout M, Ducatelle R, Croubels S, Haesebrouck F, Deforce D, Pasmans F, Martel A. Exposure of Aspergillus fumigatus to T-2 toxin results in a stress response associated with exacerbation of aspergillosis in poultry. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aspergillus fumigatus is a ubiquitous airborne pathogen. Saprophytic growth in the presence of environmental mycotoxins might affect its fitness and virulence. T-2 toxin (T-2) is a trichothecene mycotoxin produced by Fusarium spp. in various substrates. This study aimed to evaluate the effects of T-2 on the fitness of A. fumigatus in vitro and its virulence in experimentally inoculated chickens. We cultured A. fumigatus on agar media containing T-2, and examined the changes in viability, morphology, growth rate, proteome expression, and susceptibility to antimycotics and oxidative stress of this fungus. Results showed that exposure to 1000 ng/ml T-2 in the substrate did not reduce the viability of A. fumigatus, but its growth was inhibited, with wrinkling and depigmentation of the colonies. Proteomic analysis revealed 21 upregulated proteins and 33 downregulated proteins, including those involved in stress response, pathogenesis, metabolism, transcription. The proteome seems to have shifted to enhance the glycolysis, catabolism of lipids, and amino acid conversion. Assays on fungal susceptibility to antimycotics and oxidative stress showed that T-2 exposure did not affect the minimal inhibitory concentrations of amphotericin B, itraconazole, voriconazole and terbinafine against A. fumigatus, but increased the susceptibility of A. fumigatus to H2O2 and menadione. Experimental inoculation of chickens with A. fumigatus showed that exposure of A. fumigatus to T-2 significantly exacerbated aspergillosis in chickens exposed to dietary T-2. In conclusion, A. fumigatus is capable of surviving and growing on substrates containing levels of T-2 up to 1000 ng/ml. Growth in presence of T-2 induces a stress response in A. fumigatus, which is associated with exacerbation of aspergillosis in vivo.
Collapse
Affiliation(s)
- S.-J. Li
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - M. Dhaenens
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - A. Garmyn
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - E. Verbrugghe
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - P. Van Rooij
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - S. De Saeger
- Department of Bio-analysis, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - M. Eeckhout
- Department of Applied Biosciences, Faculty of Bio-science Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - R. Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - S. Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - F. Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - D. Deforce
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - F. Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - A. Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|