1
|
Seldeslachts A, Maurstad MF, Øyen JP, Undheim EAB, Peigneur S, Tytgat J. Exploring oak processionary caterpillar induced lepidopterism (Part 1): unveiling molecular insights through transcriptomics and proteomics. Cell Mol Life Sci 2024; 81:311. [PMID: 39066932 PMCID: PMC11335235 DOI: 10.1007/s00018-024-05330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
Lepidopterism, a skin inflammation condition caused by direct or airborne exposure to irritating hairs (setae) from processionary caterpillars, is becoming a significant public health concern. Recent outbreaks of the oak processionary caterpillar (Thaumetopoea processionea) have caused noteworthy health and economic consequences, with a rising frequency expected in the future, exacerbated by global warming promoting the survival of the caterpillar. Current medical treatments focus on symptom relief due to the lack of an effective therapy. While the source is known, understanding the precise causes of symptoms remain incomplete understood. In this study, we employed an advanced method to extract venom from the setae and identify the venom components through high-quality de novo transcriptomics, venom proteomics, and bioinformatic analysis. A total of 171 venom components were identified, including allergens, odorant binding proteins, small peptides, enzymes, enzyme inhibitors, and chitin biosynthesis products, potentially responsible for inflammatory and allergic reactions. This work presents the first comprehensive proteotranscriptomic database of T. processionea, contributing to understanding the complexity of lepidopterism. Furthermore, these findings hold promise for advancing therapeutic approaches to mitigate the global health impact of T. processionea and related caterpillars.
Collapse
Affiliation(s)
- Andrea Seldeslachts
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven , Leuven, Vlaams-Brabant, Belgium
| | - Marius F Maurstad
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Philip Øyen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
- Division of biotechnology and plant health & viruses, bacteria and nematodes in forestry, agriculture and horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Oslo, Norway
| | | | - Steve Peigneur
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven , Leuven, Vlaams-Brabant, Belgium.
| | - Jan Tytgat
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven , Leuven, Vlaams-Brabant, Belgium.
| |
Collapse
|
2
|
Qin C, Yang X, Zuo Z, Yuan P, Sun F, Luo X, Ye X, Cao Z, Chen Z, Wu Y. Differential potassium channel inhibitory activities of a novel thermostable degradation peptide BmKcug1a-P1 from scorpion medicinal material and its N-terminal truncated/restored peptides. Sci Rep 2024; 14:16092. [PMID: 38997408 PMCID: PMC11245557 DOI: 10.1038/s41598-024-66794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Thermally stable full-length scorpion toxin peptides and partially degraded peptides with complete disulfide bond pairing are valuable natural peptide resources in traditional Chinese scorpion medicinal material. However, their pharmacological activities are largely unknown. This study discovered BmKcug1a-P1, a novel N-terminal degraded peptide, in this medicinal material. BmKcug1a-P1 inhibited hKv1.2 and hKv1.3 potassium channels with IC50 values of 2.12 ± 0.27 μM and 1.54 ± 0.28 μM, respectively. To investigate the influence of N-terminal amino acid loss on the potassium channel inhibiting activities, three analogs (i.e., full-length BmKcug1a, BmKcug1a-P1-D2 and BmKcug1a-P1-D4) of BmKcug1a-P1 were prepared, and their potassium channel inhibiting activities on hKv1.3 channel were verified by whole-cell patch clamp technique. Interestingly, the potassium channel inhibiting activity of full-length BmKcug1a on the hKv1.3 channel was significantly improved compared to its N-terminal degraded form (BmKcug1a-P1), while the activities of two truncated analogs (i.e., BmKcug1a-P1-D2 and BmKcug1a-P1-D4) were similar to that of BmKcug1a-P1. Extensive alanine-scanning experiments identified the bonding interface (including two key functional residues, Asn30 and Arg34) of BmKcug1a-P1. Structural and functional dissection further elucidated whether N-terminal residues of the peptide are located at the bonding interface is important in determining whether the N-terminus significantly influences the potassium channel inhibiting activity of the peptide. Altogether, this research identified a novel N-terminal degraded active peptide, BmKcug1a-P1, from traditional Chinese scorpion medicinal material and elucidated how the N-terminus of peptides influences their potassium channel inhibiting activity, contributing to the functional identification and molecular truncation optimization of full-length and degraded peptides from traditional Chinese scorpion medicinal material Buthus martensii Karsch.
Collapse
Affiliation(s)
- Chenhu Qin
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuhua Yang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zheng Zuo
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peixin Yuan
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fang Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xudong Luo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiangdong Ye
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhijian Cao
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Center for BioDrug Research, Wuhan University, Wuhan, 430072, China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Center for BioDrug Research, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
3
|
Yang C, Yang Z, Tong K, Wang J, Yang W, Yu R, Jiang F, Ji Y. Homology modeling and molecular docking simulation of martentoxin as a specific inhibitor of the BK channel. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:71. [PMID: 35282126 PMCID: PMC8848368 DOI: 10.21037/atm-21-6967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022]
Abstract
Background Large conductance calcium-activated potassium channel (BK channel) is gated by both voltage and calcium ions and is widely distributed in excitable and nonexcitable cells. BK channel plays an important role in epilepsy and other diseases, but BK channel subtype-specific drugs are still extremely rare. Martentoxin was previously isolated from the venom of members of Scorpionidae and shown to be composed of 37 amino acids. Research has shown that the pharmacological selectivity of martentoxin to the BK channel is higher than that to other potassium channels. Therefore, it is of great significance to study the mechanism of interaction between martentoxin and BK channels. Methods The three-dimensional structure of BK channel pore region was constructed by homologous modeling method, and the key amino acid sites of BK channel interaction with martentoxin were analyzed by protein-protein docking, molecular dynamic simulation and virtual alanine mutation. Results Based on homologous modeling of BK channel pore structure and protein-protein docking analysis, Phe1, Lys28 and Arg35 of martentoxin were found to be key amino acids in toxin BK channel interaction. Conclusions This study reveals the structural basis of martentoxin interaction with BK channel. These results will contribute to the design of BK channel specific blockers based on the structure of martentoxin.
Collapse
Affiliation(s)
- Chao Yang
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences (Xinhua Hospital Chongming Branch), Shanghai, China
| | - Zihao Yang
- College of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Kuiyuan Tong
- College of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Jiawei Wang
- School of Life and Medicine Sciences, Shanghai University, Shanghai, China
| | - Wanli Yang
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences (Xinhua Hospital Chongming Branch), Shanghai, China
| | - Ruihua Yu
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences (Xinhua Hospital Chongming Branch), Shanghai, China
| | - Feng Jiang
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences (Xinhua Hospital Chongming Branch), Shanghai, China
| | - Yonghua Ji
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences (Xinhua Hospital Chongming Branch), Shanghai, China.,School of Life and Medicine Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Zhou J, Peng F, Cao X, Xie X, Chen D, Yang L, Rao C, Peng C, Pan X. Risk Compounds, Preclinical Toxicity Evaluation, and Potential Mechanisms of Chinese Materia Medica-Induced Cardiotoxicity. Front Pharmacol 2021; 12:578796. [PMID: 33867974 PMCID: PMC8044783 DOI: 10.3389/fphar.2021.578796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Chinese materia medica (CMM) has been applied for the prevention and treatment of diseases for thousands of years. However, arrhythmia, myocardial ischemia, heart failure, and other cardiac adverse reactions during CMM application were gradually reported. CMM-induced cardiotoxicity has aroused widespread attention. Our review aimed to summarize the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity. All relevant articles published on the PubMed, Embase, and China National Knowledge Infrastructure (CNKI) databases for the latest twenty years were searched and manually extracted. The risk substances of CMM-induced cardiotoxicity are relatively complex. A single CMM usually contains various risk compounds, and the same risk substance may exist in various CMM. The active and risk substances in CMM may be transformed into each other under different conditions, such as drug dosage, medication methods, and body status. Generally, the risk compounds of CMM-induced cardiotoxicity can be classified into alkaloids, terpenoids, steroids, heavy metals, organic acids, toxic proteins, and peptides. Traditional evaluation methods of chemical drug-induced cardiotoxicity primarily include cardiac function monitoring, endomyocardial biopsy, myocardial zymogram, and biomarker determination. In the preclinical stage, CMM-induced cardiotoxicity should be systematically evaluated at the overall, tissue, cellular, and molecular levels, including cardiac function, histopathology, cytology, myocardial zymogram, and biomarkers. Thanks to the development of systematic biology, the higher specificity and sensitivity of biomarkers, such as genes, proteins, and metabolic small molecules, are gradually applied for evaluating CMM-induced cardiotoxicity. Previous studies on the mechanisms of CMM-induced cardiotoxicity focused on a single drug, monomer or components of CMM. The interaction among ion homeostasis (sodium, potassium, and calcium ions), oxidative damage, mitochondrial injury, apoptosis and autophagy, and metabolic disturbance is involved in CMM-induced cardiotoxicity. Clarification on the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity must be beneficial to guide new CMM development and post-marketed CMM reevaluation.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dayi Chen
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lian Yang
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaolong Rao
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Ombati R, Luo L, Yang S, Lai R. Centipede envenomation: Clinical importance and the underlying molecular mechanisms. Toxicon 2018; 154:60-68. [DOI: 10.1016/j.toxicon.2018.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/21/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
|
6
|
Jiménez-Vargas JM, Possani LD, Luna-Ramírez K. Arthropod toxins acting on neuronal potassium channels. Neuropharmacology 2017; 127:139-160. [PMID: 28941737 DOI: 10.1016/j.neuropharm.2017.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023]
Abstract
Arthropod venoms are a rich mixture of biologically active compounds exerting different physiological actions across diverse phyla and affecting multiple organ systems including the central nervous system. Venom compounds can inhibit or activate ion channels, receptors and transporters with high specificity and affinity providing essential insights into ion channel function. In this review, we focus on arthropod toxins (scorpions, spiders, bees and centipedes) acting on neuronal potassium channels. A brief description of the K+ channels classification and structure is included and a compendium of neuronal K+ channels and the arthropod toxins that modify them have been listed. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Karen Luna-Ramírez
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
7
|
Housley DM, Housley GD, Liddell MJ, Jennings EA. Scorpion toxin peptide action at the ion channel subunit level. Neuropharmacology 2016; 127:46-78. [PMID: 27729239 DOI: 10.1016/j.neuropharm.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
This review categorizes functionally validated actions of defined scorpion toxin (SCTX) neuropeptides across ion channel subclasses, highlighting key trends in this rapidly evolving field. Scorpion envenomation is a common event in many tropical and subtropical countries, with neuropharmacological actions, particularly autonomic nervous system modulation, causing significant mortality. The primary active agents within scorpion venoms are a diverse group of small neuropeptides that elicit specific potent actions across a wide range of ion channel classes. The identification and functional characterisation of these SCTX peptides has tremendous potential for development of novel pharmaceuticals that advance knowledge of ion channels and establish lead compounds for treatment of excitable tissue disorders. This review delineates the unique specificities of 320 individual SCTX peptides that collectively act on 41 ion channel subclasses. Thus the SCTX research field has significant translational implications for pathophysiology spanning neurotransmission, neurohumoral signalling, sensori-motor systems and excitation-contraction coupling. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- David M Housley
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Michael J Liddell
- Centre for Tropical Environmental and Sustainability Science and College of Science & Engineering, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia
| | - Ernest A Jennings
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Queensland 4878, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, QLD, Australia
| |
Collapse
|
8
|
Lv M, Mohamed AA, Zhang L, Zhang P, Zhang L. A Family of CSαβ Defensins and Defensin-Like Peptides from the Migratory Locust, Locusta migratoria, and Their Expression Dynamics during Mycosis and Nosemosis. PLoS One 2016; 11:e0161585. [PMID: 27556587 PMCID: PMC4996505 DOI: 10.1371/journal.pone.0161585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/08/2016] [Indexed: 11/23/2022] Open
Abstract
Insect defensins are effector components of the innate defense system. During infection, these peptides may play a role in the control of pathogens by providing protective antimicrobial barriers between epithelial cells and the hemocoel. The cDNAs encoding four defensins of the migratory locust, Locusta migratoria, designated LmDEF 1, 3–5, were identified for the first time by transcriptome-targeted analysis. Three of the members of this CSαβ defensin family, LmDEF 1, 3, and 5, were detected in locust tissues. The pro regions of their sequences have little-shared identities with other insect defensins, though the predicted mature peptides align well with other insect defensins. Phylogenetic analysis indicates a completely novel position of both LmDEF 1 and 3, compared to defensins from hymenopterans. The expression patterns of the genes encoding LmDEFs in the fat body and salivary glands were studied in response to immune-challenge by the microsporidian pathogen Nosema locustae and the fungus Metarhizium anisopliae after feeding or topical application, respectively. Focusing on Nosema-induced immunity, qRT-PCR was employed to quantify the transcript levels of LmDEFs. A higher transcript abundance of LmDEF5 was distributed more or less uniformly throughout the fat body along time. A very low baseline transcription of both LmDEFs 1 and 3 in naïve insects was indicated, and that transcription increases with time or is latent in the fat body or salivary glands of infected nymphs. In the salivary glands, expression of LmDEF3 was 20-40-times higher than in the fat body post-microbial infection. A very low expression of LmDEF3 could be detected in the fat body, but eventually increased with time up to a maximum at day 15. Delayed induction of transcription of these peptides in the fat body and salivary glands 5–15 days post-activation and the differential expression patterns suggest that the fat body/salivary glands of this species are active in the immune response against pathogens. The ability of N. locustae to induce salivary glands as well as fat body expression of defensins raises the possibility that these AMPs might play a key role in the development and/or tolerance of parasitic infections.
Collapse
Affiliation(s)
- Mingyue Lv
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - Amr Ahmed Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Liwei Zhang
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - Pengfei Zhang
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - Long Zhang
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
9
|
Yu M, Liu SL, Sun PB, Pan H, Tian CL, Zhang LH. Peptide toxins and small-molecule blockers of BK channels. Acta Pharmacol Sin 2016; 37:56-66. [PMID: 26725735 DOI: 10.1038/aps.2015.139] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/13/2015] [Indexed: 12/21/2022] Open
Abstract
Large conductance, Ca(2+)-activated potassium (BK) channels play important roles in the regulation of neuronal excitability and the control of smooth muscle contractions. BK channels can be activated by changes in both the membrane potential and intracellular Ca(2+) concentrations. Here, we provide an overview of the structural and pharmacological properties of BK channel blockers. First, the properties of different venom peptide toxins from scorpions and snakes are described, with a focus on their characteristic structural motifs, including their disulfide bond formation pattern, the binding interface between the toxin and BK channel, and the functional consequence of the blockage of BK channels by these toxins. Then, some representative non-peptide blockers of BK channels are also described, including their molecular formula and pharmacological effects on BK channels. The detailed categorization and descriptions of these BK channel blockers will provide mechanistic insights into the blockade of BK channels. The structures of peptide toxins and non-peptide compounds could provide templates for the design of new channel blockers, and facilitate the optimization of lead compounds for further therapeutic applications in neurological disorders or cardiovascular diseases.
Collapse
|
10
|
ElFessi-Magouri R, Peigneur S, Othman H, Srairi-Abid N, ElAyeb M, Tytgat J, Kharrat R. Characterization of Kbot21 Reveals Novel Side Chain Interactions of Scorpion Toxins Inhibiting Voltage-Gated Potassium Channels. PLoS One 2015; 10:e0137611. [PMID: 26398235 PMCID: PMC4580410 DOI: 10.1371/journal.pone.0137611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Scorpion toxins are important pharmacological tools for probing the physiological roles of ion channels which are involved in many physiological processes and as such have significant therapeutic potential. The discovery of new scorpion toxins with different specificities and affinities is needed to further characterize the physiology of ion channels. In this regard, a new short polypeptide called Kbot21 has been purified to homogeneity from the venom of Buthus occitanus tunetanus scorpion. Kbot21 is structurally related to BmBKTx1 from the venom of the Asian scorpion Buthus martensii Karsch. These two toxins differ by only two residues at position 13 (R /V) and 24 (D/N).Despite their very similar sequences, Kbot21 and BmBKTx1 differ in their electrophysiological activities. Kbot21 targets KV channel subtypes whereas BmBKTx1 is active on both big conductance (BK) and small conductance (SK) Ca2+-activated K+ channel subtypes, but has no effects on Kv channel subtypes. The docking model of Kbot21 with the Kv1.2 channel shows that the D24 and R13 side-chain of Kbot21 are critical for its interaction with KV channels.
Collapse
Affiliation(s)
- Rym ElFessi-Magouri
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Steve Peigneur
- Laboratory of Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000, Leuven, Belgium
| | - Houcemeddine Othman
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Najet Srairi-Abid
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Mohamed ElAyeb
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Jan Tytgat
- Laboratory of Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000, Leuven, Belgium
| | - Riadh Kharrat
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
- * E-mail:
| |
Collapse
|
11
|
Xu X, Duan Z, Di Z, He Y, Li J, Li Z, Xie C, Zeng X, Cao Z, Wu Y, Liang S, Li W. Proteomic analysis of the venom from the scorpion Mesobuthus martensii. J Proteomics 2014; 106:162-80. [PMID: 24780724 DOI: 10.1016/j.jprot.2014.04.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED The scorpion Mesobuthus martensii is the most populous species in eastern Asian countries, and several toxic components have been identified from their venoms. Nevertheless, a complete proteomic profile of the venom of M. martensii is still not available. In this study, the venom of M. martensii was analyzed by comprehensive proteomic approaches. 153 fractions were isolated from the M. martensii venom by 2-DE, SDS-PAGE and RP-HPLC. The ESI-Q-TOF MS results of all fractions were used to search the scorpion genomic and transcriptomic databases. Totally, 227 non-redundant protein sequences were unambiguously identified, composed of 134 previously known and 93 previously unknown proteins. Among 134 previously known proteins, 115 proteins were firstly confirmed from the M. martensii crude venom and 19 toxins were confirmed once again, involving 43 typical toxins, 7 atypical toxins, 12 venom enzymes and 72 cell associated proteins. In typical toxins, 7 novel-toxin sequences were identified, including 3 Na(+)-channel toxins, 3K(+)-channel toxins and 1 no-annotation toxin. These results increased 230% (115/50) venom components compared with previous studies from the M. martensii venom, especially 50% (24/48) typical toxins. Additionally, a mass fingerprint obtained by MALDI-TOF MS indicated that the scorpion venom contained more than 200 different molecular mass components. BIOLOGICAL SIGNIFICANCE This work firstly gave a systematic investigation of the M. martensii venom by combined proteomics strategy coupled with genomics and transcriptomics. A large number of protein components were unambiguously identified from the venom of M. martensii, most of which were confirmed for the first time. We also contributed 7 novel-toxin sequences and 93 protein sequences previously unknown to be part of the venom, for which we assigned potential biological functions. Besides, we obtained a mass fingerprint of the M. martensii venom. Together, our study not only provides the most comprehensive catalog of the molecular diversity of the M. martensii venom at the proteomic level, but also enriches the composition information of scorpion venom.
Collapse
Affiliation(s)
- Xiaobo Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zhigui Duan
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Zhiyong Di
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yawen He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jianglin Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Zhongjie Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Chunliang Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Xiongzhi Zeng
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China.
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
12
|
Recombinant expression and functional characterization of martentoxin: a selective inhibitor for BK channel (α + β4). Toxins (Basel) 2014; 6:1419-33. [PMID: 24759175 PMCID: PMC4014743 DOI: 10.3390/toxins6041419] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 12/22/2022] Open
Abstract
Martentoxin (MarTX), a 37-residue peptide purified from the venom of East-Asian scorpion (Buthus martensi Karsch), was capable of blocking large-conductance Ca2+-activated K+ (BK) channels. Here, we report an effective expression and purification approach for this toxin. The cDNA encoding martentoxin was expressed by the prokaryotic expression system pGEX-4T-3 which was added an enterokinase cleavage site by PCR. The fusion protein (GST-rMarTX) was digested by enterokinase to release hetero-expressed toxin and further purified via reverse-phase HPLC. The molecular weight of the hetero-expressed rMarTX was 4059.06 Da, which is identical to that of the natural peptide isolated from scorpion venom. Functional characterization through whole-cell patch clamp showed that rMarTX selectively and potently inhibited the currents of neuronal BK channels (α + β4) (IC50 = 186 nM), partly inhibited mKv1.3, but hardly having any significant effect on hKv4.2 and hKv3.1a even at 10 μM. Successful expression of martentoxin lays basis for further studies of structure-function relationship underlying martentoxin or other potassium-channel specific blockers.
Collapse
|
13
|
Xu J, Zhang X, Guo Z, Yan J, Yu L, Li X, Xue X, Liang X. Orthogonal separation and identification of long-chain peptides from scorpion Buthus martensi Karsch venom by using two-dimensional mixed-mode reversed phase-reversed phase chromatography coupled to tandem mass spectrometry. Analyst 2013; 138:1835-43. [DOI: 10.1039/c2an36704a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Schwartz EF, Mourão CBF, Moreira KG, Camargos TS, Mortari MR. Arthropod venoms: A vast arsenal of insecticidal neuropeptides. Biopolymers 2012. [DOI: 10.1002/bip.22100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Yang Y, Wu X, Gui P, Wu J, Sheng JZ, Ling S, Braun AP, Davis GE, Davis MJ. Alpha5beta1 integrin engagement increases large conductance, Ca2+-activated K+ channel current and Ca2+ sensitivity through c-src-mediated channel phosphorylation. J Biol Chem 2009; 285:131-41. [PMID: 19887442 DOI: 10.1074/jbc.m109.033506] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Large conductance, calcium-activated K(+) (BK) channels are important regulators of cell excitability and recognized targets of intracellular kinases. BK channel modulation by tyrosine kinases, including focal adhesion kinase and c-src, suggests their potential involvement in integrin signaling. Recently, we found that fibronectin, an endogenous alpha5beta1 integrin ligand, enhances BK channel current through both Ca(2+)- and phosphorylation-dependent mechanisms in vascular smooth muscle. Here, we show that macroscopic currents from HEK 293 cells expressing murine BK channel alpha-subunits (mSlo) are acutely potentiated following alpha5beta1 integrin activation. The effect occurs in a Ca(2+)-dependent manner, 1-3 min after integrin engagement. After integrin activation, normalized conductance-voltage relations for mSlo are left-shifted at free Ca(2+) concentrations >or=1 microm. Overexpression of human c-src with mSlo, in the absence of integrin activation, leads to similar shifts in mSlo Ca(2+) sensitivity, whereas overexpression of catalytically inactive c-src blocks integrin-induced potentiation. However, neither integrin activation nor c-src overexpression potentiates current in BK channels containing a point mutation at Tyr-766. Biochemical tests confirmed the critical importance of residue Tyr-766 in integrin-induced channel phosphorylation. Thus, BK channel activity is enhanced by alpha5beta1 integrin activation, likely through an intracellular signaling pathway involving c-src phosphorylation of the channel alpha-subunit at Tyr-766. The net result is increased current amplitude, enhanced Ca(2+) sensitivity, and rate of activation of the BK channel, which would collectively promote smooth muscle hyperpolarization in response to integrin-extracellular matrix interactions.
Collapse
Affiliation(s)
- Yan Yang
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mandal K, Pentelute BL, Tereshko V, Kossiakoff AA, Kent SBH. X-ray structure of native scorpion toxin BmBKTx1 by racemic protein crystallography using direct methods. J Am Chem Soc 2009; 131:1362-3. [PMID: 19133782 PMCID: PMC2647749 DOI: 10.1021/ja8077973] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Racemic protein crystallography, enabled by total chemical synthesis, has allowed us to determine the X-ray structure of native scorpion toxin BmBKTx1; direct methods were used for phase determination. This is the first example of a protein racemate that crystallized in space group I41/a.
Collapse
Affiliation(s)
- Kalyaneswar Mandal
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637
| | - Brad L. Pentelute
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637
| | - Valentina Tereshko
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637
| | - Anthony A. Kossiakoff
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637
| | - Stephen B. H. Kent
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
17
|
Félétou M. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options? Br J Pharmacol 2009; 156:545-62. [PMID: 19187341 DOI: 10.1111/j.1476-5381.2009.00052.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The three subtypes of calcium-activated potassium channels (K(Ca)) of large, intermediate and small conductance (BK(Ca), IK(Ca) and SK(Ca)) are present in the vascular wall. In healthy arteries, BK(Ca) channels are preferentially expressed in vascular smooth muscle cells, while IK(Ca) and SK(Ca) are preferentially located in endothelial cells. The activation of endothelial IK(Ca) and SK(Ca) contributes to nitric oxide (NO) generation and is required to elicit endothelium-dependent hyperpolarizations. In the latter responses, the hyperpolarization of the smooth muscle cells is evoked either via electrical coupling through myo-endothelial gap junctions or by potassium ions, which by accumulating in the intercellular space activate the inwardly rectifying potassium channel Kir2.1 and/or the Na(+)/K(+)-ATPase. Additionally, endothelium-derived factors such as cytochrome P450-derived epoxyeicosatrienoic acids and under some circumstances NO, prostacyclin, lipoxygenase products and hydrogen peroxide (H(2)O(2)) hyperpolarize and relax the underlying smooth muscle cells by activating BK(Ca). In contrast, cytochrome P450-derived 20-hydroxyeicosatetraenoic acid and various endothelium-derived contracting factors inhibit BK(Ca). Aging and cardiovascular diseases are associated with endothelial dysfunctions that can involve a decrease in NO bioavailability, alterations of EDHF-mediated responses and/or enhanced production of endothelium-derived contracting factors. Because potassium channels are involved in these endothelium-dependent responses, activation of endothelial and/or smooth muscle K(Ca) could prevent the occurrence of endothelial dysfunction. Therefore, direct activators of these potassium channels or compounds that regulate their activity or their expression may be of some therapeutic interest. Conversely, blockers of IK(Ca) may prevent restenosis and that of BK(Ca) channels sepsis-dependent hypotension.
Collapse
Affiliation(s)
- Michel Félétou
- Department of Angiology, Institut de Recherches Servier, Suresnes, France.
| |
Collapse
|
18
|
Wang S, Huang L, Wicher D, Chi C, Xu C. Structure-function relationship of bifunctional scorpion toxin BmBKTx1. Acta Biochim Biophys Sin (Shanghai) 2008; 40:955-63. [PMID: 18989577 DOI: 10.1111/j.1745-7270.2008.00479.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
As the first identified scorpion toxin active on both big conductance Ca2+-activated K+ channels (BK) and small conductance Ca2+-activated K+ channels (SK), BmBKTx1 has been proposed to have two separate functional faces for two targets. To investigate this hypothesis, two double mutants, K21A-Y30A and R9A-K11A, together with wild-type toxin were expressed in Escherichia coli. The recombinant toxins were tested on cockroach BK and rat SK2 channel for functional assay. Mutant K21A-Y30A had a dramatic loss of function on BK but retained its function on SK. Mutant R9A-K11A did not lose function on BK or SK. These data support the two functional-face hypothesis and indicate that the BK face is on the C-terminal beta-sheet.
Collapse
Affiliation(s)
- Suming Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | | | | | | | | |
Collapse
|
19
|
Li C, Liu M, Monbo J, Zou G, Li C, Yuan W, Zella D, Lu WY, Lu W. Turning a scorpion toxin into an antitumor miniprotein. J Am Chem Soc 2008; 130:13546-8. [PMID: 18798622 DOI: 10.1021/ja8042036] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oncoproteins MDM2 and MDMX negatively regulate the activity and stability of the tumor suppressor protein p53 and are important molecular targets for anticancer therapy. Grafting four residues of p53 critical for MDM2/MDMX binding to the N-terminal alpha-helix of BmBKTx1, a scorpion toxin isolated from the venom of the Asian scorpion Buthus martensi Karsch, converts the miniature protein into an effective inhibitor of p53 interactions with MDM2 and MDMX. Additional mutations enable the 27-residue miniprotein inhibitor to traverse the cell membrane and selectively kill tumor cells in a p53 dependent manner.
Collapse
Affiliation(s)
- Chong Li
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mpari B, Sreng L, Regaya I, Mourre C. Small-conductance Ca2+-activated K+ channels: Heterogeneous affinity in rat brain structures and cognitive modulation by specific blockers. Eur J Pharmacol 2008; 589:140-8. [DOI: 10.1016/j.ejphar.2008.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/29/2008] [Accepted: 05/19/2008] [Indexed: 11/27/2022]
|
21
|
Zeng H, Gordon E, Lin Z, Lozinskaya IM, Willette RN, Xu X. 1-[1-Hexyl-6-(methyloxy)-1H-indazol-3-yl]-2-methyl-1-propanone, a Potent and Highly Selective Small Molecule Blocker of the Large-Conductance Voltage-Gated and Calcium-Dependent K+Channel. J Pharmacol Exp Ther 2008; 327:168-77. [DOI: 10.1124/jpet.108.139733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
22
|
Ciardiello MA, Meleleo D, Saviano G, Crescenzo R, Carratore V, Camardella L, Gallucci E, Micelli S, Tancredi T, Picone D, Tamburrini M. Kissper, a kiwi fruit peptide with channel-like activity: Structural and functional features. J Pept Sci 2008; 14:742-54. [PMID: 18186145 DOI: 10.1002/psc.992] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Mao X, Cao Z, Yin S, Ma Y, Wu Y, Li W. Cloning and characterization of BmK86, a novel K+-channel blocker from scorpion venom. Biochem Biophys Res Commun 2007; 360:728-34. [PMID: 17624312 DOI: 10.1016/j.bbrc.2007.06.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
Scorpion venom represents a tremendous hitherto unexplored resource for understanding ion channels. BmK86 is a novel K+ -channel toxin gene isolated from a cDNA library of Mesobuthus martensii Karsch, which encodes a signal peptide of 22 amino acid residues and a mature toxin of 35 residues with three disulfide bridges. The genomic sequence of BmK86 consists of two exons disrupted by an intron of 72 bp. Comparison with the other scorpion toxins BmK86 shows low sequence similarity. The GST-BmK86 fusion protein was successfully expressed in Escherichia coli. The fusion protein was cleaved by enterokinase and the recombinant BmK86 was purified by HPLC. Using whole-cell patch-clamp recording, the recombinant BmK86 was found to inhibit the potassium current of mKv1.3 channel expressed in COS7 cells. These results indicated that BmK86 belongs to a representative member of a novel subfamily of alpha-KTxs. The systematic number assigned to BmK86 is alpha-KTx26.1.
Collapse
Affiliation(s)
- Xin Mao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
24
|
Yoo YC, Shin BH, Hong JH, Lee J, Chee HY, Song KS, Lee KB. Isolation of fatty acids with anticancer activity from Protaetia brevitarsis larva. Arch Pharm Res 2007; 30:361-5. [PMID: 17424944 DOI: 10.1007/bf02977619] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, biologically active compounds were isolated from Protaetia brevitarsis larva (PBL) by dichloromethane extraction. The dichloromethane extract from PBL was highly cytotoxic to various cancer cells. From a silica gel column chromatograpy of this extract, we obtained four fractions (F-2, F-4, F-5 and F-7) having apoptosis-inducing activity. These fractions induced DNA ladder and caspase-3 activation during apoptosis in colon 26 tumor cells. In 1H and 13C NMR and mass spectral analysis of the fraction F-2 showing the highest apoptosis-inducing activity, we found that the fraction was composed of three free fatty acids such as palmitic acid, (Z)-9-octadecenoic acid and octadecenoic acid. These results indicate that the dichloromethane extract of PBL includes anticancer components composed of at least three fatty acids, and apoptosis-inducing activity of the extract was mediated by caspase-3 activation in tumor cells.
Collapse
Affiliation(s)
- Yung-Choon Yoo
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302-801, Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Wu Z, Li X, Ericksen B, de Leeuw E, Zou G, Zeng P, Xie C, Li C, Lubkowski J, Lu WY, Lu W. Impact of pro segments on the folding and function of human neutrophil alpha-defensins. J Mol Biol 2007; 368:537-49. [PMID: 17355880 PMCID: PMC2754399 DOI: 10.1016/j.jmb.2007.02.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/26/2007] [Accepted: 02/11/2007] [Indexed: 01/15/2023]
Abstract
Human neutrophil alpha-defensins (HNPs) are synthesized in vivo as inactive precursor proteins, i.e. preproHNPs. A series of sequential proteolytic events excise the N-terminal inhibitory pro peptide, leading to defensin maturation and storage in azurophilic granules. The anionic pro peptide, required for correct sub-cellular trafficking and sorting of proHNPs, inhibits the antimicrobial activity of cationic defensins, either inter or intra-molecularly, presumably through charge neutralization. To better understand the role of the pro peptide in the folding and functioning of alpha-defensins and/or pro alpha-defensins, we chemically attached the proHNP1 pro peptide or (wt)pro peptide and the following artificial pro segments to the N terminus of HNP1: polyethylene glycol (PEG), Arg(10) (polyR), Ser(10) (polyS), and (cr)pro peptide, a charge-reversing mutant of the pro peptide where Arg/Lys residues were changed to Asp, and Asp/Glu residues to Lys. Comparative in vitro folding suggested that while all artificial pro segments chaperoned defensin folding, with PEG being the most efficient, the pro peptide catalyzed the folding of proHNPs likely through two independent mechanisms: solubilization of and interaction with the C-terminal defensin domain. Further, the N-terminal artificial pro segments dramatically altered the bactericidal activity of HNP1 against both Escherichia coli and Staphylococcus aureus. Surprisingly, (cr)pro peptide and (wt)pro peptide showed similar properties with respect to intra-molecular and inter-molecular catalysis of defensin folding as well as alpha-defensin binding, although their binding modes appeared different. Our findings identify a dual chaperone activity of the pro peptide and may shed light on the molecular mechanisms by which pro alpha-defensins fold in vivo.
Collapse
Affiliation(s)
- Zhibin Wu
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
| | - Xiangqun Li
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
| | - Bryan Ericksen
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
| | - Erik de Leeuw
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
| | - Guozhang Zou
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
| | - Pengyun Zeng
- Fudan-PharmCo Drug Target Research Center, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Cao Xie
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
- Fudan-PharmCo Drug Target Research Center, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Cong Li
- Fudan-PharmCo Drug Target Research Center, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Jacek Lubkowski
- Macromolecular Assembly Structure and Cell Signaling Section, NCI, National Institutes of Health, Frederick, MD 21702
| | - Wei-Yue Lu
- Fudan-PharmCo Drug Target Research Center, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
- Author to whom correspondence should be addressed: Wuyuan Lu, , Tel: (410)706-4980, Fax: (410)706-7583
| |
Collapse
|
26
|
Zhijian C, Yun X, Chao D, Shunyi Z, Shijin Y, Yingliang W, Wenxin L. Cloning and characterization of a novel calcium channel toxin-like gene BmCa1 from Chinese scorpion Mesobuthus martensii Karsch. Peptides 2006; 27:1235-40. [PMID: 16298458 DOI: 10.1016/j.peptides.2005.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 10/08/2005] [Accepted: 10/10/2005] [Indexed: 11/25/2022]
Abstract
Many studies have been carried on peptides and genes encoding scorpion toxins from the venom of Mesobuthus martensii Karsch (synonym: Buthus martensii Karsch, BmK), such as Na+, K+ and Cl- channel modulators. In this study, a novel calcium channel toxin-like gene BmCa1 was isolated and characterized from the venom of Mesobuthus martensii Karsch. First, a partial cDNA sequence of the Ca2+ channel toxin-like gene was identified by random sequencing method from a venomous gland cDNA library of Mesobuthus martensii Karsch. The full-length sequence of BmCa1 was then obtained by 5'RACE technique. The peptide deduced from BmCa1 precursor nucleotide sequence contains a 27-residue signal peptide and a 37-residue mature peptide. Although BmCa1 and other scorpion toxins are different at the gene and protein primary structure levels, BmCa1 has the same precursor nucleotide organization and cysteine arrangement as that of the first subfamily members of calcium channel scorpion toxins. Genomic DNA sequence of BmCa1 was also cloned by PCR. Sequence analysis showed that BmCa1 gene consists of three exons separated by two introns of 72 bp and 1076 bp in length, respectively. BmCa1 is the first calcium channel toxin-like gene cloned from the venom of Mesobuthus martensii Karsch and potentially represents a novel class of calcium channel toxins in scorpion venoms.
Collapse
Affiliation(s)
- Cao Zhijian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Jiang H, Wang CZ, Xu CQ, Fan CX, Dai XD, Chen JS, Chi CW. A novel M-superfamily conotoxin with a unique motif from Conus vexillum. Peptides 2006; 27:682-9. [PMID: 16181706 DOI: 10.1016/j.peptides.2005.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 08/10/2005] [Accepted: 08/11/2005] [Indexed: 11/17/2022]
Abstract
Cone snails are tropical marine mollusks that envenomate prey with a complex mixture of neuropharmacologically active compounds for the purpose of feeding and defence, each evolved to act in a highly specific manner on different parts of the nervous system. Here, we report the peptide purification, molecular cloning, chemical synthesis, and functional characterization of a structurally unique toxin isolated from the venom of Conus vexillum. The novel peptide, designated Vx2, was composed of 21 amino acid residues cross-linked by 3 disulfide bonds (WIDPSHYCCCGGGCTDDCVNC). Intriguingly, its mature peptide sequence shows low level of similarity with other identified conotoxins, and its unique motif (-CCCGGGC-) was not reported in other Conus peptides. However, its signal peptide sequence shares high similarity with those of the M-superfamily conotoxins. Hence, Vx2 could be classified into a new family of the M-superfamily.
Collapse
Affiliation(s)
- Hui Jiang
- Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhijian C, Feng L, Yingliang W, Xin M, Wenxin L. Genetic mechanisms of scorpion venom peptide diversification. Toxicon 2006; 47:348-55. [PMID: 16387337 DOI: 10.1016/j.toxicon.2005.11.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/16/2005] [Accepted: 11/21/2005] [Indexed: 11/15/2022]
Abstract
The diversity of scorpion venom peptides is well shown by the presence of about 400 such polypeptides with or without disulfide bonds. Scorpion toxins with disulfide bonds present a variety of sequence features and pharmacological functions by affecting different ion channels, while the venom peptides without disulfide bonds represent a new subfamily, having much lower sequence homology among each other and different functions (e.g. bradykinin-potentiating, antimicrobial, molecular cell signal initiating and immune modulating). Interestingly, all scorpion venom peptides with divergent functions may have evolved from a common ancestor gene. Over the lengthy evolutionary time, the diversification of scorpion venom peptides evolved through polymorphism, duplication, trans-splicing, or alternative splicing at the gene level. In order to completely clarify the diversity of scorpion toxins and toxin-like peptides, toxinomics (genomics and proteomics of scorpion toxins and toxin-like peptides) are expected to greatly advance in the near future.
Collapse
Affiliation(s)
- Cao Zhijian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan Uiniversity, Wuhan 430072, People's Republic of China.
| | | | | | | | | |
Collapse
|
29
|
Jiang H, Xu CQ, Wang CZ, Fan CX, Zhao TY, Chen JS, Chi CW. Two novel O-superfamily conotoxins from Conus vexillum. Toxicon 2006; 47:425-36. [PMID: 16457862 DOI: 10.1016/j.toxicon.2005.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 12/13/2005] [Accepted: 12/16/2005] [Indexed: 11/24/2022]
Abstract
O-superfamily conotoxins include several families that have diverse pharmacological activity on Na+, K+ or Ca2+ channels. These superfamily toxins have been mainly found in fish-hunting and mollusk-hunting Conus species. Here, we reported two novel O-superfamily conotoxins, vx6a and vx6b, purified from a worm-hunting cone snail, Conus vexillum. Though their cysteine framework and signal peptides share high similarity with those of other members of O-superfamily, the mature vx6a and vx6b both have a low sequence homology with others. To test the biological function of vx6a, the toxin was chemically synthesized and then tested on the locust dorsal unpaired median (DUM) neuron system which containing various ion channels. Although no any activity on ion channels was found on the DUM neuron system, vx6a could clearly elicit a series of symptoms in mouse via intracranial injection, such as quivering, climbing, scratching, barrel rolling and paralysis of limbs at different dose.
Collapse
Affiliation(s)
- Hui Jiang
- Key Laboratory of Proteomics, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Mpari B, Regaya I, Escoffier G, Mourre C. Differential effects of two blockers of small conductance Ca2+-activated K+ channels, apamin and lei-Dab7, on learning and memory in rats. J Integr Neurosci 2006; 4:381-96. [PMID: 16178064 DOI: 10.1142/s0219635205000884] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Accepted: 08/08/2005] [Indexed: 11/18/2022] Open
Abstract
SK channels are responsible for long-lasting hyperpolarization following action potential and contribute to the neuronal integration signal. This study evaluates the involvement of SK channels on learning and memory in rats, by comparing the effects of two SK channel blockers, i.e., apamin which recognizes SK2 and SK3 channels, and lei-Dab7 which binds SK2 channels only. lei-Dab7 totally competes and contests apamin binding on whole brain sections (IC(50): 11.4 nM). Using an olfactory associative task, intracerebroventricular blocker injections were tested on reference memory. Once the task was mastered with one odor pair, it was then tested with a new odor pair. Apamin (0.3 ng), injected before or after the acquisition session, improved new odor pair learning in a retention session 24 hours later, whereas lei-Dab7 (3 ng) did not significantly affect the mnesic processes. These results indicated that the blockage of SK channels by apamin facilitates consolidation on new odor associations; lei-Dab7, containing only SK2 subunits, remains without effect suggesting an involvement of SK3 channels in the modulation of the mnesic processes.
Collapse
Affiliation(s)
- Bedel Mpari
- Laboratoire de Neurobiologie Intégrative et Adaptative, Neurobiologie des Processus Mnésiques, UMR 6149, CNRS-Université de Provence, Marseille, France
| | | | | | | |
Collapse
|
31
|
Ghatta S, Nimmagadda D, Xu X, O'Rourke ST. Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacol Ther 2005; 110:103-16. [PMID: 16356551 DOI: 10.1016/j.pharmthera.2005.10.007] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 10/13/2005] [Indexed: 12/16/2022]
Abstract
The large-conductance, calcium-activated potassium channels (BK, also termed BK(Ca), Slo, or MaxiK) distributed in both excitable and non-excitable cells are involved in many cellular functions such as action potential repolarization; neuronal excitability; neurotransmitter release; hormone secretion; tuning of cochlear hair cells; innate immunity; and modulation of the tone of vascular, airway, uterine, gastrointestinal, and urinary bladder smooth muscle tissues. Because of their high conductance, activation of BK channels has a strong effect on membrane potential. BK channels differ from all other potassium (K(+)) channels due to their high sensitivity to both intracellular calcium (Ca(2+)) concentrations and voltage. These features make BK channels ideal negative feedback regulators in many cell types by decreasing voltage-dependent Ca(2+) entry through membrane potential hyperpolarization. The current review aims to give a comprehensive understanding of the structure and molecular biology of BK channels and their relevance to various pathophysiological conditions. The review will also focus on the therapeutic potential and pharmacology of the various BK channel activators and blockers.
Collapse
Affiliation(s)
- Srinivas Ghatta
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, 58105, USA.
| | | | | | | |
Collapse
|
32
|
Yao J, Chen X, Li H, Zhou Y, Yao L, Wu G, Chen X, Zhang N, Zhou Z, Xu T, Wu H, Ding J. BmP09, a “Long Chain” Scorpion Peptide Blocker of BK Channels. J Biol Chem 2005; 280:14819-28. [PMID: 15695820 DOI: 10.1074/jbc.m412735200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel "long chain" toxin BmP09 has been purified and characterized from the venom of the Chinese scorpion Buthus martensi Karsch. The toxin BmP09 is composed of 66 amino acid residues, including eight cysteines, with a mass of 7721.0 Da. Compared with the B. martensi Karsch AS-1 as a Na(+) channel blocker (7704.8 Da), the BmP09 has an exclusive difference in sequence by an oxidative modification at the C terminus. The sulfoxide Met-66 at the C terminus brought the peptide a dramatic switch from a Na(+) channel blocker toaK(+) channel blocker. Upon probing the targets of the toxin BmP09 on the isolated mouse adrenal medulla chromaffin cells, where a variety of ion channels coexists, we found that the toxin BmP09 specifically blocked large conductance Ca(2+)- and voltage-dependent K(+) channels (BK) but not Na(+) channels at a range of 100 nm concentration. This was further confirmed by blocking directly the BK channels encoded with mSlo1 alpha-subunits in Xenopus oocytes. The half-maximum concentration EC(50) of BmP09 was 27 nm, and the Hill coefficient was 1.8. In outside-out patches, the 100 nm BmP09 reduced approximately 70% currents of BK channels without affecting the single-channel conductance. In comparison with the "short chain" scorpion peptide toxins such as Charybdotoxin, the toxin BmP09 behaves much better in specificity and reversibility, and thus it will be a more efficient tool for studying BK channels. A three-dimensional simulation between a BmP09 toxin and an mSlo channel shows that the Lys-41 in BmP09 lies at the center of the interface and plugs into the entrance of the channel pore. The stable binding between the toxin BmP09 and the BK channel is favored by aromatic pi -pi interactions around the center.
Collapse
Affiliation(s)
- Jing Yao
- Institute of Biochemistry and Biophysics, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang CG, Cai Z, Lu W, Wu J, Xu Y, Shi Y, Chi CW. A novel short-chain peptide BmKX from the chinese scorpion Buthus martensi karsch, sequencing, gene cloning and structure determination. Toxicon 2005; 45:309-19. [PMID: 15683869 DOI: 10.1016/j.toxicon.2004.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 10/31/2004] [Accepted: 11/02/2004] [Indexed: 11/29/2022]
Abstract
Scorpion venom is a rich source of bioactive peptides. From the venom of Chinese scorpion Buthus martensi Karsch (BmK), a novel short chain peptide BmKX of 31-amino acid residues was purified, and its amino acid sequence and gene structure were determined. The gene of BmKX was composed of two exons interrupted by an 86-bp intron at the codon-7 upstream of the mature peptide. Although its gene structure is similar to those of other known scorpion toxins, its amino acid sequence, especially the cysteine framework, is different from those of all other known subfamilies of short-chain scorpion toxins. The solution structure of BmKX, determined with two-dimensional NMR spectroscopy, shows that BmKX also forms a typical cysteine-stabilized alpha/beta scaffold adopted by most short-chain scorpion toxins, consisting of a short 3(10)-helix and a two-stranded antiparallel beta-sheet, and the short N-terminal segment forms a pseudo-strand of the beta-sheet. However, the orientation between the helix and the beta-sheet is significantly different from the others, which might be the reason for its unique but still unclear physiological function.
Collapse
Affiliation(s)
- Chun-guang Wang
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Yue-Yang Road 320, Shanghai 200031, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Bagdány M, Batista CVF, Valdez-Cruz NA, Somodi S, Rodriguez de la Vega RC, Licea AF, Varga Z, Gáspár R, Possani LD, Panyi G. Anuroctoxin, a New Scorpion Toxin of the α-KTx 6 Subfamily, Is Highly Selective for Kv1.3 over IKCa1 Ion Channels of Human T Lymphocytes. Mol Pharmacol 2004; 67:1034-44. [PMID: 15615696 DOI: 10.1124/mol.104.007187] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The physiological function of T lymphocytes can be modulated selectively by peptide toxins acting on Kv1.3 K(+) channels. Because Kv1.3-specific peptide toxins are considered to have a significant therapeutic potential in the treatment of autoimmune diseases, the discovery of new toxins is highly motivated. Through chromatographic procedures and electrophysiological assays, using patch-clamp methodology, the isolation of a novel peptide named anuroctoxin was accomplished using the venom of the Mexican scorpion Anuroctonus phaiodactylus. It has 35 amino acid residues with a molecular weight of 4082.8, tightly bound by four disulfide bridges whose complete covalent structure was determined. It has a pyroglutamic acid at the N-terminal region and an amidated C-terminal residue. Sequence comparison and phylogenetic clustering analysis classifies anuroctoxin into subfamily 6 of the alpha-KTx scorpion toxins (systematic name, alpha-KTx 6.12). Patch-clamp experiments show that anuroctoxin is a high-affinity blocker of Kv1.3 channels of human T lymphocytes with a K(d) of 0.73 nM, and it does not block the Ca(2+)-activated IKCa1 K(+) channels. These two channels play different but important roles in T-lymphocyte activation. Furthermore, the toxin practically does not inhibit Shaker IR, mKv1.1, and rKv2.1 channels, whereas the affinity of anuroctoxin for hKv1.2 is almost an order of magnitude smaller than for Kv1.3. The pharmacological profile and the selectivity of this new toxin for Kv1.3 over IKCa1 may provide an important tool for the modulation of the immune system, especially in cases in which selective inhibition of Kv1.3 is required.
Collapse
Affiliation(s)
- Miklós Bagdány
- Department of Biophysics and Cell Biology, University of Debrecen, Medical and Health Science Center, 98 Nagyerdei krt., Debrecen, Hungary 4012
| | | | | | | | | | | | | | | | | | | |
Collapse
|