1
|
Venkataraman S, Athilakshmi JK, Rajendran DS, Bharathi P, Kumar VV. A comprehensive review of eclectic approaches to the biological synthesis of vanillin and their application towards the food sector. Food Sci Biotechnol 2024; 33:1019-1036. [PMID: 38440686 PMCID: PMC10908958 DOI: 10.1007/s10068-023-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 03/06/2024] Open
Abstract
Vanillin, a highly regarded flavor compound, has earned widespread recognition for its natural and aromatic qualities, piquing substantial interest in the scientific community. This comprehensive review delves deeply into the intricate world of vanillin synthesis, encompassing a wide spectrum of methodologies, including enzymatic, microbial, and immobilized systems. This investigation provides a thorough analysis of the precursors of vanillin and also offers a comprehensive overview of its transformation through these diverse processes, making it an invaluable resource for researchers and enthusiasts alike. The elucidation of different substrates such as ferulic acid, eugenol, veratraldehyde, vanillic acid, glucovanillin, and C6-C3 phenylpropanoids adds a layer of depth and insight to the understanding of vanillin synthesis. Moreover, this comprehensive review explores the multifaceted applications of vanillin within the food industry. While commonly known as a flavoring agent, vanillin transcends this role by finding extensive use in food preservation and food packaging. The review meticulously examines the remarkable preservative properties of vanillin, providing a profound understanding of its crucial role in the culinary and food science sectors, thus making it an indispensable reference for professionals and researchers in these domains. Graphical abstract
Collapse
Affiliation(s)
- Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Jothyswarupha Krishnakumar Athilakshmi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Priyadharshini Bharathi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| |
Collapse
|
2
|
Biggs BW, Tyo KEJ. Aromatic natural products synthesis from aromatic lignin monomers using Acinetobacter baylyi ADP1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554694. [PMID: 37662333 PMCID: PMC10473687 DOI: 10.1101/2023.08.24.554694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Achieving sustainable chemical synthesis and a circular economy will require process innovation to minimize or recover existing waste streams. Valorization of lignin biomass has the ability to advance this goal. While lignin has proved a recalcitrant feedstock for upgrading, biological approaches can leverage native microbial metabolism to simplify complex and heterogeneous feedstocks to tractable starting points for biochemical upgrading. Recently, we demonstrated that one microbe with lignin relevant metabolism, Acinetobacter baylyi ADP1, is both highly engineerable and capable of undergoing rapid design-build-test-learn cycles, making it an ideal candidate for these applications. Here, we utilize these genetic traits and ADP1's native β-ketoadipate metabolism to convert mock alkali pretreated liquor lignin (APL) to two valuable natural products, vanillin-glucoside and resveratrol. En route, we create strains with up to 22 genetic modifications, including up to 8 heterologously expressed enzymes. Our approach takes advantage of preexisting aromatic species in APL (vanillate, ferulate, and p-coumarate) to create shortened biochemical routes to end products. Together, this work demonstrates ADP1's potential as a platform for upgrading lignin waste streams and highlights the potential for biosynthetic methods to maximize the existing chemical potential of lignin aromatic monomers.
Collapse
Affiliation(s)
- Bradley W. Biggs
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Keith E. J. Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
3
|
Higuchi Y, Ishimaru H, Yoshikawa T, Masuda T, Sakamoto C, Kamimura N, Masai E, Takeuchi D, Sonoki T. Successful selective production of vanillic acid from depolymerized sulfite lignin and its application to poly(ethylene vanillate) synthesis. BIORESOURCE TECHNOLOGY 2023:129450. [PMID: 37406831 DOI: 10.1016/j.biortech.2023.129450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Towards lignin upgrading, vanillic acid (VA), a lignin-derived guaiacyl compound, was produced from sulfite lignin for successfully synthesizing poly(ethylene vanillate), an aromatic polymer. The engineered Sphingobium sp. SYK-6-based strain in which the genes responsible for VA/3-O-methyl gallic acid O-demethylase and syringic acid O-demethylase were disrupted was able to produce vanillic acid (VA) from the mixture consisting of acetovanillone, vanillin, VA, and other low-molecular-weight aromatics obtained by Cu(OH)2-catalyzed alkaline depolymerization of sulfite lignin and membrane fractionation. From the bio-based VA, methyl-4-(2-hydroxyethoxy)-3-methoxybenzoate was synthesized via methylesterification, hydroxyethylation, and distillation, and then it was subjected to polymerization catalyzed by titanium tetraisopropoxide. The molecular weight of the obtained poly(ethylene vanillate) was evaluated to be Mw = 13,000 (Mw/Mn = 1.99) and its melting point was 261°C. The present work proved that poly(ethylene vanillate) is able to be synthesized using VA produced from lignin for the first time.
Collapse
Affiliation(s)
- Yudai Higuchi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Hiroya Ishimaru
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takuya Yoshikawa
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan; Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Takao Masuda
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Chiho Sakamoto
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Daisuke Takeuchi
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Tomonori Sonoki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
4
|
Eggerichs D, Weindorf N, Mascotti ML, Welzel N, Fraaije MW, Tischler D. Vanillyl alcohol oxidase from Diplodia corticola: Residues Ala420 and Glu466 allow for efficient catalysis of syringyl derivatives. J Biol Chem 2023; 299:104898. [PMID: 37295774 PMCID: PMC10404669 DOI: 10.1016/j.jbc.2023.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Vanillyl alcohol oxidases (VAOs) belong to the 4-phenol oxidases family and are found predominantly in lignin-degrading ascomycetes. Systematical investigation of the enzyme family at the sequence level resulted in discovery and characterization of the second recombinantly produced VAO member, DcVAO, from Diplodia corticola. Remarkably high activities for 2,6-substituted substrates like 4-allyl-2,6-dimethoxy-phenol (3.5 ± 0.02 U mg-1) or 4-(hydroxymethyl)-2,6-dimethoxyphenol (6.3 ± 0.5 U mg-1) were observed, which could be attributed to a Phe to Ala exchange in the catalytic center. In order to rationalize this rare substrate preference among VAOs, we resurrected and characterized three ancestral enzymes and performed mutagenesis analyses. The results indicate that a Cys/Glu exchange was required to retain activity for ɣ-hydroxylations and shifted the acceptance towards benzyl ethers (up to 4.0 ± 0.1 U mg-1). Our findings contribute to the understanding of the functionality of VAO enzyme group, and with DcVAO, we add a new enzyme to the repertoire of ether cleaving biocatalysts.
Collapse
Affiliation(s)
- Daniel Eggerichs
- Department of Microbial Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Nils Weindorf
- Department of Microbial Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Maria Laura Mascotti
- Department of Molecular Enzymology, University of Groningen, Groningen, The Netherlands; Facultad de Química Bioquímica y Farmacia, IMIBIO-SL CONICET, Universidad Nacional de San Luis, San Luis, Argentina
| | - Natalie Welzel
- Department of Microbial Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Marco W Fraaije
- Department of Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | - Dirk Tischler
- Department of Microbial Biotechnology, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
5
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
6
|
Monokaryotic Pleurotus sapidus Strains with Intraspecific Variability of an Alkene Cleaving DyP-Type Peroxidase Activity as a Result of Gene Mutation and Differential Gene Expression. Int J Mol Sci 2021; 22:ijms22031363. [PMID: 33573012 PMCID: PMC7866418 DOI: 10.3390/ijms22031363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
The basidiomycete Pleurotus sapidus produced a dye-decolorizing peroxidase (PsaPOX) with alkene cleavage activity, implying potential as a biocatalyst for the fragrance and flavor industry. To increase the activity, a daughter-generation of 101 basidiospore-derived monokaryons (MK) was used. After a pre-selection according to the growth rate, the activity analysis revealed a stable intraspecific variability of the strains regarding peroxidase and alkene cleavage activity of PsaPOX. Ten monokaryons reached activities up to 2.6-fold higher than the dikaryon, with MK16 showing the highest activity. Analysis of the PsaPOX gene identified three different enzyme variants. These were co-responsible for the observed differences in activities between strains as verified by heterologous expression in Komagataella phaffii. The mutation S371H in enzyme variant PsaPOX_high caused an activity increase alongside a higher protein stability, while the eleven mutations in variant PsaPOX_low resulted in an activity decrease, which was partially based on a shift of the pH optimum from 3.5 to 3.0. Transcriptional analysis revealed the increased expression of PsaPOX in MK16 as reason for the higher PsaPOX activity in comparison to other strains producing the same PsaPOX variant. Thus, different expression profiles, as well as enzyme variants, were identified as crucial factors for the intraspecific variability of the PsaPOX activity in the monokaryons.
Collapse
|
7
|
Abstract
This review presents a historical outline of the research on vanillyl alcohol oxidase (VAO) from Penicillium simplicissimum, one of the canonical members of the VAO/PCMH flavoprotein family. After describing its discovery and initial biochemical characterization, we discuss the physiological role, substrate scope, and catalytic mechanism of VAO, and review its three-dimensional structure and mechanism of covalent flavinylation. We also explain how protein engineering provided a deeper insight into the role of certain amino acid residues in determining the substrate specificity and enantioselectivity of the enzyme. Finally, we summarize recent computational studies about the migration of substrates and products through the enzyme's structure and the phylogenetic distribution of VAO and related enzymes.
Collapse
Affiliation(s)
- Tom A Ewing
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Gudrun Gygli
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Oxidative Catabolism of (+)-Pinoresinol Is Initiated by an Unusual Flavocytochrome Encoded by Translationally Coupled Genes within a Cluster of (+)-Pinoresinol-Coinduced Genes in Pseudomonas sp. Strain SG-MS2. Appl Environ Microbiol 2020; 86:AEM.00375-20. [PMID: 32198167 DOI: 10.1128/aem.00375-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
Burkholderia sp. strain SG-MS1 and Pseudomonas sp. strain SG-MS2 have previously been found to mineralize (+)-pinoresinol through a common catabolic pathway. Here, we used comparative genomics, proteomics, protein semipurification, and heterologous expression to identify a flavoprotein from the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family in SG-MS2 that carries out the initial hydroxylation of (+)-pinoresinol at the benzylic carbon. The cognate gene is translationally coupled with a downstream cytochrome gene, and the cytochrome is required for activity. The flavoprotein has a unique combination of cofactor binding and cytochrome requirements for the VAO/PCMH family. The heterologously expressed enzyme has a Km of 1.17 μM for (+)-pinoresinol. The enzyme is overexpressed in strain SG-MS2 upon exposure to (+)-pinoresinol, along with 45 other proteins, 22 of which were found to be encoded by genes in an approximately 35.1-kb cluster also containing the flavoprotein and cytochrome genes. Homologs of 18 of these 22 genes, plus the flavoprotein and cytochrome genes, were also found in a 38.7-kb cluster in SG-MS1. The amino acid identities of four of the other proteins within the SG-MS2 cluster suggest they catalyze conversion of hydroxylated pinoresinol to protocatechuate and 2-methoxyhydroquinone. Nine other proteins upregulated in SG-MS2 on exposure to (+)-pinoresinol appear to be homologs of proteins known to comprise the protocatechuate and 2-methoxyhydroquinone catabolic pathways, but only three of the cognate genes lie within the cluster containing the flavoprotein and cytochrome genes.IMPORTANCE (+)-Pinoresinol is an important plant defense compound, a major food lignan for humans and some other animals, and the model compound used to study degradation of the β-β' linkages in lignin. We report a gene cluster, in one strain each of Pseudomonas and Burkholderia, that is involved in the oxidative catabolism of (+)-pinoresinol. The flavoprotein component of the α-hydroxylase which heads the pathway belongs to the 4-phenol oxidizing (4PO) subgroup of the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family but constitutes a novel combination of cofactor and electron acceptor properties for the family. It is translationally coupled with a cytochrome gene whose product is also required for activity. The work casts new light on the biology of (+)-pinoresinol and its transformation to other bioactive molecules. Potential applications of the findings include new options for deconstructing lignin into useful chemicals and the generation of new phytoestrogenic enterolactones from lignans.
Collapse
|
9
|
Abstract
A novel approach for the synthesis of vanillin employing a three-step two-enzymatic cascade sequence is reported. Cytochrome P450 monooxygenases are known to catalyse the selective hydroxylation of aromatic compounds, which is one of the most challenging chemical reactions. A set of rationally designed variants of CYP102A1 (P450 BM3) from Bacillus megaterium at the amino acid positions 47, 51, 87, 328 and 437 was screened for conversion of the substrate 3-methylanisole to vanillyl alcohol via the intermediate product 4-methylguaiacol. Furthermore, a vanillyl alcohol oxidase (VAO) variant (F454Y) was selected as an alternative enzyme for the transformation of one of the intermediate compounds via vanillyl alcohol to vanillin. As a proof of concept, the bi-enzymatic three-step cascade conversion of 3-methylanisole to vanillin was successfully evaluated both in vitro and in vivo.
Collapse
|
10
|
Zhang R, Li C, Wang J, Yan Y. Microbial Ligninolysis: Toward a Bottom-Up Approach for Lignin Upgrading. Biochemistry 2018; 58:1501-1510. [DOI: 10.1021/acs.biochem.8b00920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ruihua Zhang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Chenyi Li
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Jian Wang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
11
|
Gupta DK, Rühl M, Mishra B, Kleofas V, Hofrichter M, Herzog R, Pecyna MJ, Sharma R, Kellner H, Hennicke F, Thines M. The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes. BMC Genomics 2018; 19:48. [PMID: 29334897 PMCID: PMC5769442 DOI: 10.1186/s12864-017-4430-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/29/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Agrocybe aegerita is an agaricomycete fungus with typical mushroom features, which is commercially cultivated for its culinary use. In nature, it is a saprotrophic or facultative pathogenic fungus causing a white-rot of hardwood in forests of warm and mild climate. The ease of cultivation and fructification on solidified media as well as its archetypal mushroom fruit body morphology render A. aegerita a well-suited model for investigating mushroom developmental biology. RESULTS Here, the genome of the species is reported and analysed with respect to carbohydrate active genes and genes known to play a role during fruit body formation. In terms of fruit body development, our analyses revealed a conserved repertoire of fruiting-related genes, which corresponds well to the archetypal fruit body morphology of this mushroom. For some genes involved in fruit body formation, paralogisation was observed, but not all fruit body maturation-associated genes known from other agaricomycetes seem to be conserved in the genome sequence of A. aegerita. In terms of lytic enzymes, our analyses suggest a versatile arsenal of biopolymer-degrading enzymes that likely account for the flexible life style of this species. Regarding the amount of genes encoding CAZymes relevant for lignin degradation, A. aegerita shows more similarity to white-rot fungi than to litter decomposers, including 18 genes coding for unspecific peroxygenases and three dye-decolourising peroxidase genes expanding its lignocellulolytic machinery. CONCLUSIONS The genome resource will be useful for developing strategies towards genetic manipulation of A. aegerita, which will subsequently allow functional genetics approaches to elucidate fundamentals of fruiting and vegetative growth including lignocellulolysis.
Collapse
Affiliation(s)
- Deepak K Gupta
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany.,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany.,Project Group "Bioresources", Fraunhofer IME, Giessen, Germany
| | - Bagdevi Mishra
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany.,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany
| | - Vanessa Kleofas
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany
| | - Martin Hofrichter
- International Institute (IHI) Zittau, Technische Universität Dresden, Zittau, Germany
| | - Robert Herzog
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Gesellschaft für Naturforschung, Frankfurt a. M., Germany.,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany
| | - Marek J Pecyna
- University of Applied Sciences Zittau/Görlitz, Zittau, Germany
| | - Rahul Sharma
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany.,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany
| | - Harald Kellner
- International Institute (IHI) Zittau, Technische Universität Dresden, Zittau, Germany
| | - Florian Hennicke
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Gesellschaft für Naturforschung, Frankfurt a. M., Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany. .,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany. .,Department of Biology, Microbiology, Utrecht University, Utrecht, The Netherlands.
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany. .,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany.
| |
Collapse
|
12
|
Gygli G, Lucas MF, Guallar V, van Berkel WJH. The ins and outs of vanillyl alcohol oxidase: Identification of ligand migration paths. PLoS Comput Biol 2017; 13:e1005787. [PMID: 28985219 PMCID: PMC5646868 DOI: 10.1371/journal.pcbi.1005787] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/18/2017] [Accepted: 09/21/2017] [Indexed: 01/03/2023] Open
Abstract
Vanillyl alcohol oxidase (VAO) is a homo-octameric flavoenzyme belonging to the VAO/PCMH family. Each VAO subunit consists of two domains, the FAD-binding and the cap domain. VAO catalyses, among other reactions, the two-step conversion of p-creosol (2-methoxy-4-methylphenol) to vanillin (4-hydroxy-3-methoxybenzaldehyde). To elucidate how different ligands enter and exit the secluded active site, Monte Carlo based simulations have been performed. One entry/exit path via the subunit interface and two additional exit paths have been identified for phenolic ligands, all leading to the si side of FAD. We argue that the entry/exit path is the most probable route for these ligands. A fourth path leading to the re side of FAD has been found for the co-ligands dioxygen and hydrogen peroxide. Based on binding energies and on the behaviour of ligands in these four paths, we propose a sequence of events for ligand and co-ligand migration during catalysis. We have also identified two residues, His466 and Tyr503, which could act as concierges of the active site for phenolic ligands, as well as two other residues, Tyr51 and Tyr408, which could act as a gateway to the re side of FAD for dioxygen. Most of the residues in the four paths are also present in VAO’s closest relatives, eugenol oxidase and p-cresol methylhydroxylase. Key path residues show movements in our simulations that correspond well to conformations observed in crystal structures of these enzymes. Preservation of other path residues can be linked to the electron acceptor specificity and oligomerisation state of the three enzymes. This study is the first comprehensive overview of ligand and co-ligand migration in a member of the VAO/PCMH family, and provides a proof of concept for the use of an unbiased method to sample this process. Enzymes are bionanomachines, which speed up chemical reactions in organisms. To understand how they achieve that, we need to study their mechanisms. Computational enzymology can show us what happens in the enzyme’s active site during a reaction. But molecules need first to reach the active site before a reaction can start. The process of substrate entry and product exit to the active site is often neglected when studying enzymes. However, these two events are of fundamental importance to the proper functioning of any enzyme. We are interested in these dynamic processes to complete our understanding of the mode of action of enzymes. In our work, we have studied substrate and product migration in vanillyl alcohol oxidase. This enzyme can produce the flavour vanillin and enantiopure alcohols, but also catalyses other reactions. The named products are of interest to the flavour- and fine-chemical industries.
Collapse
Affiliation(s)
- Gudrun Gygli
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, WE Wageningen, The Netherlands
| | - Maria Fátima Lucas
- Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, Barcelona, Spain
| | - Victor Guallar
- Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain
| | - Willem J. H. van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, WE Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
13
|
Statistically optimized production and characterization of vanillin from creosol using newly isolated Klebsiella pneumoniae P27. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Sheng X, Himo F. Theoretical Study of Enzyme Promiscuity: Mechanisms of Hydration and Carboxylation Activities of Phenolic Acid Decarboxylase. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03249] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
15
|
Jiang W, Wang S, Wang Y, Fang B. Key enzymes catalyzing glycerol to 1,3-propanediol. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:57. [PMID: 26966462 PMCID: PMC4785665 DOI: 10.1186/s13068-016-0473-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/24/2016] [Indexed: 05/27/2023]
Abstract
Biodiesel can replace petroleum diesel as it is produced from animal fats and vegetable oils, and it produces about 10 % (w/w) glycerol, which is a promising new industrial microbial carbon, as a major by-product. One of the most potential applications of glycerol is its biotransformation to high value chemicals such as 1,3-propanediol (1,3-PD), dihydroxyacetone (DHA), succinic acid, etc., through microbial fermentation. Glycerol dehydratase, 1,3-propanediol dehydrogenase (1,3-propanediol-oxydoreductase), and glycerol dehydrogenase, which were encoded, respectively, by dhaB, dhaT, and dhaD and with DHA kinase are encompassed by the dha regulon, are the three key enzymes in glycerol bioconversion into 1,3-PD and DHA, and these are discussed in this review article. The summary of the main research direction of these three key enzyme and methods of glycerol bioconversion into 1,3-PD and DHA indicates their potential application in future enzymatic research and industrial production, especially in biodiesel industry.
Collapse
Affiliation(s)
- Wei Jiang
- />Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
- />The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 China
| | - Shizhen Wang
- />Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
- />The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 China
| | - Yuanpeng Wang
- />Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Baishan Fang
- />Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
- />The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 China
- />The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005 Fujian China
| |
Collapse
|
16
|
Kameshwar AKS, Qin W. Lignin Degrading Fungal Enzymes. PRODUCTION OF BIOFUELS AND CHEMICALS FROM LIGNIN 2016. [DOI: 10.1007/978-981-10-1965-4_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Sheng X, Lind MES, Himo F. Theoretical study of the reaction mechanism of phenolic acid decarboxylase. FEBS J 2015; 282:4703-13. [PMID: 26408050 DOI: 10.1111/febs.13525] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/01/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022]
Abstract
The cofactor-free phenolic acid decarboxylases (PADs) catalyze the non-oxidative decarboxylation of phenolic acids to their corresponding p-vinyl derivatives. Phenolic acids are toxic to some organisms, and a number of them have evolved the ability to transform these compounds, including PAD-catalyzed reactions. Since the vinyl derivative products can be used as polymer precursors and are also of interest in the food-processing industry, PADs might have potential applications as biocatalysts. We have investigated the detailed reaction mechanism of PAD from Bacillus subtilis using quantum chemical methodology. A number of different mechanistic scenarios have been considered and evaluated on the basis of their energy profiles. The calculations support a mechanism in which a quinone methide intermediate is formed by protonation of the substrate double bond, followed by C-C bond cleavage. A different substrate orientation in the active site is suggested compared to the literature proposal. This suggestion is analogous to other enzymes with p-hydroxylated aromatic compounds as substrates, such as hydroxycinnamoyl-CoA hydratase-lyase and vanillyl alcohol oxidase. Furthermore, on the basis of the calculations, a different active site residue compared to previous proposals is suggested to act as the general acid in the reaction. The mechanism put forward here is consistent with the available mutagenesis experiments and the calculated energy barrier is in agreement with measured rate constants. The detailed mechanistic understanding developed here might be extended to other members of the family of PAD-type enzymes. It could also be useful to rationalize the recently developed alternative promiscuous reactivities of these enzymes.
Collapse
Affiliation(s)
- Xiang Sheng
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Sweden
| | - Maria E S Lind
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Sweden
| | - Fahmi Himo
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Sweden
| |
Collapse
|
18
|
Brodkin HR, DeLateur NA, Somarowthu S, Mills CL, Novak WR, Beuning PJ, Ringe D, Ondrechen MJ. Prediction of distal residue participation in enzyme catalysis. Protein Sci 2015; 24:762-78. [PMID: 25627867 PMCID: PMC4420525 DOI: 10.1002/pro.2648] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/10/2015] [Accepted: 01/26/2015] [Indexed: 11/09/2022]
Abstract
A scoring method for the prediction of catalytically important residues in enzyme structures is presented and used to examine the participation of distal residues in enzyme catalysis. Scores are based on the Partial Order Optimum Likelihood (POOL) machine learning method, using computed electrostatic properties, surface geometric features, and information obtained from the phylogenetic tree as input features. Predictions of distal residue participation in catalysis are compared with experimental kinetics data from the literature on variants of the featured enzymes; some additional kinetics measurements are reported for variants of Pseudomonas putida nitrile hydratase (ppNH) and for Escherichia coli alkaline phosphatase (AP). The multilayer active sites of P. putida nitrile hydratase and of human phosphoglucose isomerase are predicted by the POOL log ZP scores, as is the single-layer active site of P. putida ketosteroid isomerase. The log ZP score cutoff utilized here results in over-prediction of distal residue involvement in E. coli alkaline phosphatase. While fewer experimental data points are available for P. putida mandelate racemase and for human carbonic anhydrase II, the POOL log ZP scores properly predict the previously reported participation of distal residues.
Collapse
Affiliation(s)
- Heather R Brodkin
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
- Department of Chemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
| | - Nicholas A DeLateur
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
| | - Srinivas Somarowthu
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
| | - Caitlyn L Mills
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
| | - Walter R Novak
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
- Department of Chemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
| | - Dagmar Ringe
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
- Department of Chemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
| |
Collapse
|
19
|
Daugherty AB, Horton JR, Cheng X, Lutz S. STRUCTURAL AND FUNCTIONAL CONSEQUENCES OF CIRCULAR PERMUTATION ON THE ACTIVE SITE OF OLD YELLOW ENZYME. ACS Catal 2015; 5:892-899. [PMID: 25692074 PMCID: PMC4327928 DOI: 10.1021/cs501702k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Circular
permutation of the NADPH-dependent oxidoreductase
Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme’s catalytic performance.
Termini relocation into four regions of the protein (sectors I–IV)
near the active site has proven effective in altering enzyme function.
To better understand the structural consequences and rationalize the
observed functional gains in these OYE1 variants, we selected representatives
from sectors I–III for further characterization by biophysical
methods and X-ray crystallography. These investigations not only show
trends in enzyme stability and quaternary structure as a function
of termini location but also provide a possible explanation for the
catalytic gains in our top-performing OYE variant (new N-terminus
at residue 303; sector III). Crystallographic analysis indicates that
termini relocation into sector III affects the loop β6 region
(amino acid positions: 290–310) of OYE1, which forms a lid
over the active site. Peptide backbone cleavage greatly enhances local
flexibility, effectively converting the loop into a tether and consequently
increasing the environmental exposure of the active site. Interestingly,
such an active site remodeling does not negatively impact the enzyme’s
activity and stereoselectivity; neither does it perturb the conformation
of other key active site residues with the exception of Y375. These
observations were confirmed in truncation experiments, deleting all
residues of the loop β6 region in our OYE variant. Intrigued
by the finding that circular permutation leaves most of the key catalytic
residues unchanged, we also tested OYE permutants for possible additive
or synergistic effects of amino acid substitutions. Distinct functional
changes in these OYE variants were detected upon mutations at W116,
known in native OYE1 to cause inversion of diastereoselectivity for
(S)-carvone reduction. Our findings demonstrate the
contribution of loop β6 toward determining the stereoselectivity
of OYE1, an important insight for future OYE engineering efforts.
Collapse
Affiliation(s)
- Ashley B. Daugherty
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322. United States
| | - John R. Horton
- Department
of Biochemistry, Emory University, 1510 Clifton Rd., Atlanta, Georgia 30322, United States
| | - Xiaodong Cheng
- Department
of Biochemistry, Emory University, 1510 Clifton Rd., Atlanta, Georgia 30322, United States
| | - Stefan Lutz
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322. United States
| |
Collapse
|
20
|
Daugherty AB, Govindarajan S, Lutz S. Improved biocatalysts from a synthetic circular permutation library of the flavin-dependent oxidoreductase old yellow enzyme. J Am Chem Soc 2013; 135:14425-32. [PMID: 23987134 DOI: 10.1021/ja4074886] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Members of the old yellow enzyme (OYE) family are widely used, effective biocatalysts for the stereoselective trans-hydrogenation of activated alkenes. To further expand their substrate scope and improve catalytic performance, we have applied a protein engineering strategy called circular permutation (CP) to enhance the function of OYE1 from Saccharomyces pastorianus. CP can influence a biocatalyst's function by altering protein backbone flexibility and active site accessibility, both critical performance features because the catalytic cycle for OYE1 is thought to involve rate-limiting conformational changes. To explore the impact of CP throughout the OYE1 protein sequence, we implemented a highly efficient approach for cell-free cpOYE library preparation by combining whole-gene synthesis with in vitro transcription/translation. The versatility of such an ex vivo system was further demonstrated by the rapid and reliable functional evaluation of library members under variable environmental conditions with three reference substrates ketoisophorone, cinnamaldehyde, and (S)-carvone. Library analysis identified over 70 functional OYE1 variants with several biocatalysts exhibiting over an order of magnitude improved catalytic activity. Although catalytic gains of individual cpOYE library members vary by substrate, the locations of new protein termini in functional variants for all tested substates fall within the same four distinct loop/lid regions near the active site. Our findings demonstrate the importance of these structural elements in enzyme function and support the hypothesis of conformational flexibility as a limiting factor for catalysis in wild type OYE.
Collapse
Affiliation(s)
- Ashley B Daugherty
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30084, United States
| | | | | |
Collapse
|
21
|
An overview on alcohol oxidases and their potential applications. Appl Microbiol Biotechnol 2013; 97:4259-75. [DOI: 10.1007/s00253-013-4842-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
|
22
|
Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol 2012; 93:1395-410. [DOI: 10.1007/s00253-011-3836-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 11/30/2022]
|
23
|
Wood TK, Hong SH, Ma Q. Engineering biofilm formation and dispersal. Trends Biotechnol 2010; 29:87-94. [PMID: 21131080 DOI: 10.1016/j.tibtech.2010.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/01/2010] [Accepted: 11/03/2010] [Indexed: 02/07/2023]
Abstract
Anywhere water is in the liquid state, bacteria will exist as biofilms, which are complex communities of cells that are cemented together. Although frequently associated with disease and biofouling, biofilms are also important for engineering applications, such as bioremediation, biocatalysis and microbial fuel cells. Here, we review approaches to alter genetic circuits and cell signaling towards controlling biofilm formation, and emphasize utilizing these tools for engineering applications. Based on a better understanding of the genetic basis of biofilm formation, we find that biofilms might be controlled by manipulating extracellular signals, and that they might be dispersed using conserved intracellular signals and regulators. Biofilms could also be formed at specific locations where they might be engineered to make chemicals or treat human disease.
Collapse
Affiliation(s)
- Thomas K Wood
- Department of Chemical Engineering, 220 Jack E. Brown Building, Texas A & M University, College Station, TX 77843-3122, USA.
| | | | | |
Collapse
|
24
|
Qi X, Chen Y, Jiang K, Zuo W, Luo Z, Wei Y, Du L, Wei H, Huang R, Du Q. Saturation-mutagenesis in two positions distant from active site of a Klebsiella pneumoniae glycerol dehydratase identifies some highly active mutants. J Biotechnol 2009; 144:43-50. [DOI: 10.1016/j.jbiotec.2009.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 05/27/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
|
25
|
Peterbauer CK, Volc J. Pyranose dehydrogenases: biochemical features and perspectives of technological applications. Appl Microbiol Biotechnol 2009; 85:837-48. [PMID: 19768457 DOI: 10.1007/s00253-009-2226-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 11/25/2022]
Abstract
Pyranose dehydrogenase is a fungal flavin-dependent sugar oxidoreductase which is structurally and catalytically related to fungal pyranose oxidase and cellobiose dehydrogenase and probably fulfills similar biological functions in lignocellulose breakdown. It is a monomeric secretory glycoprotein and is limited to a rather small group of litter-decomposing basidiomycetes. Compared with pyranose oxidase, it displays broader substrate specificity and a variable regioselectivity and is unable to utilize oxygen as electron acceptor using substituted benzoquinones and (organo) metallic ions instead. Depending on the structure of the sugar in pyranose form (mono/di/oligosaccharide or glycoside) and the enzyme source, selective monooxidations at C-1, C-2, C-3, or dioxidations at C-2,3 or C-3,4 of the molecule to the corresponding aldonolactones (C-1), or (di)dehydrosugars (aldos(di)uloses) can be performed. These features make pyranose dehydrogenase a promising and versatile biocatalyst for production of highly reactive, sometimes unique, di- and tri-carbonyl sugar derivatives that may serve as interesting chiral intermediates for the synthesis of rare sugars, novel drugs, and fine chemicals.
Collapse
Affiliation(s)
- Clemens K Peterbauer
- Department of Food Sciences and Technology, BOKU-University of Natural Resources and Applied Life Sciences, Vienna, Austria.
| | | |
Collapse
|
26
|
Improving low-temperature activity of Sulfolobus acidocaldarius 2-keto-3-deoxygluconate aldolase. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2009; 2:233-9. [PMID: 19478916 DOI: 10.1155/2009/194186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 02/12/2009] [Indexed: 11/17/2022]
Abstract
Sulfolobus acidocaldarius 2-keto-3-deoxygluconate aldolase (SacKdgA) displays optimal activity at 95 degrees C and is studied as a model enzyme for aldol condensation reactions. For application of SacKdgA at lower temperatures, a library of randomly generated mutants was screened for improved synthesis of 2-keto-3-deoxygluconate from pyruvate and glyceraldehyde at the suboptimal temperature of 50 degrees C. The single mutant SacKdgA-V193A displayed a threefold increase in activity compared with wild type SacKdgA. The increased specific activity at 40-60 degrees C of this mutant was observed, not only for the condensation of pyruvate with glyceraldehyde, but also for several unnatural acceptor aldehydes. The optimal temperature for activity of SacKdgA-V193A was lower than for the wild type enzyme, but enzymatic stability of the mutant was similar to that of the wild type, indicating that activity and stability were uncoupled. Valine193 has Van der Waals interactions with Lysine153, which covalently binds the substrate during catalysis. The mutation V193A introduced space close to this essential residue, and the increased activity of the mutant presumably resulted from increased flexibility of Lysine153. The increased activity of SacKdgA-V193A with unaffected stability demonstrates the potential for optimizing extremely thermostable aldolases for synthesis reactions at moderate temperatures.
Collapse
|
27
|
Abstract
Redox-active enzymes perform many key biological reactions. The electron transfer process is complex, not only because of its versatility, but also because of the intricate and delicate modulation exerted by the protein scaffold on the redox properties of the catalytic sites. Nowadays, there is a wealth of information available about the catalytic mechanisms of redox-active enzymes and the time is propitious for the development of projects based on the protein engineering of redox-active enzymes. In this review, we aim to provide an updated account of the available methods used for protein engineering, including both genetic and chemical tools, which are usually reviewed separately. Specific applications to redox-active enzymes are mentioned within each technology, with emphasis on those cases where the generation of novel functionality was pursued. Finally, we focus on two emerging fields in the protein engineering of redox-active enzymes: the construction of novel nucleic acid-based catalysts and the remodeling of intra-molecular electron transfer networks. We consider that the future development of these areas will represent fine examples of the concurrence of chemical and genetic tools.
Collapse
Affiliation(s)
- Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | |
Collapse
|
28
|
Bell SG, Tan ABH, Johnson EOD, Wong LL. Selective oxidative demethylation of veratric acid to vanillic acid by CYP199A4 from Rhodopseudomonas palustris HaA2. ACTA ACUST UNITED AC 2009; 6:206-14. [DOI: 10.1039/b913487e] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
A ternary complex of hydroxycinnamoyl-CoA hydratase-lyase (HCHL) with acetyl-CoA and vanillin gives insights into substrate specificity and mechanism. Biochem J 2008; 414:281-9. [PMID: 18479250 DOI: 10.1042/bj20080714] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HCHL (hydroxycinnamoyl-CoA hydratase-lyase) catalyses the biotransformation of feruloyl-CoA to acetyl-CoA and the important flavour-fragrance compound vanillin (4-hydroxy-3-methoxybenzaldehyde) and is exploited in whole-cell systems for the bioconversion of ferulic acid into natural equivalent vanillin. The reaction catalysed by HCHL has been thought to proceed by a two-step process involving first the hydration of the double bond of feruloyl-CoA and then the cleavage of the resultant beta-hydroxy thioester by retro-aldol reaction to yield the products. Kinetic analysis of active-site residues identified using the crystal structure of HCHL revealed that while Glu-143 was essential for activity, Ser-123 played no major role in catalysis. However, mutation of Tyr-239 to Phe greatly increased the K(M) for the substrate ferulic acid, fulfilling its anticipated role as a factor in substrate binding. Structures of WT (wild-type) HCHL and of the S123A mutant, each of which had been co-crystallized with feruloyl-CoA, reveal a subtle helix movement upon ligand binding, the consequence of which is to bring the phenolic hydroxyl of Tyr-239 into close proximity to Tyr-75 from a neighbouring subunit in order to bind the phenolic hydroxyl of the product vanillin, for which electron density was observed. The active-site residues of ligand-bound HCHL display a remarkable three-dimensional overlap with those of a structurally unrelated enzyme, vanillyl alcohol oxidase, that also recognizes p-hydroxylated aromatic substrates related to vanillin. The data both explain the observed substrate specificity of HCHL for p-hydroxylated cinnamate derivatives and illustrate a remarkable convergence of the molecular determinants of ligand recognition between the two otherwise unrelated enzymes.
Collapse
|
30
|
Xu P, Hua D, Ma C. Microbial transformation of propenylbenzenes for natural flavour production. Trends Biotechnol 2007; 25:571-6. [DOI: 10.1016/j.tibtech.2007.08.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 08/10/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022]
|
31
|
Jin J, Mazon H, van den Heuvel RHH, Janssen DB, Fraaije MW. Discovery of a eugenol oxidase from Rhodococcus sp. strain RHA1. FEBS J 2007; 274:2311-21. [PMID: 17419730 DOI: 10.1111/j.1742-4658.2007.05767.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A gene encoding a eugenol oxidase was identified in the genome from Rhodococcus sp. strain RHA1. The bacterial FAD-containing oxidase shares 45% amino acid sequence identity with vanillyl alcohol oxidase from the fungus Penicillium simplicissimum. Eugenol oxidase could be expressed at high levels in Escherichia coli, which allowed purification of 160 mg of eugenol oxidase from 1 L of culture. Gel permeation experiments and macromolecular MS revealed that the enzyme forms homodimers. Eugenol oxidase is partly expressed in the apo form, but can be fully flavinylated by the addition of FAD. Cofactor incorporation involves the formation of a covalent protein-FAD linkage, which is formed autocatalytically. Modeling using the vanillyl alcohol oxidase structure indicates that the FAD cofactor is tethered to His390 in eugenol oxidase. The model also provides a structural explanation for the observation that eugenol oxidase is dimeric whereas vanillyl alcohol oxidase is octameric. The bacterial oxidase efficiently oxidizes eugenol into coniferyl alcohol (KM=1.0 microM, kcat=3.1 s-1). Vanillyl alcohol and 5-indanol are also readily accepted as substrates, whereas other phenolic compounds (vanillylamine, 4-ethylguaiacol) are converted with relatively poor catalytic efficiencies. The catalytic efficiencies with the identified substrates are strikingly different when compared with vanillyl alcohol oxidase. The ability to efficiently convert eugenol may facilitate biotechnological valorization of this natural aromatic compound.
Collapse
Affiliation(s)
- Jianfeng Jin
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Abstract
Flavoenzymes are colourful oxidoreductases that catalyze a large variety of different types of reactions. Flavoenzymes have been extensively studied for their structural and mechanistic properties and are gaining momentum in industrial biocatalytic applications. Some of these enzymes catalyze the oxidative modification of protein substrates. New insights in oxidative flavoenzymes and in particular in novel family members point towards their potential application in the pharmaceutical, fine-chemical and food industries.
Collapse
Affiliation(s)
- Vivi Joosten
- Laboratory of Biochemistry, Wageningen University Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | |
Collapse
|
33
|
Leungsakul T, Johnson GR, Wood TK. Protein engineering of the 4-methyl-5-nitrocatechol monooxygenase from Burkholderia sp. strain DNT for enhanced degradation of nitroaromatics. Appl Environ Microbiol 2006; 72:3933-9. [PMID: 16751499 PMCID: PMC1489588 DOI: 10.1128/aem.02966-05] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
4-Methyl-5-nitrocatechol (4M5NC) monooxygenase (DntB) from Burkholderia sp. strain DNT catalyzes the second step of 2,4-dinitrotoluene degradation by converting 4M5NC to 2-hydroxy-5-methylquinone with the concomitant removal of the nitro group. DntB is a flavoprotein that has a very narrow substrate range. Here, error-prone PCR was used to create variant DntB M22L/L380I, which accepts the two new substrates 4-nitrophenol (4NP) and 3-methyl-4-nitrophenol (3M4NP). At 300 microM of 4NP, the initial rate of the variant expressing M22L/L380I enzyme (39 +/- 6 nmol/min/mg protein) was 10-fold higher than that of the wild-type enzyme (4 +/- 2 nmol/min/mg protein). The values of kcat/Km of the purified wild-type DntB enzyme and purified variant M22L/L380I were 40 and 450 (s(-1) M(-1)), respectively, which corroborates that the variant M22L/L380I enzyme has 11-fold-higher efficiency than the wild-type enzyme for 4NP degradation. In addition, the variant M22L/L380I enzyme has fourfold-higher activity toward 3M4NP; at 300 microM, the initial nitrite release rate of M22L/L380I enzyme was 17 +/- 4 nmol/min/mg protein, while that of the wild-type enzyme was 4.4 +/- 0.7 nmol/min/mg protein. Saturation mutagenesis was also used to further investigate the role of the individual amino acid residues at positions M22, L380, and M22/L380 simultaneously. Mutagenesis at the individual positions M22L and L380I did not show appreciable enhancement in 4NP activity, which suggested that these two sites should be mutated together; simultaneous saturation mutagenesis led to the identification of the variant M22S/L380V, with 20% enhanced degradation of 4NP compared to the variant M22L/L380I. This is the first report of protein engineering for nitrite removal by a flavoprotein.
Collapse
Affiliation(s)
- Thammajun Leungsakul
- Artie McFerrin Department of Chemical Engineering, 220 Jack E. Brown Building, Texas A&M University, College Station, TX 77843-3122, USA
| | | | | |
Collapse
|
34
|
Hao J, Vann W, Hinderlich S, Sundaramoorthy M. Elimination of 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid 9-phosphate synthase activity from human N-acetylneuraminic acid 9-phosphate synthase by a single mutation. Biochem J 2006; 397:195-201. [PMID: 16503877 PMCID: PMC1479744 DOI: 10.1042/bj20052034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The most commonly occurring sialic acid Neu5Ac (N-acetylneuraminic acid) and its deaminated form, KDN (2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid), participate in many biological functions. The human Neu5Ac-9-P (Neu5Ac 9-phosphate) synthase has the unique ability to catalyse the synthesis of not only Neu5Ac-9-P but also KDN-9-P (KDN 9-phosphate). Both reactions are catalysed by the mechanism of aldol condensation of PEP (phosphoenolpyruvate) with sugar substrates, ManNAc-6-P (N-acetylmannosamine 6-phosphate) or Man-6-P (mannose 6-phosphate). Mouse and putative rat Neu5Ac-9-P synthases, however, do not show KDN-9-P synthase activity, despite sharing high sequence identity (>95%) with the human enzyme. Here, we demonstrate that a single mutation, M42T, in human Neu5Ac-9-P synthase can abolish the KDN-9-P synthase activity completely without compromising the Neu5Ac-9-P synthase activity. Saturation mutagenesis of Met42 of the human Neu5Ac-9-P synthase showed that the substitution with all amino acids except leucine retains only the Neu5Ac-9-P synthase activity at levels comparable with the wild-type enzyme. The M42L mutant, like the wild-type enzyme, showed the additional KDN-9-P synthase activity. In the homology model of human Neu5Ac-9-P synthase, Met42 is located 22 A (1 A=0.1 nm) away from the substrate-binding site and the impact of this distant residue on the enzyme functions is discussed.
Collapse
Affiliation(s)
- Jijun Hao
- *Division of Nephrology, Department of Medicine, Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232-2372, U.S.A
- †Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232-2372, U.S.A
| | - Willie F. Vann
- ‡Laboratory of Bacterial Toxins, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, U.S.A
| | - Stephan Hinderlich
- §Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Institut für Biochemie und Molekularbiologie, Arnimallee 22, 14195 Berlin-Dahlem, Germany
| | - Munirathinam Sundaramoorthy
- *Division of Nephrology, Department of Medicine, Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232-2372, U.S.A
- †Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232-2372, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
35
|
Lee KS, Parales JV, Friemann R, Parales RE. Active site residues controlling substrate specificity in 2-nitrotoluene dioxygenase from Acidovorax sp. strain JS42. J Ind Microbiol Biotechnol 2005; 32:465-73. [PMID: 16175409 DOI: 10.1007/s10295-005-0021-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 07/19/2005] [Indexed: 11/30/2022]
Abstract
Acidovorax (formerly Pseudomonas) sp. strain JS42 utilizes 2-nitrotoluene as sole carbon, nitrogen, and energy source. 2-Nitrotoluene 2,3-dioxygenase (2NTDO) catalyzes the initial step in 2-nitrotoluene degradation by converting 2-nitrotoluene to 3-methylcatechol. In this study, we identified specific amino acids at the active site that control specificity. The residue at position 350 was found to be critical in determining both the enantiospecificity of 2NTDO with naphthalene and the ability to oxidize the ring of mononitrotoluenes. Substitution of Ile350 by phenylalanine resulted in an enzyme that produced 97% (+)-(1R, 2S)-cis-naphthalene dihydrodiol, in contrast to the wild type, which produced 72% (+)-(1R, 2S)-cis-naphthalene dihydrodiol. This substitution also severely reduced the ability of the enzyme to produce methylcatechols from nitrotoluenes. Instead, the methyl group of each nitrotoluene isomer was preferentially oxidized to form the corresponding nitrobenzyl alcohol. Substitution of a valine at position 258 significantly changed the enantiospecificity of 2NTDO (54% (-)-(1S, 2R)-cis-naphthalene dihydrodiol formed from naphthalene) and the ability of the enzyme to oxidize the aromatic ring of nitrotoluenes. Based on active site modeling using the crystal structure of nitrobenzene 1,2 dioxygenase from Comamonas sp. JS765, Asn258 appears to contribute to substrate specificity through hydrogen bonding to the nitro group of nitrotoluenes.
Collapse
Affiliation(s)
- Kyung-Seon Lee
- Section of Microbiology, University of California, Davis, CA95616, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Study of mutations that improve enzyme properties reveals that in many, but not all, cases closer mutations are more effective than distant ones. For enantioselectivity, substrate selectivity and new catalytic activity (catalytic promiscuity) closer mutations improved enzymes more effectively than distant ones. However, both close and distant mutations can improve activity, thermal stability and also probably stability toward organic solvents. Typical random mutagenesis methods, such as error-prone PCR, create greater numbers of distant mutations than close mutations because enzymes contain more amino acids distant from the active site than close to the active site. This suggests that instead of mutating the entire enzyme, focusing mutations near the substrate-binding site might dramatically increase the success rate in many directed evolution experiments.
Collapse
Affiliation(s)
- Krista L Morley
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 2K6, Canada
| | | |
Collapse
|
37
|
Current awareness in flavour and fragrance. FLAVOUR FRAG J 2005. [DOI: 10.1002/ffj.1535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Affiliation(s)
- Feng Xu
- Novozymes, Inc., 1445 Drew Avenue, Davis, CA 95616, Phone: (530) 757-8138. Fax: (530) 757-4718., E-mail:
| |
Collapse
|