1
|
Kablan T, Biyikli E, Bozdemir N, Uysal F. A narrative review of the histone acetylation and deacetylation during mammalian spermatogenesis. Biochimie 2025; 230:147-155. [PMID: 39566815 DOI: 10.1016/j.biochi.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
Dynamic epigenetic control is essential for proper spermatogenesis. Spermatogenesis is a unique mechanism that includes recombination, meiosis, and the conversion of histones to protamines. Epigenetics refers to the ability to modify gene expression without affecting DNA strands directly and helps to regulate the dynamic gene expression throughout the differentiation process of spermatogonium stem cells. Histone alterations and DNA methylation control the epigenome. While histone modifications can result in either expression or repression depending on the type of modification, the type of histone protein, and its specific residue, histone acetylation is one of the changes that typically results in gene expression. Histone acetyltransferases (HATs) add an acetyl group to the amino-terminal of the core histone proteins, causing histone acetylation. On the other hand, histone deacetylases (HDACs) catalyze histone deacetylation, which is linked to the suppression of gene expression. This review highlights the significance of HATs and HDACs during mammalian spermatogenesis and focuses on what is known about changes in their expression.
Collapse
Affiliation(s)
- Tuba Kablan
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Efe Biyikli
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Nazlican Bozdemir
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Fatma Uysal
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| |
Collapse
|
2
|
Wu CJ, Xu X, Yuan DY, Liu ZZ, Tan LM, Su YN, Li L, Chen S, He XJ. Arabidopsis histone acetyltransferase complex coordinates cytoplasmic histone acetylation and nuclear chromatin accessibility. SCIENCE ADVANCES 2024; 10:eadp1840. [PMID: 39630902 PMCID: PMC11616720 DOI: 10.1126/sciadv.adp1840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Conserved type B histone acetyltransferases are recognized for their role in acetylating newly synthesized histones in the cytoplasm of eukaryotes. However, their involvement in regulating chromatin within the nucleus remains unclear. Our study shows that the Arabidopsis thaliana type B histone acetyltransferase HAG2 interacts with the histone chaperones MSI2, MSI3, and NASP, as well as the histones H3 and H4, forming a complex in both the cytoplasm and the nucleus. Within this complex, HAG2 and MSI2/3 constitute a histone acetylation module essential for acetylating histone H4 in the cytoplasm. Furthermore, this module works together with NASP to regulate histone acetylation, chromatin accessibility, and gene transcription in the nucleus. This complex enhances chromatin accessibility near transcription start sites while reducing accessibility near transcription termination sites. Our findings reveal a distinct role for the Arabidopsis type B histone acetyltransferase in the nucleus, shedding light on the coordination between cytoplasmic histone acetylation and nuclear chromatin regulation in plants.
Collapse
Affiliation(s)
- Chan-Juan Wu
- College of Life Sciences, Beijing Normal University, Beijing, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin Xu
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhen-Zhen Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lian-Mei Tan
- College of Life Sciences, Beijing Normal University, Beijing, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin-Jian He
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Hao H, Lian Y, Ren C, Yang S, Zhao M, Bo T, Xu J, Wang W. RebL1 is required for macronuclear structure stability and gametogenesis in Tetrahymena thermophila. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:183-197. [PMID: 38827131 PMCID: PMC11136921 DOI: 10.1007/s42995-024-00219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/01/2024] [Indexed: 06/04/2024]
Abstract
Histone modification and nucleosome assembly play important roles in chromatin-related processes. Histone chaperones form different complexes and coordinate histone transportation and assembly. Various histone chaperone complexes have been identified in different organisms. The ciliate protozoa (ciliates) have various chromatin structures and different nuclear morphology. However, histone chaperone components and functions of different subunits remain unclear in ciliates. Tetrahymema thermophila contains a transcriptionally active macronucleus (MAC) and a transcriptionally inactive micronucleus (MIC) which exhibit multiple replication and various chromatin remodeling progresses during vegetative growth and sexual developmental stages. Here, we found histone chaperone RebL1 not only localized evenly in the transcriptionally active MAC but also dynamically changed in the MIC during vegetative growth and sexual developmental stages. REBL1 knockdown inhibited cellular proliferation. The macronuclear morphology became bigger in growing mutants. The abnormal macronuclear structure also occurred in the starvation stage. Furthermore, micronuclear meiosis was disturbed during sexual development, leading to a failure to generate new gametic nuclei. RebL1 potentially interacted with various factors involved in histone-modifying complexes and chromatin remodeling complexes in different developmental stages. REBL1 knockdown affected expression levels of the genes involved in chromatin organization and transcription. Taken together, RebL1 plays a vital role in maintaining macronuclear structure stability and gametogenesis in T. thermophila. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00219-z.
Collapse
Affiliation(s)
- Huijuan Hao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Yinjie Lian
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Chenhui Ren
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Sitong Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Min Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
- School of Life Science, Shanxi University, Taiyuan, 030006 China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
- Shanxi Key Laboratory of Biotechnology, Taiyuan, 030006 China
| |
Collapse
|
4
|
Evstyukhina TA, Alekseeva EA, Peshekhonov VT, Skobeleva II, Fedorov DV, Korolev VG. The Role of Chromatin Assembly Factors in Induced Mutagenesis at Low Levels of DNA Damage. Genes (Basel) 2023; 14:1242. [PMID: 37372422 DOI: 10.3390/genes14061242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The problem of low-dose irradiation has been discussed in the scientific literature for several decades, but it is impossible to come to a generally accepted conclusion about the presence of any specific features of low-dose irradiation in contrast to acute irradiation. We were interested in the effect of low doses of UV radiation on the physiological processes, including repair processes in cells of the yeast Saccharomyces cerevisiae, in contrast to high doses of radiation. Cells utilize excision repair and DNA damage tolerance pathways without significant delay of the cell cycle to address low levels of DNA damage (such as spontaneous base lesions). For genotoxic agents, there is a dose threshold below which checkpoint activation is minimal despite the measurable activity of the DNA repair pathways. Here we report that at ultra-low levels of DNA damage, the role of the error-free branch of post-replicative repair in protection against induced mutagenesis is key. However, with an increase in the levels of DNA damage, the role of the error-free repair branch is rapidly decreasing. We demonstrate that with an increase in the amount of DNA damage from ultra-small to high, asf1Δ-specific mutagenesis decreases catastrophically. A similar dependence is observed for mutants of gene-encoding subunits of the NuB4 complex. Elevated levels of dNTPs caused by the inactivation of the SML1 gene are responsible for high spontaneous reparative mutagenesis. The Rad53 kinase plays a key role in reparative UV mutagenesis at high doses, as well as in spontaneous repair mutagenesis at ultra-low DNA damage levels.
Collapse
Affiliation(s)
- Tatiyana A Evstyukhina
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center-Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia
| | - Elena A Alekseeva
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center-Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia
| | - Vyacheslav T Peshekhonov
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center-Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia
| | - Irina I Skobeleva
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
| | - Dmitriy V Fedorov
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
| | - Vladimir G Korolev
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center-Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia
| |
Collapse
|
5
|
Capone V, Della Torre L, Carannante D, Babaei M, Altucci L, Benedetti R, Carafa V. HAT1: Landscape of Biological Function and Role in Cancer. Cells 2023; 12:cells12071075. [PMID: 37048148 PMCID: PMC10092946 DOI: 10.3390/cells12071075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Histone modifications, as key chromatin regulators, play a pivotal role in the pathogenesis of several diseases, such as cancer. Acetylation, and more specifically lysine acetylation, is a reversible epigenetic process with a fundamental role in cell life, able to target histone and non-histone proteins. This epigenetic modification regulates transcriptional processes and protein activity, stability, and localization. Several studies highlight a specific role for HAT1 in regulating molecular pathways, which are altered in several pathologies, among which is cancer. HAT1 is the first histone acetyltransferase discovered; however, to date, its biological characterization is still unclear. In this review, we summarize and update the current knowledge about the biological function of this acetyltransferase, highlighting recent advances of HAT1 in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Vincenza Capone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Laura Della Torre
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Daniela Carannante
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Mehrad Babaei
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
- IEOS CNR, 80138 Napoli, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| |
Collapse
|
6
|
Yue Y, Yang WS, Zhang L, Liu CP, Xu RM. Topography of histone H3-H4 interaction with the Hat1-Hat2 acetyltransferase complex. Genes Dev 2022; 36:408-413. [PMID: 35393344 PMCID: PMC9067401 DOI: 10.1101/gad.349099.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/14/2022] [Indexed: 01/04/2023]
Abstract
In this study, Yue et al. present the structure of the Hat1–Hat2 acetyltransferase complex bound to Asf1–H3–H4, which shows that the core domains of H3 and H4 are involved in binding Hat1 and Hat2, and the N-terminal tail of H3 makes extensive interaction with Hat2. These findings extend our knowledge of histone–protein interaction and implicate a function of Hat2/RbAp46/48 in the passing of histones between chaperones. Chaperones influence histone conformation and intermolecular interaction in multiprotein complexes, and the structures obtained with full-length histones often provide more accurate and comprehensive views. Here, our structure of the Hat1–Hat2 acetyltransferase complex bound to Asf1–H3–H4 shows that the core domains of H3 and H4 are involved in binding Hat1 and Hat2, and the N-terminal tail of H3 makes extensive interaction with Hat2. These findings expand the knowledge about histone–protein interaction and implicate a function of Hat2/RbAp46/48, which is a versatile histone chaperone found in many chromatin-associated complexes, in the passing of histones between chaperones.
Collapse
Affiliation(s)
- Ye Yue
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Si Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao-Pei Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Lian Y, Hao H, Xu J, Bo T, Liang A, Wang W. The histone chaperone Nrp1 is required for chromatin stability and nuclear division in Tetrahymena thermophila. Epigenetics Chromatin 2021; 14:34. [PMID: 34301312 PMCID: PMC8299592 DOI: 10.1186/s13072-021-00409-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/06/2021] [Indexed: 12/23/2022] Open
Abstract
Histone chaperones facilitate DNA replication and repair by promoting chromatin assembly, disassembly and histone exchange. Following histones synthesis and nucleosome assembly, the histones undergo posttranslational modification by different enzymes and are deposited onto chromatins by various histone chaperones. In Tetrahymena thermophila, histones from macronucleus (MAC) and micronucleus (MIC) have been comprehensively investigated, but the function of histone chaperones remains unclear. Histone chaperone Nrp1 in Tetrahymena contains four conserved tetratricopepeptide repeat (TPR) domains and one C-terminal nuclear localization signal. TPR2 is typically interrupted by a large acidic motif. Immunofluorescence staining showed that Nrp1 is located in the MAC and MICs, but disappeared in the apoptotic parental MAC and the degraded MICs during the conjugation stage. Nrp1 was also colocalized with α-tubulin around the spindle structure. NRP1 knockdown inhibited cellular proliferation and led to the loss of chromosome, abnormal macronuclear amitosis, and disorganized micronuclear mitosis during the vegetative growth stage. During sexual developmental stage, the gametic nuclei failed to be selected and abnormally degraded in NRP1 knockdown mutants. Affinity purification combined with mass spectrometry analysis indicated that Nrp1 is co-purified with core histones, heat shock proteins, histone chaperones, and DNA damage repair proteins. The physical direct interaction of Nrp1 and Asf1 was also confirmed by pull-down analysis in vitro. The results show that histone chaperone Nrp1 is involved in micronuclear mitosis and macronuclear amitosis in the vegetative growth stage and maintains gametic nuclei formation during the sexual developmental stage. Nrp1 is required for chromatin stability and nuclear division in Tetrahymena thermophila.
Collapse
Affiliation(s)
- Yinjie Lian
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China
| | - Huijuan Hao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China.,School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China
| | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China.
| |
Collapse
|
8
|
Evstyukhina TA, Alekseeva EA, Fedorov DV, Peshekhonov VT, Korolev VG. Genetic Analysis of the Hsm3 Protein Function in Yeast Saccharomyces cerevisiae NuB4 Complex. Genes (Basel) 2021; 12:1083. [PMID: 34356099 PMCID: PMC8307810 DOI: 10.3390/genes12071083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
In the nuclear compartment of yeast, NuB4 core complex consists of three proteins, Hat1, Hat2, and Hif1, and interacts with a number of other factors. In particular, it was shown that NuB4 complex physically interacts with Hsm3p. Early we demonstrated that the gene HSM3 participates in the control of replicative and reparative spontaneous mutagenesis, and that hsm3Δ mutants increase the frequency of mutations induced by different mutagens. It was previously believed that the HSM3 gene controlled only some minor repair processes in the cell, but later it was suggested that it had a chaperone function with its participation in proteasome assembly. In this work, we analyzed the properties of three hsm3Δ, hif1Δ, and hat1Δ mutants. The results obtained showed that the Hsm3 protein may be a functional subunit of NuB4 complex. It has been shown that hsm3- and hif1-dependent UV-induced mutagenesis is completely suppressed by inactivation of the Polη polymerase. We showed a significant role of Polη for hsm3-dependent mutagenesis at non-bipyrimidine sites (NBP sites). The efficiency of expression of RNR (RiboNucleotid Reducase) genes after UV irradiation in hsm3Δ and hif1Δ mutants was several times lower than in wild-type cells. Thus, we have presented evidence that significant increase in the dNTP levels suppress hsm3- and hif1-dependent mutagenesis and Polη is responsible for hsm3- and hif1-dependent mutagenesis.
Collapse
Affiliation(s)
- Tatiyana A. Evstyukhina
- Laboratory of Eukaryotic Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia; (T.A.E.); (D.V.F.); (V.T.P.); (V.G.K.)
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center—Petersburg Nuclear Physics Institute, mkr. Orlova Roscha 1, Leningrad District, 188300 Gatchina, Russia
| | - Elena A. Alekseeva
- Laboratory of Eukaryotic Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia; (T.A.E.); (D.V.F.); (V.T.P.); (V.G.K.)
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center—Petersburg Nuclear Physics Institute, mkr. Orlova Roscha 1, Leningrad District, 188300 Gatchina, Russia
| | - Dmitriy V. Fedorov
- Laboratory of Eukaryotic Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia; (T.A.E.); (D.V.F.); (V.T.P.); (V.G.K.)
| | - Vyacheslav T. Peshekhonov
- Laboratory of Eukaryotic Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia; (T.A.E.); (D.V.F.); (V.T.P.); (V.G.K.)
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center—Petersburg Nuclear Physics Institute, mkr. Orlova Roscha 1, Leningrad District, 188300 Gatchina, Russia
| | - Vladimir G. Korolev
- Laboratory of Eukaryotic Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia; (T.A.E.); (D.V.F.); (V.T.P.); (V.G.K.)
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center—Petersburg Nuclear Physics Institute, mkr. Orlova Roscha 1, Leningrad District, 188300 Gatchina, Russia
| |
Collapse
|
9
|
Nabeel-Shah S, Garg J, Saettone A, Ashraf K, Lee H, Wahab S, Ahmed N, Fine J, Derynck J, Pu S, Ponce M, Marcon E, Zhang Z, Greenblatt JF, Pearlman RE, Lambert JP, Fillingham J. Functional characterization of RebL1 highlights the evolutionary conservation of oncogenic activities of the RBBP4/7 orthologue in Tetrahymena thermophila. Nucleic Acids Res 2021; 49:6196-6212. [PMID: 34086947 PMCID: PMC8216455 DOI: 10.1093/nar/gkab413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Retinoblastoma-binding proteins 4 and 7 (RBBP4 and RBBP7) are two highly homologous human histone chaperones. They function in epigenetic regulation as subunits of multiple chromatin-related complexes and have been implicated in numerous cancers. Due to their overlapping functions, our understanding of RBBP4 and 7, particularly outside of Opisthokonts, has remained limited. Here, we report that in the ciliate protozoan Tetrahymena thermophila a single orthologue of human RBBP4 and 7 proteins, RebL1, physically interacts with histone H4 and functions in multiple epigenetic regulatory pathways. Functional proteomics identified conserved functional links for Tetrahymena RebL1 protein as well as human RBBP4 and 7. We found that putative subunits of multiple chromatin-related complexes including CAF1, Hat1, Rpd3, and MuvB, co-purified with RebL1 during Tetrahymena growth and conjugation. Iterative proteomics analyses revealed that the cell cycle regulatory MuvB-complex in Tetrahymena is composed of at least five subunits including evolutionarily conserved Lin54, Lin9 and RebL1 proteins. Genome-wide analyses indicated that RebL1 and Lin54 (Anqa1) bind within genic and intergenic regions. Moreover, Anqa1 targets primarily promoter regions suggesting a role for Tetrahymena MuvB in transcription regulation. RebL1 depletion inhibited cellular growth and reduced the expression levels of Anqa1 and Lin9. Consistent with observations in glioblastoma tumors, RebL1 depletion suppressed DNA repair protein Rad51 in Tetrahymena, thus underscoring the evolutionarily conserved functions of RBBP4/7 proteins. Our results suggest the essentiality of RebL1 functions in multiple epigenetic regulatory complexes in which it impacts transcription regulation and cellular viability.
Collapse
Affiliation(s)
- Syed Nabeel-Shah
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada
| | - Jyoti Garg
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada.,Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada
| | - Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada
| | - Kanwal Ashraf
- Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada
| | - Hyunmin Lee
- Department of Computer Science, University of Toronto, Toronto M5S 1A8, Canada.,Donnelly Centre, University of Toronto, Toronto M5S 3E1, Canada
| | - Suzanne Wahab
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada
| | - Nujhat Ahmed
- Donnelly Centre, University of Toronto, Toronto M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Jacob Fine
- Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada
| | - Joanna Derynck
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada
| | - Shuye Pu
- Donnelly Centre, University of Toronto, Toronto M5S 3E1, Canada
| | - Marcelo Ponce
- SciNet HPC Consortium, University of Toronto, 661 University Avenue, Suite 1140, Toronto M5G 1M1, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto M5S 3E1, Canada
| | - Zhaolei Zhang
- Department of Computer Science, University of Toronto, Toronto M5S 1A8, Canada.,Donnelly Centre, University of Toronto, Toronto M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Jack F Greenblatt
- Donnelly Centre, University of Toronto, Toronto M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center, Big Data Research Center, Université Laval, Quebec City, Canada; CHU de Québec Research Center, CHUL, 2705 Laurier Boulevard, Quebec City G1V 4G2, Canada
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada
| |
Collapse
|
10
|
Hammond-Martel I, Verreault A, Wurtele H. Chromatin dynamics and DNA replication roadblocks. DNA Repair (Amst) 2021; 104:103140. [PMID: 34087728 DOI: 10.1016/j.dnarep.2021.103140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
A broad spectrum of spontaneous and genotoxin-induced DNA lesions impede replication fork progression. The DNA damage response that acts to promote completion of DNA replication is associated with dynamic changes in chromatin structure that include two distinct processes which operate genome-wide during S-phase. The first, often referred to as histone recycling or parental histone segregation, is characterized by the transfer of parental histones located ahead of replication forks onto nascent DNA. The second, known as de novo chromatin assembly, consists of the deposition of new histone molecules onto nascent DNA. Because these two processes occur at all replication forks, their potential to influence a multitude of DNA repair and DNA damage tolerance mechanisms is considerable. The purpose of this review is to provide a description of parental histone segregation and de novo chromatin assembly, and to illustrate how these processes influence cellular responses to DNA replication roadblocks.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada
| | - Hugo Wurtele
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada; Département de Médecine, Université de Montréal, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada.
| |
Collapse
|
11
|
Young TJ, Cui Y, Pfeffer C, Hobbs E, Liu W, Irudayaraj J, Kirchmaier AL. CAF-1 and Rtt101p function within the replication-coupled chromatin assembly network to promote H4 K16ac, preventing ectopic silencing. PLoS Genet 2020; 16:e1009226. [PMID: 33284793 PMCID: PMC7746308 DOI: 10.1371/journal.pgen.1009226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/17/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022] Open
Abstract
Replication-coupled chromatin assembly is achieved by a network of alternate pathways containing different chromatin assembly factors and histone-modifying enzymes that coordinate deposition of nucleosomes at the replication fork. Here we describe the organization of a CAF-1-dependent pathway in Saccharomyces cerevisiae that regulates acetylation of histone H4 K16. We demonstrate factors that function in this CAF-1-dependent pathway are important for preventing establishment of silenced states at inappropriate genomic sites using a crippled HMR locus as a model, while factors specific to other assembly pathways do not. This CAF-1-dependent pathway required the cullin Rtt101p, but was functionally distinct from an alternate pathway involving Rtt101p-dependent ubiquitination of histone H3 and the chromatin assembly factor Rtt106p. A major implication from this work is that cells have the inherent ability to create different chromatin modification patterns during DNA replication via differential processing and deposition of histones by distinct chromatin assembly pathways within the network.
Collapse
Affiliation(s)
- Tiffany J. Young
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Yi Cui
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Claire Pfeffer
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Emilie Hobbs
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Wenjie Liu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Joseph Irudayaraj
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Ann L. Kirchmaier
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
12
|
Poziello A, Nebbioso A, Stunnenberg HG, Martens JHA, Carafa V, Altucci L. Recent insights into Histone Acetyltransferase-1: biological function and involvement in pathogenesis. Epigenetics 2020; 16:838-850. [PMID: 33016232 DOI: 10.1080/15592294.2020.1827723] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acetylation of histone and non-histone proteins is a post-translational modification mostly associated with activation of gene transcription. The first histone acetyltransferase (HAT) identified as modifying newly synthesized histone H4 in yeast was a type B HAT named HAT1. Although it was the first HAT to be discovered, HAT1 remains one of the most poorly studied enzymes in its class. In addition to its well-established role in the cytoplasm, recent findings have revealed new and intriguing aspects of the function of HAT1 in the nucleus. Several studies have described its involvement in regulating different pathways associated with a wide range of diseases, including cancer. This review focuses on our current understanding of HAT1, highlighting its importance in regulating chromatin replication and gene expression. This previously unknown role for HAT1 opens up novel scenarios in which further studies will be required to better understand its function.
Collapse
Affiliation(s)
- Angelita Poziello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, GA, The Netherlands
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, GA, The Netherlands.,Princess Maxima Center for Pediatric Oncology, Utrecht, CS, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, GA, The Netherlands
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
13
|
Su S, Li X, Yang X, Li Y, Chen X, Sun S, Jia S. Histone acetylation/deacetylation in Candida albicans and their potential as antifungal targets. Future Microbiol 2020; 15:1075-1090. [PMID: 32854542 DOI: 10.2217/fmb-2019-0343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, the incidence of invasive fungal infections has significantly increased. Candida albicans (C. albicans) is the most common opportunistic fungal pathogen that infects humans. The limited number of available antifungal agents and the emergence of drug resistance pose difficulties to treatment, thus new antifungals are urgently needed. Through their functions in DNA replication, DNA repair and transcription, histone acetyltransferases (HATs) and histone deacetylases (HDACs) perform essential functions relating to growth, virulence, drug resistance and stress responses of C. albicans. Here, we summarize the physiological and pathological functions of HATs/HDACs, potential antifungal targets and underlying antifungal compounds that impact histone acetylation and deacetylation. We anticipate this review will stimulate the identification of new HAT/HDAC-related antifungal targets and antifungal agents.
Collapse
Affiliation(s)
- Shan Su
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Xiuyun Li
- Department of Pharmacy, Qilu Children’s Hospital, Shandong University, Jinan 250022, China
| | - Xinmei Yang
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, People’s Republic of China
| | - Yiman Li
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Xueqi Chen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, People’s Republic of China
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, People’s Republic of China
| | - Shuang Jia
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, People’s Republic of China
| |
Collapse
|
14
|
Abstract
Nucleosomes compact and organize genetic material on a structural level. However, they also alter local chromatin accessibility through changes in their position, through the incorporation of histone variants, and through a vast array of histone posttranslational modifications. The dynamic nature of chromatin requires histone chaperones to process, deposit, and evict histones in different tissues and at different times in the cell cycle. This review focuses on the molecular details of canonical and variant H3-H4 histone chaperone pathways that lead to histone deposition on DNA as they are currently understood. Emphasis is placed on the most established pathways beginning with the folding, posttranslational modification, and nuclear import of newly synthesized H3-H4 histones. Next, we review the deposition of replication-coupled H3.1-H4 in S-phase and replication-independent H3.3-H4 via alternative histone chaperone pathways. Highly specialized histone chaperones overseeing the deposition of histone variants are also briefly discussed.
Collapse
Affiliation(s)
- Prerna Grover
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada;
| | - Jonathon S Asa
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Eric I Campos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; .,Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
15
|
Functional Analysis of Hif1 Histone Chaperone in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2018; 8:1993-2006. [PMID: 29661843 PMCID: PMC5982827 DOI: 10.1534/g3.118.200229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Hif1 protein in the yeast Saccharomyces cerevisie is an evolutionarily conserved H3/H4-specific chaperone and a subunit of the nuclear Hat1 complex that catalyzes the acetylation of newly synthesized histone H4. Hif1, as well as its human homolog NASP, has been implicated in an array of chromatin-related processes including histone H3/H4 transport, chromatin assembly and DNA repair. In this study, we elucidate the functional aspects of Hif1. Initially we establish the wide distribution of Hif1 homologs with an evolutionarily conserved pattern of four tetratricopeptide repeats (TPR) motifs throughout the major fungal lineages and beyond. Subsequently, through targeted mutational analysis, we demonstrate that the acidic region that interrupts the TPR2 is essential for Hif1 physical interactions with the Hat1/Hat2-complex, Asf1, and with histones H3/H4. Furthermore, we provide evidence for the involvement of Hif1 in regulation of histone metabolism by showing that cells lacking HIF1 are both sensitive to histone H3 over expression, as well as synthetic lethal with a deletion of histone mRNA regulator LSM1. We also show that a basic patch present at the extreme C-terminus of Hif1 is essential for its proper nuclear localization. Finally, we describe a physical interaction with a transcriptional regulatory protein Spt2, possibly linking Hif1 and the Hat1 complex to transcription-associated chromatin reassembly. Taken together, our results provide novel mechanistic insights into Hif1 functions and establish it as an important protein in chromatin-associated processes.
Collapse
|
16
|
Abstract
The nucleosome structure consists of a histone octamer made by a tetramer of H3-H4 histones and two dimers of H2A-H2B. Nucleosomes undergo extensive posttranslational modifications that regulate nucleosome interactions, position, and stability.We describe a protocol allowing the robust purification of histones from the yeast Saccharomyces cerevisiae. This method appears to be suitable to quantitatively analyze specific posttranslational histone modifications.
Collapse
Affiliation(s)
- Frederic Jourquin
- Cancer Research Center of Marseille (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University (AMU), Institut Paoli-Calmettes, Marseille, 13009, France
| | - Vincent Géli
- Cancer Research Center of Marseille (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University (AMU), Institut Paoli-Calmettes, Marseille, 13009, France.
| |
Collapse
|
17
|
Agudelo Garcia PA, Hoover ME, Zhang P, Nagarajan P, Freitas MA, Parthun MR. Identification of multiple roles for histone acetyltransferase 1 in replication-coupled chromatin assembly. Nucleic Acids Res 2017; 45:9319-9335. [PMID: 28666361 PMCID: PMC5766187 DOI: 10.1093/nar/gkx545] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
Histone acetyltransferase 1 (Hat1) catalyzes the acetylation of newly synthesized histone H4 at lysines 5 and 12 that accompanies replication-coupled chromatin assembly. The acetylation of newly synthesized H4 occurs in the cytoplasm and the function of this acetylation is typically ascribed to roles in either histone nuclear import or deposition. Using cell lines from Hat1+/+ and Hat1−/− mouse embryos, we demonstrate that Hat1 is not required for either histone nuclear import or deposition. We employed quantitative proteomics to characterize Hat1-dependent changes in the composition of nascent chromatin structure. Among the proteins depleted from nascent chromatin isolated from Hat1−/− cells are several bromodomain-containing proteins, including Brg1, Baz1A and Brd3. Analysis of the binding specificity of their bromodomains suggests that Hat1-dependent acetylation of H4 is directly involved in their recruitment. Hat1−/− nascent chromatin is enriched for topoisomerase 2α and 2β. The enrichment of topoisomerase 2 is functionally relevant as Hat1−/− cells are hyper-sensitive to topoisomerase 2 inhibition suggesting that Hat1 is required for proper chromatin topology. In addition, our results indicate that Hat1 is transiently recruited to sites of chromatin assembly, dissociating prior to the maturation of chromatin structure.
Collapse
Affiliation(s)
- Paula A Agudelo Garcia
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael E Hoover
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Pei Zhang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Prabakaran Nagarajan
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Hammond CM, Strømme CB, Huang H, Patel DJ, Groth A. Histone chaperone networks shaping chromatin function. Nat Rev Mol Cell Biol 2017; 18:141-158. [PMID: 28053344 DOI: 10.1038/nrm.2016.159] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The association of histones with specific chaperone complexes is important for their folding, oligomerization, post-translational modification, nuclear import, stability, assembly and genomic localization. In this way, the chaperoning of soluble histones is a key determinant of histone availability and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin.
Collapse
Affiliation(s)
- Colin M Hammond
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Caroline B Strømme
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Hongda Huang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
19
|
Structural Insights into the Association of Hif1 with Histones H2A-H2B Dimer and H3-H4 Tetramer. Structure 2016; 24:1810-1820. [DOI: 10.1016/j.str.2016.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022]
|
20
|
Phillips TC, Wildt DE, Comizzoli P. Incidence of methylated histones H3K4 and H3K79 in cat germinal vesicles is regulated by specific nuclear factors at the acquisition of developmental competence during the folliculogenesis. J Assist Reprod Genet 2016; 33:783-94. [PMID: 27059775 PMCID: PMC4889483 DOI: 10.1007/s10815-016-0706-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/21/2016] [Indexed: 11/26/2022] Open
Abstract
PURPOSE This study aims to characterize the regulations of histone methylations, key epigenetic markers of oocyte competence, in germinal vesicle (GV) from different follicles (preantral, early, small, or large antral stage) using the domestic cat model. METHODS In Experiment 1, the incidence of H3K4me3 or H3K79me2 was determined in GVs from the diverse follicle stages directly or after exposure to (1) a methyltransferase inhibitor, (2) sonication to fracture the cytoplasmic membranes and wash away the cytoplasmic content, or (3) methyltransferase inhibitor followed by sonication. In Experiment 2, the presence and maintenance of nuclear methyltransferases SMYD3 and DOT1L (regulating H3K4me3 and H3K79me2, respectively) was characterized in separate GV stages before and after sonication. Functionality of GVs from the various follicle stages (with or without transient isolation from the cytoplasm) then was assessed in Experiment 3 by transfer into recipient competent oocytes. RESULTS The incidence of histones H3K4me3 and H3K79me2 within the GV were influenced by the cytoplasmic environment at all stages except at the transition to the early antral stage where nuclear regulating factors appeared to be mainly involved. The methyltransferase SMYD3 and DOT1L also appeared tightly bound to the nucleus at that transition. Interestingly, oocytes reconstructed with a GV isolated from the cytoplasm for a prolonged period had the capacity to form an embryo after fertilization which proved that communication between the donor GV and the host cytoplasm (likely including the regulation of epigenetic factors) could be restored. CONCLUSIONS Histone methylation apparently becomes regulated by specific nuclear factors at the acquisition of competence during the folliculogenesis and does not seem to be disrupted by prolonged isolation from the surrounding cytoplasm.
Collapse
Affiliation(s)
- Tameka C Phillips
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, USA
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - David E Wildt
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, USA
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, USA.
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA.
| |
Collapse
|
21
|
McCullough CE, Marmorstein R. Molecular Basis for Histone Acetyltransferase Regulation by Binding Partners, Associated Domains, and Autoacetylation. ACS Chem Biol 2016; 11:632-42. [PMID: 26555232 PMCID: PMC5067162 DOI: 10.1021/acschembio.5b00841] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acetylation is a post-translational modification (PTM) that regulates chromatin dynamics and function. Dysregulation of acetylation or acetyltransferase activity has been correlated with several human diseases. Many, if not all, histone acetyltransferases (HATs) are regulated in part through tethered domains, association with binding partners, or post-translational modification, including predominantly acetylation. This review focuses on what is currently understood at the molecular level of HAT regulation as it occurs via binding partners, associated domains, and autoacetylation.
Collapse
Affiliation(s)
- Cheryl E. McCullough
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ronen Marmorstein
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
22
|
Yuan H, Marmorstein R. Histone acetyltransferases: Rising ancient counterparts to protein kinases. Biopolymers 2016; 99:98-111. [PMID: 23175385 DOI: 10.1002/bip.22128] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/01/2012] [Accepted: 07/06/2012] [Indexed: 01/19/2023]
Abstract
Protein kinases catalyze phosphorylation, a posttranslational modification widely utilized in cell signaling. Histone acetyltransferases (HATs) catalyze a counterpart posttranslational modification of acetylation which marks histones for epigenetic signaling but in some cases modifies non-histone proteins to mediate other cellular activities. In addition, recent proteomic studies have revealed that thousands of proteins are acetylated throughout the cell to regulate diverse biological processes, thus placing acetyltransferases on the same playing field as kinases. Emerging biochemical and structural data further supports mechanistic and biological links between the two enzyme families. In this article, we will review what is known to date about the structure, catalysis and mode of regulation of HAT enzymes and draw analogies, where relevant, to protein kinases. This comparison reveals that HATs may be rising ancient counterparts to protein kinases.
Collapse
Affiliation(s)
- Hua Yuan
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA 19104
| | | |
Collapse
|
23
|
Bowman A, Lercher L, Singh HR, Zinne D, Timinszky G, Carlomagno T, Ladurner AG. The histone chaperone sNASP binds a conserved peptide motif within the globular core of histone H3 through its TPR repeats. Nucleic Acids Res 2015; 44:3105-17. [PMID: 26673727 PMCID: PMC4838342 DOI: 10.1093/nar/gkv1372] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/25/2015] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic chromatin is a complex yet dynamic structure, which is regulated in part by the assembly and disassembly of nucleosomes. Key to this process is a group of proteins termed histone chaperones that guide the thermodynamic assembly of nucleosomes by interacting with soluble histones. Here we investigate the interaction between the histone chaperone sNASP and its histone H3 substrate. We find that sNASP binds with nanomolar affinity to a conserved heptapeptide motif in the globular domain of H3, close to the C-terminus. Through functional analysis of sNASP homologues we identified point mutations in surface residues within the TPR domain of sNASP that disrupt H3 peptide interaction, but do not completely disrupt binding to full length H3 in cells, suggesting that sNASP interacts with H3 through additional contacts. Furthermore, chemical shift perturbations from(1)H-(15)N HSQC experiments show that H3 peptide binding maps to the helical groove formed by the stacked TPR motifs of sNASP. Our findings reveal a new mode of interaction between a TPR repeat domain and an evolutionarily conserved peptide motif found in canonical H3 and in all histone H3 variants, including CenpA and have implications for the mechanism of histone chaperoning within the cell.
Collapse
Affiliation(s)
- Andrew Bowman
- Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Lukas Lercher
- Leibniz University Hannover, BMWZ-Institute of Organic Chemistry, Schneiderberg 38, 30167 Hannover, Germany
| | - Hari R Singh
- Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Daria Zinne
- Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Gyula Timinszky
- Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Teresa Carlomagno
- Leibniz University Hannover, BMWZ-Institute of Organic Chemistry, Schneiderberg 38, 30167 Hannover, Germany Helmholtz Centre for Infection Research, Group of Structural Chemistry, Inhoffenstrasse 7, 38124 Braunschweig, Germany European Molecular Biology Laboratory, SCB Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Andreas G Ladurner
- Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Butenandt Strasse 5-13, 81377 Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, Feodor Lynen Strasse 17, 81377 Munich, Germany
| |
Collapse
|
24
|
Boltengagen M, Huang A, Boltengagen A, Trixl L, Lindner H, Kremser L, Offterdinger M, Lusser A. A novel role for the histone acetyltransferase Hat1 in the CENP-A/CID assembly pathway in Drosophila melanogaster. Nucleic Acids Res 2015; 44:2145-59. [PMID: 26586808 PMCID: PMC4797270 DOI: 10.1093/nar/gkv1235] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/02/2015] [Indexed: 12/21/2022] Open
Abstract
The incorporation of CENP-A into centromeric chromatin is an essential prerequisite for kinetochore formation. Yet, the molecular mechanisms governing this process are surprisingly divergent in different organisms. While CENP-A loading mechanisms have been studied in some detail in mammals, there are still large gaps to our understanding of CENP-A/Cid loading pathways in Drosophila. Here, we report on the characterization and delineation of at least three different CENP-A preloading complexes in Drosophila. Two complexes contain the CENP-A chaperones CAL1, FACT and/or Caf1/Rbap48. Notably, we identified a novel complex consisting of the histone acetyltransferase Hat1, Caf1 and CENP-A/H4. We show that Hat1 is required for proper CENP-A loading into chromatin, since knock-down in S2 cells leads to reduced incorporation of newly synthesized CENP-A. In addition, we demonstrate that CENP-A/Cid interacts with the HAT1 complex via an N-terminal region, which is acetylated in cytoplasmic but not in nuclear CENP-A. Since Hat1 is not responsible for acetylation of CENP-A/Cid, these results suggest a histone acetyltransferase activity-independent escort function for Hat1. Thus, our results point toward intriguing analogies between the complex processing pathways of newly synthesized CENP-A and canonical histones.
Collapse
Affiliation(s)
- Mark Boltengagen
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anming Huang
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anastasiya Boltengagen
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas Trixl
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Martin Offterdinger
- Division of Neurobiochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
25
|
Haigney A, Ricketts MD, Marmorstein R. Dissecting the Molecular Roles of Histone Chaperones in Histone Acetylation by Type B Histone Acetyltransferases (HAT-B). J Biol Chem 2015; 290:30648-57. [PMID: 26522166 DOI: 10.1074/jbc.m115.688523] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 12/26/2022] Open
Abstract
The HAT-B enzyme complex is responsible for acetylating newly synthesized histone H4 on lysines K5 and K12. HAT-B is a multisubunit complex composed of the histone acetyltransferase 1 (Hat1) catalytic subunit and the Hat2 (rbap46) histone chaperone. Hat1 is predominantly localized in the nucleus as a member of a trimeric NuB4 complex containing Hat1, Hat2, and a histone H3-H4 specific histone chaperone called Hif1 (NASP). In addition to Hif1 and Hat2, Hat1 interacts with Asf1 (anti-silencing function 1), a histone chaperone that has been reported to be involved in both replication-dependent and -independent chromatin assembly. To elucidate the molecular roles of the Hif1 and Asf1 histone chaperones in HAT-B histone binding and acetyltransferase activity, we have characterized the stoichiometry and binding mode of Hif1 and Asf1 to HAT-B and the effect of this binding on the enzymatic activity of HAT-B. We find that Hif1 and Asf1 bind through different modes and independently to HAT-B, whereby Hif1 binds directly to Hat2, and Asf1 is only capable of interactions with HAT-B through contacts with histones H3-H4. We also demonstrate that HAT-B is significantly more active against an intact H3-H4 heterodimer over a histone H4 peptide, independent of either Hif1 or Asf1 binding. Mutational studies further demonstrate that HAT-B binding to the histone tail regions is not sufficient for this enhanced activity. Based on these data, we propose a model for HAT-B/histone chaperone assembly and acetylation of H3-H4 complexes.
Collapse
Affiliation(s)
- Allison Haigney
- From the Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, and
| | - M Daniel Ricketts
- From the Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, and the Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ronen Marmorstein
- From the Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, and
| |
Collapse
|
26
|
Tscherner M, Zwolanek F, Jenull S, Sedlazeck FJ, Petryshyn A, Frohner IE, Mavrianos J, Chauhan N, von Haeseler A, Kuchler K. The Candida albicans Histone Acetyltransferase Hat1 Regulates Stress Resistance and Virulence via Distinct Chromatin Assembly Pathways. PLoS Pathog 2015; 11:e1005218. [PMID: 26473952 PMCID: PMC4608838 DOI: 10.1371/journal.ppat.1005218] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/21/2015] [Indexed: 01/14/2023] Open
Abstract
Human fungal pathogens like Candida albicans respond to host immune surveillance by rapidly adapting their transcriptional programs. Chromatin assembly factors are involved in the regulation of stress genes by modulating the histone density at these loci. Here, we report a novel role for the chromatin assembly-associated histone acetyltransferase complex NuB4 in regulating oxidative stress resistance, antifungal drug tolerance and virulence in C. albicans. Strikingly, depletion of the NuB4 catalytic subunit, the histone acetyltransferase Hat1, markedly increases resistance to oxidative stress and tolerance to azole antifungals. Hydrogen peroxide resistance in cells lacking Hat1 results from higher induction rates of oxidative stress gene expression, accompanied by reduced histone density as well as subsequent increased RNA polymerase recruitment. Furthermore, hat1Δ/Δ cells, despite showing growth defects in vitro, display reduced susceptibility to reactive oxygen-mediated killing by innate immune cells. Thus, clearance from infected mice is delayed although cells lacking Hat1 are severely compromised in killing the host. Interestingly, increased oxidative stress resistance and azole tolerance are phenocopied by the loss of histone chaperone complexes CAF-1 and HIR, respectively, suggesting a central role for NuB4 in the delivery of histones destined for chromatin assembly via distinct pathways. Remarkably, the oxidative stress phenotype of hat1Δ/Δ cells is a species-specific trait only found in C. albicans and members of the CTG clade. The reduced azole susceptibility appears to be conserved in a wider range of fungi. Thus, our work demonstrates how highly conserved chromatin assembly pathways can acquire new functions in pathogenic fungi during coevolution with the host. Candida albicans is the most prevalent fungal pathogen infecting humans, causing life-threatening infections in immunocompromised individuals. Host immune surveillance imposes stress conditions upon C. albicans, to which it has to adapt quickly to escape host killing. This can involve regulation of specific genes requiring disassembly and reassembly of histone proteins, around which DNA is wrapped to form the basic repeat unit of eukaryotic chromatin—the nucleosome. Here, we discover a novel function for the chromatin assembly-associated histone acetyltransferase complex NuB4 in oxidative stress response, antifungal drug tolerance as well as in fungal virulence. The NuB4 complex modulates the induction kinetics of hydrogen peroxide-induced genes. Furthermore, NuB4 negatively regulates susceptibility to killing by immune cells and thereby slowing the clearing from infected mice in vivo. Remarkably, the oxidative stress resistance seems restricted to C. albicans and closely related species, which might have acquired this function during coevolution with the host.
Collapse
Affiliation(s)
- Michael Tscherner
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - Florian Zwolanek
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - Sabrina Jenull
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - Fritz J. Sedlazeck
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Andriy Petryshyn
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - Ingrid E. Frohner
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - John Mavrianos
- Public Health Research Institute, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Karl Kuchler
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
- * E-mail:
| |
Collapse
|
27
|
Structural insights into yeast histone chaperone Hif1: a scaffold protein recruiting protein complexes to core histones. Biochem J 2014; 462:465-73. [PMID: 24946827 DOI: 10.1042/bj20131640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Yeast Hif1 [Hat1 (histone acetyltransferase 1)-interacting factor], a homologue of human NASP (nuclear autoantigenic sperm protein), is a histone chaperone that is involved in various protein complexes which modify histones during telomeric silencing and chromatin reassembly. For elucidating the structural basis of Hif1, in the present paper we demonstrate the crystal structure of Hif1 consisting of a superhelixed TPR (tetratricopeptide repeat) domain and an extended acid loop covering the rear of TPR domain, which represent typical characteristics of SHNi-TPR [Sim3 (start independent of mitosis 3)-Hif1-NASP interrupted TPR] proteins. Our binding assay indicates that Hif1 could bind to the histone octamer via histones H3 and H4. The acid loop is shown to be crucial for the binding of histones and may also change the conformation of the TPR groove. By binding to the core histone complex Hif1 may recruit functional protein complexes to modify histones during chromatin reassembly.
Collapse
|
28
|
Knapp AR, Wang H, Parthun MR. The yeast histone chaperone hif1p functions with RNA in nucleosome assembly. PLoS One 2014; 9:e100299. [PMID: 25072697 PMCID: PMC4114455 DOI: 10.1371/journal.pone.0100299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/22/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hif1p is an H3/H4-specific histone chaperone that associates with the nuclear form of the Hat1p/Hat2p complex (NuB4 complex) in the yeast Saccharomyces cerevisiae. While not capable of depositing histones onto DNA on its own, Hif1p can act in conjunction with a yeast cytosolic extract to assemble nucleosomes onto a relaxed circular plasmid. RESULTS To identify the factor(s) that function with Hif1p to carry out chromatin assembly, multiple steps of column chromatography were carried out to fractionate the yeast cytosolic extract. Analysis of partially purified fractions indicated that Hif1p-dependent chromatin assembly activity resided in RNA rather than protein. Fractionation of isolated RNA indicated that the chromatin assembly activity did not simply purify with bulk RNA. In addition, the RNA-mediated chromatin assembly activity was blocked by mutations in the human homolog of Hif1p, sNASP, that prevent the association of this histone chaperone with histone H3 and H4 without altering its electrostatic properties. CONCLUSIONS These results suggest that specific RNA species may function in concert with histone chaperones to assemble chromatin.
Collapse
Affiliation(s)
- Amy R. Knapp
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Huanyu Wang
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark R. Parthun
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
29
|
Marmorstein R, Zhou MM. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 2014; 6:a018762. [PMID: 24984779 DOI: 10.1101/cshperspect.a018762] [Citation(s) in RCA: 407] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone acetylation marks are written by histone acetyltransferases (HATs) and read by bromodomains (BrDs), and less commonly by other protein modules. These proteins regulate many transcription-mediated biological processes, and their aberrant activities are correlated with several human diseases. Consequently, small molecule HAT and BrD inhibitors with therapeutic potential have been developed. Structural and biochemical studies of HATs and BrDs have revealed that HATs fall into distinct subfamilies containing a structurally related core for cofactor binding, but divergent flanking regions for substrate-specific binding, catalysis, and autoregulation. BrDs adopt a conserved left-handed four-helix bundle to recognize acetyllysine; divergent loop residues contribute to substrate-specific acetyllysine recognition.
Collapse
Affiliation(s)
- Ronen Marmorstein
- Program in Gene Expression and Regulation, Wistar Institute, and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10065
| |
Collapse
|
30
|
Nabeel-Shah S, Ashraf K, Pearlman RE, Fillingham J. Molecular evolution of NASP and conserved histone H3/H4 transport pathway. BMC Evol Biol 2014; 14:139. [PMID: 24951090 PMCID: PMC4082323 DOI: 10.1186/1471-2148-14-139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NASP is an essential protein in mammals that functions in histone transport pathways and maintenance of a soluble reservoir of histones H3/H4. NASP has been studied exclusively in Opisthokonta lineages where some functional diversity has been reported. In humans, growing evidence implicates NASP miss-regulation in the development of a variety of cancers. Although a comprehensive phylogenetic analysis is lacking, NASP-family proteins that possess four TPR motifs are thought to be widely distributed across eukaryotes. RESULTS We characterize the molecular evolution of NASP by systematically identifying putative NASP orthologs across diverse eukaryotic lineages ranging from excavata to those of the crown group. We detect extensive silent divergence at the nucleotide level suggesting the presence of strong purifying selection acting at the protein level. We also observe a selection bias for high frequencies of acidic residues which we hypothesize is a consequence of their critical function(s), further indicating the role of functional constraints operating on NASP evolution. Our data indicate that TPR1 and TPR4 constitute the most rapidly evolving functional units of NASP and may account for the functional diversity observed among well characterized family members. We also show that NASP paralogs in ray-finned fish have different genomic environments with clear differences in their GC content and have undergone significant changes at the protein level suggesting functional diversification. CONCLUSION We draw four main conclusions from this study. First, wide distribution of NASP throughout eukaryotes suggests that it was likely present in the last eukaryotic common ancestor (LECA) possibly as an important innovation in the transport of H3/H4. Second, strong purifying selection operating at the protein level has influenced the nucleotide composition of NASP genes. Further, we show that selection has acted to maintain a high frequency of functionally relevant acidic amino acids in the region that interrupts TPR2. Third, functional diversity reported among several well characterized NASP family members can be explained in terms of quickly evolving TPR1 and TPR4 motifs. Fourth, NASP fish specific paralogs have significantly diverged at the protein level with NASP2 acquiring a NNR domain.
Collapse
Affiliation(s)
| | | | | | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St,, Toronto M5B 2K3, Canada.
| |
Collapse
|
31
|
Li Y, Zhang L, Liu T, Chai C, Fang Q, Wu H, Agudelo Garcia PA, Han Z, Zong S, Yu Y, Zhang X, Parthun MR, Chai J, Xu RM, Yang M. Hat2p recognizes the histone H3 tail to specify the acetylation of the newly synthesized H3/H4 heterodimer by the Hat1p/Hat2p complex. Genes Dev 2014; 28:1217-27. [PMID: 24835250 PMCID: PMC4052767 DOI: 10.1101/gad.240531.114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Histone post-transcriptional modifications play important roles in the regulation of replication, transcription, and DNA repair. Key questions remain regarding the role of the acetyltransferase complex Hat1p/Hat2p in chromatin remodeling. High-resolution structural studies by Li et al. now reveal how Hat1p/Hat2p recognizes and facilitates the modification of N-terminal lysine residues on the newly assembled histone H3/H4 heterodimer prior to its incorporation into chromatin. This study delineates the mechanism of substrate recognition by the Hat1p/Hat2p complex, which is critical to DNA replication and chromatin remodeling processes. Post-translational modifications of histones are significant regulators of replication, transcription, and DNA repair. Particularly, newly synthesized histone H4 in H3/H4 heterodimers becomes acetylated on N-terminal lysine residues prior to its incorporation into chromatin. Previous studies have established that the histone acetyltransferase (HAT) complex Hat1p/Hat2p medicates this modification. However, the mechanism of how Hat1p/Hat2p recognizes and facilitates the enzymatic activities on the newly assembled H3/H4 heterodimer remains unknown. Furthermore, Hat2p is a WD40 repeat protein, which is found in many histone modifier complexes. However, how the WD40 repeat proteins facilitate enzymatic activities of histone modification enzymes is unclear. In this study, we first solved the high-resolution crystal structure of a Hat1p/Hat2p/CoA/H4 peptide complex and found that the H4 tail interacts with both Hat1p and Hat2p, by which substrate recruitment is facilitated. We further discovered that H3 N-terminal peptides can bind to the Hat2p WD40 domain and solved the structure of the Hat1p/Hat2p/CoA/H4/H3 peptide complex. Moreover, the interaction with Hat2p requires unmodified Arg2/Lys4 and Lys9 on the H3 tail, suggesting a novel model to specify the activity of Hat1p/Hat2p toward newly synthesized H3/H4 heterodimers. Together, our study demonstrated the substrate recognition mechanism by the Hat1p/Hat2p complex, which is critical for DNA replication and other chromatin remodeling processes.
Collapse
Affiliation(s)
- Yang Li
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tingting Liu
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chengliang Chai
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qianglin Fang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Han Wu
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Paula A Agudelo Garcia
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zhifu Han
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuai Zong
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - You Yu
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinyue Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mark R Parthun
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jijie Chai
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Young TJ, Kirchmaier AL. Cell cycle regulation of silent chromatin formation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:303-312. [PMID: 24459732 DOI: 10.1016/j.bbagrm.2011.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Identical genes in two different cells can stably exist in alternate transcriptional states despite the dynamic changes that will occur to chromatin at that locus throughout the cell cycle. In mammals, this is achieved through epigenetic processes that regulate key developmental transitions and ensure stable patterns of gene expression during growth and differentiation. The budding yeast Saccharomyces cerevisiae utilizes silencing to control the expression state of genes encoding key regulatory factors for determining cell-type, ribosomal RNA levels and proper telomere function. Here, we review the composition of silent chromatin in S. cerevisiae, how silent chromatin is influenced by chromatin assembly and histone modifications and highlight several observations that have contributed to our understanding of the interplay between silent chromatin formation and stability and the cell cycle. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
33
|
Han J, Zhang H, Zhang H, Wang Z, Zhou H, Zhang Z. A Cul4 E3 ubiquitin ligase regulates histone hand-off during nucleosome assembly. Cell 2014; 155:817-29. [PMID: 24209620 DOI: 10.1016/j.cell.2013.10.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 05/12/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
Abstract
Nucleosome assembly following DNA replication and gene transcription is important to maintain genome stability and epigenetic information. Newly synthesized histones H3-H4 first bind histone chaperone Asf1 and are then transferred to other chaperones for nucleosome assembly. However, it is unknown how H3-H4 is transferred from the Asf1-H3-H4 complex to other chaperones because Asf1 binds H3-H4 with high affinity. Here, we show that yeast Rtt101(Mms1) E3 ubiquitin ligase preferentially binds and ubiquitylates new histone H3 acetylated at lysine 56. Inactivation of Rtt101 or mutating H3 lysine residues ubiquitylated by the Rtt101(Mms1) ligase impairs nucleosome assembly and promotes Asf1-H3 interactions. Similar phenotypes occur in human cells in which the ortholog of Rtt101(Mms1), Cul4A(DDB1), is depleted. These results indicate that the transfer of H3-H4 from the Asf1-H3-H4 complex to other histone chaperones is regulated by a conserved E3 ligase and provide evidence for crosstalk between histone acetylation and ubiquitylation in nucleosome assembly.
Collapse
Affiliation(s)
- Junhong Han
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
34
|
Romano SL, Lionetti V. From cell phenotype to epigenetic mechanisms: new insights into regenerating myocardium. Can J Physiol Pharmacol 2013; 91:579-85. [DOI: 10.1139/cjpp-2012-0392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The self-regenerating property of the adult myocardium is not a new discovery. Even though we could not confirm that the adult myocardium is a post-mitotic tissue, we should consider that its plasticity is extremely low. Studies are still in progress to decipher the mechanisms underlying the abovementioned potential fetal features of the adult heart. The modest results of several clinical trials based on the transplantation of millions of autologous stem cells into the dysfunctional heart have confirmed that the cross-talk of different signals, such as the microenvironment, promotes the regeneration of adult myocardium. Recent scientific evidence has revealed that cellular cross-talk does not depend on the action of a single cell phenotype. It is conceivable that the limited turnover of cardiomyocytes is ensured by the interplay of adult cardiac cells in response to environmental changes. The epigenetic state of a cell serves as a dynamic interface between the environment and phenotype. The epigenetic modulation of the adult cardiac cells by natural active compounds encourages further studies to improve myocardial plasticity. In this review, we will highlight the most relevant studies demonstrating the epigenetic modulation of myocardial regeneration without the use of stem cell transplantation.
Collapse
Affiliation(s)
- Simone Lorenzo Romano
- Laboratory of Medical Science, Institute of Life Sciences, Via G. Moruzzi, 1, Scuola Superiore Sant’Anna, 56124 Pisa, Italy
- Cardiac and Thoracic Department, Azienda Ospedaliero – Universitaria Pisana, Pisa, Italy
| | - Vincenzo Lionetti
- Laboratory of Medical Science, Institute of Life Sciences, Via G. Moruzzi, 1, Scuola Superiore Sant’Anna, 56124 Pisa, Italy
- Fondazione CNR – Regione Toscana “G. Monasterio”, Pisa, Italy
- Institute of Clinical Physiology, CNR, Pisa, Italy
| |
Collapse
|
35
|
Yang DH, Maeng S, Bahn YS. Msi1-Like (MSIL) Proteins in Fungi. MYCOBIOLOGY 2013; 41:1-12. [PMID: 23610533 PMCID: PMC3627964 DOI: 10.5941/myco.2013.41.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 03/11/2013] [Indexed: 05/23/2023]
Abstract
Msi1-like (MSIL) proteins, which are eukaryote-specific and contain a series of WD40 repeats, have pleiotropic roles in chromatin assembly, DNA damage repair, and regulation of nutrient/stress-sensing signaling pathways. In the fungal kingdom, the functions of MSIL proteins have been studied most intensively in the budding yeast model Saccharomyces cerevisiae, an ascomycete. Yet their functions are largely unknown in other fungi. Recently, an MSIL protein, Msl1, was discovered and functionally characterized in the pathogenic yeast Cryptococcus neoformans, a basidiomycete. Interestingly, MSIL proteins appear to have redundant and unique roles in both fungi, suggesting that MSIL proteins may have evolutionarily divergent roles in different parts of the fungal kingdom. In this review, we will describe the current findings regarding the role of MSIL proteins in fungi and discuss future directions for research on this topic.
Collapse
Affiliation(s)
- Dong-Hoon Yang
- Department of Biotechnology, Center for Fungal Pathogenesis, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | | | |
Collapse
|
36
|
The carboxyl terminus of Rtt109 functions in chaperone control of histone acetylation. EUKARYOTIC CELL 2013; 12:654-64. [PMID: 23457193 DOI: 10.1128/ec.00291-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rtt109 is a fungal histone acetyltransferase (HAT) that catalyzes histone H3 acetylation functionally associated with chromatin assembly. Rtt109-mediated H3 acetylation involves two histone chaperones, Asf1 and Vps75. In vivo, Rtt109 requires both chaperones for histone H3 lysine 9 acetylation (H3K9ac) but only Asf1 for full H3K56ac. In vitro, Rtt109-Vps75 catalyzes both H3K9ac and H3K56ac, whereas Rtt109-Asf1 catalyzes only H3K56ac. In this study, we extend the in vitro chaperone-associated substrate specificity of Rtt109 by showing that it acetylates vertebrate linker histone in the presence of Vps75 but not Asf1. In addition, we demonstrate that in Saccharomyces cerevisiae a short basic sequence at the carboxyl terminus of Rtt109 (Rtt109C) is required for H3K9ac in vivo. Furthermore, through in vitro and in vivo studies, we demonstrate that Rtt109C is required for optimal H3K56ac by the HAT in the presence of full-length Asf1. When Rtt109C is absent, Vps75 becomes important for H3K56ac by Rtt109 in vivo. In addition, we show that lysine 290 (K290) in Rtt109 is required in vivo for Vps75 to enhance the activity of the HAT. This is the first in vivo evidence for a role for Vps75 in H3K56ac. Taken together, our results contribute to a better understanding of chaperone control of Rtt109-mediated H3 acetylation.
Collapse
|
37
|
Tscherner M, Stappler E, Hnisz D, Kuchler K. The histone acetyltransferase Hat1 facilitates DNA damage repair and morphogenesis inCandida albicans. Mol Microbiol 2012; 86:1197-214. [DOI: 10.1111/mmi.12051] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 02/02/2023]
Affiliation(s)
- Michael Tscherner
- Medical University of Vienna; Christian Doppler Laboratory for Infection Biology, Max F. Perutz Laboratories; Campus Vienna Biocenter; A-1030; Vienna; Austria
| | - Eva Stappler
- Medical University of Vienna; Christian Doppler Laboratory for Infection Biology, Max F. Perutz Laboratories; Campus Vienna Biocenter; A-1030; Vienna; Austria
| | - Denes Hnisz
- Medical University of Vienna; Christian Doppler Laboratory for Infection Biology, Max F. Perutz Laboratories; Campus Vienna Biocenter; A-1030; Vienna; Austria
| | - Karl Kuchler
- Medical University of Vienna; Christian Doppler Laboratory for Infection Biology, Max F. Perutz Laboratories; Campus Vienna Biocenter; A-1030; Vienna; Austria
| |
Collapse
|
38
|
Finn RM, Ellard K, Eirín-López JM, Ausió J. Vertebrate nucleoplasmin and NASP: egg histone storage proteins with multiple chaperone activities. FASEB J 2012; 26:4788-804. [PMID: 22968912 DOI: 10.1096/fj.12-216663] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent reviews have focused on the structure and function of histone chaperones involved in different aspects of somatic cell chromatin metabolism. One of the most dramatic chromatin remodeling processes takes place immediately after fertilization and is mediated by egg histone storage chaperones. These include members of the nucleoplasmin (NPM2/NPM3), which are preferentially associated with histones H2A-H2B in the egg and the nuclear autoantigenic sperm protein (NASP) families. Interestingly, in addition to binding and providing storage to H3/H4 in the egg and in somatic cells, NASP has been shown to be a unique genuine chaperone for histone H1. This review revolves around the structural and functional roles of these two families of chaperones whose activity is modulated by their own post-translational modifications (PTMs), particularly phosphorylation. Beyond their important role in the remodeling of paternal chromatin in the early stages of embryogenesis, NPM and NASP members can interact with a plethora of proteins in addition to histones in somatic cells and play a critical role in processes of functional cell alteration, such as in cancer. Despite their common presence in the egg, these two histone chaperones appear to be evolutionarily unrelated. In contrast to members of the NPM family, which share a common monophyletic evolutionary origin, the different types of NASP appear to have evolved recurrently within different taxa.
Collapse
Affiliation(s)
- Ron M Finn
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 3P6
| | | | | | | |
Collapse
|
39
|
Schizosaccharomyces pombe Hat1 (Kat1) is associated with Mis16 and is required for telomeric silencing. EUKARYOTIC CELL 2012; 11:1095-103. [PMID: 22771823 DOI: 10.1128/ec.00123-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Hat1 histone acetyltransferase has been implicated in the acetylation of histone H4 during chromatin assembly. In this study, we have characterized the Hat1 complex from the fission yeast Schizosaccharomyces pombe and have examined its role in telomeric silencing. Hat1 is found associated with the RbAp46 homologue Mis16, an essential protein. The Hat1 complex acetylates lysines 5 and 12 of histone H4, the sites that are acetylated in newly synthesized H4 in a wide range of eukaryotes. Deletion of hat1 in S. pombe is itself sufficient to cause the loss of silencing at telomeres. This is in contrast to results obtained with an S. cerevisiae hat1Δ strain, which must also carry mutations of specific acetylatable lysines in the H3 tail domain for loss of telomeric silencing to occur. Notably, deletion of hat1 from S. pombe resulted in an increase of acetylation of histone H4 in subtelomeric chromatin, concomitant with derepression of this region. A similar loss of telomeric silencing was also observed after growing cells in the presence of the deacetylase inhibitor trichostatin A. However, deleting hat1 did not cause loss of silencing at centromeres or the silent mating type locus. These results point to a direct link between Hat1, H4 acetylation, and the establishment of repressed telomeric chromatin in fission yeast.
Collapse
|
40
|
Structural basis for substrate specificity and catalysis of human histone acetyltransferase 1. Proc Natl Acad Sci U S A 2012; 109:8925-30. [PMID: 22615379 DOI: 10.1073/pnas.1114117109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone acetyltransferase 1 is the founding member of the histone acetyltransferase superfamily and catalyzes lysine acetylation of newly synthesized histone H4. Here we report a 1.9-Å resolution crystal structure of human histone acetyltransferase 1 in complex with acetyl coenzyme A and histone H4 peptide. The crystal structure reveals that the cofactor and the side chain of lysine 12 of histone H4 peptide are placed in the canyon between the central and C-terminal domains. Histone H4 peptide adopts a well-defined conformation and establishes an extensive set of interactions with the enzyme including invariant residues Glu64 and Trp199, which together govern substrate-binding specificity of histone acetyltransferase 1. Our structure-guided enzyme kinetic study further demonstrates a cumulative effect of the active-site residues Glu187, Glu276, and Asp277 on deprotonation of the ε-amino group of reactive Lys12 for direct attack of the acetyl group of the cofactor.
Collapse
|
41
|
Keck KM, Pemberton LF. Histone chaperones link histone nuclear import and chromatin assembly. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:277-89. [PMID: 22015777 PMCID: PMC3272145 DOI: 10.1016/j.bbagrm.2011.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/08/2011] [Accepted: 09/12/2011] [Indexed: 12/12/2022]
Abstract
Histone chaperones are proteins that shield histones from nonspecific interactions until they are assembled into chromatin. After their synthesis in the cytoplasm, histones are bound by different histone chaperones, subjected to a series of posttranslational modifications and imported into the nucleus. These evolutionarily conserved modifications, including acetylation and methylation, can occur in the cytoplasm, but their role in regulating import is not well understood. As part of histone import complexes, histone chaperones may serve to protect the histones during transport, or they may be using histones to promote their own nuclear localization. In addition, there is evidence that histone chaperones can play an active role in the import of histones. Histone chaperones have also been shown to regulate the localization of important chromatin modifying enzymes. This review is focused on the role histone chaperones play in the early biogenesis of histones, the distinct cytoplasmic subcomplexes in which histone chaperones have been found in both yeast and mammalian cells and the importins/karyopherins and nuclear localization signals that mediate the nuclear import of histones. We also address the role that histone chaperone localization plays in human disease. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.
Collapse
Affiliation(s)
- Kristin M. Keck
- Center for Cell Signaling, Department of Microbiology, Immunology and Cancer Biology University of Virginia, Charlottesville, VA 22908, USA
| | - Lucy F. Pemberton
- Center for Cell Signaling, Department of Microbiology, Immunology and Cancer Biology University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
42
|
Yan K, Wu CJ, Pelletier N, Yang XJ. Reconstitution of active and stoichiometric multisubunit lysine acetyltransferase complexes in insect cells. Methods Mol Biol 2012; 809:445-464. [PMID: 22113293 DOI: 10.1007/978-1-61779-376-9_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein lysine acetyltransferases (KATs) catalyze acetylation of the ε-amino group on a specific lysine residue, and this posttranslational modification is important for regulating the function and activities of thousands of proteins in diverse organisms from bacteria to humans. Interestingly, many known KATs exist in multisubunit complexes and complex formation is important for their proper structure, function, and regulation. Thus, it is necessary to reconstitute enzymatically active complexes for studying the relationship between subunits and determining structures of the complexes. Due to inherent limitations of bacterial and mammalian expression systems, baculovirus-mediated protein expression in insect cells has proven useful for assembling such multisubunit complexes. Related to this, we have adopted such an approach for reconstituting active tetrameric complexes of monocytic leukemia zinc (MOZ, finger protein, recently renamed MYST3 or KAT6A) and MOZ-related factor (MORF, also known as MYST4 or KAT6B), two KATs directly linked to development of leukemia and self-renewal of stem cells. Herein, we use these complexes as examples to describe the related procedures. Similar methods have been used for reconstituting active complexes of histone deacetylases, lysine demethylases, and ubiquitin ligases, so this simple approach can be adapted for molecular dissection of various multisubunit complexes.
Collapse
Affiliation(s)
- Kezhi Yan
- Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
43
|
Verzijlbergen KF, van Welsem T, Sie D, Lenstra TL, Turner DJ, Holstege FCP, Kerkhoven RM, van Leeuwen F. A barcode screen for epigenetic regulators reveals a role for the NuB4/HAT-B histone acetyltransferase complex in histone turnover. PLoS Genet 2011; 7:e1002284. [PMID: 21998594 PMCID: PMC3188528 DOI: 10.1371/journal.pgen.1002284] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 07/29/2011] [Indexed: 11/18/2022] Open
Abstract
Dynamic modification of histone proteins plays a key role in regulating gene expression. However, histones themselves can also be dynamic, which potentially affects the stability of histone modifications. To determine the molecular mechanisms of histone turnover, we developed a parallel screening method for epigenetic regulators by analyzing chromatin states on DNA barcodes. Histone turnover was quantified by employing a genetic pulse-chase technique called RITE, which was combined with chromatin immunoprecipitation and high-throughput sequencing. In this screen, the NuB4/HAT-B complex, containing the conserved type B histone acetyltransferase Hat1, was found to promote histone turnover. Unexpectedly, the three members of this complex could be functionally separated from each other as well as from the known interacting factor and histone chaperone Asf1. Thus, systematic and direct interrogation of chromatin structure on DNA barcodes can lead to the discovery of genes and pathways involved in chromatin modification and dynamics.
Collapse
Affiliation(s)
| | - Tibor van Welsem
- Department of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daoud Sie
- Genome Center, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Netherlands Proteomics Center, Amsterdam, The Netherlands
| | - Tineke L. Lenstra
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniel J. Turner
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Frank C. P. Holstege
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ron M. Kerkhoven
- Genome Center, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Netherlands Proteomics Center, Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Department of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Wang H, Ge Z, Walsh STR, Parthun MR. The human histone chaperone sNASP interacts with linker and core histones through distinct mechanisms. Nucleic Acids Res 2011; 40:660-9. [PMID: 21965532 PMCID: PMC3258156 DOI: 10.1093/nar/gkr781] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Somatic nuclear autoantigenic sperm protein (sNASP) is a human homolog of the N1/N2 family of histone chaperones. sNASP contains the domain structure characteristic of this family, which includes a large acidic patch flanked by several tetratricopeptide repeat (TPR) motifs. sNASP possesses a unique binding specificity in that it forms specific complexes with both histone H1 and histones H3/H4. Based on the binding affinities of sNASP variants to histones H1, H3.3, H4 and H3.3/H4 complexes, sNASP uses distinct structural domains to interact with linker and core histones. For example, one of the acidic patches of sNASP was essential for linker histone binding but not for core histone interactions. The fourth TPR of sNASP played a critical role in interactions with histone H3/H4 complexes, but did not influence histone H1 binding. Finally, analysis of cellular proteins demonstrated that sNASP existed in distinct complexes that contained either linker or core histones.
Collapse
Affiliation(s)
- Huanyu Wang
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
45
|
The C-terminus of histone H2B is involved in chromatin compaction specifically at telomeres, independently of its monoubiquitylation at lysine 123. PLoS One 2011; 6:e22209. [PMID: 21829450 PMCID: PMC3146481 DOI: 10.1371/journal.pone.0022209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/17/2011] [Indexed: 12/11/2022] Open
Abstract
Telomeric heterochromatin assembly in budding yeast propagates through the association of Silent Information Regulator (SIR) proteins with nucleosomes, and the nucleosome array has been assumed to fold into a compacted structure. It is believed that the level of compaction and gene repression within heterochromatic regions can be modulated by histone modifications, such as acetylation of H3 lysine 56 and H4 lysine 16, and monoubiquitylation of H2B lysine 123. However, it remains unclear as to whether or not gene silencing is a direct consequence of the compaction of chromatin. Here, by investigating the role of the carboxy-terminus of histone H2B in heterochromatin formation, we identify that the disorderly compaction of chromatin induced by a mutation at H2B T122 specifically hinders telomeric heterochromatin formation. H2B T122 is positioned within the highly conserved AVTKY motif of the αC helix of H2B. Heterochromatin containing the T122E substitution in H2B remains inaccessible to ectopic dam methylase with dramatically increased mobility in sucrose gradients, indicating a compacted chromatin structure. Genetic studies indicate that this unique phenotype is independent of H2B K123 ubiquitylation and Sir4. In addition, using ChIP analysis, we demonstrate that telomere structure in the mutant is further disrupted by a defect in Sir2/Sir3 binding and the resulting invasion of euchromatic histone marks. Thus, we have revealed that the compaction of chromatin per se is not sufficient for heterochromatin formation. Instead, these results suggest that an appropriately arrayed chromatin mediated by H2B C-terminus is required for SIR binding and the subsequent formation of telomeric chromatin in yeast, thereby identifying an intrinsic property of the nucleosome that is required for the establishment of telomeric heterochromatin. This requirement is also likely to exist in higher eukaryotes, as the AVTKY motif of H2B is evolutionarily conserved.
Collapse
|
46
|
Parthun MR. Histone acetyltransferase 1: more than just an enzyme? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:256-63. [PMID: 24459728 DOI: 10.1016/j.bbagrm.2011.07.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/29/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
Histone acetyltransferase 1 (HAT1) is an enzyme that is likely to be responsible for the acetylation that occurs on lysines 5 and 12 of the NH2-terminal tail of newly synthesized histone H4. Initial studies suggested that, despite its evolutionary conservation, this modification of new histone H4 played only a minor role in chromatin assembly. However, a number of recent studies have brought into focus the important role of both this modification and HAT1 in histone dynamics. Surprisingly, the function of HAT1 in chromatin assembly may extend beyond just its catalytic activity to include its role as a major histone binding protein. These results are incorporated into a model for the function of HAT1 in histone deposition and chromatin assembly. This article is part of a Special issue entitled: Histone chaperones and Chromatin assembly.
Collapse
Affiliation(s)
- Mark R Parthun
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
47
|
Genetic interactions between POB3 and the acetylation of newly synthesized histones. Curr Genet 2011; 57:271-86. [PMID: 21656278 DOI: 10.1007/s00294-011-0347-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/13/2011] [Accepted: 05/14/2011] [Indexed: 10/18/2022]
Abstract
Pob3p is an essential component of the S. cerevisiae FACT complex (yFACT). Several lines of evidence indicate that the yFACT complex plays an important role in chromatin assembly including the observation that the pob3 Q308K allele is synthetically lethal with an allele of histone H4 that prevents the diacetylation of newly synthesized molecules. We have analyzed the genetic interactions between the Q308K allele of POB3 and mutations in all of the sites of acetylation that have been identified on newly synthesized histones. Genetic interactions were observed between POB3 and sites of acetylation on the NH(2)-terminal tails of H3 and H4. For histone H3, lysine residues 14 and 23 were particularly important when POB3 activity is compromised. Surprisingly, synthetic defects observed when the pob3 Q308K allele was combined with mutations of H4 lysines 5 and 12, were not phenocopied by deletion of HAT1, which encodes the enzyme that is thought to generate this pattern of acetylation on H4. Genetic interactions were also observed between POB3 and sites of acetylation found in the core domain of newly synthesized histones H3 and H4. These include synthetic lethality with an allele of H4 lysine 91 that mimics constitutive acetylation. While the mutations that alter H4 lysines 5, 12 and 91 do not affect binding to Pob3p, mutation of histone H3 lysine 56 decreases the association of histones with Pob3p. These results support the model that the yFACT complex plays a central role in chromatin assembly pathways regulated by acetylation of newly synthesized histones.
Collapse
|
48
|
Ge Z, Wang H, Parthun MR. Nuclear Hat1p complex (NuB4) components participate in DNA repair-linked chromatin reassembly. J Biol Chem 2011; 286:16790-9. [PMID: 21454479 DOI: 10.1074/jbc.m110.216846] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin is disassembled and reassembled during DNA repair. To assay chromatin reassembly accompanying DNA double strand break repair, ChIP analysis can be used to monitor the presence of histone H3 near the lesion. The chromatin assembly factor Asf1p, as well as the acetylation of histone H3 lysine 56, have been shown to promote chromatin reassembly when DNA double strand break repair is complete. Using Gal-HO-mediated double strand break repair, we have tested each of the components of the nuclear Hat1p-containing type B histone acetyltransferase complex (NuB4) and have found that they can affect repair-linked chromatin reassembly but that their contributions are not equivalent. In particular, deletion of the catalytic subunit, Hat1p, caused a significant defect in chromatin reassembly. In addition, loss of the histone chaperone Hif1p, when combined with an allele of H3 that mutates lysines 14 and 23 to arginine, has a pronounced effect on chromatin reassembly that is similar to that observed in an asf1Δ. The role of Hat1p and Hif1p is at least partially redundant with the role of Asf1p. Consistent with a more prominent role for Hif1p in chromatin reassembly than either Hat1p or Hat2p, Hif1p exists in complex(es) independent of Hat1p and Hat2p and influences the activity of an H3-specific histone acetyltransferase activity. Our data directly demonstrate the role of the nuclear HAT1 complex (NuB4) components in DNA repair-linked chromatin reassembly.
Collapse
Affiliation(s)
- Zhongqi Ge
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
49
|
The program for processing newly synthesized histones H3.1 and H4. Nat Struct Mol Biol 2010; 17:1343-51. [PMID: 20953179 PMCID: PMC2988979 DOI: 10.1038/nsmb.1911] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 08/17/2010] [Indexed: 12/31/2022]
Abstract
The mechanism by which newly synthesized histones are imported into the nucleus and deposited onto replicating chromatin alongside segregating nucleosomal counterparts is poorly understood, yet this program is expected to bear on the putative epigenetic nature of histone posttranslational modifications. In order to define the events by which naïve pre-deposition histones are imported into the nucleus, we biochemically purified and characterized the gamut of histone H3.1-containing complexes from human cytoplasmic fractions and identified their associated histone PTMs. Through reconstitution assays, biophysical analyses, and live cell manipulations, we describe in detail this series of events, namely the assembly of H3-H4 dimers, the acetylation of histones by the HAT1 holoenzyme, and the transfer of histones between chaperones that culminates with their karyopherin-mediated nuclear import. We further demonstrate the high degree of conservation for this pathway between higher and lower eukaryotes.
Collapse
|
50
|
Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med 2010; 16:774-80. [PMID: 20601951 DOI: 10.1038/nm.2175] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 06/03/2010] [Indexed: 12/12/2022]
Abstract
Candida albicans is a major fungal pathogen that causes serious systemic and mucosal infections in immunocompromised individuals. In yeast, histone H3 Lys56 acetylation (H3K56ac) is an abundant modification regulated by enzymes that have fungal-specific properties, making them appealing targets for antifungal therapy. Here we demonstrate that H3K56ac in C. albicans is regulated by the RTT109 and HST3 genes, which respectively encode the H3K56 acetyltransferase (Rtt109p) and deacetylase (Hst3p). We show that reduced levels of H3K56ac sensitize C. albicans to genotoxic and antifungal agents. Inhibition of Hst3p activity by conditional gene repression or nicotinamide treatment results in a loss of cell viability associated with abnormal filamentous growth, histone degradation and gross aberrations in DNA staining. We show that genetic or pharmacological alterations in H3K56ac levels reduce virulence in a mouse model of C. albicans infection. Our results demonstrate that modulation of H3K56ac is a unique strategy for treatment of C. albicans and, possibly, other fungal infections.
Collapse
|