1
|
Montoya A, Wisniewski M, Goodsell JL, Angerhofer A. Bidentate Substrate Binding Mode in Oxalate Decarboxylase. Molecules 2024; 29:4414. [PMID: 39339409 PMCID: PMC11433825 DOI: 10.3390/molecules29184414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Oxalate decarboxylase is an Mn- and O2-dependent enzyme in the bicupin superfamily that catalyzes the redox-neutral disproportionation of the oxalate monoanion to form carbon dioxide and formate. Its best-studied isozyme is from Bacillus subtilis where it is stress-induced under low pH conditions. Current mechanistic schemes assume a monodentate binding mode of the substrate to the N-terminal active site Mn ion to make space for a presumed O2 molecule, despite the fact that oxalate generally prefers to bind bidentate to Mn. We report on X-band 13C-electron nuclear double resonance (ENDOR) experiments on 13C-labeled oxalate bound to the active-site Mn(II) in wild-type oxalate decarboxylase at high pH, the catalytically impaired W96F mutant enzyme at low pH, and Mn(II) in aqueous solution. The ENDOR spectra of these samples are practically identical, which shows that the substrate binds bidentate (κO, κO') to the active site Mn(II) ion. Domain-based local pair natural orbital coupled cluster singles and doubles (DLPNO-CCSD) calculations of the expected 13C hyperfine coupling constants for bidentate bound oxalate predict ENDOR spectra in good agreement with the experiment, supporting bidentate bound substrate. Geometry optimization of a substrate-bound minimal active site model by density functional theory shows two possible substrate coordination geometries, bidentate and monodentate. The bidentate structure is energetically preferred by ~4.7 kcal/mol. Our results revise a long-standing hypothesis regarding substrate binding in the enzyme and suggest that dioxygen does not bind to the active site Mn ion after substrate binds. The results are in agreement with our recent mechanistic hypothesis of substrate activation via a long-range electron transfer process involving the C-terminal Mn ion.
Collapse
Affiliation(s)
| | | | | | - Alexander Angerhofer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Britt RD, Rauchfuss TB, Rao G. The H-cluster of [FeFe] Hydrogenases: Its Enzymatic Synthesis and Parallel Inorganic Semisynthesis. Acc Chem Res 2024; 57:1941-1950. [PMID: 38937148 PMCID: PMC11256358 DOI: 10.1021/acs.accounts.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
ConspectusNature's prototypical hydrogen-forming catalysts─hydrogenases─have attracted much attention because they catalyze hydrogen evolution at near zero overpotential and ambient conditions. Beyond any possible applications in the energy sphere, the hydrogenases feature complicated active sites, which implies novel biosynthetic pathways. In terms of the variety of cofactors, the [FeFe]-hydrogenase is among the most complex.For more than a decade, we have worked on the biosynthesis of the active site of [FeFe] hydrogenases. This site, the H-cluster, is a six-iron ensemble consisting of a [4Fe-4S]H cluster linked to a [2Fe]H cluster that is coordinated to CO, cyanide, and a unique organic azadithiolate ligand. Many years ago, three enzymes, namely, HydG, HydE, and HydF, were shown to be required for the biosynthesis and the in vitro maturation of [FeFe] hydrogenases. The structures of the maturases were determined crystallographically, but still little progress was made on the biosynthetic pathway. As described in this Account, the elucidation of the biosynthetic pathway began in earnest with the identification of a molecular iron-cysteinate complex produced within HydG.In this Account, we present our most recent progress toward the molecular mechanism of [2Fe]H biosynthesis using a collaborative approach involving cell-free biosynthesis, isotope and element-sensitive spectroscopies, as well as inorganic synthesis of purported biosynthetic intermediates. Our study starts from the radical SAM enzyme HydG that lyses tyrosine into CO and cyanide and forms an Fe(CO)2(CN)-containing species. Crystallographic identification of a unique auxiliary 5Fe-4S cluster in HydG leads to a proposed catalytic cycle in which a free cysteine-chelated "dangler" Fe serves as the platform for the stepwise formation of a [4Fe-4S][Fe(CO)(CN)(cysteinate)] intermediate, which releases the [Fe(CO)2(CN)(cysteinate)] product, Complex B. Since Complex B is unstable, we applied synthetic organometallic chemistry to make an analogue, syn-B, and showed that it fully replaces HydG in the in vitro maturation of the H-cluster. Syn-B serves as the substrate for the next radical SAM enzyme HydE, where the low-spin Fe(II) center is activated by 5'-dAdo• to form an adenosylated Fe(I) intermediate. We propose that this Fe(I) species strips the carbon backbone and dimerizes in HydE to form a [Fe2(SH)2(CO)4(CN)2]2- product. This mechanistic scenario is supported by the use of a synthetic version of this dimer complex, syn-dimer, which allows for the formation of active hydrogenase with only the HydF maturase. Further application of this semisynthesis strategy shows that an [Fe2(SCH2NH2)2(CO)4(CN)2]2- complex can activate the apo hydrogenase, marking it as the last biosynthetic intermediate en route to the H-cluster. This combined enzymatic and semisynthetic approach greatly accelerates our understanding of H-cluster biosynthesis. We anticipate additional mechanistic details regarding H-cluster biosynthesis to be gleaned, and this methodology may be further applied in the study of other complex metallocofactors.
Collapse
Affiliation(s)
- R. David Britt
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United
States
| | - Thomas B. Rauchfuss
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61820, United States
| | - Guodong Rao
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United
States
| |
Collapse
|
3
|
Zan X, Yan Y, Chen G, Sun L, Wang L, Wen Y, Xu Y, Zhang Z, Li X, Yang Y, Sun W, Cui F. Recent Advances of Oxalate Decarboxylase: Biochemical Characteristics, Catalysis Mechanisms, and Gene Expression and Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10163-10178. [PMID: 38653191 DOI: 10.1021/acs.jafc.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Oxalate decarboxylase (OXDC) is a typical Mn2+/Mn3+ dependent metal enzyme and splits oxalate to formate and CO2 without any organic cofactors. Fungi and bacteria are the main organisms expressing the OXDC gene, but with a significantly different mechanism of gene expression and regulation. Many articles reported its potential applications in the clinical treatment of hyperoxaluria, low-oxalate food processing, degradation of oxalate salt deposits, oxalate acid diagnostics, biocontrol, biodemulsifier, and electrochemical oxidation. However, some questions still remain to be clarified about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II)/Mn(III), the nature of dioxygen involved in the catalytic mechanism, and how OXDC acquires Mn(II) /Mn(III). This review mainly summarizes its biochemical and structure characteristics, gene expression and regulation, and catalysis mechanism. We also deep-mined oxalate decarboxylase gene data from National Center for Biotechnology Information to give some insights to explore new OXDC with diverse biochemical properties.
Collapse
Affiliation(s)
- Xinyi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ying Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Gege Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Linhan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yixin Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuting Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ziying Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xinlin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yumeng Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
4
|
Pastore AJ, Montoya A, Kamat M, Basso KB, Italia JS, Chatterjee A, Drosou M, Pantazis DA, Angerhofer A. Selective incorporation of 5-hydroxytryptophan blocks long range electron transfer in oxalate decarboxylase. Protein Sci 2023; 32:e4537. [PMID: 36482787 PMCID: PMC9801070 DOI: 10.1002/pro.4537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Oxalate decarboxylase from Bacillus subtilis is a binuclear Mn-dependent acid stress response enzyme that converts the mono-anion of oxalic acid into formate and carbon dioxide in a redox neutral unimolecular disproportionation reaction. A π-stacked tryptophan dimer, W96 and W274, at the interface between two monomer subunits facilitates long-range electron transfer between the two Mn ions and plays an important role in the catalytic mechanism. Substitution of W96 with the unnatural amino acid 5-hydroxytryptophan leads to a persistent EPR signal which can be traced back to the neutral radical of 5-hydroxytryptophan with its hydroxyl proton removed. 5-Hydroxytryptophan acts as a hole sink preventing the formation of Mn(III) at the N-terminal active site and strongly suppresses enzymatic activity. The lower boundary of the standard reduction potential for the active site Mn(II)/Mn(III) couple can therefore be estimated as 740 mV against the normal hydrogen electrode at pH 4, the pH of maximum catalytic efficiency. Our results support the catalytic importance of long-range electron transfer in oxalate decarboxylase while at the same time highlighting the utility of unnatural amino acid incorporation and specifically the use of 5-hydroxytryptophan as an energetic sink for hole hopping to probe electron transfer in redox proteins.
Collapse
Affiliation(s)
| | - Alvaro Montoya
- Department of ChemistryUniversity of FloridaGainesvilleFloridaUSA
| | - Manasi Kamat
- Department of ChemistryUniversity of FloridaGainesvilleFloridaUSA
| | - Kari B. Basso
- Department of ChemistryUniversity of FloridaGainesvilleFloridaUSA
| | - James S. Italia
- Department of ChemistryBoston CollegeChestnut HillMassachusettsUSA
| | | | - Maria Drosou
- Max‐Planck‐Institut für KohlenforschungMülheim an der RuhrGermany
| | | | | |
Collapse
|
5
|
Rada S, Unguresan M, Zagrai M, Popa A. Structural, Optical, and Magnetic Studies of the Metallic Lead Effect on MnO 2-Pb-PbO 2 Vitroceramics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8061. [PMID: 36431545 PMCID: PMC9695882 DOI: 10.3390/ma15228061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
MnO2-lead materials have attracted attention in their applications as electrodes. This work reports a detailed spectroscopic study of the compositional variation of MnO2-xLead vitroceramic materials with varied Pb contents. The concentration variation of lead and manganese ions issystematically characterized throughthe analysis of X-ray diffraction (XRD), Fourier transform infrared (FTIR), ultraviolet-visible (UV-Vis), and electron paramagnetic resonance (EPR) spectroscopy.The MnO2-xLead samples consist of a vitroceramic structure with Pb, PbO, PbO2,and Mn3O4 crystalline phases. The introduction of higher Pb content in the host vitroceramic reveals the [PbO6]→[PbOn] conversion, where n = 3, 4, and the formation of distorted [MnO6] octahedral units. The UV-Vis data of the samples possess the intense bands between 300 and 500 nm, which are due to the presence of divalent lead ions (320 nm) and divalent and trivalent manganese ions (420 and 490 nm, respectively) in the structure of glass ceramics. The EPR data show resonance lines located around g ~ 8 and 4.3, and a sextet hyperfine structure at g ~ 2, which isascribed to the Mn+3 and Mn+2 ions.
Collapse
Affiliation(s)
- Simona Rada
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 400020 Cluj-Napoca, Romania
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Mihaela Unguresan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 400020 Cluj-Napoca, Romania
| | - Mioara Zagrai
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Adriana Popa
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Structure, XAS analysis, and voltammetric study of copper–manganese-doped electrode materials obtained by recycling of a lead–acid battery. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Paramagnetic resonance investigation of mono- and di-manganese-containing systems in biochemistry. Methods Enzymol 2022; 666:315-372. [DOI: 10.1016/bs.mie.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Pastore AJ, Teo RD, Montoya A, Burg MJ, Twahir UT, Bruner SD, Beratan DN, Angerhofer A. Oxalate decarboxylase uses electron hole hopping for catalysis. J Biol Chem 2021; 297:100857. [PMID: 34097877 PMCID: PMC8254039 DOI: 10.1016/j.jbc.2021.100857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 01/16/2023] Open
Abstract
The hexameric low-pH stress response enzyme oxalate decarboxylase catalyzes the decarboxylation of the oxalate mono-anion in the soil bacterium Bacillus subtilis. A single protein subunit contains two Mn-binding cupin domains, and catalysis depends on Mn(III) at the N-terminal site. The present study suggests a mechanistic function for the C-terminal Mn as an electron hole donor for the N-terminal Mn. The resulting spatial separation of the radical intermediates directs the chemistry toward decarboxylation of the substrate. A π-stacked tryptophan pair (W96/W274) links two neighboring protein subunits together, thus reducing the Mn-to-Mn distance from 25.9 Å (intrasubunit) to 21.5 Å (intersubunit). Here, we used theoretical analysis of electron hole-hopping paths through redox-active sites in the enzyme combined with site-directed mutagenesis and X-ray crystallography to demonstrate that this tryptophan pair supports effective electron hole hopping between the C-terminal Mn of one subunit and the N-terminal Mn of the other subunit through two short hops of ∼8.5 Å. Replacement of W96, W274, or both with phenylalanine led to a large reduction in catalytic efficiency, whereas replacement with tyrosine led to recovery of most of this activity. W96F and W96Y mutants share the wildtype tertiary structure. Two additional hole-hopping networks were identified leading from the Mn ions to the protein surface, potentially protecting the enzyme from high Mn oxidation states during turnover. Our findings strongly suggest that multistep hole-hopping transport between the two Mn ions is required for enzymatic function, adding to the growing examples of proteins that employ aromatic residues as hopping stations.
Collapse
Affiliation(s)
- Anthony J Pastore
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Ruijie D Teo
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Alvaro Montoya
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Matthew J Burg
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Umar T Twahir
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina, USA.
| | | |
Collapse
|
9
|
Stathi P, Louloudi M, Deligiannakis Y. EPR monitoring of in-situ catalytic oxidative assembly of MnIII-MnIV dimers via monomeric MnIV = O. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Murgas CJ, Green SP, Forney AK, Korba RM, An SS, Kitten T, Lucas HR. Intracellular Metal Speciation in Streptococcus sanguinis Establishes SsaACB as Critical for Redox Maintenance. ACS Infect Dis 2020; 6:1906-1921. [PMID: 32329608 DOI: 10.1021/acsinfecdis.0c00132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Streptococcus sanguinis is an oral commensal bacterium, but it can colonize pre-existing heart valve vegetations if introduced into the bloodstream, leading to infective endocarditis. Loss of Mn- or Fe-cofactored virulence determinants are thought to result in weakening of this bacterium. Indeed, intracellular Mn accumulation mediated by the lipoprotein SsaB, a component of the SsaACB transporter complex, has been shown to promote virulence for endocarditis and O2 tolerance. To delineate intracellular metal-ion abundance and redox speciation within S. sanguinis, we developed a protocol exploiting two spectroscopic techniques, Inductively coupled plasma-optical emission spectrometry (ICP-OES) and electron paramagnetic resonance (EPR) spectroscopy, to respectively quantify total intracellular metal concentrations and directly measure redox speciation of Fe and Mn within intact whole-cell samples. Addition of the cell-permeable siderophore deferoxamine shifts the oxidation states of accessible Fe and Mn from reduced-to-oxidized, as verified by magnetic moment calculations, aiding in the characterization of intracellular metal pools and metal sequestration levels for Mn2+ and Fe. We have applied this methodology to S. sanguinis and an SsaACB knockout strain (ΔssaACB), indicating that SsaACB mediates both Mn and Fe uptake, directly influencing the metal-ion pools available for biological inorganic pathways. Mn supplementation of ΔssaACB returns total intracellular Mn to wild-type levels, but it does not restore wild-type redox speciation or distribution of metal cofactor availability for either Mn or Fe. Our results highlight the biochemical basis for S. sanguinis oxidative resistance, revealing a dynamic role for SsaACB in controlling redox homeostasis by managing the intracellular Fe/Mn composition and distribution.
Collapse
Affiliation(s)
- Cody J. Murgas
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Shannon P. Green
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Ashley K. Forney
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Rachel M. Korba
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Seon-Sook An
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Heather R. Lucas
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
11
|
Dangeti S, McBeth JM, Roshani B, Vyskocil JM, Rindall B, Chang W. Microbial communities and biogenic Mn-oxides in an on-site biofiltration system for cold Fe-(II)- and Mn(II)-rich groundwater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136386. [PMID: 31927292 DOI: 10.1016/j.scitotenv.2019.136386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
This study investigated relationships between microbial communities, groundwater chemistry, and geochemical and mineralogical characteristics in field-aged biofilter media from a two-stage, pilot-scale, flow-through biofiltration unit designed to remove Fe(II) and Mn(II) from cold groundwater (8 to 15 °C). High-throughput 16S rRNA gene amplicon sequencing of influent groundwater and biofilter samples (solids, effluents, and backwash water) revealed significant differences in the groundwater, Fe filter, and Mn filter communities. These community differences reflect conditions in each filter that select for populations that biologically oxidize Fe(II) and Mn(II) in the two filters, respectively. Genera identified in both filters included relatives of known Fe(II)-oxidizing bacteria (FeOB), Mn(II)-oxidizing bacteria (MnOB), and ammonia-oxidizing bacteria (AOB). Relatives of AOB and nitrite-oxidizing bacteria were abundant in sequencing reads from both filters. Relatives of FeOB in class Betaproteobacteria dominated the Fe filter. Taxa related to Mn-oxidizing organisms were minor members of the Mn-filter communities; intriguingly, while Alphaproteobacteria dominated (40 ± 10% of sequencing reads) the Mn filter community, these Alphaproteobacteria did not classify as known MnOB. Isolates from Fe and Mn filter backwash enrichment studies provide insight on the identity of MnOB in this system. Novel putative MnOB isolates included Azospirillum sp. CDMB, Solimonas soli CDMK, and Paenibacillus sp. CDME. The isolate Hydrogenophaga strain CDMN can oxidize Mn(II) at 8 °C; this known FeOB is likely capable of Mn(II) oxidation in this system. Synchrotron-based X-ray near-edge spectroscopy (XANES) coupled with electron paramagnetic resonance (EPR) revealed the dominant Mn-oxide that formed was biogenic birnessite. Co-existence of amorphous and crystallized Mn-oxide surface morphologies on the Mn-filter media suggest occurrence of both biological and autocatalytic Mn(II) oxidation in the biofilter. This study provides evidence that biofiltration is a viable approach to remove iron, manganese, and ammonia in cold groundwater systems, and that mineralogical and microbiological approaches can be used to monitor biofiltration system efficacy and function.
Collapse
Affiliation(s)
- Sandeepraja Dangeti
- Department of Civil, Geological, and Environmental Engineering, University of Saskatchewan, Saskatoon, SK, Canada; Delco Water Division, Delco Automation, Inc., Saskatoon, SK, Canada
| | - Joyce M McBeth
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Babak Roshani
- Delco Water Division, Delco Automation, Inc., Saskatoon, SK, Canada
| | - Jonathan M Vyskocil
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brian Rindall
- Delco Water Division, Delco Automation, Inc., Saskatoon, SK, Canada
| | - Wonjae Chang
- Department of Civil, Geological, and Environmental Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
12
|
Twahir UT, Ozarowski A, Angerhofer A. Redox Cycling, pH Dependence, and Ligand Effects of Mn(III) in Oxalate Decarboxylase from Bacillus subtilis. Biochemistry 2016; 55:6505-6516. [DOI: 10.1021/acs.biochem.6b00891] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Umar T. Twahir
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Alexander Angerhofer
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
13
|
Binding of transition metals to monosilicic acid in aqueous and xylem (Cucumis sativus L.) solutions: a low-T electron paramagnetic resonance study. Biometals 2016; 29:945-51. [PMID: 27502949 DOI: 10.1007/s10534-016-9966-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/31/2016] [Indexed: 01/07/2023]
Abstract
The supplementation of monosilicic acid [Si(OH)4] to the root growing medium is known to protect plants from toxic levels of iron (Fe), copper (Cu) and manganese (Mn), but also to mitigate deficiency of Fe and Mn. However, the physicochemical bases of these alleviating mechanisms are not fully understood. Here we applied low-T electron paramagnetic resonance (EPR) spectroscopy to examine the formation of complexes of Si(OH)4 with Mn(2+), Fe(3+), and Cu(2+) in water and in xylem sap of cucumber (Cucumis sativus L.) grown without or with supply of Si(OH)4. EPR, which is also useful in establishing the redox state of these metals, was combined with measurements of total concentrations of metals in xylem sap by inductive coupled plasma. Our results show that Si(OH)4 forms coordination bonds with all three metals. The strongest interactions of Si(OH)4 appear to be with Cu(2+) (1/1 stoichiometry) which might lead to Cu precipitation. In line with this in vitro findings, Si(OH)4 supply to cucumber resulted in dramatically lower concentration of this metal in the xylem sap. Further, it was demonstrated that Si(OH)4 supplementation causes pro-reductive changes that contribute to the maintenance of Fe and, in particular, Mn in the xylem sap in bioavailable 2+ form. Our results shed more light on the intertwined reactions between Si(OH)4 and transition metals in plant fluids (e.g. xylem sap).
Collapse
|
14
|
Popović-Bijelić A, Mojović M, Stamenković S, Jovanović M, Selaković V, Andjus P, Bačić G. Iron-sulfur cluster damage by the superoxide radical in neural tissues of the SOD1(G93A) ALS rat model. Free Radic Biol Med 2016; 96:313-22. [PMID: 27130034 DOI: 10.1016/j.freeradbiomed.2016.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 12/12/2022]
Abstract
Extensive clinical investigations, in hand with biochemical and biophysical research, have associated brain iron accumulation with the pathogenesis of the amyotrophic lateral sclerosis (ALS) disease. The origin of iron is still not identified, but it is proposed that it forms redox active complexes that can participate in the Fenton reaction generating the toxic hydroxyl radical. In this paper, the state of iron in the neural tissues isolated from SOD1(G93A) transgenic rats was investigated using low temperature EPR spectroscopy and is compared with that of nontransgenic (NTg) littermates. The results showed that iron in neural tissues is present as high- and low-spin, heme and non-heme iron. It appears that the SOD1(G93A) rat neural tissues were most likely exposed in vivo to higher amounts of reactive oxygen species when compared to the corresponding NTg tissues, as they showed increased oxidized [3Fe-4S](1+) cluster content relative to [4Fe-4S](1+). Also, the activity of cytochrome c oxidase (CcO) was found to be reduced in these tissues, which may be associated with the observed uncoupling of heme a3 Fe and CuB in the O2-reduction site of the enzyme. Furthermore, the SOD1(G93A) rat spinal cords and brainstems contained more manganese, presumably from MnSOD, than those of NTg rats. The addition of potassium superoxide to all neural tissues ex vivo, led to the [4Fe-4S]→[3Fe-4S] cluster conversion and concurrent release of Fe. These results suggest that the superoxide anion may be the cause of the observed oxidative damage to SOD1(G93A) rat neural tissues and that the iron-sulfur clusters may be the source of poorly liganded redox active iron implicated in ALS pathogenesis. Low temperature EPR spectroscopy appears to be a valuable tool in assessing the role of metals in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Popović-Bijelić
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia.
| | - Miloš Mojović
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Stefan Stamenković
- University of Belgrade - Faculty of Biology, Center for Laser Microscopy, Studentski trg 3, 11158 Belgrade, Serbia
| | - Miloš Jovanović
- University of Belgrade - Faculty of Biology, Center for Laser Microscopy, Studentski trg 3, 11158 Belgrade, Serbia
| | - Vesna Selaković
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Pavle Andjus
- University of Belgrade - Faculty of Biology, Center for Laser Microscopy, Studentski trg 3, 11158 Belgrade, Serbia
| | - Goran Bačić
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
15
|
Zhu W, Wilcoxen J, Britt RD, Richards NGJ. Formation of Hexacoordinate Mn(III) in Bacillus subtilis Oxalate Decarboxylase Requires Catalytic Turnover. Biochemistry 2016; 55:429-34. [PMID: 26744902 DOI: 10.1021/acs.biochem.5b01340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxalate decarboxylase (OxDC) catalyzes the disproportionation of oxalic acid monoanion into CO2 and formate. The enzyme has long been hypothesized to utilize dioxygen to form mononuclear Mn(III) or Mn(IV) in the catalytic site during turnover. Recombinant OxDC, however, contains only tightly bound Mn(II), and direct spectroscopic detection of the metal in higher oxidation states under optimal catalytic conditions (pH 4.2) has not yet been reported. Using parallel mode electron paramagnetic resonance spectroscopy, we now show that substantial amounts of Mn(III) are indeed formed in OxDC, but only in the presence of oxalate and dioxygen under acidic conditions. These observations provide the first direct support for proposals in which Mn(III) removes an electron from the substrate to yield a radical intermediate in which the barrier to C-C bond cleavage is significantly decreased. Thus, OxDC joins a small list of enzymes capable of stabilizing and controlling the reactivity of the powerful oxidizing species Mn(III).
Collapse
Affiliation(s)
- Wen Zhu
- Department of Chemistry & Chemical Biology, Indiana University Purdue University Indianapolis , Indianapolis, Indiana 46202, United States
| | - Jarett Wilcoxen
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Nigel G J Richards
- Department of Chemistry & Chemical Biology, Indiana University Purdue University Indianapolis , Indianapolis, Indiana 46202, United States
| |
Collapse
|
16
|
Reactions of superoxide dismutases with HS−/H2S and superoxide radical anion: An in vitro EPR study. Nitric Oxide 2015; 51:19-23. [DOI: 10.1016/j.niox.2015.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 01/10/2023]
|
17
|
Immobilization of Bacillus subtilis oxalate decarboxylase on a Zn-IMAC resin. Biochem Biophys Rep 2015; 4:98-103. [PMID: 29124192 PMCID: PMC5668902 DOI: 10.1016/j.bbrep.2015.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 11/21/2022] Open
Abstract
Oxalate decarboxylase, a bicupin enzyme coordinating two essential manganese ions per subunit, catalyzes the decomposition of oxalate into carbon dioxide and formate in the presence of oxygen. Current efforts to elucidate its catalytic mechanism are focused on EPR studies of the Mn. We report on a new immobilization strategy linking the enzyme's N-terminal His6-tag to a Zn-loaded immobilized metal affinity resin. Activity is lowered somewhat due to the expected crowding effect. High-field EPR spectra of free and immobilized enzyme show that the resin affects the coordination environment of the active site Mn ions only minimally. The immobilized preparation was used to study the effect of varying pH on the same sample. Repeated freeze-thaw cycles lead to break down of the resin beads and some enzyme loss from the sample. However, the EPR signal increases due to higher packing efficiency on the sample column. Immobilization of Oxalate decarboxylase on Zn-IMAC resin. Overall KM is unaffected after immobilization. Immobilized enzyme exhibits lower overall activity due to crowding on the resin. High-field EPR confirms minimal perturbations of manganese sites due to immobilization.
Collapse
|
18
|
Tao L, Stich TA, Butterfield CN, Romano CA, Spiro TG, Tebo BM, Casey WH, Britt RD. Mn(II) Binding and Subsequent Oxidation by the Multicopper Oxidase MnxG Investigated by Electron Paramagnetic Resonance Spectroscopy. J Am Chem Soc 2015; 137:10563-75. [DOI: 10.1021/jacs.5b04331] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Cristina N. Butterfield
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Christine A. Romano
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Thomas G. Spiro
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Bradley M. Tebo
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | | | | |
Collapse
|
19
|
Molt RW, Lecher AM, Clark T, Bartlett RJ, Richards NGJ. Facile C(sp(2))-C(sp(2)) bond cleavage in oxalic acid-derived radicals. J Am Chem Soc 2015; 137:3248-52. [PMID: 25702589 DOI: 10.1021/ja510666r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oxalate decarboxylase (OxDC) catalyzes the Mn-dependent conversion of the oxalate monoanion into CO2 and formate. Many questions remain about the catalytic mechanism of OxDC although it has been proposed that the reaction proceeds via substrate-based radical intermediates. Using coupled cluster theory combined with implicit solvation models we have examined the effects of radical formation on the structure and reactivity of oxalic acid-derived radicals in aqueous solution. Our results show that the calculated solution-phase free-energy barrier for C-C bond cleavage to form CO2 is decreased from 34.2 kcal/mol for oxalic acid to only 9.3 kcal/mol and a maximum of 3.5 kcal/mol for the cationic and neutral oxalic acid-derived radicals, respectively. These studies also show that the C-C σ bonding orbital of the radical cation contains only a single electron, giving rise to an elongated C-C bond distance of 1.7 Å; a similar lengthening of the C-C bond is not observed for the neutral radical. This study provides new chemical insights into the structure and stability of plausible intermediates in the catalytic mechanism of OxDC, and suggests that removal of an electron to form a radical (with or without the concomitant loss of a proton) may be a general strategy for cleaving the unreactive C-C bonds between adjacent sp(2)-hybridized carbon atoms.
Collapse
Affiliation(s)
- Robert W Molt
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University , Indianapolis, Indiana 46202, United States
| | | | | | | | | |
Collapse
|
20
|
Karmakar T, Periyasamy G, Balasubramanian S. CO2 migration pathways in oxalate decarboxylase and clues about its active site. J Phys Chem B 2013; 117:12451-60. [PMID: 24053484 DOI: 10.1021/jp4074834] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oxalate decarboxylase catalyzes the decarboxylation of oxalate to formate and CO2 in the presence of molecular oxygen. This enzyme has two domains, each containing a Mn(II) ion coordinated with three histidine residues. The specific domain in which the decarboxylation process takes place is still a matter of investigation. Herein, the transport of the product, i.e., CO2, from the reaction center to the surface of the enzyme is studied using atomistic molecular dynamics simulations. The specific pathway for the migration of the molecule as well as its microscopic interactions with the amino acid residues lining the path is delineated. Further, the transport of CO2 is shown to occur in a facile manner from only domain I and not from domain II, indicating that the former is likely to be the active site of the enzyme.
Collapse
Affiliation(s)
- Tarak Karmakar
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064, India
| | | | | |
Collapse
|
21
|
Saylor BT, Reinhardt LA, Lu Z, Shukla MS, Nguyen L, Cleland WW, Angerhofer A, Allen KN, Richards NGJ. A structural element that facilitates proton-coupled electron transfer in oxalate decarboxylase. Biochemistry 2012; 51:2911-20. [PMID: 22404040 PMCID: PMC3319475 DOI: 10.1021/bi300001q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The conformational properties of an active-site loop segment, defined by residues Ser(161)-Glu(162)-Asn(163)-Ser(164), have been shown to be important for modulating the intrinsic reactivity of Mn(II) in the active site of Bacillus subtilis oxalate decarboxylase. We now detail the functional and structural consequences of removing a conserved Arg/Thr hydrogen-bonding interaction by site-specific mutagenesis. Hence, substitution of Thr-165 by a valine residue gives an OxDC variant (T165V) that exhibits impaired catalytic activity. Heavy-atom isotope effect measurements, in combination with the X-ray crystal structure of the T165V OxDC variant, demonstrate that the conserved Arg/Thr hydrogen bond is important for correctly locating the side chain of Glu-162, which mediates a proton-coupled electron transfer (PCET) step prior to decarboxylation in the catalytically competent form of OxDC. In addition, we show that the T165V OxDC variant exhibits a lower level of oxalate consumption per dioxygen molecule, consistent with the predictions of recent spin-trapping experiments [Imaram et al. (2011) Free Radicals Biol. Med. 50, 1009-1015]. This finding implies that dioxygen might participate as a reversible electron sink in two putative PCET steps and is not merely used to generate a protein-based radical or oxidized metal center.
Collapse
Affiliation(s)
| | | | - Zhibing Lu
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Mithila S. Shukla
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Linda Nguyen
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - W. Wallace Cleland
- Institute for Enzyme Research, University of Wisconsin, Madison, WI 53706
| | | | - Karen N. Allen
- Department of Chemistry, Boston University, Boston, MA 02215
| | | |
Collapse
|
22
|
Moussatche P, Angerhofer A, Imaram W, Hoffer E, Uberto K, Brooks C, Bruce C, Sledge D, Richards NGJ, Moomaw EW. Characterization of Ceriporiopsis subvermispora bicupin oxalate oxidase expressed in Pichia pastoris. Arch Biochem Biophys 2011; 509:100-7. [PMID: 21376010 PMCID: PMC3078958 DOI: 10.1016/j.abb.2011.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 01/16/2023]
Abstract
Oxalate oxidase (E.C. 1.2.3.4) catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction that is coupled with the formation of hydrogen peroxide. Although there is currently no structural information available for oxalate oxidase from Ceriporiopsis subvermispora (CsOxOx), sequence data and homology modeling indicate that it is the first manganese-containing bicupin enzyme identified that catalyzes this reaction. Interestingly, CsOxOx shares greatest sequence homology with bicupin microbial oxalate decarboxylases (OxDC). We show that CsOxOx activity directly correlates with Mn content and other metals do not appear to be able to support catalysis. EPR spectra indicate that the Mn is present as Mn(II), and are consistent with the coordination environment expected from homology modeling with known X-ray crystal structures of OxDC from Bacillus subtilis. EPR spin-trapping experiments support the existence of an oxalate-derived radical species formed during turnover. Acetate and a number of other small molecule carboxylic acids are competitive inhibitors for oxalate in the CsOxOx catalyzed reaction. The pH dependence of this reaction suggests that the dominant contribution to catalysis comes from the monoprotonated form of oxalate binding to a form of the enzyme in which an active site carboxylic acid residue must be unprotonated.
Collapse
Affiliation(s)
- Patricia Moussatche
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200
| | - Alexander Angerhofer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200
| | - Witcha Imaram
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200
| | - Eric Hoffer
- Department of Chemistry and Biochemistry, Kennesaw State University, 1000 Chastain Road, Kennesaw, GA 30144-5588
| | - Kelsey Uberto
- Department of Chemistry and Biochemistry, Kennesaw State University, 1000 Chastain Road, Kennesaw, GA 30144-5588
| | - Christopher Brooks
- Department of Chemistry, Gainesville State College, 3820 Mundy Mill Road, Oakwood, GA 30566-3414
| | - Crystal Bruce
- Department of Chemistry, Gainesville State College, 3820 Mundy Mill Road, Oakwood, GA 30566-3414
| | - Daniel Sledge
- Department of Chemistry, Gainesville State College, 3820 Mundy Mill Road, Oakwood, GA 30566-3414
| | - Nigel G. J. Richards
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200
| | - Ellen W. Moomaw
- Department of Chemistry, Gainesville State College, 3820 Mundy Mill Road, Oakwood, GA 30566-3414
- Department of Chemistry and Biochemistry, Kennesaw State University, 1000 Chastain Road, Kennesaw, GA 30144-5588
| |
Collapse
|
23
|
Imaram W, Saylor BT, Centonze CP, Richards NGJ, Angerhofer A. EPR spin trapping of an oxalate-derived free radical in the oxalate decarboxylase reaction. Free Radic Biol Med 2011; 50:1009-15. [PMID: 21277974 PMCID: PMC3070241 DOI: 10.1016/j.freeradbiomed.2011.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 01/01/2011] [Accepted: 01/17/2011] [Indexed: 01/15/2023]
Abstract
EPR spin trapping experiments on bacterial oxalate decarboxylase from Bacillus subtilis under turn-over conditions are described. The use of doubly (13)C-labeled oxalate leads to a characteristic splitting of the observed radical adducts using the spin trap N-tert-butyl-α-phenylnitrone linking them directly to the substrate. The radical was identified as the carbon dioxide radical anion which is a key intermediate in the hypothetical reaction mechanism of both decarboxylase and oxidase activities. X-ray crystallography had identified a flexible loop, SENS161-4, which acts as a lid to the putative active site. Site directed mutagenesis of the hinge amino acids, S161 and T165 was explored and showed increased radical trapping yields compared to the wild type. In particular, T165V shows approximately ten times higher radical yields while at the same time its decarboxylase activity was reduced by about a factor of ten. This mutant lacks a critical H-bond between T165 and R92 resulting in compromised control over its radical chemistry allowing the radical intermediate to leak into the surrounding solution.
Collapse
|
24
|
Kálmán L, Williams JC, Allen JP. Energetics for Oxidation of a Bound Manganese Cofactor in Modified Bacterial Reaction Centers. Biochemistry 2011; 50:3310-20. [PMID: 21375274 DOI: 10.1021/bi1017478] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- L. Kálmán
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - J. C. Williams
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - J. P. Allen
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
25
|
Moral MEG, Tu C, Imaram W, Angerhofer A, Silverman DN, Richards NGJ. Nitric oxide reversibly inhibits Bacillus subtilis oxalate decarboxylase. Chem Commun (Camb) 2011; 47:3111-3. [PMID: 21264418 DOI: 10.1039/c0cc04946h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Membrane inlet mass spectrometry (MIMS) has been employed to assay the catalytic activity of oxalate decarboxylase (OxDC), allowing us to demonstrate that nitric oxide (NO) reversibly inhibits the enzyme under dioxygen-depleted conditions. X-band EPR measurements do not provide any direct evidence for the interaction of NO with either of the Mn(II) centers in OxDC raising the possibility that there is a separate dioxygen-binding pocket in the enzyme.
Collapse
Affiliation(s)
- Mario E G Moral
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
26
|
Sarkar M, Bertolasi V, Ray D. Reaction Medium pH Dependent Existence of Mn
II
Bound [ON] Donor Zwitterionic Chelating Ligand and Self‐Assembly of Hydroxido‐Bridged Mn
II
4
Cluster. Eur J Inorg Chem 2010. [DOI: 10.1002/ejic.201000170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mrinal Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India, Fax: +91‐3222‐82252
| | - Valerio Bertolasi
- Dipartimento di Chimica e Centro di Strutturistica Diffrattometica, Università di Ferrara, via Borsari 46, 44100 Ferrara, Italy
| | - Debashis Ray
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India, Fax: +91‐3222‐82252
| |
Collapse
|
27
|
Moomaw EW, Angerhofer A, Moussatche P, Ozarowski A, García-Rubio I, Richards NGJ. Metal dependence of oxalate decarboxylase activity. Biochemistry 2009; 48:6116-25. [PMID: 19473032 PMCID: PMC2801813 DOI: 10.1021/bi801856k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacillus subtilis oxalate decarboxylase (OxDC) catalyzes the conversion of oxalate into CO(2) and formate. The enzyme is composed of two cupin domains, each of which contains a Mn(II) ion. Although there is general agreement that Mn(II) in the N-terminal domain mediates OxDC-catalyzed decarboxylation, legitimate questions have been raised concerning the function (if any) of the Mn(II) bound in the C-terminal cupin domain. We have investigated this problem using a series of OxDC mutants in which Mn(II) binding is perturbed by mutagenesis of Glu-101 and Glu-280, which coordinate the metal in the N-terminal and C-terminal domains, respectively. We now demonstrate that decarboxylase activity and total manganese content are sensitive to modifications in either metal-binding glutamate residue. These findings, in combination with EPR measurements, raise the possibility that the C-terminal Mn(II) center can catalyze the decarboxylation reaction. Further support for this conclusion has been provided from a combination of in vivo and in vitro strategies for preparing wild-type OxDC in which Mn(II) is incorporated to a variety of extents. Kinetic characterization of these variants shows that OxDC activity is linearly correlated with manganese content, as might be expected if both sites can catalyze the breakdown of oxalate into formate and CO(2). These studies also represent the first unequivocal demonstration that OxDC activity is uniquely mediated by manganese.
Collapse
Affiliation(s)
- Ellen W. Moomaw
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | | | - Patricia Moussatche
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310-3706
| | - Inés García-Rubio
- Laboratorium fur Physikalische Chemie, ETH Zurich, CH-8043 Zurich-Hönggerberg, Switzerland
| | | |
Collapse
|
28
|
Popović-Bijelić A, Voevodskaya N, Domkin V, Thelander L, Gräslund A. Metal Binding and Activity of Ribonucleotide Reductase Protein R2 Mutants: Conditions for Formation of the Mixed Manganese−Iron Cofactor. Biochemistry 2009; 48:6532-9. [DOI: 10.1021/bi900693s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Popović-Bijelić
- Department of Biochemistry and Biophysics, Stockholm University, S-10691 Stockholm, Sweden
| | - Nina Voevodskaya
- Department of Biochemistry and Biophysics, Stockholm University, S-10691 Stockholm, Sweden
| | - Vladimir Domkin
- Department of Medical Biochemistry and Biophysics, Umeå University, S-90187 Umeå, Sweden
| | - Lars Thelander
- Department of Medical Biochemistry and Biophysics, Umeå University, S-90187 Umeå, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
29
|
Scarpellini M, Gätjens J, Martin OJ, Kampf JW, Sherman SE, Pecoraro VL. Modeling the resting state of oxalate oxidase and oxalate decarboxylase enzymes. Inorg Chem 2008; 47:3584-93. [PMID: 18399627 DOI: 10.1021/ic701953g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In view of the biological and commercial interest in models for Oxalate Decarboxylases (OxDC) and Oxalate Oxidases (OxOx), we have synthesized and characterized three new Mn (II) complexes ( 1- 3) employing N3O-donor amino-carboxylate ligands (TCMA, 1,4,7-triazacyclononane- N-acetic acid; K (i) Pr 2TCMA, potassium 1,4-diisopropyl-1,4,7-triazacyclononane- N-acetate; and KBPZG, potassium N,N-bis(3,5-dimethylpyrazolyl methyl)glycinate). These complexes were characterized by several techniques including X-ray crystallographic analysis, X-band electron paramagnetic resonance (EPR), electrospray ionization mass spectrometry (ESI-MS), and cyclic voltammetry. The crystal structures of 1 and 3 revealed that both form infinite polymeric chains of Mn (II) complexes linked by the pendant carboxylate arms of the TCMA (-) and the BPZG (-) ligands in a syn-antipattern. Complex 2 crystallizes as a mononuclear Mn (II) cation, six-coordinate in a distorted octahedral geometry. Although complexes 1 and 3 crystallize as polymeric chains, all compounds present the same N3O-donor set atoms around the metal center as observed in the crystallographically characterized OxDC and OxOx. Moreover, complex 2 also contains two water molecules coordinated to the Mn center as observed in the active site of OxDC and OxOx. ESI-MS spectrometry, combined with EPR, were useful techniques to establish that complexes 1- 3 are present as mononuclear Mn (II) species in solution. Finally, complexes 1- 3 are able to model the resting state active sites, with special attention focused on complex 2 which provides the first exact first coordination sphere ligand structural model for the resting states of both OxDC and OxOx.
Collapse
Affiliation(s)
- Marciela Scarpellini
- Willard H. Dow Laboratories, Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
30
|
Winkler R, Zocher G, Richter I, Friedrich T, Schulz G, Hertweck C. A Binuclear Manganese Cluster That Catalyzes Radical-Mediated N-Oxygenation. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200703089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Just V, Burrell M, Bowater L, McRobbie I, Stevenson C, Lawson D, Bornemann S. The identity of the active site of oxalate decarboxylase and the importance of the stability of active-site lid conformations. Biochem J 2007; 407:397-406. [PMID: 17680775 PMCID: PMC2275070 DOI: 10.1042/bj20070708] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oxalate decarboxylase (EC 4.1.1.2) catalyses the conversion of oxalate into carbon dioxide and formate. It requires manganese and, uniquely, dioxygen for catalysis. It forms a homohexamer and each subunit contains two similar, but distinct, manganese sites termed sites 1 and 2. There is kinetic evidence that only site 1 is catalytically active and that site 2 is purely structural. However, the kinetics of enzymes with mutations in site 2 are often ambiguous and all mutant kinetics have been interpreted without structural information. Nine new site-directed mutants have been generated and four mutant crystal structures have now been solved. Most mutants targeted (i) the flexibility (T165P), (ii) favoured conformation (S161A, S164A, D297A or H299A) or (iii) presence (Delta162-163 or Delta162-164) of a lid associated with site 1. The kinetics of these mutants were consistent with only site 1 being catalytically active. This was particularly striking with D297A and H299A because they disrupted hydrogen bonds between the lid and a neighbouring subunit only when in the open conformation and were distant from site 2. These observations also provided the first evidence that the flexibility and stability of lid conformations are important in catalysis. The deletion of the lid to mimic the plant oxalate oxidase led to a loss of decarboxylase activity, but only a slight elevation in the oxalate oxidase side reaction, implying other changes are required to afford a reaction specificity switch. The four mutant crystal structures (R92A, E162A, Delta162-163 and S161A) strongly support the hypothesis that site 2 is purely structural.
Collapse
Affiliation(s)
- Victoria J. Just
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| | - Matthew R. Burrell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| | - Laura Bowater
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| | - Iain McRobbie
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| | - Clare E. M. Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| | - David M. Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
32
|
Winkler R, Zocher G, Richter I, Friedrich T, Schulz G, Hertweck C. A Binuclear Manganese Cluster That Catalyzes Radical-Mediated N-Oxygenation. Angew Chem Int Ed Engl 2007; 46:8605-8. [DOI: 10.1002/anie.200703089] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Angerhofer A, Moomaw EW, García-Rubio I, Ozarowski A, Krzystek J, Weber RT, Richards NGJ. Multifrequency EPR Studies on the Mn(II) Centers of Oxalate Decarboxylase. J Phys Chem B 2007; 111:5043-6. [PMID: 17444678 DOI: 10.1021/jp0715326] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxalate decarboxylase from Bacillus subtilis is composed of two cupin domains, each of which contains a Mn(II) ion coordinated by four identical conserved residues. The similarity between the two Mn(II) sites has precluded previous attempts to distinguish them spectroscopically and complicated efforts to understand the catalytic mechanism. A multifrequency cw-EPR approach has now enabled us to show that the two Mn ions can be distinguished on the basis of their differing fine structure parameters and to observe that acetate and formate bind to Mn(II) in only one of the two sites. The EPR evidence is consistent with the hypothesis that this Mn-binding site is located in the N-terminal domain, in agreement with predictions based on a recent X-ray structure of the enzyme.
Collapse
|
34
|
Svedružić D, Liu Y, Reinhardt LA, Wroclawska E, Cleland WW, Richards NGJ. Investigating the roles of putative active site residues in the oxalate decarboxylase from Bacillus subtilis. Arch Biochem Biophys 2007; 464:36-47. [PMID: 17459326 PMCID: PMC2041844 DOI: 10.1016/j.abb.2007.03.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/11/2007] [Accepted: 03/16/2007] [Indexed: 12/17/2022]
Abstract
Oxalate decarboxylase (OxDC) catalyzes the conversion of oxalate into CO(2) and formate using a catalytic mechanism that remains poorly understood. The Bacillus subtilis enzyme is composed of two cupin domains, each of which contains Mn(II) coordinated by four conserved residues. We have measured heavy atom isotope effects for a series of Bacillus subtilis OxDC mutants in which Arg-92, Arg-270, Glu-162, and Glu-333 are conservatively substituted in an effort to define the functional roles of these residues. This strategy has the advantage that observed isotope effects report directly on OxDC molecules in which the active site manganese center(s) is (are) catalytically active. Our results support the proposal that the N-terminal Mn-binding site can mediate catalysis, and confirm the importance of Arg-92 in catalytic activity. On the other hand, substitution of Arg-270 and Glu-333 affects both Mn(II) incorporation and the ability of Mn to bind to the OxDC mutants, thereby precluding any definitive assessment of whether the metal center in the C-terminal domain can also mediate catalysis. New evidence for the importance of Glu-162 in controlling metal reactivity has been provided by the unexpected observation that the E162Q OxDC mutant exhibits a significantly increased oxalate oxidase and a concomitant reduction in decarboxylase activities relative to wild type OxDC. Hence the reaction specificity of a catalytically active Mn center in OxDC can be perturbed by relatively small changes in local protein environment, in agreement with a proposal based on prior computational studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Nigel G. J. Richards
- *Correspondence to Department of Chemistry, Box 117200, University of Florida, Gainesville, Fl 32611-7200, 352-392-3601 (Office); 352-392-7918 (Fax),
| |
Collapse
|
35
|
Whittaker MM, Pan HY, Yukl ET, Whittaker JW. Burst Kinetics and Redox Transformations of the Active Site Manganese Ion in Oxalate Oxidase. J Biol Chem 2007; 282:7011-23. [PMID: 17210574 DOI: 10.1074/jbc.m609374200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxalate oxidase (EC 1.2.3.4) catalyzes the oxidative cleavage of oxalate to carbon dioxide and hydrogen peroxide. In this study, unusual nonstoichiometric burst kinetics of the steady state reaction were observed and analyzed in detail, revealing that a reversible inactivation process occurs during turnover, associated with a slow isomerization of the substrate complex. We have investigated the underlying molecular mechanism of this kinetic behavior by preparing recombinant barley oxalate oxidase in three distinct oxidation states (Mn(II), Mn(III), and Mn(IV)) and producing a nonglycosylated variant for detailed biochemical and spectroscopic characterization. Surprisingly, the fully reduced Mn(II) form, which represents the majority of the as-isolated native enzyme, lacks oxalate oxidase activity, but the activity is restored by oxidation of the metal center to either Mn(III) or Mn(IV) forms. All three oxidation states appear to interconvert under turnover conditions, and the steady state activity of the enzyme is determined by a balance between activation and inactivation processes. In O(2)-saturated buffer, a turnover-based redox modification of the enzyme forms a novel superoxidized mononuclear Mn(IV) biological complex. An oxalate activation role for the catalytic metal ion is proposed based on these results.
Collapse
Affiliation(s)
- Mei M Whittaker
- Department of Environmental and Biomolecular Systems, Oregon Health and Sciences University, Beaverton, Oregon 97006-8921, USA
| | | | | | | |
Collapse
|
36
|
Stich TA, Lahiri S, Yeagle G, Dicus M, Brynda M, Gunn A, Aznar C, Derose VJ, Britt RD. Multifrequency Pulsed EPR Studies of Biologically Relevant Manganese(II) Complexes. APPLIED MAGNETIC RESONANCE 2007; 31:321-341. [PMID: 22190766 PMCID: PMC3242439 DOI: 10.1007/bf03166263] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Electron paramagnetic resonance studies at multiple frequencies (MF EPR) can provide detailed electronic structure descriptions of unpaired electrons in organic radicals, inorganic complexes, and metalloenzymes. Analysis of these properties aids in the assignment of the chemical environment surrounding the paramagnet and provides mechanistic insight into the chemical reactions in which these systems take part. Herein, we present results from pulsed EPR studies performed at three different frequencies (9, 31, and 130 GHz) on [Mn(II)(H(2)O)(6)](2+), Mn(II) adducts with the nucleotides ATP and GMP, and the Mn(II)-bound form of the hammerhead ribozyme (MnHH). Through line shape analysis and interpretation of the zero-field splitting values derived from successful simulations of the corresponding continuous-wave and field-swept echo-detected spectra, these data are used to exemplify the ability of the MF EPR approach in distinguishing the nature of the first ligand sphere. A survey of recent results from pulsed EPR, as well as pulsed electron-nuclear double resonance and electron spin echo envelope modulation spectroscopic studies applied to Mn(II)-dependent systems, is also presented.
Collapse
Affiliation(s)
- T A Stich
- Department of Chemistry, University of California-Davis, Davis, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|