1
|
MiR-126 Regulates Properties of SOX9 + Liver Progenitor Cells during Liver Repair by Targeting Hoxb6. Stem Cell Reports 2020; 15:706-720. [PMID: 32763157 PMCID: PMC7486193 DOI: 10.1016/j.stemcr.2020.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Liver progenitor cells (LPCs) have a remarkable contribution to the hepatocytes and ductal cells when normal hepatocyte proliferation is severely impaired. As a biomarker for LPCs, Sry-box 9 (Sox9) plays critical roles in liver homeostasis and repair in response to injury. However, the regulation mechanism of Sox9 in liver physiological and pathological state remains unknown. In this study, we found that miR-126 positively regulated the expression of Sox9, the proliferation and differentiation of SOX9+ LPCs by suppressing the translation of homeobox b6 (Hoxb6). As a transcription factor, HOXB6 directly binds to the promoter of Sox9 to inhibit Sox9 expression, resulting in the destruction of the properties of SOX9+ LPCs in CCl4-induced liver injury. These findings revealed the role of miR-126 in regulating SOX9+ LPCs fate by targeting Hoxb6 in liver injury repair. Our findings suggest the potential role of miR-126 as a nucleic acid therapy drug target for liver failure. miR-126 promotes Sox9 expression and maintains SOX9+ LPCs in adult mouse livers HOXB6 suppresses properties of SOX9+ LPCs in chronic liver injury model HOXB6 negatively regulates Sox9 trans-activity miR-126 regulates properties of SOX9+ LPCs by targeting Hoxb6
Collapse
|
2
|
Bobola N, Merabet S. Homeodomain proteins in action: similar DNA binding preferences, highly variable connectivity. Curr Opin Genet Dev 2016; 43:1-8. [PMID: 27768937 DOI: 10.1016/j.gde.2016.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
Homeodomain proteins are evolutionary conserved proteins present in the entire eukaryote kingdom. They execute functions that are essential for life, both in developing and adult organisms. Most homeodomain proteins act as transcription factors and bind DNA to control the activity of other genes. In contrast to their similar DNA binding specificity, homeodomain proteins execute highly diverse and context-dependent functions. Several factors, including genome accessibility, DNA shape, combinatorial binding and the ability to interact with many transcriptional partners, diversify the activity of homeodomain proteins and culminate in the activation of highly dynamic, context-specific transcriptional programs. Clarifying how homeodomain transcription factors work is central to our understanding of development, disease and evolution.
Collapse
Affiliation(s)
- Nicoletta Bobola
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, Centre National de Recherche Scientifique, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
3
|
Shimomura A, Patel D, Wilson SM, Koehler KR, Khanna R, Hashino E. Tlx3 promotes glutamatergic neuronal subtype specification through direct interactions with the chromatin modifier CBP. PLoS One 2015; 10:e0135060. [PMID: 26258652 PMCID: PMC4530954 DOI: 10.1371/journal.pone.0135060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 07/17/2015] [Indexed: 12/31/2022] Open
Abstract
Nervous system development relies on the generation of precise numbers of excitatory and inhibitory neurons. The homeodomain transcription factor, T-cell leukemia 3 (Tlx3), functions as the master neuronal fate regulator by instructively promoting the specification of glutamatergic excitatory neurons and suppressing the specification of gamma-aminobutyric acid (GABAergic) neurons. However, how Tlx3 promotes glutamatergic neuronal subtype specification is poorly understood. In this study, we found that Tlx3 directly interacts with the epigenetic co-activator cyclic adenosine monophosphate (cAMP)-response element-binding protein (CREB)-binding protein (CBP) and that the Tlx3 homeodomain is essential for this interaction. The interaction between Tlx3 and CBP was enhanced by the three amino acid loop extension (TALE)-class homeodomain transcription factor, pre-B-cell leukemia transcription factor 3 (Pbx3). Using mouse embryonic stem (ES) cells stably expressing Tlx3, we found that the interaction between Tlx3 and CBP became detectable only after these Tlx3-expressing ES cells were committed to a neural lineage, which coincided with increased Pbx3 expression during neural differentiation from ES cells. Forced expression of mutated Tlx3 lacking the homeodomain in ES cells undergoing neural differentiation resulted in significantly reduced expression of glutamatergic neuronal subtype markers, but had little effect on the expression on pan neural markers. Collectively, our results strongly suggest that functional interplay between Tlx3 and CBP plays a critical role in neuronal subtype specification, providing novel insights into the epigenetic regulatory mechanism that modulates the transcriptional efficacy of a selective set of neuronal subtype-specific genes during differentiation.
Collapse
Affiliation(s)
- Atsushi Shimomura
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; School of Psychological Science, Health Sciences University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Dharmeshkumar Patel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sarah M Wilson
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Karl R Koehler
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Rajesh Khanna
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology, University of Arizona School of Medicine, Tucson, Arizona, United States of America
| | - Eri Hashino
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
4
|
Sharma M, Rawal L, Panwar D, Sehgal N, Ali S. Differential expression of Homeobox C11 protein in water buffalo Bubalus bubalis and its putative 3D structure. BMC Genomics 2014; 15:638. [PMID: 25080327 PMCID: PMC4139611 DOI: 10.1186/1471-2164-15-638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Homeobox (Hox) family complex contains 39 genes, clustered into four groups (A-D) all expressing in sequential manner. The HOX proteins are transcriptional factors involved in regulation of pattern formation of the anterio-posterior body axis across the species. Most of the Hox family genes have been studied with respect to their organization and expression during the embryonic stages. However, expression pattern of Homeobox C11 (Hoxc11) gene in the 5' region, particularly in higher mammals remains largely unexplored. RESULTS We cloned and expressed Homeobox C11 (Hoxc11) gene from water buffalo Bubalus bubalis. The recombinant HOXC11 protein expressed as inclusion bodies was solubilized in Tris buffer (10 mM, pH-6.5) and purified using Ni-NTA affinity column. The purity and molecular weight of HOXC11 protein (~33 kDa) were confirmed by SDS-PAGE and western blot analysis. Employing immunohistochemistry approach, we localized HOXC11 protein in the nuclei across the tissues of buffalo. Western blot analysis showed highest expression of HOXC11 protein in kidney and lung although its possible renal and respiratory roles are not yet established. Electrophoretic mobility shift assay (EMSA) demonstrated the specific binding of HOXC11 protein with the promoter element, CE-LPH1 of lactase-phlorizin hydrolase (LPH) gene showing reduced mobility of the protein-DNA complex, corroborating with earlier report on the possible role of this protein in intestinal functions. In silico analysis of HOXC11 showed predominance of α helices and presence of six conserved domains. We deduced the putative 3D structure of HOXC11 protein and fifteen possible DNA interacting residues within the homeodomain. CONCLUSIONS Present study augments our understanding on the specific expression of HOXC11 protein in kidney and lung in water buffalo. The fifteen DNA interacting residues reported herein provide an opportunity to establish much broader structural and functional perspectives of HOXC11 protein in the context of genome analysis in general and animal biotechnology in particular.
Collapse
Affiliation(s)
| | | | | | | | - Sher Ali
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
5
|
Lambert B, Vandeputte J, Remacle S, Bergiers I, Simonis N, Twizere JC, Vidal M, Rezsohazy R. Protein interactions of the transcription factor Hoxa1. BMC DEVELOPMENTAL BIOLOGY 2012; 12:29. [PMID: 23088713 PMCID: PMC3514159 DOI: 10.1186/1471-213x-12-29] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 11/10/2022]
Abstract
Background Hox proteins are transcription factors involved in crucial processes during animal development. Their mode of action remains scantily documented. While other families of transcription factors, like Smad or Stat, are known cell signaling transducers, such a function has never been squarely addressed for Hox proteins. Results To investigate the mode of action of mammalian Hoxa1, we characterized its interactome by a systematic yeast two-hybrid screening against ~12,200 ORF-derived polypeptides. Fifty nine interactors were identified of which 45 could be confirmed by affinity co-purification in animal cell lines. Many Hoxa1 interactors are proteins involved in cell-signaling transduction, cell adhesion and vesicular trafficking. Forty-one interactions were detectable in live cells by Bimolecular Fluorescence Complementation which revealed distinctive intracellular patterns for these interactions consistent with the selective recruitment of Hoxa1 by subgroups of partner proteins at vesicular, cytoplasmic or nuclear compartments. Conclusions The characterization of the Hoxa1 interactome presented here suggests unexplored roles for Hox proteins in cell-to-cell communication and cell physiology.
Collapse
Affiliation(s)
- Barbara Lambert
- Molecular and Cellular Animal Embryology group, Life Sciences Institute (ISV), Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lelli KM, Slattery M, Mann RS. Disentangling the many layers of eukaryotic transcriptional regulation. Annu Rev Genet 2012; 46:43-68. [PMID: 22934649 DOI: 10.1146/annurev-genet-110711-155437] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regulation of gene expression in eukaryotes is an extremely complex process. In this review, we break down several critical steps, emphasizing new data and techniques that have expanded current gene regulatory models. We begin at the level of DNA sequence where cis-regulatory modules (CRMs) provide important regulatory information in the form of transcription factor (TF) binding sites. In this respect, CRMs function as instructional platforms for the assembly of gene regulatory complexes. We discuss multiple mechanisms controlling complex assembly, including cooperative DNA binding, combinatorial codes, and CRM architecture. The second section of this review places CRM assembly in the context of nucleosomes and condensed chromatin. We discuss how DNA accessibility and histone modifications contribute to TF function. Lastly, new advances in chromosomal mapping techniques have provided increased understanding of intra- and interchromosomal interactions. We discuss how these topological maps influence gene regulatory models.
Collapse
Affiliation(s)
- Katherine M Lelli
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
7
|
Rhee JM, Iannaccone PM. Mapping mouse hemangioblast maturation from headfold stages. Dev Biol 2012; 365:1-13. [PMID: 22426104 DOI: 10.1016/j.ydbio.2012.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 11/18/2022]
Abstract
The mouse posterior primitive streak at neural plate/headfold stages (NP/HF, ~7.5 dpc-8 dpc) represents an optimal window from which hemangioblasts can be isolated. We performed immunohistochemistry on this domain using established monoclonal antibodies for proteins that affect blood and endothelial fates. We demonstrate that HoxB4 and GATA1 are the first set of markers that segregate independently to endothelial or blood populations during NP/HF stages of mouse embryonic development. In a subset of cells, both proteins are co-expressed and immunoreactivities appear mutually excluded within nuclear spaces. We searched for this particular state at later sites of hematopoietic stem cell emergence, viz., the aorta-gonad-mesonephros (AGM) and the fetal liver at 10.5-11.5 dpc, and found that only a rare number of cells displayed this character. Based on this spatial-temporal argument, we propose that the earliest blood progenitors emerge either directly from the epiblast or through segregation within the allantoic core domain (ACD) through reduction of cell adhesion and pSmad1/5 nuclear signaling, followed by a stochastic decision toward a blood or endothelial fate that involves GATA1 and HoxB4, respectively. A third form in which binding distributions are balanced may represent a common condition shared by hemangioblasts and HSCs. We developed a heuristic model of hemangioblast maturation, in part, to be explicit about our assumptions.
Collapse
Affiliation(s)
- Jerry M Rhee
- Children's Memorial Research Center, Department of Pediatrics, Developmental Biology Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | |
Collapse
|
8
|
Paul D, Bridoux L, Rezsöhazy R, Donnay I. HOX genes are expressed in bovine and mouse oocytes and early embryos. Mol Reprod Dev 2011; 78:436-49. [PMID: 21567651 DOI: 10.1002/mrd.21321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/11/2011] [Indexed: 11/06/2022]
Abstract
HOX proteins are transcription factors that play a major role in patterning the body axis of vertebrates from the gastrulation stage. While nothing has been reported so far about their roles at earlier stages, there is evidence that some HOX genes are expressed before gastrulation. The objective of this work was to study the pattern of expression of several HOX genes during oocyte maturation and early embryonic development up to the blastocyst stage. Using nested PCR, HOXD1, HOXA3, HOXD4, HOXB7, HOXB9, and HOXC9 transcripts were detected in bovine oocytes and early embryos at various frequencies depending on the stage of development. Quantitative PCR was performed on bovine oocytes and early embryos: relative expression of HOXD1, HOXA3, and HOXC9 decreased sharply after the 5-8 cell stage. HOXB9 relative expression increased between the oocyte and the morula stage. All transcripts seemed to be of maternal origin before the maternal to embryonic transition, as demonstrated by blocking transcription with α-amanitin. Reverse transcription was performed with either hexamers or oligo-dT, allowing for the determination that HOXC9 transcripts were slightly deadenylated during oocyte maturation; HOXD1, HOXA3, and HOXB9 transcripts were not, indicating that they could be translated. Hoxd1, Hoxa3, Hoxb9, and Hoxc9 expression was also detected in mouse oocytes and early embryos. A similar pattern of expression was found in the two species. In conclusion, mammalian HOX genes might be implicated in the control of oocyte maturation, the maternal-to-embryonic transition or the first steps of embryo differentiation.
Collapse
Affiliation(s)
- Delphine Paul
- Université Catholique de Louvain, Institut des Sciences de la Vie, Embryologie Moléculaire et Cellulaire Animale, Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
9
|
Kim SD, Park RY, Kim YR, Kim IJ, Kang TW, Nam KI, Ahn KY, Bae CS, Kim BY, Park SS, Jung C. HOXB13 is co-localized with androgen receptor to suppress androgen-stimulated prostate-specific antigen expression. Anat Cell Biol 2010; 43:284-93. [PMID: 21267402 PMCID: PMC3026180 DOI: 10.5115/acb.2010.43.4.284] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 07/14/2010] [Accepted: 08/18/2010] [Indexed: 11/27/2022] Open
Abstract
During the prostate cancer (PCa) development and its progression into hormone independency, androgen receptor (AR) signals play a central role by triggering the regulation of target genes, including prostate-specific antigen. However, the regulation of these AR-mediated target genes is not fully understood. We have previously demonstrated a unique role of HOXB13 homeodomain protein as an AR repressor. Expression of HOXB13 was highly restricted to the prostate and its suppression dramatically increased hormone-activated AR transactivation, suggesting that prostate-specific HOXB13 was a highly potent transcriptional regulator. In this report, we demonstrated the action mechanism of HOXB13 as an AR repressor. HOXB13 suppressed androgen-stimulated AR activity by interacting with AR. HOXB13 did neither bind to AR responsive elements nor disturb nuclear translocation of AR in response to androgen. In PCa specimen, we also observed mutual expression pattern of HOXB13 and AR. These results suggest that HOXB13 not only serve as a DNA-bound transcription factor but play an important role as an AR-interacting repressor to modulate hormone-activated androgen receptor signals. Further extensive studies will uncover a novel mechanism for regulating AR-signaling pathway to lead to expose new role of HOXB13 as a non-DNA-binding transcriptional repressor.
Collapse
Affiliation(s)
- Sin Do Kim
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lambert B, Vandeputte J, Desmet PM, Hallet B, Remacle S, Rezsohazy R. Pentapeptide insertion mutagenesis of the Hoxa1 protein: mapping of transcription activation and DNA-binding regulatory domains. J Cell Biochem 2010; 110:484-96. [PMID: 20336696 DOI: 10.1002/jcb.22563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mode of action of Hoxa1, like that of most Hox proteins, remains poorly characterized. In an effort to identify functional determinants contributing to the activity of Hoxa1 as a transcription factor, we generated 18 pentapeptide insertion mutants of the Hoxa1 protein and we assayed them in transfected cells for their activity on target enhancers from the EphA2 and Hoxb1 genes known to respond to Hoxa1 in the developing hindbrain. Only four mutants displayed a complete loss-of-function. Three of them contained an insertion in the homeodomain of Hoxa1, whereas the fourth loss-of-function mutant harbored an insertion in the very N-terminal end of the protein. Transcription activation assays in yeast further revealed that the integrity of both the N-terminal end and homeodomain is required for Hoxa1-mediated transcriptional activation. Furthermore, an insertion in the serine-threonine-proline rich C-terminal extremity of Hoxa1 induced an increase in activity in mammalian cells as well as in the yeast assay. The C-terminal extremity thus modulates the transcriptional activation capacity of the protein. Finally, electrophoretic mobility shift assays revealed that the N-terminal extremity of the protein also exerts a modulatory influence on DNA binding by Hoxa1-Pbx1a heterodimers.
Collapse
Affiliation(s)
- Barbara Lambert
- Unit of Veterinary Sciences, Life Sciences Institute (ISV), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Hox genes, a highly conserved subgroup of the homeobox superfamily, have crucial roles in development, regulating numerous processes including apoptosis, receptor signalling, differentiation, motility and angiogenesis. Aberrations in Hox gene expression have been reported in abnormal development and malignancy, indicating that altered expression of Hox genes could be important for both oncogenesis and tumour suppression, depending on context. Therefore, Hox gene expression could be important in diagnosis and therapy.
Collapse
Affiliation(s)
- Nilay Shah
- Nilay Shah and Saraswati Sukumar are at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
12
|
Merabet S, Sambrani N, Pradel J, Graba Y. Regulation of Hox activity: insights from protein motifs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:3-16. [PMID: 20795319 DOI: 10.1007/978-1-4419-6673-5_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Deciphering the molecular bases of animal body plan construction is a central question in developmental and evolutionary biology. Genome analyses of a number of metazoans indicate that widely conserved regulatory molecules underlie the amazing diversity of animal body plans, suggesting that these molecules are reiteratively used for multiple purposes. Hox proteins constitute a good example of such molecules and provide the framework to address the mechanisms underlying transcriptional specificity and diversity in development and evolution. Here we examine the current knowledge of the molecular bases of Hox-mediated transcriptional control, focusing on how this control is encoded within protein sequences and structures. The survey suggests that the homeodomain is part of an extended multifunctional unit coordinating DNA binding and activity regulation and highlights the need for further advances in our understanding of Hox protein activity.
Collapse
Affiliation(s)
- Samir Merabet
- Institute of Developmental Biology of Marseille Luminy, University of the Mediterranean, Marseille, France.
| | | | | | | |
Collapse
|
13
|
Goh SL, Looi Y, Shen H, Fang J, Bodner C, Houle M, Ng ACH, Screaton RA, Featherstone M. Transcriptional activation by MEIS1A in response to protein kinase A signaling requires the transducers of regulated CREB family of CREB co-activators. J Biol Chem 2009; 284:18904-12. [PMID: 19473990 PMCID: PMC2707216 DOI: 10.1074/jbc.m109.005090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/21/2009] [Indexed: 01/08/2023] Open
Abstract
The transcription factor encoded by the murine ecotropic integration site 1 gene (MEIS1) is a partner of HOX and PBX proteins. It has been implicated in embryonic patterning and leukemia, and causally linked to restless legs syndrome. The MEIS1A C terminus harbors a transcriptional activation domain that is stimulated by protein kinase A (PKA) in a manner dependent on the co-activator of cAMP response element-binding protein (CREB), CREB-binding protein (CBP). We explored the involvement of another mediator of PKA-inducible transcription, namely the CREB co-activators transducers of regulated CREB activity (TORCs). Overexpression of TORC1 or TORC2 bypassed PKA for activation by MEIS1A. Co-immunoprecipitation experiments demonstrated a physical interaction between MEIS1 and TORC2 that is dependent on the MEIS1A C terminus, whereas chromatin immunoprecipitation revealed PKA-inducible recruitment of MEIS1, PBX1, and TORC2 on the MEIS1 target genes Hoxb2 and Meis1. The MEIS1 interaction domain on TORC1 was mapped to the N-terminal coiled-coil region, and TORC1 mutants lacking this domain attenuated the response to PKA on a natural MEIS1A target enhancer. Thus, TORCs physically cooperate with MEIS1 to achieve PKA-inducible transactivation through the MEIS1A C terminus, suggesting a concerted action in developmental and oncogenic processes.
Collapse
Affiliation(s)
- Siew-Lee Goh
- From the McGill Cancer Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, and
| | - Yvonne Looi
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, and
| | - Hui Shen
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, and
| | - Jun Fang
- From the McGill Cancer Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Caroline Bodner
- From the McGill Cancer Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Martin Houle
- From the McGill Cancer Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Andy Cheuk-Him Ng
- the Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Departments of Pediatrics and Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa K1H 8L1, Canada
| | - Robert A. Screaton
- the Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Departments of Pediatrics and Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa K1H 8L1, Canada
| | - Mark Featherstone
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, and
| |
Collapse
|
14
|
Merabet S, Hudry B, Saadaoui M, Graba Y. Classification of sequence signatures: a guide to Hox protein function. Bioessays 2009; 31:500-11. [PMID: 19334006 DOI: 10.1002/bies.200800229] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hox proteins are part of the conserved superfamily of homeodomain-containing transcription factors and play fundamental roles in shaping animal body plans in development and evolution. However, molecular mechanisms underlying their diverse and specific biological functions remain largely enigmatic. Here, we have analyzed Hox sequences from the main evolutionary branches of the Bilateria group. We have found that four classes of Hox protein signatures exist, which together provide sufficient support to explain how different Hox proteins differ in their control and function. The homeodomain and its surrounding sequences accumulate nearly all signatures, constituting an extended module where most of the information distinguishing Hox proteins is concentrated. Only a small fraction of these signatures has been investigated at the functional level, but these show that approaches relying on Hox protein alterations still have a large potential for deciphering molecular mechanisms of Hox differential control.
Collapse
Affiliation(s)
- Samir Merabet
- Institut de Biologie du Développement de Marseille Luminy, IBDML, UMR 6216, CNRS, Université de la Méditerranée, Parc Scientifique de Luminy, Case 907, Marseille Cedex 09, France.
| | | | | | | |
Collapse
|
15
|
Crow KD, Amemiya CT, Roth J, Wagner GP. HYPERMUTABILITY OFHOXA13AAND FUNCTIONAL DIVERGENCE FROM ITS PARALOG ARE ASSOCIATED WITH THE ORIGIN OF A NOVEL DEVELOPMENTAL FEATURE IN ZEBRAFISH AND RELATED TAXA (CYPRINIFORMES). Evolution 2009; 63:1574-92. [DOI: 10.1111/j.1558-5646.2009.00657.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Mann RS, Lelli KM, Joshi R. Hox specificity unique roles for cofactors and collaborators. Curr Top Dev Biol 2009; 88:63-101. [PMID: 19651302 DOI: 10.1016/s0070-2153(09)88003-4] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hox proteins are well known for executing highly specific functions in vivo, but our understanding of the molecular mechanisms underlying gene regulation by these fascinating proteins has lagged behind. The premise of this review is that an understanding of gene regulation-by any transcription factor-requires the dissection of the cis-regulatory elements that they act upon. With this goal in mind, we review the concepts and ideas regarding gene regulation by Hox proteins and apply them to a curated list of directly regulated Hox cis-regulatory elements that have been validated in the literature. Our analysis of the Hox-binding sites within these elements suggests several emerging generalizations. We distinguish between Hox cofactors, proteins that bind DNA cooperatively with Hox proteins and thereby help with DNA-binding site selection, and Hox collaborators, proteins that bind in parallel to Hox-targeted cis-regulatory elements and dictate the sign and strength of gene regulation. Finally, we summarize insights that come from examining five X-ray crystal structures of Hox-cofactor-DNA complexes. Together, these analyses reveal an enormous amount of flexibility into how Hox proteins function to regulate gene expression, perhaps providing an explanation for why these factors have been central players in the evolution of morphological diversity in the animal kingdom.
Collapse
Affiliation(s)
- Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
17
|
Morgan R, Whiting K. Differential expression of HOX genes upon activation of leukocyte sub-populations. Int J Hematol 2008; 87:246-9. [PMID: 18317880 PMCID: PMC2330060 DOI: 10.1007/s12185-008-0057-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 01/02/2008] [Accepted: 01/21/2008] [Indexed: 11/30/2022]
Abstract
The HOX genes are key determinants of cellular identity both in early development and in the renewal and differentiation of adult blood cells. Although a number of studies have examined the expression of individual HOX genes in defined blood cell lineages, we have undertaken a comprehensive analysis of HOX gene expression in resting and activated lymphocytic and monocytic subpopulations. This has revealed distinct patterns of expression between different cell types and resting and activated states. (Main category A: Erythrocytes, Leukocytes and Hematopoiesis, subcategory: 8: Lymphocytes).
Collapse
Affiliation(s)
- Richard Morgan
- Postgraduate Medical School, University of Surrey, Guildford, Surrey, GU2 7WG, UK.
| | | |
Collapse
|
18
|
Yamada T, Shimizu T, Suzuki M, Kihara-Negishi F, Nanashima N, Sakurai T, Fan Y, Akita M, Oikawa T, Tsuchida S. Interaction between the homeodomain protein HOXC13 and ETS family transcription factor PU.1 and its implication in the differentiation of murine erythroleukemia cells. Exp Cell Res 2007; 314:847-58. [PMID: 18076876 DOI: 10.1016/j.yexcr.2007.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 11/05/2007] [Accepted: 11/08/2007] [Indexed: 01/25/2023]
Abstract
Some of homeodomain proteins and the ETS family of transcription factors are involved in hematopoiesis. RT-PCR analysis revealed that the HOXC13 and PU.1 genes were expressed in murine erythroleukemia (MEL) cells and their levels decreased during DMSO-induced differentiation into erythroid cells. HOXC13 bound to the ETS domain of PU.1 through a region encompassing the C-terminal part of the homeodomain and the most C-terminal region and enhanced the transcriptional activity of PU.1. Enforced expression of HOXC13 in MEL cells resulted in the suppression of beta-globin gene expression. In MEL cells overexpressing HOXC13 and PU.1, which also inhibits the differentiation of MEL cells, no synergistic effect on the suppression of beta-globin gene expression was observed. However, in the presence of DMSO, the expression levels of the beta-globin gene in the cells overexpressing HOXC13 and PU.1 were, unexpectedly, higher than those in the cells overexpressing PU.1 alone. The levels of PU.1 protein were markedly decreased despite that the levels of mRNA were preserved in the cells overexpressing PU.1 and HOXC13. It was, thus, suggested that although HOXC13 negatively regulates the differentiation of MEL cells into erythroid cells, it antagonizes PU.1 possibly by down-regulation of PU.1 protein in the presence of a differentiation stimulus.
Collapse
Affiliation(s)
- Toshiyuki Yamada
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lynch VJ, Roth JJ, Wagner GP. Adaptive evolution of Hox-gene homeodomains after cluster duplications. BMC Evol Biol 2006; 6:86. [PMID: 17078881 PMCID: PMC1636070 DOI: 10.1186/1471-2148-6-86] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 11/01/2006] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Hox genes code for homeodomain-containing transcription factors that function in cell fate determination and embryonic development. Hox genes are arranged in clusters with up to 14 genes. This archetypical chordate cluster has duplicated several times in vertebrates, once at the origin of vertebrates and once at the origin of gnathostoms, an additional duplication event is associated with the origin of teleosts and the agnanths, suggesting that duplicated Hox cluster genes are involved in the genetic mechanisms behind the diversification of vertebrate body plans, and the origin of morphological novelties. Preservation of duplicate genes is promoted by functional divergence of paralogs, either by subfunction partitioning among paralogs or the acquisition of a novel function by one paralog. But for Hox genes the mechanisms of paralog divergence is unknown, leaving open the role of Hox gene duplication in morphological evolution. RESULTS Here, we use several complementary methods, including branch-specific dN/dS ratio tests, branch-site dN/dS ratio tests, clade level amino acid conservation/variation patterns, and relative rate ratio tests, to show that the homeodomain of Hox genes was under positive Darwinian selection after cluster duplications. CONCLUSION Our results suggest that positive selection acted on the homeodomain immediately after Hox clusters duplications. The location of sites under positive selection in the homeodomain suggests that they are involved in protein-protein interactions. These results further suggest that adaptive evolution actively contributed to Hox-gene homeodomain functions.
Collapse
Affiliation(s)
- Vincent J Lynch
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, Connecticut 06551, USA
| | - Jutta J Roth
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, Connecticut 06551, USA
- Department of Genetics and General Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
- National Institute for Medical Research, Division of Developmental Biology, The Ridgeway, London, NW7 1AA, UK
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, Connecticut 06551, USA
| |
Collapse
|
20
|
Svingen T, Tonissen KF. Hox transcription factors and their elusive mammalian gene targets. Heredity (Edinb) 2006; 97:88-96. [PMID: 16721389 DOI: 10.1038/sj.hdy.6800847] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Hox family of homeodomain transcription factors regulate numerous pathways during developmental and normal cellular processes. All Hox proteins recognise similar sequences in vitro yet display functional diversity in an in vivo environment. This review focuses on the transcriptional and functional specificity elicited by Hox proteins, giving an overview of homeodomain-DNA interactions and the gain of binding specificity through cooperative binding with cofactors. Furthermore, currently identified mammalian Hox target genes are presented, of which the most striking feature is that very few direct Hox targets have been identified. The direct targets participate in an array of cellular functions including organogenesis and cellular differentiation, cell adhesion and migration and cell cycle and apoptotic pathways. A further assessment of identified mammalian promoter targets and the contribution of bases outside the canonical recognition motif is given, highlighting roles they may play in either trans-activation or repression by Hox proteins.
Collapse
Affiliation(s)
- T Svingen
- Cell Biology Group, Eskitis Institute for Cell and Molecular Therapies and School of Biomolecular and Biomedical Science, Griffith University, Nathan, Queensland 4111, Australia
| | | |
Collapse
|
21
|
Liu T, Branch DR, Jin T. Pbx1 is a co-factor for Cdx-2 in regulating proglucagon gene expression in pancreatic A cells. Mol Cell Endocrinol 2006; 249:140-9. [PMID: 16574312 DOI: 10.1016/j.mce.2006.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 02/10/2006] [Accepted: 02/13/2006] [Indexed: 01/06/2023]
Abstract
A number of Hox and Hox-like homeodomain (HD) proteins have been previously shown to utilize members of the TALE HD protein family as co-factors in regulating gene expression. The caudal HD protein Cdx-2 is a transactivator for the proglucagon gene, expressed in pancreatic A cells and intestinal endocrine L cells. We demonstrate here that co-transfection of the TALE homeobox gene Pbx1 enhanced the activation of Cdx-2 on the proglucagon promoter in either the pancreatic A cell line InR1-G9 or BHK fibroblasts. The activation was observed for proglucagon promoter constructs with or without the binding motifs for Pbx1. Furthermore, mutating the penta-peptide motif (binding motif for TALE HD proteins) on Cdx-2 substantially attenuated its activation on proglucagon promoter, but not on the sucrase-isomaltase gene (SI) promoter, or its own (Cdx-2) promoter; suggesting that Cdx-2 utilizes Pbx1 as a co-factor for regulating the expression of selected target genes. Physical interaction between Cdx-2 and Pbx1 was demonstrated by co-immunoprecipitation as well as GST fusion protein pull-down. We suggest that this study reveals a novel function for Pbx1 in pancreatic islet physiology: regulating proglucagon expression by serving as a co-factor for Cdx-2.
Collapse
Affiliation(s)
- Tao Liu
- Department of Medicine and Institute of Medical Science, University of Toronto, Rm. 410, 67 College Street, Toronto, Ont., Canada M5G 2M1
| | | | | |
Collapse
|
22
|
Moens CB, Selleri L. Hox cofactors in vertebrate development. Dev Biol 2006; 291:193-206. [PMID: 16515781 DOI: 10.1016/j.ydbio.2005.10.032] [Citation(s) in RCA: 379] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Revised: 10/17/2005] [Accepted: 10/24/2005] [Indexed: 11/18/2022]
Abstract
Hox genes encode homeodomain-containing transcription factors that pattern the body axes of animal embryos. It is well established that the exquisite DNA-binding specificity that allows different Hox proteins to specify distinct structures along the body axis is frequently dependent on interactions with other DNA-binding proteins which act as Hox cofactors. These include the PBC and MEIS classes of TALE (Three Amino acid Loop Extension) homeodomain proteins. The PBC class comprises fly Extradenticle (Exd) and vertebrate Pbx homeoproteins, whereas the MEIS class includes fly Homothorax (Hth) and vertebrate Meis and Prep homeoproteins. Exd was first implicated as a Hox cofactor based on mutant phenotypes in the fly. In vertebrates, PBC and MEIS homeobox proteins play important roles in development and disease. In this review, we describe the evidence that these functions reflect a requirement for Pbx and Meis/Prep proteins as Hox cofactors. However, there is mounting evidence that, like in the fly, Pbx and Meis/Prep proteins function more broadly, and we also discuss how "Hox cofactors" function as partners for other, non-Hox transcription factors during development. Conversely, we review the evidence that Hox proteins have functions that are independent of Pbx and Meis/Prep cofactors and discuss the possibility that other proteins may participate in the DNA-bound Hox complex, contributing to DNA-binding specificity in the absence of, or in addition to, Pbx and Meis/Prep.
Collapse
Affiliation(s)
- Cecilia B Moens
- Division of Basic Science and HHMI, Fred Hutchinson Cancer Research Center, Seattle, WA 98115, USA.
| | | |
Collapse
|
23
|
Bondos SE, Tan XX, Matthews KS. Physical and genetic interactions link hox function with diverse transcription factors and cell signaling proteins. Mol Cell Proteomics 2006; 5:824-34. [PMID: 16455680 DOI: 10.1074/mcp.m500256-mcp200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Positional information provided by Hox homeotic transcription factors is integrated with other transcription factors and cell signaling cascades in specific combinations to dictate context- and gene-specific Hox activity. Protein-protein interactions between these groups have long been hypothesized to modulate Hox functions, yielding a context-specific function. However, difficulties in applying interaction screens to potent transcription factors have limited partner identification. A yeast two-hybrid screen using transcription activation-deficient mutants of the Drosophila melanogaster Hox protein Ultrabithorax IB identified an array of interacting proteins, consisting primarily of transcription factors and components of cell signaling pathways. Interactions were confirmed with wild-type Ultrabithorax (UBX) in phage display experiments and by immunoprecipitation for a subset of partners. In vivo assays demonstrated that two Ultrabithorax IB partners, Armadillo, regulated by Wingless/WNT signaling, and the homeodomain protein Aristaless, inhibit UBX-dependent haltere development from the default wing development pathway. Therefore, transcription factors and cell signaling proteins that subdivide Hox-specified tissues can both alter Hox function in vivo and interact with the corresponding Hox protein in vitro. UBX may also modulate partner function: the pupal death phenotype induced by ectopic expression of the UBX partner Hairy required the presence of UBX. Thus, Hox.transcription factor complexes may integrate a variety of positional cues, generating the specificity and versatility required for context-dependent Hox function.
Collapse
Affiliation(s)
- Sarah E Bondos
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA.
| | | | | |
Collapse
|
24
|
Li X, Nie S, Chang C, Qiu T, Cao X. Smads oppose Hox transcriptional activities. Exp Cell Res 2006; 312:854-64. [PMID: 16405960 DOI: 10.1016/j.yexcr.2005.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 11/28/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
BMPs and Hox proteins play crucial roles in developmental processes. Beyond their mutual regulation of gene expression, little is known about the relations between their mechanisms of actions. Previously, we have shown that Hoxc8 acts as a downstream repressor in the BMP signaling pathway. Smad1 and Smad6 interact with Hoxc8 and regulate its repression activities. The Hox family contains 39 genes divided into 13 paralogs. In this report, we systemically examined the potential functions of all the paralogous Hox proteins as BMP downstream transcription factors. Representative Hox proteins from each paralog were tested. In the gel-shift assay, we found that Smad1, Smad4, and Smad6 interacted with most of the Hox proteins in ways similar to their interactions with Hoxc8. The interactions were confirmed in mammalian cells. We also examined the effects of Smads on Hox-induced transactivation. Particularly, we determined that for Hoxd10 as a transcriptional activator, both Smad1 and Smad6 opposed its activity. In addition, Smad6 also inhibited Hoxc8- and Hoxb7-induced osteoprotegerin (OPG) transactivation. Furthermore, Smad1 inhibited Hoxb4-mediated target gene Irx5 expression during early Xenopus development. Our findings suggest that Hox proteins act as general downstream DNA-binding proteins in BMP signaling cascade and their transcriptional activities are regulated by Smads.
Collapse
Affiliation(s)
- Xuelin Li
- Department of Pathology, University of Alabama at Birmingham, 1670 University Blvd., VH G003, Birmingham, AL 35294-0019, USA
| | | | | | | | | |
Collapse
|
25
|
McCabe CD, Innis JW. A genomic approach to the identification and characterization of HOXA13 functional binding elements. Nucleic Acids Res 2005; 33:6782-94. [PMID: 16321965 PMCID: PMC1301594 DOI: 10.1093/nar/gki979] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
HOX proteins are important transcriptional regulators in mammalian embryonic development and are dysregulated in human cancers. However, there are few known direct HOX target genes and their mechanisms of regulation are incompletely understood. To isolate and characterize gene segments through which HOX proteins regulate transcription we used cesium chloride centrifugation-based chromatin purification and immunoprecipitation (ChIP). From NIH 3T3-derived HOXA13-FLAG expressing cells, 33% of randomly selected, ChIP clones were reproducibly enriched. Hox-enriched fragments (HEFs) were more AT-rich compared with cloned fragments that failed reproducible ChIP. All HEFs augmented transcription of a heterologous promoter upon coexpression with HOXA13. One HEF was from intron 2 of Enpp2, a gene highly upregulated in these cells and has been implicated in cell motility. Using Enpp2 as a candidate direct target, we identified three additional HEFs upstream of the transcription start site. HOXA13 upregulated transcription from an Enpp2 promoter construct containing these sites, and each site was necessary for full HOXA13-induced expression. Lastly, given that HOX proteins have been demonstrated to interact with histone deacetylases and/or CBP, we explored whether histone acetylation changed at Enpp2 upon HOXA13-induced activation. No change in the general histone acetylation state was observed. Our results support models in which occupation of multiple HOX binding sites is associated with highly activated genes.
Collapse
Affiliation(s)
- Colleen D. McCabe
- Department of Human Genetics, University of MichiganAnn Arbor, MI 48109, USA
| | - Jeffrey W. Innis
- Department of Human Genetics, University of MichiganAnn Arbor, MI 48109, USA
- Department of Pediatrics, University of MichiganAnn Arbor, MI 48109, USA
- To whom correspondence should be addressed. Tel: +1 734 647-3817; Fax: +1 734 763 3784;
| |
Collapse
|
26
|
Ferrell CM, Dorsam ST, Ohta H, Humphries RK, Derynck MK, Haqq C, Largman C, Lawrence HJ. Activation of Stem-Cell Specific Genes by HOXA9 and HOXA10 Homeodomain Proteins in CD34+Human Cord Blood Cells. Stem Cells 2005; 23:644-55. [PMID: 15849172 DOI: 10.1634/stemcells.2004-0198] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is growing evidence for a role of HOX homeodomain proteins in normal hematopoiesis. Several HOX genes, including HOXA9 and HOXA10, are expressed in primitive hematopoietic cells, implying a role in early hematopoietic differentiation. To identify potential target genes of these two closely related transcription factors, human CD34+ umbilical cord blood cells were transduced with vectors expressing either HOXA9 or HOXA10 and analyzed with cDNA micro-arrays. Statistical analysis using significance analysis of microarrays revealed a common signature of several hundred genes, demonstrating that the transcriptomes of HOXA9 and HOXA10 largely overlap in this cellular context. Seven genes that were upregulated by both HOX proteins were validated by real-time reverse transcription polymerase chain reaction. HOXA9 and HOXA10 showed positive regulation of genes in the Wnt pathway, including Wnt10B and two Wnt receptors Frizzled 1 and Frizzled 5, an important pathway for hematopoietic stem cell (HSC) self-renewal. Other validated genes included v-ets-related gene (ERG), Iroquois 3 (IRX3), aldehyde dehydrogenase 1 (ALDH1), and very long-chain acyl-CoA synthetase homolog 1 (VLCS-H1). GenMAPP (Gene Micro Array Pathway Profiler) analysis indicated that HOXA10 repressed expression of several genes involved in heme biosynthesis and three globin genes, indicating a general suppression of erythroid differentiation. A number of genes regulated by HOXA9 and HOXA10 are expressed in normal HSC populations.
Collapse
Affiliation(s)
- Christina M Ferrell
- Department of Medicine, Veterans Affairs Medical Center, University of California, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | |
Collapse
|