1
|
Huang L, Thiex NW, Lou J, Ahmad G, An W, Low-Nam ST, Kerkvliet JG, Band H, Hoppe AD. The ubiquitin ligases Cbl and Cbl-b regulate macrophage growth by controlling CSF-1R import into macropinosomes. Mol Biol Cell 2024; 35:ar38. [PMID: 38170572 PMCID: PMC10916879 DOI: 10.1091/mbc.e23-09-0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
The ubiquitination of transmembrane receptors regulates endocytosis, intracellular traffic, and signal transduction. Bone marrow-derived macrophages from myeloid Cbl-/- and Cbl-b-/- double knockout (DKO) mice display sustained proliferation mirroring the myeloproliferative disease that these mice succumb to. Here, we found that the ubiquitin ligases Cbl and Cbl-b have overlapping functions for controlling the endocytosis and intracellular traffic of the CSF-1R. DKO macrophages displayed complete loss of ubiquitination of the CSF-1R whereas partial ubiquitination was observed for either single Cbl-/- or Cbl-b-/- macrophages. Unlike wild type, DKO macrophages were immortal and displayed slower CSF-1R internalization, elevated AKT signaling, and a failure to transport the CSF-1R into the lumen of nascent macropinosomes, leaving its cytoplasmic region available for signaling. CSF-1R degradation depended upon lysosomal vATPase activity in both WT and DKO macrophages, with this degradation confined to macropinosomes in WT but occurring in distributed/tubular lysosomes in DKO cells. RNA-sequencing comparison of Cbl-/-, Cbl-b-/- and DKO macrophages indicated that while the overall macrophage transcriptional program remained intact, DKO macrophages had alterations in gene expression associated with growth factor signaling, cell cycle, inflammation and senescence. Cbl-b-/- had minimal effect on the transcriptional program whereas Cbl-/- led to more alternations but only DKO macrophages demonstrated substantial changes in the transcriptome, suggesting overlapping but unique functions for the two Cbl-family members. Thus, Cbl/Cbl-b-mediated ubiquitination of CSF-1R regulates its endocytic fate, constrains inflammatory gene expression, and regulates signaling for macrophage proliferation.
Collapse
Affiliation(s)
- Lu Huang
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
- BioSNTR, Brookings, SD 57007
| | - Natalie W. Thiex
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007
- BioSNTR, Brookings, SD 57007
| | - Jieqiong Lou
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
| | - Gulzar Ahmad
- Eppley Institute for Research in Cancer and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Wei An
- Eppley Institute for Research in Cancer and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Shalini T. Low-Nam
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
| | - Jason G. Kerkvliet
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
- BioSNTR, Brookings, SD 57007
| | - Hamid Band
- Eppley Institute for Research in Cancer and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Adam D. Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
- BioSNTR, Brookings, SD 57007
| |
Collapse
|
2
|
Peng S, Fu Y. FYN: emerging biological roles and potential therapeutic targets in cancer. J Transl Med 2023; 21:84. [PMID: 36740671 PMCID: PMC9901160 DOI: 10.1186/s12967-023-03930-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/25/2023] [Indexed: 02/07/2023] Open
Abstract
Src family protein kinases (SFKs) play a key role in cell adhesion, invasion, proliferation, survival, apoptosis, and angiogenesis during tumor development. In humans, SFKs consists of eight family members with similar structure and function. There is a high level of overexpression or hyperactivity of SFKs in tumor, and they play an important role in multiple signaling pathways involved in tumorigenesis. FYN is a member of the SFKs that regulate normal cellular processes. Additionally, FYN is highly expressed in many cancers and promotes cancer growth and metastasis through diverse biological functions such as cell growth, apoptosis, and motility migration, as well as the development of drug resistance in many tumors. Moreover, FYN is involved in the regulation of multiple cancer-related signaling pathways, including interactions with ERK, COX-2, STAT5, MET and AKT. FYN is therefore an attractive therapeutic target for various tumor types, and suppressing FYN can improve the prognosis and prolong the life of patients. The purpose of this review is to provide an overview of FYN's structure, expression, upstream regulators, downstream substrate molecules, and biological functions in tumors.
Collapse
Affiliation(s)
- SanFei Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
3
|
Kuga T, Yamane Y, Hayashi S, Taniguchi M, Yamaguchi N, Yamagishi N. Depletion of Csk preferentially reduces the protein level of LynA in a Cbl-dependent manner in cancer cells. Sci Rep 2020; 10:7621. [PMID: 32376886 PMCID: PMC7203244 DOI: 10.1038/s41598-020-64624-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 04/20/2020] [Indexed: 11/28/2022] Open
Abstract
There are eight human Src-family tyrosine kinases (SFKs). SFK members c-Src, c-Yes, Fyn, and Lyn are expressed in various cancer cells. SFK kinase activity is negatively regulated by Csk tyrosine kinase. Reduced activity of Csk causes aberrant activation of SFKs, which can be degraded by a compensatory mechanism depending on Cbl-family ubiquitin ligases. We herein investigated whether all SFK members are similarly downregulated by Cbl-family ubiquitin ligases in cancer cells lacking Csk activity. We performed Western blotting of multiple cancer cells knocked down for Csk and found that the protein levels of the 56 kDa isoform of Lyn (LynA), 53 kDa isoform of Lyn (LynB), c-Src, and Fyn, but not of c-Yes, were reduced by Csk depletion. Induction of c-Cbl protein levels was also observed in Csk-depleted cells. The reduction of LynA accompanying the depletion of Csk was significantly reversed by the knockdown for Cbls, whereas such significant recovery of LynB, c-Src, and Fyn was not observed. These results suggested that LynA is selectively downregulated by Cbls in cancer cells lacking Csk activity.
Collapse
Affiliation(s)
- Takahisa Kuga
- Laboratory of Analytics for Biomolecules, Faculty of Pharmaceutical Science, Setsunan University, Osaka, 573-0101, Japan.
| | - Yuka Yamane
- Laboratory of Analytics for Biomolecules, Faculty of Pharmaceutical Science, Setsunan University, Osaka, 573-0101, Japan
| | - Soujirou Hayashi
- Laboratory of Analytics for Biomolecules, Faculty of Pharmaceutical Science, Setsunan University, Osaka, 573-0101, Japan
| | - Masanari Taniguchi
- Laboratory of Analytics for Biomolecules, Faculty of Pharmaceutical Science, Setsunan University, Osaka, 573-0101, Japan
| | - Naoto Yamaguchi
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Nobuyuki Yamagishi
- Laboratory of Analytics for Biomolecules, Faculty of Pharmaceutical Science, Setsunan University, Osaka, 573-0101, Japan
| |
Collapse
|
4
|
Nadeau SA, An W, Mohapatra BC, Mushtaq I, Bielecki TA, Luan H, Zutshi N, Ahmad G, Storck MD, Sanada M, Ogawa S, Band V, Band H. Structural Determinants of the Gain-of-Function Phenotype of Human Leukemia-associated Mutant CBL Oncogene. J Biol Chem 2017; 292:3666-3682. [PMID: 28082680 DOI: 10.1074/jbc.m116.772723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 01/19/2023] Open
Abstract
Mutations of the tyrosine kinase-directed ubiquitin ligase CBL cause myeloid leukemias, but the molecular determinants of the dominant leukemogenic activity of mutant CBL oncogenes are unclear. Here, we first define a gain-of-function attribute of the most common leukemia-associated CBL mutant, Y371H, by demonstrating its ability to increase proliferation of hematopoietic stem/progenitor cells (HSPCs) derived from CBL-null and CBL/CBL-B-null mice. Next, we express second-site point/deletion mutants of CBL-Y371H in CBL/CBL-B-null HSPCs or the cytokine-dependent human leukemic cell line TF-1 to show that individual or combined Tyr → Phe mutations of established phosphotyrosine residues (Tyr-700, Tyr-731, and Tyr-774) had little impact on the activity of the CBL-Y371H mutant in HSPCs, and the triple Tyr → Phe mutant was only modestly impaired in TF-1 cells. In contrast, intact tyrosine kinase-binding (TKB) domain and proline-rich region (PRR) were critical in both cell models. PRR deletion reduced the stem cell factor (SCF)-induced hyper-phosphorylation of the CBL-Y371H mutant and the c-KIT receptor and eliminated the sustained p-ERK1/2 and p-AKT induction by SCF. GST fusion protein pulldowns followed by phospho-specific antibody array analysis identified distinct CBL TKB domains or PRR-binding proteins that are phosphorylated in CBL-Y371H-expressing TF-1 cells. Our results support a model of mutant CBL gain-of-function in which mutant CBL proteins effectively compete with the remaining wild type CBL-B and juxtapose TKB domain-associated PTKs with PRR-associated signaling proteins to hyper-activate signaling downstream of hematopoietic growth factor receptors. Elucidation of mutant CBL domains required for leukemogenesis should facilitate targeted therapy approaches for patients with mutant CBL-driven leukemias.
Collapse
Affiliation(s)
- Scott A Nadeau
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Wei An
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Bhopal C Mohapatra
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Biochemistry and Molecular Biology
| | - Insha Mushtaq
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Pathology and Microbiology, College of Medicine, and
| | | | - Haitao Luan
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Neha Zutshi
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Pathology and Microbiology, College of Medicine, and
| | - Gulzar Ahmad
- From the Eppley Institute for Research in Cancer and Allied Diseases
| | - Matthew D Storck
- From the Eppley Institute for Research in Cancer and Allied Diseases
| | - Masashi Sanada
- the Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Seishi Ogawa
- the Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Vimla Band
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy.,the Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| | - Hamid Band
- From the Eppley Institute for Research in Cancer and Allied Diseases, .,the Departments of Genetics, Cell Biology and Anatomy.,Biochemistry and Molecular Biology.,Pathology and Microbiology, College of Medicine, and.,the Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| |
Collapse
|
5
|
Shintani T, Ohara-Waki F, Kitanaka A, Tanaka T, Kubota Y. Cbl negatively regulates erythropoietin-induced growth and survival signaling through the proteasomal degradation of Src kinase. Blood Cells Mol Dis 2014; 53:211-8. [PMID: 25084697 DOI: 10.1016/j.bcmd.2014.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 12/12/2022]
Abstract
We examined the biological functions of the gene Cbl in erythropoietin (EPO) signaling using Cbl-deficient F-36P human erythroleukemia cells by the introduction of the Cbl siRNA expression vector. Knockdown of Cbl promoted EPO-dependent proliferation and survival of F-36P cells, especially at a low concentration of EPO (0.01U/mL), similar to serum concentrations of EPO in healthy volunteers (0.005-0.04U/mL). We found that Src was degraded mainly by the proteasomal pathway because the proteasome inhibitor MG-132 but not the lysosome inhibitor NH4Cl suppressed the EPO-induced degradation of Src in F-36P cells and that knockdown of Cbl inhibited EPO-induced ubiquitination and degradation of Src in F-36P cells. The experiments using the Src inhibitor PP1 and co-expression experiments further confirmed that Cbl and the kinase activity of Src are required for the EPO-induced ubiquitination of Src. In addition, the co-expression experiments and in vitro kinase assay demonstrated that the EPO-induced tyrosine phosphorylation and ubiquitination of Cbl were dependent on the kinase activity of Src but not Jak2. Thus, Cbl negatively regulates EPO signaling mainly through the proteasome-dependent degradation of Src, and the E3 ligase activity of Cbl and its tyrosine phosphorylation are regulated by Src but not Jak2.
Collapse
Affiliation(s)
- Takamichi Shintani
- Department of Community Medicine, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Fusako Ohara-Waki
- Department of Internal Medicine, Takamatsu Red Cross Hospital, Kagawa 760-0017, Japan
| | - Akira Kitanaka
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Terukazu Tanaka
- Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Yoshitsugu Kubota
- Department of Community Medicine, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan.
| |
Collapse
|
6
|
Chesarino NM, McMichael TM, Hach JC, Yount JS. Phosphorylation of the antiviral protein interferon-inducible transmembrane protein 3 (IFITM3) dually regulates its endocytosis and ubiquitination. J Biol Chem 2014; 289:11986-11992. [PMID: 24627473 DOI: 10.1074/jbc.m114.557694] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon-inducible transmembrane protein 3 (IFITM3) is essential for innate defense against influenza virus in mice and humans. IFITM3 localizes to endolysosomes where it prevents virus fusion, although mechanisms controlling its trafficking to this cellular compartment are not fully understood. We determined that both mouse and human IFITM3 are phosphorylated by the protein-tyrosine kinase FYN on tyrosine 20 (Tyr(20)) and that mouse IFITM3 is also phosphorylated on the non-conserved Tyr(27). Phosphorylation led to a cellular redistribution of IFITM3, including plasma membrane accumulation. Mutation of Tyr(20) caused a similar redistribution of IFITM3 and resulted in decreased antiviral activity against influenza virus, whereas Tyr(27) mutation of mouse IFITM3 showed minimal effects on localization or activity. Using FYN knockout cells, we also found that IFITM3 phosphorylation is not a requirement for its antiviral activity. Together, these results indicate that Tyr(20) is part of an endocytosis signal that can be blocked by phosphorylation or by mutation of this residue. Further mutagenesis narrowed this endocytosis-controlling region to four residues conforming to a YXXΦ (where X is any amino acid and Φ is Val, Leu, or Ile) endocytic motif that, when transferred to CD4, resulted in its internalization from the cell surface. Additionally, we found that phosphorylation of IFITM3 by FYN and mutagenesis of Tyr(20) both resulted in decreased IFITM3 ubiquitination. Overall, these results suggest that modification of Tyr(20) may serve in a cellular checkpoint controlling IFITM3 trafficking and degradation and demonstrate the complexity of posttranslational regulation of IFITM3.
Collapse
Affiliation(s)
- Nicholas M Chesarino
- Department of Microbial Infection and Immunity and the Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio 43210
| | - Temet M McMichael
- Department of Microbial Infection and Immunity and the Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio 43210
| | - Jocelyn C Hach
- Department of Microbial Infection and Immunity and the Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio 43210
| | - Jacob S Yount
- Department of Microbial Infection and Immunity and the Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
7
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:122-39. [PMID: 23085373 DOI: 10.1016/j.bbamcr.2012.10.010] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA 2012. [PMID: 23085373 DOI: 10.1016/j.bbamcr] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gorbea C, Pratt G, Ustrell V, Bell R, Sahasrabudhe S, Hughes RE, Rechsteiner M. A protein interaction network for Ecm29 links the 26 S proteasome to molecular motors and endosomal components. J Biol Chem 2010; 285:31616-33. [PMID: 20682791 DOI: 10.1074/jbc.m110.154120] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ecm29 is a 200-kDa HEAT repeat protein that binds the 26 S proteasome. Genome-wide two-hybrid screens and mass spectrometry have identified molecular motors, endosomal components, and ubiquitin-proteasome factors as Ecm29-interacting proteins. The C-terminal half of human Ecm29 binds myosins and kinesins; its N-terminal region binds the endocytic proteins, Vps11, Rab11-FIP4, and rabaptin. Whereas full-length FLAG-Ecm29, its C-terminal half, and a small central fragment of Ecm29 remain bound to glycerol-gradient-separated 26 S proteasomes, the N-terminal half of Ecm29 does not. Confocal microscopy showed that Ecm-26 S proteasomes are present on flotillin-positive endosomes, but they are virtually absent from caveolin- and clathrin-decorated endosomes. Expression of the small central fragment of Ecm29 markedly reduces proteasome association with flotillin-positive endosomes. Identification of regions within Ecm29 capable of binding molecular motors, endosomal proteins, and the 26 S proteasome supports the hypothesis that Ecm29 serves as an adaptor for coupling 26 S proteasomes to specific cellular compartments.
Collapse
Affiliation(s)
- Carlos Gorbea
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Myristoylation and membrane binding regulate c-Src stability and kinase activity. Mol Cell Biol 2010; 30:4094-107. [PMID: 20584982 DOI: 10.1128/mcb.00246-10] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myristoylation is critical for membrane association of Src kinases, but a role for myristate in regulating other aspects of Src biology has not been explored. In the c-Abl tyrosine kinase, myristate binds within a hydrophobic pocket at the base of the kinase domain and latches the protein into an autoinhibitory conformation. A similar pocket has been predicted to exist in c-Src, raising the possibility that Src might also be regulated by myristoylation. Here we show that in contrast to the case for c-Abl, myristoylation exerts a positive effect on c-Src kinase activity. We also demonstrate that myristoylation and membrane binding regulate c-Src ubiquitination and degradation. Nonmyristoylated c-Src exhibited reduced kinase activity but had enhanced stability compared to myristoylated c-Src. We then mutated critical residues in the predicted myristate binding pocket of c-Src. Mutation of L360 and/or E486 had no effect on c-Src membrane binding or localization. However, constructs containing a T456A mutation were partially released from the membrane, suggesting that mutagenesis could induce c-Src to undergo an artificial myristoyl switch. All of the pocket mutants exhibited decreased kinase activity. We concluded that myristoylation and the pocket residues regulate c-Src, but in a manner very different from that for c-Abl.
Collapse
|
11
|
Decreased expression of Fyn protein and disbalanced alternative splicing patterns in platelets from patients with schizophrenia. Psychiatry Res 2009; 168:119-28. [PMID: 19501919 DOI: 10.1016/j.psychres.2008.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 03/15/2008] [Accepted: 04/16/2008] [Indexed: 01/12/2023]
Abstract
Fyn, a Src-family kinase, is highly expressed in brain tissue and blood cells. In the mouse brain, Fyn participates in brain development, synaptic transmission through the phosphorylation of N-methyl-d-aspartate (NMDA) receptor subunits, and the regulation of emotional behavior. Recently, we found that Fyn is required for the signal transduction in striatal neurons that is initiated by haloperidol, an antipsychotic drug. To determine whether Fyn abnormalities are present in patients with schizophrenia, we analyzed Fyn expression in platelet samples from 110 patients with schizophrenia, 75 of the patients' first-degree relatives, and 130 control subjects. A Western blot analysis revealed significantly lower levels of Fyn protein among the patients with schizophrenia and their relatives, compared with the level in the control group. At the mRNA level, the splicing patterns of fyn were altered in the patients and their relatives; specifically, the ratio of fynDelta7, in which exon 7 is absent, was elevated. An expression study in HEK293T cells revealed that FynDelta7 had a dominant-negative effect on the phosphorylation of Fyn's substrate. These results suggest novel deficits in Fyn function, manifested as the downregulation of Fyn protein or the altered transcription of the fyn gene, in patients with schizophrenia.
Collapse
|
12
|
Sargin B, Choudhary C, Crosetto N, Schmidt MHH, Grundler R, Rensinghoff M, Thiessen C, Tickenbrock L, Schwäble J, Brandts C, August B, Koschmieder S, Bandi SR, Duyster J, Berdel WE, Müller-Tidow C, Dikic I, Serve H. Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood 2007; 110:1004-12. [PMID: 17446348 DOI: 10.1182/blood-2007-01-066076] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Abstract
In acute myeloid leukemia (AML), mutational activation of the receptor tyrosine kinase (RTK) Flt3 is frequently involved in leukemic transformation. However, little is known about a possible role of highly expressed wild-type Flt3 in AML. The proto-oncogene c-Cbl is an important regulator of RTK signaling, acting through its ubiquitin ligase activity and as a platform for several signaling adaptor molecules. Here, we analyzed the role of c-Cbl in Flt3 signal transduction and myeloid transformation. C-Cbl physically interacted with Flt3 and was tyrosine phosphorylated in the presence of Flt3-ligand (FL). Overexpression of a dominant-negative form of c-Cbl (Cbl-70Z) inhibited FL-induced Flt3 ubiquitylation and internalization, indicating involvement of c-Cbl in Flt3 signaling. DNA sequencing of AML bone marrow revealed a case with a c-Cbl point mutation (Cbl-R420Q). Cbl-R420Q inhibited Flt3 internalization and ubiquitylation. Coexpression of Cbl-R420Q or Cbl-70Z with Flt3 induced cytokine-independent growth and survival of 32Dcl3 cells in the absence of FL. Also, the mutant Cbl proteins altered the amplitude and duration of Flt3-dependent signaling events. Our results indicate an important role of Cbl proteins in Flt3 signal modulation. Also, the data suggest a novel mechanism of leukemic transformation in AML by mutational inactivation of negative RTK regulators.
Collapse
MESH Headings
- Animals
- Bone Marrow/metabolism
- Bone Marrow/pathology
- COS Cells
- Cell Survival
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Chlorocebus aethiops
- Gene Expression Regulation, Leukemic
- Genes, Dominant
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Phosphorylation
- Point Mutation
- Protein Binding
- Protein Processing, Post-Translational
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-cbl/genetics
- Proto-Oncogene Proteins c-cbl/metabolism
- Signal Transduction
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- Bülent Sargin
- Department of Medicine, Hematology and Oncology, and Interdisciplinary Center for Clinical Research, University Hospital Münster, Albert-Schweitzer-Strasse 33, 48129 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dimri M, Naramura M, Duan L, Chen J, Ortega-Cava C, Chen G, Goswami R, Fernandes N, Gao Q, Dimri GP, Band V, Band H. Modeling breast cancer-associated c-Src and EGFR overexpression in human MECs: c-Src and EGFR cooperatively promote aberrant three-dimensional acinar structure and invasive behavior. Cancer Res 2007; 67:4164-72. [PMID: 17483327 DOI: 10.1158/0008-5472.can-06-2580] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epidermal growth factor receptor (EGFR), a member of the ErbB family of receptor tyrosine kinases, is overexpressed in as many as 60% cases of breast and other cancers. EGFR overexpression is a characteristic of highly aggressive molecular subtypes of breast cancer with basal-like and BRCA1 mutant phenotypes distinct from ErbB2-overexpressing breast cancers. Yet, EGFR is substantially weaker compared with ErbB2 in promoting the oncogenic transformation of nontumorigenic human mammary epithelial cells (human MEC), suggesting a role for cooperating oncogenes. Here, we have modeled the co-overexpression of EGFR and a biologically and clinically relevant potential modifier c-Src in two distinct immortal but nontumorigenic human MECs. Using a combination of morphologic analysis and confocal imaging of polarity markers in three-dimensional Matrigel culture together with functional analyses of early oncogenic traits, we show for the first time that EGFR and c-Src co-overexpression but not EGFR or c-Src overexpression alone unleashes an oncogenic signaling program that leads to hyperproliferation and loss of polarity in three-dimensional acinar cultures, marked enhancement of migratory and invasive behavior, and anchorage-independent growth. Our results establish that EGFR overexpression in an appropriate context (modeled here using c-Src overexpression) can initiate oncogenic transformation of nontumorigenic human MECs and provide a suitable in vitro model to interrogate human breast cancer-relevant oncogenic signaling pathways initiated by overexpressed EGFR and to identify modifiers of EGFR-mediated breast oncogenesis.
Collapse
Affiliation(s)
- Manjari Dimri
- Division of Molecular Oncology, Evanston Northwestern Healthcare Research Institute, Evanston, IL 60201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sanjay A, Miyazaki T, Itzstein C, Purev E, Horne WC, Baron R. Identification and functional characterization of an Src homology domain 3 domain-binding site on Cbl. FEBS J 2006; 273:5442-56. [PMID: 17094785 DOI: 10.1111/j.1742-4658.2006.05535.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cbl is an adaptor protein and ubiquitin ligase that binds and is phosphorylated by the nonreceptor tyrosine kinase Src. We previously showed that the primary interaction between Src and Cbl is mediated by the Src homology domain 3 (SH3) of Src binding to proline-rich sequences of Cbl. The peptide Cbl RDLPPPPPPDRP(540-551), which corresponds to residues 540-551 of Cbl, inhibited the binding of a GST-Src SH3 fusion protein to Cbl, whereas RDLAPPAPPPDR(540-551) did not, suggesting that Src binds to this site on Cbl in a class I orientation. Mutating prolines 543-548 reduced Src binding to the Cbl 479-636 fragment significantly more than mutating the prolines in the PPVPPR(494-499) motif, which was previously reported to bind Src SH3. Mutating Cbl prolines 543-548 to alanines substantially reduced Src binding to Cbl, Src-induced phosphorylation of Cbl, and the inhibition of Src kinase activity by Cbl. Expressing the mutated Cbl in osteoclasts induced a moderate reduction in bone-resorbing activity and increased amounts of Src protein. In contrast, disabling the tyrosine kinase-binding domain of full-length Cbl by mutating glycine 306 to glutamic acid, and thereby preventing the previously described binding of the tyrosine kinase-binding domain to the Src phosphotyrosine 416, had no effect on Cbl phosphorylation, the inhibition of Src activity by full-length Cbl, or bone resorption. These data indicate that the Cbl RDLPPPP(540-546) sequence is a functionally important binding site for Src.
Collapse
Affiliation(s)
- Archana Sanjay
- Departments of Orthopedics & Rehabilitation and Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
15
|
Swaminathan G, Tsygankov AY. The Cbl family proteins: ring leaders in regulation of cell signaling. J Cell Physiol 2006; 209:21-43. [PMID: 16741904 DOI: 10.1002/jcp.20694] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The proto-oncogenic protein c-Cbl was discovered as the cellular form of v-Cbl, a retroviral transforming protein. This was followed over the years by important discoveries, which identified c-Cbl and other Cbl-family proteins as key players in several signaling pathways. c-Cbl has donned the role of a multivalent adaptor protein, capable of interacting with a plethora of proteins, and has been shown to positively influence certain biological processes. The identity of c-Cbl as an E3 ubiquitin ligase unveiled the existence of an important negative regulatory pathway involved in maintaining homeostasis in protein tyrosine kinase (PTK) signaling. Recent years have also seen the emergence of novel regulators of Cbl, which have provided further insights into the complexity of Cbl-influenced pathways. This review will endeavor to provide a summary of current studies focused on the effects of Cbl proteins on various biological processes and the mechanism of these effects. The major sections of the review are as follows: Structure and genomic organization of Cbl proteins; Phosphorylation of Cbl; Interactions of Cbl; Localization of Cbl; Mechanism of effects of Cbl: (a) Ubiquitylation-dependent events: This section elucidates the mechanism of Cbl-mediated downregulation of EGFR and details the PTK and non-PTKs targeted by Cbl. In addition, it addresses the functional requirements for E3 Ubiquitin ligase activity of Cbl and negative regulation of Cbl-mediated downregulation of PTKs, (b) Adaptor functions: This section discusses the mechanisms of adaptor functions of Cbl in mitogen-activated protein kinase (MAPK) activation, insulin signaling, regulation of Ras-related protein 1 (Rap1), PI-3' kinase signaling, and regulation of Rho-family GTPases and cytoskeleton; Biological functions: This section gives an account of the diverse biological functions of Cbl and includes the role of Cbl in transformation, T-cell signaling and thymus development, B-cell signaling, mast-cell degranulation, macrophage functions, bone development, neurite growth, platelet activation, muscle degeneration, and bacterial invasion; Conclusions and perspectives.
Collapse
Affiliation(s)
- Gayathri Swaminathan
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
16
|
Li W, Marshall C, Mei L, Gelfand J, Seykora JT. Srcasm corrects Fyn-induced epidermal hyperplasia by kinase down-regulation. J Biol Chem 2006; 282:1161-9. [PMID: 17046829 PMCID: PMC3099404 DOI: 10.1074/jbc.m606583200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Src family tyrosine kinases (SFKs) are important regulators of epithelial cell growth and differentiation. Characterization of cellular mechanisms that regulate SFK activity will provide insights into the pathogenesis of diseases associated with increased SFK activity. Keratin 14-Fyn (K14) transgenic mice were derived to characterize the effect of Fyn on epidermal growth and differentiation in vivo. The epidermis of K14-Fyn mice is thickened, manifests prominent scale, and exhibits features consistent with hyperproliferation. Increased epidermal Fyn levels correlate with activation of p44/42 MAP kinases, STAT-3, and PDK-1, key signaling molecules that promote epithelial cell growth. The Src-activating and signaling molecule (Srcasm) is a substrate of SFKs that becomes tyrosine-phosphorylated downstream of the EGF receptor. In vitro, increased Srcasm levels promote activation of endogenous Fyn and keratinocyte differentiation. To study the in vivo effect of Srcasm upon Fyn, double transgenic lines were derived. K14-Fyn/Srcasm transgenic mice did not manifest the hyperproliferative phenotype. In contrast, K14-Fyn/Srcasm-P transgenic mice, which express a nonphosphorylatable Srcasm mutant, maintained the hyperproliferative phenotype. Resolution of the hyperproliferative phenotype correlated with reduced Fyn levels in vivo in three experimental systems: transgenic mice, primary keratinocytes, and cell lines. Biochemical studies revealed that Srcasm-dependent Fyn down-regulation requires Fyn kinase activity, phosphorylation of Srcasm, and the Srcasm GAT domain. Therefore, Srcasm is a novel regulator of Fyn promoting kinase down-regulation in a phosphorylation-dependent manner. Srcasm may act as a molecular "rheostat" for activated SFKs, and cellular levels of Srcasm may be important for regulating epithelial hyperproliferation associated with increased SFK activity.
Collapse
Affiliation(s)
| | | | | | | | - John T. Seykora
- Corresponding Author: John T. Seykora M.D., Ph.D., Departments of Dermatology and Pathology, CAMB Graduate Group, University of Pennsylvania Medical School 235a Clinical Research Building, 415 Curie Blvd., Philadelphia, PA 19104, ph 215 898 0170, fax 215 573 2143,
| |
Collapse
|
17
|
Ryan PE, Davies GC, Nau MM, Lipkowitz S. Regulating the regulator: negative regulation of Cbl ubiquitin ligases. Trends Biochem Sci 2006; 31:79-88. [PMID: 16406635 DOI: 10.1016/j.tibs.2005.12.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 11/16/2005] [Accepted: 12/20/2005] [Indexed: 11/29/2022]
Abstract
Cbl proteins are regulators of signal transduction through many pathways and, consequently, regulate cell function and development. They are ubiquitin ligases that ubiquitinate and target many signaling molecules for degradation. The Cbl proteins themselves are regulated by an increasingly complex network of interactions that fine-tune the effects that Cbl proteins have on signaling. The negative regulation of Cbl protein function can occur via cis-acting structural elements that prevent inappropriate ubiquitin ligase activity, degradation of the Cbl proteins, inhibition without degradation owing to interaction with other signaling proteins, deubiquitination of Cbl substrates, and regulation of assembly of the endosomal ESCRT-I complex. Defects in the regulatory mechanisms that control Cbl function are implicated in the development of immunological and malignant diseases.
Collapse
Affiliation(s)
- Philip E Ryan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|