1
|
Shin Y, Park CM, Kim DE, Kim S, Lee SY, Lee JY, Jeon WH, Kim HG, Bae S, Yoon CH. Discovery of new acetamide derivatives of 5-indole-1,3,4-oxadiazol-2-thiol as inhibitors of HIV-1 Tat-mediated viral transcription. Antimicrob Agents Chemother 2024; 68:e0064324. [PMID: 39230310 PMCID: PMC11459959 DOI: 10.1128/aac.00643-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) encodes a transcriptional factor called Tat, which is critical for viral transcription. Tat-mediated transcription is highly ordered apart from the cellular manner; therefore, it is considered a target for developing anti-HIV-1 drugs. However, drugs targeting Tat-mediated viral transcription are not yet available. Our high-throughput screen of a compound library employing a dual-reporter assay identified a 1,3,4-oxadiazole scaffold against Tat and HIV-1 infection. Furthermore, a serial structure-activity relation (SAR) study performed with biological assays found 1,3,4-oxadiazole derivatives (9 and 13) containing indole and acetamide that exhibited potent inhibitory effects on HIV-1 infectivity, with half-maximal effective concentrations (EC50) of 0.17 (9) and 0.24 µM (13), respectively. The prominent derivatives specifically interfered with the viral transcriptional step without targeting other infection step(s) and efficiently inhibited the HIV-1 replication cycle in the T cell lines and peripheral blood mononuclear cells infected with HIV-1. Additionally, compared to the wild type, the compounds exhibited similar potency against anti-retroviral drug-resistant HIV-1 strains. In a series of mode-of-action studies, the compounds inhibited the ejection of histone H3 for facilitating viral transcription on the long-terminal repeat (LTR) promoter. Furthermore, SAHA (a histone deacetylase inhibitor) treatment abolished the compound potency, revealing that the compounds can possibly target Tat-regulated epigenetic modulation of LTR to inhibit viral transcription. Overall, our screening identified novel 1,3,4-oxadiazole compounds that inhibited HIV-1 Tat, and subsequent SAR-based optimization led to the derivatives 9 and 13 development that could be a promising scaffold for developing a new class of therapeutic agents for HIV-1 infection.
Collapse
Affiliation(s)
- YoungHyun Shin
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Chul Min Park
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dong-Eun Kim
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Sungmin Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Sang-Yeop Lee
- Research Center for Bioconvergence Analysis, Ochang Center, Korea Basic Science Institute, Cheongju-si, Republic of Korea
| | - Jun Young Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Won-Hui Jeon
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hong Gi Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Songmee Bae
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Cheol-Hee Yoon
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, Cheongju, Republic of Korea
| |
Collapse
|
2
|
Mediouni S, Lyu S, Schader SM, Valente ST. Forging a Functional Cure for HIV: Transcription Regulators and Inhibitors. Viruses 2022; 14:1980. [PMID: 36146786 PMCID: PMC9502519 DOI: 10.3390/v14091980] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Current antiretroviral therapy (ART) increases the survival of HIV-infected individuals, yet it is not curative. The major barrier to finding a definitive cure for HIV is our inability to identify and eliminate long-lived cells containing the dormant provirus, termed viral reservoir. When ART is interrupted, the viral reservoir ensures heterogenous and stochastic HIV viral gene expression, which can reseed infection back to pre-ART levels. While strategies to permanently eradicate the virus have not yet provided significant success, recent work has focused on the management of this residual viral reservoir to effectively limit comorbidities associated with the ongoing viral transcription still observed during suppressive ART, as well as limit the need for daily ART. Our group has been at the forefront of exploring the viability of the block-and-lock remission approach, focused on the long-lasting epigenetic block of viral transcription such that without daily ART, there is no risk of viral rebound, transmission, or progression to AIDS. Numerous studies have reported inhibitors of both viral and host factors required for HIV transcriptional activation. Here, we highlight and review some of the latest HIV transcriptional inhibitor discoveries that may be leveraged for the clinical exploration of block-and-lock and revolutionize the way we treat HIV infections.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Shuang Lyu
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Susan M. Schader
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| |
Collapse
|
3
|
de Jesus MSM, Macabeo APG, Ramos JDA, de Leon VNO, Asamitsu K, Okamoto T. Voacanga globosa Spirobisindole Alkaloids Exert Antiviral Activity in HIV Latently Infected Cell Lines by Targeting the NF-kB Cascade: In Vitro and In Silico Investigations. Molecules 2022; 27:1078. [PMID: 35164343 PMCID: PMC8840767 DOI: 10.3390/molecules27031078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Since the efficiency in the transcription of the HIV genome contributes to the success of viral replication and infectivity, we investigated the downregulating effects of the spirobisindole alkaloids globospiramine (1), deoxyvobtusine (2), and vobtusine lactone (3) from the endemic Philippine medicinal plant, Voacanga globosa, during HIV gene transcription. Alkaloids 1-3 were explored for their inhibitory activity on TNF-α-induced viral replication in two latently HIV-infected cell lines, OM10.1 and J-Lat. The induction of HIV replication from OM10.1 and J-Lat cells elicited by TNF-α was blocked by globospiramine (1) within noncytotoxic concentrations. Furthermore, globospiramine (1) was found to target the NF-ĸB activation cascade in a dose-dependent manner when the transcriptional step at which inhibitory activity is exerted was examined in TNF-α-induced 293 human cells using transient reporter (luciferase) gene expression systems (HIV LTR-luc, ĸB-luc, and mutant ĸB-luc). Interrogation through molecular docking against the NF-ĸB p50/p65 heterodimer and target sites of the subunits comprising the IKK complex revealed high binding affinities of globospiramine (1) against the S281 pocket of the p65 subunit (BE = -9.2 kcal/mol) and the IKKα activation loop (BE = -9.1 kcal/mol). These findings suggest globospiramine (1) as a molecular inspiration to discover new alkaloid-based anti-HIV derivatives.
Collapse
Affiliation(s)
- Ma. Sheila M. de Jesus
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
| | - John Donnie A. Ramos
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Molecular Diagnostics and Therapeutics Laboratory, Research Center for Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines
| | - Von Novi O. de Leon
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
| | - Kaori Asamitsu
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 4678601, Japan; (K.A.); (T.O.)
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 4678601, Japan; (K.A.); (T.O.)
| |
Collapse
|
4
|
Raghuvanshi R, Bharate SB. Recent Developments in the Use of Kinase Inhibitors for Management of Viral Infections. J Med Chem 2021; 65:893-921. [PMID: 33539089 DOI: 10.1021/acs.jmedchem.0c01467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Kinases are a group of therapeutic targets involved in the progression of numerous diseases, including cancer, rheumatoid arthritis, Alzheimer's disease, and viral infections. The majority of approved antiviral agents are inhibitors of virus-specific targets that are encoded by individual viruses. These inhibitors are narrow-spectrum agents that can cause resistance development. Viruses are dependent on host cellular proteins, including kinases, for progression of their life-cycle. Thus, targeting kinases is an important therapeutic approach to discovering broad-spectrum antiviral agents. As there are a large number of FDA approved kinase inhibitors for various indications, their repurposing for viral infections is an attractive and time-sparing strategy. Many kinase inhibitors, including baricitinib, ruxolitinib, imatinib, tofacitinib, pacritinib, zanubrutinib, and ibrutinib, are under clinical investigation for COVID-19. Herein, we discuss FDA approved kinase inhibitors, along with a repertoire of clinical/preclinical stage kinase inhibitors that possess antiviral activity or are useful in the management of viral infections.
Collapse
Affiliation(s)
- Rinky Raghuvanshi
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Sandip B Bharate
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
5
|
Shin Y, Park CM, Kim HG, Kim DE, Choi MS, Kim JA, Choi BS, Yoon CH. Identification of Aristolactam Derivatives That Act as Inhibitors of Human Immunodeficiency Virus Type 1 Infection and Replication by Targeting Tat-Mediated Viral Transcription. Virol Sin 2020; 36:254-263. [PMID: 32779073 DOI: 10.1007/s12250-020-00274-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/28/2020] [Indexed: 11/26/2022] Open
Abstract
Despite the success of antiretroviral therapy (ART), efforts to develop new classes of antiviral agents have been hampered by the emergence of drug resistance. Dibenzo-indole-bearing aristolactams are compounds that have been isolated from various plants species and which show several clinically relevant effects, including anti-inflammatory, antiplatelet, and anti-mycobacterial actions. However, the effect of these compounds on human immunodeficiency virus type 1 (HIV-1) infection has not yet been studied. In this study, we discovered an aristolactam derivative bearing dibenzo[cd,f]indol-4(5H)-one that had a potent anti-HIV-1 effect. A structure-activity relationship (SAR) study using nine synthetic derivatives of aristolactam identified the differing effects of residue substitutions on the inhibition of HIV-1 infection and cell viability. Among the compounds tested, 1,2,8,9-tetramethoxy-5-(2-(piperidin-1-yl)ethyl)-dibenzo[cd,f]indol-4(5H)-one (Compound 2) exhibited the most potent activity by inhibiting HIV-1 infection with a half-maximal inhibitory concentration (IC50) of 1.03 μmol/L and a half-maximal cytotoxic concentration (CC50) of 16.91 μmol/L (selectivity index, 16.45). The inhibitory effect of the compounds on HIV-1 infection was linked to inhibition of the viral replication cycle. Mode-of-action studies showed that the aristolactam derivatives did not affect reverse transcription or integration; instead, they specifically inhibited Tat-mediated viral transcription. Taken together, these findings show that several aristolactam derivatives impaired HIV-1 infection by inhibiting the activity of Tat-mediated viral transcription, and suggest that these derivatives could be antiviral drug candidates.
Collapse
Affiliation(s)
- YoungHyun Shin
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Heungdeok-gu, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Chul Min Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Hong Gi Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Dong-Eun Kim
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Heungdeok-gu, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Min Suk Choi
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jeong-Ah Kim
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Heungdeok-gu, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Byeong-Sun Choi
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Heungdeok-gu, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Cheol-Hee Yoon
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Heungdeok-gu, Cheongju-si, Chungbuk, 28159, Republic of Korea.
| |
Collapse
|
6
|
Shin Y, Kim HG, Park CM, Choi MS, Kim DE, Choi BS, Kim K, Yoon CH. Identification of novel compounds against Tat-mediated human immunodeficiency virus-1 transcription by high-throughput functional screening assay. Biochem Biophys Res Commun 2019; 523:368-374. [PMID: 31866007 DOI: 10.1016/j.bbrc.2019.12.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Trans-activator (Tat)-mediated human immunodeficiency virus type 1 (HIV-1) transcription is essential for the replication of HIV-1 and is considered a potent therapeutic target for HIV-1 inhibition. In this study, the Library of Pharmacologically Active Compounds (LOPAC1280) was screened using our dual-reporter screening system for repositioning as Tat-inhibitory compounds. Consequently, two compounds were found to be potent, with low cytotoxicity. Of these two compounds, Roscovitine (CYC202) is already known to be a Tat inhibitor, while gemcitabine has been newly identified as an inhibitor of Tat-mediated transcription linked to viral production and replication. In an additional screening using the ribonucleoside analogues of gemcitabine, two analogues (2'-C-methylcytidine and 3-deazauridine) showed a specific Tat-inhibitory effect linked to their anti-HIV-1 activity. Interestingly, these compounds did not affect Tat protein directly, while the mechanism underlying their inhibition of Tat-mediated transcription was linked to pyrimidine biosynthesis, rather than to alteration of the dNTP pool, influenced by the inhibition of ribonucleotide reductase. Taken together, the proposed functional screening system is a useful tool for the identification of inhibitors of Tat-mediated HIV-1 transcription from among a large number of compounds, and the inhibitory effect of HIV-1 transcription by gemcitabine and its analogues may suggest a strategy for developing a new class of therapeutic anti-HIV drugs.
Collapse
Affiliation(s)
- YoungHyun Shin
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea
| | - Hong Gi Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Chul Min Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Min Suk Choi
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Dong-Eun Kim
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea
| | - Byeong-Sun Choi
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea
| | - Kisoon Kim
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea
| | - Cheol-Hee Yoon
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| |
Collapse
|
7
|
Specific Activation In Vivo of HIV-1 by a Bromodomain Inhibitor from Monocytic Cells in Humanized Mice under Antiretroviral Therapy. J Virol 2019; 93:JVI.00233-19. [PMID: 30971469 DOI: 10.1128/jvi.00233-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/26/2019] [Indexed: 11/20/2022] Open
Abstract
Combination antiretroviral therapy (cART) effectively suppresses HIV-1 replication and enables HIV‑infected individuals to live long, productive lives. However, the persistence of HIV-1 reservoirs of both T and myeloid cells with latent or low-replicating HIV-1 in patients under cART makes HIV-1 infection an incurable disease. Recent studies have focused on the development of strategies to activate and purge these reservoirs. Bromodomain and extraterminal domain proteins (BETs) are epigenetic readers involved in modulating gene expression. Several bromodomain inhibitors (BETi) are reported to activate viral transcription in vitro in HIV-1 latency cell lines in a P-TEFb (CDK9/cyclin T1)-dependent manner. Little is known about BETi efficacy in activating HIV-1 reservoir cells under cART in vivo Here we report that a BETi (I-BET151) efficiently activated HIV-1 reservoirs under effective cART in humanized mice in vivo Interestingly, I-BET151 during suppressive cART in vivo activated HIV-1 gene expression only in monocytic cells and not in CD4+ T cells. We further demonstrate that BETi preferentially enhanced HIV-1 gene expression in monocytic cells rather than in T cells and that whereas CDK9 was involved in activating HIV-1 by I-BET151 in both monocytic and T cells, CDK2 enhanced HIV-1 transcription in monocytic cells but inhibited it in T cells. Our findings reveal a role for CDK2 in differential modulation of HIV-1 gene expression in myeloid cells and in T cells and provide a novel strategy to reactivate monocytic reservoirs with BETi during cART.IMPORTANCE Bromodomain inhibitors have been reported to activate HIV-1 transcription in vitro, but their effect on activation of HIV-1 reservoirs during cART in vivo is unclear. We found that BETi (I-BET151) treatment reactivated HIV-1 gene expression in humanized mice during suppressive cART. Interestingly, I-BET151 preferentially reactivated HIV-1 gene expression in monocytic cells, but not in CD4 T cells, in cART-treated mice. Furthermore, I-BET151 significantly increased HIV-1 transcription in monocytic cells, but not in HIV-1-infected CD4 T cells, via CDK2-dependent mechanisms. Our findings suggest that BETi can preferentially activate monocytic HIV-1 reservoir cells and that a combination of reservoir activation agents targeting different cell types and pathways is needed to achieve reactivation of different HIV-1 reservoir cells during cART.
Collapse
|
8
|
Shin Y, Choi BS, Kim KC, Kang C, Kim K, Yoon CH. Development of a dual reporter screening assay for distinguishing the inhibition of HIV Tat-mediated transcription from off-target effects. J Virol Methods 2017; 249:1-9. [PMID: 28807730 DOI: 10.1016/j.jviromet.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/29/2022]
Abstract
Human immunodeficiency virus (HIV) encodes a transcription trans-activator (Tat) with an essential role in the transcriptional elongation of viral RNA based on the viral promoter long terminal repeat (LTR). Tat-mediated transcription is conserved and can be distinguished from host transcription, so it is a therapeutic target for combating HIV replication. Traditional screening assays for Tat-mediated transcriptional inhibitors are based on the biochemical properties of Tat and transactivation-responsive RNA. We developed an inducible system based on two lentiviral expression cassettes for doxycycline (Dox)-inducible Tat and Renilla luciferase (R-Luc) using TZM-bl cells harboring LTR-driven firefly luciferase (F-Luc). The cells simultaneously expressed both Tat-induced F-Luc and R-Luc, so it was possible to recognize off-target effects in the presence of Dox. The system was validated with known inhibitors: CYC202 obtained high sensitivity and specificity, whereas 6Bio and DRB had off-target effects. The MTT-based cytotoxicity test indicated the resistance of the system even at concentrations with off-target effects. The specificity of the system was confirmed using antiretroviral drugs. Our dual reporter system can simply detect Tat inhibitory effects, as well as precisely discriminate between the inhibitory and off-target effects of inhibitors, and may be useful for the development of a therapeutic anti-HIV drug.
Collapse
Affiliation(s)
- YoungHyun Shin
- Division of AIDS, Korea National Institute of Health, Chungbuk, Republic of Korea; Division of Viral Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| | - Byeong-Sun Choi
- Division of AIDS, Korea National Institute of Health, Chungbuk, Republic of Korea; Division of Viral Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| | - Kyung-Chang Kim
- Division of AIDS, Korea National Institute of Health, Chungbuk, Republic of Korea; Division of Viral Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| | - Chun Kang
- Division of AIDS, Korea National Institute of Health, Chungbuk, Republic of Korea; Division of Viral Diseases, Korea National Institute of Health, Chungbuk, Republic of Korea.
| | - Kisoon Kim
- Division of Viral Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| | - Cheol-Hee Yoon
- Division of AIDS, Korea National Institute of Health, Chungbuk, Republic of Korea; Division of Viral Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| |
Collapse
|
9
|
Recent advances in the identification of Tat-mediated transactivation inhibitors: progressing toward a functional cure of HIV. Future Med Chem 2016; 8:421-42. [PMID: 26933891 DOI: 10.4155/fmc.16.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The current anti-HIV combination therapy does not eradicate the virus that persists mainly in quiescent infected CD4(+) T cells as a latent integrated provirus that resumes after therapy interruption. The Tat-mediated transactivation (TMT) is a critical step in the HIV replication cycle that could give the opportunity to reduce the size of latent reservoirs. More than two decades of research led to the identification of various TMT inhibitors. While none of them met the criteria to reach the market, the search for a suitable TMT inhibitor is still actively pursued. Really promising compounds, including one in a Phase III clinical trial, have been recently identified, thus warranting an update.
Collapse
|
10
|
Khalil HS, Mitev V, Vlaykova T, Cavicchi L, Zhelev N. Discovery and development of Seliciclib. How systems biology approaches can lead to better drug performance. J Biotechnol 2015; 202:40-9. [PMID: 25747275 DOI: 10.1016/j.jbiotec.2015.02.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 11/30/2022]
Abstract
Seliciclib (R-Roscovitine) was identified as an inhibitor of CDKs and has undergone drug development and clinical testing as an anticancer agent. In this review, the authors describe the discovery of Seliciclib and give a brief summary of the biology of the CDKs Seliciclib inhibits. An overview of the published in vitro and in vivo work supporting the development as an anti-cancer agent, from in vitro experiments to animal model studies ending with a summary of the clinical trial results and trials underway is presented. In addition some potential non-oncology applications are explored and the potential mode of action of Seliciclib in these areas is described. Finally the authors argue that optimisation of the therapeutic effects of kinase inhibitors such as Seliciclib could be enhanced using a systems biology approach involving mathematical modelling of the molecular pathways regulating cell growth and division.
Collapse
Affiliation(s)
- Hilal S Khalil
- CMCBR, SIMBIOS, School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, Scotland, UK
| | - Vanio Mitev
- Department of Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Tatyana Vlaykova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| | - Laura Cavicchi
- CMCBR, SIMBIOS, School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, Scotland, UK
| | - Nikolai Zhelev
- CMCBR, SIMBIOS, School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, Scotland, UK.
| |
Collapse
|
11
|
Human Immunodeficiency Virus Type 1 Tat and Rev as Potential Targets for Drug Development. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Holcakova J, Muller P, Tomasec P, Hrstka R, Nekulova M, Krystof V, Strnad M, Wilkinson GWG, Vojtesek B. Inhibition of post-transcriptional RNA processing by CDK inhibitors and its implication in anti-viral therapy. PLoS One 2014; 9:e89228. [PMID: 24586613 PMCID: PMC3931720 DOI: 10.1371/journal.pone.0089228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/17/2014] [Indexed: 01/31/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are key regulators of the cell cycle and RNA polymerase II mediated transcription. Several pharmacological CDK inhibitors are currently in clinical trials as potential cancer therapeutics and some of them also exhibit antiviral effects. Olomoucine II and roscovitine, purine-based inhibitors of CDKs, were described as effective antiviral agents that inhibit replication of a broad range of wild type human viruses. Olomoucine II and roscovitine show high selectivity for CDK7 and CDK9, with important functions in the regulation of RNA polymerase II transcription. RNA polymerase II is necessary for viral transcription and following replication in cells. We analyzed the effect of inhibition of CDKs by olomoucine II on gene expression from viral promoters and compared its effect to widely-used roscovitine. We found that both roscovitine and olomoucine II blocked the phosphorylation of RNA polymerase II C-terminal domain. However the repression of genes regulated by viral promoters was strongly dependent on gene localization. Both roscovitine and olomoucine II inhibited expression only when the viral promoter was not integrated into chromosomal DNA. In contrast, treatment of cells with genome-integrated viral promoters increased their expression even though there was decreased phosphorylation of the C-terminal domain of RNA polymerase II. To define the mechanism responsible for decreased gene expression after pharmacological CDK inhibitor treatment, the level of mRNA transcription from extrachromosomal DNA was determined. Interestingly, our results showed that inhibition of RNA polymerase II C-terminal domain phosphorylation increased the number of transcribed mRNAs. However, some of these mRNAs were truncated and lacked polyadenylation, which resulted in decreased translation. These results suggest that phosphorylation of RNA polymerase II C-terminal domain is critical for linking transcription and posttrancriptional processing of mRNA expressed from extrachromosomal DNA.
Collapse
Affiliation(s)
- Jitka Holcakova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petr Muller
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Peter Tomasec
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Marta Nekulova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Vladimir Krystof
- Laboratory of Growth Regulators, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Institute of Experimental Botany AS CR, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Institute of Experimental Botany AS CR, Olomouc, Czech Republic
| | | | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
13
|
Schang LM. Discovery of the antiviral activities of pharmacologic cyclin-dependent kinase inhibitors: from basic to applied science. Expert Rev Anti Infect Ther 2014; 3:145-9. [PMID: 15918771 DOI: 10.1586/14787210.3.2.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
'Owing to the strong potential as antivirals exhibited to date by PCIs, cellular proteins are now starting to be considered more often as valid targets for antiviral drugs'
Collapse
|
14
|
Dürr R, Keppler O, Christ F, Crespan E, Garbelli A, Maga G, Dietrich U. Targeting Cellular Cofactors in HIV Therapy. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Abstract
The implementation of new antiretroviral therapies targeting transcription of early viral proteins in postintegrated HIV-1 can aid in overcoming current therapy limitations. Using high-throughput screening assays, we have previously described a novel Tat-dependent HIV-1 transcriptional inhibitor named 6-bromoindirubin-3'-oxime (6BIO). The screening of 6BIO derivatives yielded unique compounds that show potent inhibition of HIV-1 transcription. We have identified a second-generation derivative called 18BIOder as an inhibitor of HIV-1 Tat-dependent transcription in TZM-bl cells and a potent inhibitor of GSK-3β kinase in vitro. Structurally, 18BIOder is half the molecular weight and structure of its parental compound, 6BIO. More importantly, we also have found a different GSK-3β complex present only in HIV-1-infected cells. 18BIOder preferentially inhibits this novel kinase complex from infected cells at nanomolar concentrations. Finally, we observed that neuronal cultures treated with Tat protein are protected from Tat-mediated cytotoxicity when treated with 18BIOder. Overall, our data suggest that HIV-1 Tat-dependent transcription is sensitive to small-molecule inhibition of GSK-3β.
Collapse
|
16
|
Nekhai S, Kumari N, Dhawan S. Role of cellular iron and oxygen in the regulation of HIV-1 infection. Future Virol 2013; 8:301-311. [PMID: 23678366 DOI: 10.2217/fvl.13.6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite efficient antiretroviral therapy, eradication of HIV-1 infection is challenging and requires novel biological insights and therapeutic strategies. Among other physiological and environmental factors, intracellular iron greatly affects HIV-1 replication. Higher iron stores were shown to be associated with faster progression of HIV-1 infection and to inversely correlate with the survival of HIV-1 infected patients. Iron is required for several steps in the HIV-1 life cycle, including reverse transcription, HIV-1 gene expression and capsid assembly. Here, the authors present a comprehensive review of the molecular mechanisms involved in iron- and oxygen-mediated regulation of HIV-1 replication. We also propose key intracellular pathways that may be involved in regulating HIV-1 replication, via protein kinase complexes, CDK9/cyclin T1 and CDK 2/cyclin E, protein phosphatase-1 and other host factors.
Collapse
Affiliation(s)
- Sergei Nekhai
- Center for Sickle Cell Disease, Department of Medicine, Howard University, 520 W Street, NW, Washington DC 20059, USA
| | | | | |
Collapse
|
17
|
Van Duyne R, Guendel I, Jaworski E, Sampey G, Klase Z, Chen H, Zeng C, Kovalskyy D, El Kouni MH, Lepene B, Patanarut A, Nekhai S, Price DH, Kashanchi F. Effect of mimetic CDK9 inhibitors on HIV-1-activated transcription. J Mol Biol 2012; 425:812-29. [PMID: 23247501 DOI: 10.1016/j.jmb.2012.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 02/04/2023]
Abstract
Potent anti-retroviral therapy has transformed HIV-1 infection into a chronic manageable disease; however, drug resistance remains a common problem that limits the effectiveness and clinical benefits of this type of treatment. The discovery of viral reservoirs in the body, in which HIV-1 may persist, has helped to explain why therapeutic eradication of HIV-1 has proved so difficult. In the current study, we utilized a combination of structure-based analysis of cyclin/CDK complexes with our previously published Tat peptide derivatives. We modeled the Tat peptide inhibitors with CDKs and found a particular pocket that showed the most stable binding site (Cavity 1) using in silico analysis. Furthermore, we were able to find peptide mimetics that bound to similar regions using in silico searches of a chemical library, followed by cell-based biological assays. Using these methods, we obtained the first-generation mimetic drugs and tested these compounds on HIV-1 long terminal repeat-activated transcription. Using biological assays followed by similar in silico analysis to find second-generation drugs resembling the original mimetic, we found the new targets of Cavity 1 and Cavity 2 regions on CDK9. We examined the second-generation mimetic against various viral isolates and observed a generalized suppression of most HIV-1 isolates. Finally, the drug inhibited viral replication in humanized mouse models of Rag2(-/-)γc(-/-) with no toxicity to the animals at tested concentrations. Our results suggest that it may be possible to model peptide inhibitors into available crystal structures and further find drug mimetics using in silico analysis.
Collapse
Affiliation(s)
- Rachel Van Duyne
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chow YH, Liu L, Schwartz B, Harlan JM, Schnapp LM. Short communication: adhesion pathways utilized by HIV-infected lymphocytes. AIDS Res Hum Retroviruses 2012; 28:1557-60. [PMID: 22394260 DOI: 10.1089/aid.2011.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We recently reported a novel adhesion pathway in lymphocytes that is mediated by cyclin-dependent kinase (Cdk) 4 activity and mediates lymphocyte interactions with endothelial matrix. We now demonstrate that HIV-infected lymphocytes also use Cdk4 to mediate spontaneous adhesion to fibronectin and endothelial matrix. We further demonstrate that HIV-infected lymphocytes require Rap-1 activity for phorbol-stimulated adhesion. Understanding adhesion pathways used by HIV-infected lymphocytes may lead to interventions to regulate aberrant adhesion and migration.
Collapse
Affiliation(s)
- Yu-hua Chow
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Li Liu
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington
| | - Barbara Schwartz
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington
| | - John M. Harlan
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington
| | - Lynn M. Schnapp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
19
|
Strategies to Block HIV Transcription: Focus on Small Molecule Tat Inhibitors. BIOLOGY 2012; 1:668-97. [PMID: 24832514 PMCID: PMC4009808 DOI: 10.3390/biology1030668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/06/2012] [Accepted: 11/07/2012] [Indexed: 01/29/2023]
Abstract
After entry into the target cell, the human immunodeficiency virus type I (HIV) integrates into the host genome and becomes a proviral eukaryotic transcriptional unit. Transcriptional regulation of provirus gene expression is critical for HIV replication. Basal transcription from the integrated HIV promoter is very low in the absence of the HIV transactivator of transcription (Tat) protein and is solely dependent on cellular transcription factors. The 5' terminal region (+1 to +59) of all HIV mRNAs forms an identical stem-bulge-loop structure called the Transactivation Responsive (TAR) element. Once Tat is made, it binds to TAR and drastically activates transcription from the HIV LTR promoter. Mutations in either the Tat protein or TAR sequence usually affect HIV replication, indicating a strong requirement for their conservation. The necessity of the Tat-mediated transactivation cascade for robust HIV replication renders Tat one of the most desirable targets for transcriptional therapy against HIV replication. Screening based on inhibition of the Tat-TAR interaction has identified a number of potential compounds, but none of them are currently used as therapeutics, partly because these agents are not easily delivered for an efficient therapy, emphasizing the need for small molecule compounds. Here we will give an overview of the different strategies used to inhibit HIV transcription and review the current repertoire of small molecular weight compounds that target HIV transcription.
Collapse
|
20
|
Breuer D, Kotelkin A, Ammosova T, Kumari N, Ivanov A, Ilatovskiy AV, Beullens M, Roane PR, Bollen M, Petukhov MG, Kashanchi F, Nekhai S. CDK2 regulates HIV-1 transcription by phosphorylation of CDK9 on serine 90. Retrovirology 2012; 9:94. [PMID: 23140174 PMCID: PMC3515335 DOI: 10.1186/1742-4690-9-94] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 10/26/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND HIV-1 transcription is activated by the viral Tat protein that recruits host positive transcription elongation factor-b (P-TEFb) containing CDK9/cyclin T1 to the HIV-1 promoter. P-TEFb in the cells exists as a lower molecular weight CDK9/cyclin T1 dimer and a high molecular weight complex of 7SK RNA, CDK9/cyclin T1, HEXIM1 dimer and several additional proteins. Our previous studies implicated CDK2 in HIV-1 transcription regulation. We also found that inhibition of CDK2 by iron chelators leads to the inhibition of CDK9 activity, suggesting a functional link between CDK2 and CDK9. Here, we investigate whether CDK2 phosphorylates CDK9 and regulates its activity. RESULTS The siRNA-mediated knockdown of CDK2 inhibited CDK9 kinase activity and reduced CDK9 phosphorylation. Stable shRNA-mediated CDK2 knockdown inhibited HIV-1 transcription, but also increased the overall level of 7SK RNA. CDK9 contains a motif (90SPYNR94) that is consensus CDK2 phosphorylation site. CDK9 was phosphorylated on Ser90 by CDK2 in vitro. In cultured cells, CDK9 phosphorylation was reduced when Ser90 was mutated to an Ala. Phosphorylation of CDK9 on Ser90 was also detected with phospho-specific antibodies and it was reduced after the knockdown of CDK2. CDK9 expression decreased in the large complex for the CDK9-S90A mutant and was correlated with a reduced activity and an inhibition of HIV-1 transcription. In contrast, the CDK9-S90D mutant showed a slight decrease in CDK9 expression in both the large and small complexes but induced Tat-dependent HIV-1 transcription. Molecular modeling showed that Ser 90 of CDK9 is located on a flexible loop exposed to solvent, suggesting its availability for phosphorylation. CONCLUSION Our data indicate that CDK2 phosphorylates CDK9 on Ser 90 and thereby contributes to HIV-1 transcription. The phosphorylation of Ser90 by CDK2 represents a novel mechanism of HIV-1 regulated transcription and provides a new strategy for activation of latent HIV-1 provirus.
Collapse
Affiliation(s)
- Denitra Breuer
- Center for Sickle Cell Disease, Department of Medicine, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC 20001, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
HIV-1 Resistant CDK2-Knockdown Macrophage-Like Cells Generated from 293T Cell-Derived Human Induced Pluripotent Stem Cells. BIOLOGY 2012; 1:175-195. [PMID: 22934150 PMCID: PMC3427948 DOI: 10.3390/biology1020175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A major challenge in studies of human diseases involving macrophages is low yield and heterogeneity of the primary cells and limited ability of these cells for transfections and genetic manipulations. To address this issue, we developed a simple and efficient three steps method for somatic 293T cells reprogramming into monocytes and macrophage-like cells. First, 293T cells were reprogrammed into induced pluripotent stem cells (iPSCs) through a transfection-mediated expression of two factors, Oct-4 and Sox2, resulting in a high yield of iPSC. Second, the obtained iPSC were differentiated into monocytes using IL-3 and M-CSF treatment. And third, monocytes were differentiated into macrophage-like cells in the presence of M-CSF. As an example, we developed HIV-1-resistant macrophage-like cells from 293T cells with knockdown of CDK2, a factor critical for HIV-1 transcription. Our study provides a proof-of-principle approach that can be used to study the role of host cell factors in HIV-1 infection of human macrophages.
Collapse
|
22
|
Narayanan A, Sampey G, Van Duyne R, Guendel I, Kehn-Hall K, Roman J, Currer R, Galons H, Oumata N, Joseph B, Meijer L, Caputi M, Nekhai S, Kashanchi F. Use of ATP analogs to inhibit HIV-1 transcription. Virology 2012; 432:219-31. [PMID: 22771113 DOI: 10.1016/j.virol.2012.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 02/21/2012] [Accepted: 06/02/2012] [Indexed: 12/18/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is the etiological agent of AIDS. Chronic persistent infection is an important reason for the presence of "latent cell populations" even after Anti-Retroviral Therapy (ART). We have analyzed the effect of ATP analogs in inhibiting cdk9/T1 complex in infected cells. A third generation drug named CR8#13 is an effective inhibitor of Tat activated transcription. Following drug treatment, we observed a decreased loading of cdk9 onto the HIV-1 DNA. We found multiple novel cdk9/T1 complexes present in infected and uninfected cells with one complex being unique to infected cells. This complex is sensitive to CR8#13 in kinase assays. Treatment of PBMC with CR8#13 does not kill infected cells as compared to Flavopiridol. Interestingly, there is a difference in sensitivity of various clades to these analogs. Collectively, these results point to targeting novel complexes for inhibition of cellular proteins that are unique to infected cells.
Collapse
Affiliation(s)
- Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Huber RJ, O'Day DH. The cyclin-dependent kinase inhibitor roscovitine inhibits kinase activity, cell proliferation, multicellular development, and Cdk5 nuclear translocation in Dictyostelium discoideum. J Cell Biochem 2012; 113:868-76. [PMID: 22234985 DOI: 10.1002/jcb.23417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Roscovitine, a cyclin-dependent kinase (Cdk) inhibitor, inhibited kinase activity and the axenic growth of Dictyostelium discoideum at micromolar concentrations. Growth was almost fully rescued in 50 µM and ≈ 50% rescued in 100 µM roscovitine-treated cultures by the over-expression of Cdk5-GFP. This supports the importance of Cdk5 function during cell proliferation in Dictyostelium and indicates that Cdk5 is a primary target of the drug. Roscovitine did not affect the expression of Cdk5 protein during axenic growth but did inhibit its nuclear translocation. This novel result suggests that the effects of roscovitine could be due in part to altering Cdk5 translocation in other systems as well. Kinase activity was inhibited by roscovitine in assays using AX3 whole cell lysates, but not in assays using lysates from Cdk5-GFP over-expressing cells. At higher concentrations, roscovitine impaired slug and fruiting body formation. Fruiting bodies that did form were small and produced relatively fewer spores many of which were round. However, roscovitine did not affect stalk cell differentiation. Together with previous findings, these data reveal that roscovitine inhibits Cdk5 during growth and as yet undefined Cdks during mid-late development.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada
| | | |
Collapse
|
24
|
Abstract
The current anti-HIV treatments fail to completely eradicate the virus in HIV-infected individuals, mainly as a result of a small pool of latently infected cells. This issue, together with the emergence of multidrug-resistant viruses, clearly highlights the need to find additional strategies. An overview of the Tat-mediated transcription inhibitors 6-desfluoroquinolones (6-DFQs), identified by our group, is given in this review along with a critical appraisal of their advantages and drawbacks. Attempts are also made to place them within the context of new potential anti-HIV therapeutics. Due to their innovative mechanism of action, the 6-DFQs could be interesting candidates for use in association with the currently used cocktail of drugs. Their potential as antivirals deserves further investigation.
Collapse
|
25
|
Narayanan A, Popova T, Turell M, Kidd J, Chertow J, Popov SG, Bailey C, Kashanchi F, Kehn-Hall K. Alteration in superoxide dismutase 1 causes oxidative stress and p38 MAPK activation following RVFV infection. PLoS One 2011; 6:e20354. [PMID: 21655261 PMCID: PMC3105056 DOI: 10.1371/journal.pone.0020354] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/19/2011] [Indexed: 12/24/2022] Open
Abstract
Rift Valley fever (RVF) is a zoonotic disease caused by Rift Valley fever virus (RVFV). RVFV is a category A pathogen that belongs to the genus Phlebovirus, family Bunyaviridae. Understanding early host events to an infectious exposure to RVFV will be of significant use in the development of effective therapeutics that not only control pathogen multiplication, but also contribute to cell survival. In this study, we have carried out infections of human cells with a vaccine strain (MP12) and virulent strain (ZH501) of RVFV and determined host responses to viral infection. We demonstrate that the cellular antioxidant enzyme superoxide dismutase 1 (SOD1) displays altered abundances at early time points following exposure to the virus. We show that the enzyme is down regulated in cases of both a virulent (ZH501) and a vaccine strain (MP12) exposure. Our data demonstrates that the down regulation of SOD1 is likely to be due to post transcriptional processes and may be related to up regulation of TNFα following infection. We also provide evidence for extensive oxidative stress in the MP12 infected cells. Concomitantly, there is an increase in the activation of the p38 MAPK stress response, which our earlier published study demonstrated to be an essential cell survival strategy. Our data suggests that the viral anti-apoptotic protein NSm may play a role in the regulation of the cellular p38 MAPK response. Alterations in the host protein SOD1 following RVFV infection appears to be an early event that occurs in multiple cell types. Activation of the cellular stress response p38 MAPK pathway can be observed in all cell types tested. Our data implies that maintaining oxidative homeostasis in the infected cells may play an important role in improving survival of infected cells.
Collapse
Affiliation(s)
- Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Taissia Popova
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Michael Turell
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jessica Kidd
- The Neurological Institute, MDA/ALS Research Center, New York, New York, United States of America
| | - Jessica Chertow
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Serguei G. Popov
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Charles Bailey
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
- * E-mail:
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
26
|
Kehn-Hall K, Guendel I, Carpio L, Skaltsounis L, Meijer L, Al-Harthi L, Steiner JP, Nath A, Kutsch O, Kashanchi F. Inhibition of Tat-mediated HIV-1 replication and neurotoxicity by novel GSK3-beta inhibitors. Virology 2011; 415:56-68. [PMID: 21514616 DOI: 10.1016/j.virol.2011.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/10/2011] [Accepted: 03/27/2011] [Indexed: 10/18/2022]
Abstract
The HIV-1 protein Tat is a critical regulator of viral transcription and has also been implicated as a mediator of HIV-1 induced neurotoxicity. Here using a high throughput screening assay, we identified the GSK-3 inhibitor 6BIO, as a Tat-dependent HIV-1 transcriptional inhibitor. Its ability to inhibit HIV-1 transcription was confirmed in TZM-bl cells, with an IC(50) of 40nM. Through screening 6BIO derivatives, we identified 6BIOder, which has a lower IC(50) of 4nM in primary macrophages and 0.5nM in astrocytes infected with HIV-1. 6BIOder displayed an IC(50) value of 0.03nM through in vitro GSK-3β kinase inhibition assays. Finally, we demonstrated 6BIO and 6BIOder have neuroprotective effects on Tat induced cell death in rat mixed hippocampal cultures. Therefore 6BIO and its derivatives are unique compounds which, due to their complex mechanisms of action, are able to inhibit HIV-1 transcription as well as to protect against Tat induced neurotoxicity.
Collapse
Affiliation(s)
- Kylene Kehn-Hall
- Department of Molecular and Microbiology, National Center for Biodefense & Infectious Diseases, George Mason University, Manassas, VA 20110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Narayanan A, Kehn-Hall K, Bailey C, Kashanchi F. Analysis of the roles of HIV-derived microRNAs. Expert Opin Biol Ther 2011; 11:17-29. [PMID: 21133815 DOI: 10.1517/14712598.2011.540564] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE OF THE FIELD HIV-1 is a retrovirus that has infected millions in recent decades. The level of life cycle complexity and host control exerted by this small virus with only nine proteins is astonishing. An interesting direction that has emerged in recent years is the role of small non-coding RNAs in viral gene expression. AREAS COVERED IN THIS REVIEW We focus on HIV-1 produced microRNAs (miRNAs), namely, TAR, Nef and miR-H1, and their roles in HIV-1 biogenesis. The article provides insights into TAR miRNA-mediated downregulation of viral and host gene expression by recruitment of chromatin remodeling components (HDAC1). WHAT THE READER WILL GAIN We address the influence of TAR miRNA on host cell cycle progression and apoptosis, and the role of Nef miRNA in the regulation of viral and host gene expression. The review also highlights an intriguing connection between miR-H1 and HIV-1-associated neurological pathogenesis, and the influence of the miRNA machinery in the establishment of latency. In the Expert Opinion section, we analyze the issue of host-based therapeutics against HIV-1 and how transcription inhibitors are influenced by viral miRNA production. TAKE HOME MESSAGE HIV-derived miRNAs are of significance not only to understand host-virus interactions, but also for the design of effective therapeutics.
Collapse
Affiliation(s)
- Aarthi Narayanan
- George Mason University, National Center for Biodefense and Infectious Diseases, Manassas, VA 20110, USA
| | | | | | | |
Collapse
|
28
|
Khiati A, Chaloin O, Muller S, Tardieu M, Horellou P. Induction of monocyte chemoattractant protein-1 (MCP-1/CCL2) gene expression by human immunodeficiency virus-1 Tat in human astrocytes is CDK9 dependent. J Neurovirol 2010; 16:150-67. [PMID: 20370601 DOI: 10.3109/13550281003735691] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) invades the brain early in infection and may cause HIV-associated dementia (HAD), which is characterized by reactive astrocytes, and macrophage and T-cell infiltrates. HIV-1 Tat protein is thought to contribute to HAD by transactivating host genes, such as that encoding monocyte chemoattractant protein-1 (MCP-1/CCL2), although its mechanisms of action are not fully understood. We investigated the molecular pathways involved in Tat-induced MCP-1/CCL2 gene expression in human astrocytes. We found that Tat induced MCP-1/CCL2 synthesis in human astrocytes infected with a lentivirus carrying the gene encoding Tat or treated with a biologically active synthetic Tat protein. The induction of MCP-1/CCL2 was independent of the nuclear factor kappaB (NF-kappaB) classical pathway, but was significantly inhibited by specific cyclin-dependent kinase 9 (cdk9) inhibitors, such as a dominant-negative mutant or siRNA. By contrast, broader-spectrum cdk inhibitors, such as roscovitine, 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB), and flavopiridol, inhibited MCP-1/CCL2 induction by Tat. We also analyzed the effects of roscovitine, DRB, and flavopiridol on Tat-induced HIV-1 long terminal repeat (LTR) expression following the infection of astrocytes and HeLa cells. Astrocytes showed no inhibition by roscovitine, 59% inhibition by DRB, and 80% inhibition by flavopiridol. In control HeLa cells, high levels of inhibition were observed with roscovitine, DRB, and flavopiridol. We have ascertained the direct implication of cdk9 in Tat-induced MCP-1 expression by performing ChIP assay. These results demonstrate that cdk9 is involved in Tat-induced HIV-1 LTR, MCP-1/CCL2 gene expression.
Collapse
Affiliation(s)
- Abdelkader Khiati
- INSERM U802 and Université Paris-Sud 11, Faculté de médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | | | | | | | | |
Collapse
|
29
|
Debebe Z, Ammosova T, Breuer D, Lovejoy DB, Kalinowski DS, Kumar K, Jerebtsova M, Ray P, Kashanchi F, Gordeuk VR, Richardson DR, Nekhai S. Iron chelators of the di-2-pyridylketone thiosemicarbazone and 2-benzoylpyridine thiosemicarbazone series inhibit HIV-1 transcription: identification of novel cellular targets--iron, cyclin-dependent kinase (CDK) 2, and CDK9. Mol Pharmacol 2010; 79:185-96. [PMID: 20956357 DOI: 10.1124/mol.110.069062] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
HIV-1 transcription is activated by HIV-1 Tat protein, which recruits cyclin-dependent kinase 9 (CDK9)/cyclin T1 and other host transcriptional coactivators to the HIV-1 promoter. Tat itself is phosphorylated by CDK2, and inhibition of CDK2 by small interfering RNA, the iron chelator 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311), and the iron chelator deferasirox (ICL670) inhibits HIV-1 transcription. Here we have analyzed a group of novel di-2-pyridylketone thiosemicarbazone- and 2-benzoylpyridine thiosemicarbazone-based iron chelators that exhibit marked anticancer activity in vitro and in vivo (Proc Natl Acad Sci USA 103:7670-7675, 2006; J Med Chem 50:3716-3729, 2007). Several of these iron chelators, in particular 2-benzoylpyridine 4-allyl-3-thiosemicarbazone (Bp4aT) and 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), inhibited HIV-1 transcription and replication at much lower concentrations than did 311 and ICL670. Neither Bp4aT nor Bp4eT were toxic after a 24-h incubation. However, longer incubations for 48 h or 72 h resulted in cytotoxicity. Analysis of the molecular mechanism of HIV-1 inhibition showed that the novel iron chelators inhibited basal HIV-1 transcription, but not the nuclear factor-κB-dependent transcription or transcription from an HIV-1 promoter with inactivated SP1 sites. The chelators inhibited the activities of CDK2 and CDK9/cyclin T1, suggesting that inhibition of CDK9 may contribute to the inhibition of HIV-1 transcription. Our study suggests the potential usefulness of Bp4aT or Bp4eT in antiretroviral regimens, particularly where resistance to standard treatment occurs.
Collapse
Affiliation(s)
- Zufan Debebe
- Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington DC 20001, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Guendel I, Agbottah ET, Kehn-Hall K, Kashanchi F. Inhibition of human immunodeficiency virus type-1 by cdk inhibitors. AIDS Res Ther 2010; 7:7. [PMID: 20334651 PMCID: PMC2852372 DOI: 10.1186/1742-6405-7-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 03/24/2010] [Indexed: 11/14/2022] Open
Abstract
Current therapy for human immunodeficiency virus (HIV-1) infection relies primarily on the administration of anti-retroviral nucleoside analogues, either alone or in combination with HIV-protease inhibitors. Although these drugs have a clinical benefit, continuous therapy with the drugs leads to drug-resistant strains of the virus. Recently, significant progress has been made towards the development of natural and synthetic agents that can directly inhibit HIV-1 replication or its essential enzymes. We previously reported on the pharmacological cyclin-dependent kinase inhibitor (PCI) r-roscovitine as a potential inhibitor of HIV-1 replication. PCIs are among the most promising novel antiviral agents to emerge over the past few years. Potent activity on viral replication combined with proliferation inhibition without the emergence of resistant viruses, which are normally observed in HAART patients; make PCIs ideal candidates for HIV-1 inhibition. To this end we evaluated twenty four cdk inhibitors for their effect on HIV-1 replication in vitro. Screening of these compounds identified alsterpaullone as the most potent inhibitor of HIV-1 with activity at 150 nM. We found that alsterpaullone effectively inhibits cdk2 activity in HIV-1 infected cells with a low IC50 compared to control uninfected cells. The effects of alsterpaullone were associated with suppression of cdk2 and cyclin expression. Combining both alsterpaullone and r-roscovitine (cyc202) in treatment exhibited even stronger inhibitory activities in HIV-1 infected PBMCs.
Collapse
|
31
|
Van Duyne R, Kehn-Hall K, Carpio L, Kashanchi F. Cell-type-specific proteome and interactome: using HIV-1 Tat as a test case. Expert Rev Proteomics 2010; 6:515-26. [PMID: 19811073 DOI: 10.1586/epr.09.73] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
HIV-1 is a small retrovirus that wreaks havoc on the human immune system. It is a puzzle to the scientific community how a virus that encodes only nine proteins can take complete control of its host and redirect the cell to complete replication or maintain latency when necessary. One way to explain the control elicited by HIV-1 is through numerous protein partners that exist between viral and host proteins, allowing HIV-1 to be intimately involved in virtually every aspect of cellular biology. In addition, we postulate that the complexity exerted by HIV-1 can not merely be explained by the large number of protein-protein interactions documented in the literature but, rather, cell-type-specific interactions and post-translational modifications of viral proteins must be taken into account. We use HIV-1 Tat and its influence on viral transcription as an example of cell-type-specific complexity. The influence of post-translational modifications (acetylation and methylation), as well as subcellular localization on Tat binding partners, is also discussed.
Collapse
Affiliation(s)
- Rachel Van Duyne
- The George Washington University, Department of Microbiology, Immunology and Tropical Medicine, 2300 I Street, NW, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
32
|
Coley W, Kehn-Hall K, Van Duyne R, Kashanchi F. Novel HIV-1 therapeutics through targeting altered host cell pathways. Expert Opin Biol Ther 2009; 9:1369-82. [PMID: 19732026 DOI: 10.1517/14712590903257781] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The emergence of drug-resistant HIV-1 strains presents a challenge for the design of new drugs. Anti-HIV compounds currently in use are the subject of advanced clinical trials using either HIV-1 reverse transcriptase, viral protease or integrase inhibitors. Recent studies show an increase in the number of HIV-1 variants resistant to anti-retroviral agents in newly infected individuals. Targeting host cell factors involved in the regulation of HIV-1 replication might be one way to combat HIV-1 resistance to the currently available anti-viral agents. A specific inhibition of HIV-1 gene expression could be expected from the development of compounds targeting host cell factors that participate in the activation of the HIV-1 LTR promoter. Here we discuss how targeting the host can be accomplished either by using small molecules to alter the function of the host's proteins such as p53 or cdk9, or by utilizing new advances in siRNA therapies to knock down essential host factors such as CCR5 and CXCR4. Finally, we will discuss how the viral protein interactomes should be used to better design therapeutics against HIV-1.
Collapse
Affiliation(s)
- William Coley
- George Washington University, School of Medicine, Department of Microbiology, Immunology and Tropical Medicine, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
33
|
Ali A, Ghosh A, Nathans RS, Sharova N, O'Brien S, Cao H, Stevenson M, Rana TM. Identification of flavopiridol analogues that selectively inhibit positive transcription elongation factor (P-TEFb) and block HIV-1 replication. Chembiochem 2009; 10:2072-80. [PMID: 19603446 DOI: 10.1002/cbic.200900303] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The positive transcription elongation factor (P-TEFb; CDK9/cyclin T1) regulates RNA polymerase II-dependent transcription of cellular and integrated viral genes. It is an essential cofactor for HIV-1 Tat transactivation, and selective inhibition of P-TEFb blocks HIV-1 replication without affecting cellular transcription; this indicates that P-TEFb could be a potential target for developing anti-HIV-1 therapeutics. Flavopiridol, a small molecule CDK inhibitor, blocks HIV-1 Tat transactivation and viral replication by inhibiting P-TEFb kinase activity, but it is highly cytotoxic. In the search for selective and less cytotoxic P-TEFb inhibitors, we prepared a series of flavopiridol analogues and evaluated their kinase inhibitory activity against P-TEFb and CDK2/cyclin A, and tested their cellular antiviral potency and cytotoxicity. We identified several analogues that selectively inhibit P-TEFb kinase activity in vitro and show antiviral potency comparable to that of flavopiridol, but with significantly reduced cytotoxicity. These compounds are valuable molecular probes for understanding P-TEFb-regulated cellular and HIV-1 gene transcription and provide potential anti-HIV-1 therapeutics.
Collapse
Affiliation(s)
- Akbar Ali
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605 (USA)
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tisoncik JR, Belisle SE, Diamond DL, Korth MJ, Katze MG. Is systems biology the key to preventing the next pandemic? Future Virol 2009; 4:553-561. [PMID: 20352075 DOI: 10.2217/fvl.09.53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sporadic outbreaks of epizootics including SARS coronavirus and H5N1 avian influenza remind us of the potential for communicable diseases to quickly spread into worldwide epidemics. To confront emerging viral threats, nations have implemented strategies to prepare for pandemics and to control virus spread. Despite improved surveillance and quarantine measures, we find ourselves in the midst of a H1N1 influenza pandemic. Effective therapeutics and vaccines are essential to protect against current and future pandemics. The best route to effective therapeutics and vaccines is through a detailed and global view of virus-host interactions that can be achieved using a systems biology approach. Here, we provide our perspective on the role of systems biology in deepening our understanding of virus-host interactions and in improving drug and vaccine development. We offer examples from influenza virus research, as well as from research on other pandemics of our time - HIV/AIDS and HCV - to demonstrate that systems biology offers one possible key to stopping the cycle of viral pandemics.
Collapse
Affiliation(s)
- Jennifer R Tisoncik
- University of Washington, Department of Microbiology, Seattle, WA 98195-8070, USA, Tel.: +1 206 732 6120
| | | | | | | | | |
Collapse
|
35
|
Kim SJ, Kim JH, Sun JM, Kim MG, Oh JW. Suppression of hepatitis C virus replication by protein kinase C-related kinase 2 inhibitors that block phosphorylation of viral RNA polymerase. J Viral Hepat 2009; 16:697-704. [PMID: 19243496 DOI: 10.1111/j.1365-2893.2009.01108.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection is a serious threat to human health worldwide. In spite of the continued search for specific and effective anti-HCV therapies, the rapid emergence of drug-resistance variants has been hampering the development of anti-HCV drugs designed to target viral enzymes. Targeting host factors has therefore emerged as an alternative strategy offering the potential to circumvent the ever-present complication of drug resistance. We previously identified protein kinase C-related kinase 2 (PRK2) as a cellular kinase that phosphorylates the HCV RNA-dependent RNA polymerase (RdRp). Here, we report the anti-HCV activity of HA1077, also known as fasudil, and Y27632, which blocks HCV RdRp phosphorylation by suppressing PRK2 activation. Treatment of a Huh7 cell line, stably expressing a genotype 1b HCV subgenomic replicon RNA, with 20 microm each of HA1077 and Y27632 reduced the HCV RNA level by 55% and 30%, respectively. A combination of the inhibitors with 100 IU/mL interferon alpha (IFN-alpha) significantly potentiated the anti-HCV drug activities resulting in approximately a 2-log(10) viral RNA reduction. We also found that IFN-alpha does not activate PRK2 as well as its upstream kinase PDK1 in HCV-replicating cells. Furthermore, treatment of HCV-infected cells with 20 microm each of HA1077 and Y27632 reduced the levels of intracellular viral RNA by 70% and 92%, respectively. Taken together, the results identify PRK2 inhibitors as potential antiviral drugs that act by suppressing HCV replication via inhibition of viral RNA polymerase phosphorylation.
Collapse
Affiliation(s)
- S-J Kim
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | | | | | | | | |
Collapse
|
36
|
Sordet O, Larochelle S, Nicolas E, Stevens EV, Zhang C, Shokat KM, Fisher RP, Pommier Y. Hyperphosphorylation of RNA polymerase II in response to topoisomerase I cleavage complexes and its association with transcription- and BRCA1-dependent degradation of topoisomerase I. J Mol Biol 2008; 381:540-9. [PMID: 18588899 DOI: 10.1016/j.jmb.2008.06.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/05/2008] [Accepted: 06/11/2008] [Indexed: 02/06/2023]
Abstract
The progression of RNA polymerase II can be blocked by lesions on the DNA template. In this study, we focused on the modifications of the largest subunit of RNA polymerase II, Rpb1, in response to stabilized topoisomerase I (Top1)-DNA cleavage complexes. In addition to DNA modifications (base damages and strand breaks), Top1 cleavage complexes can be trapped by camptothecin (CPT) and its derivatives used in cancer treatment. We found that, within a few minutes, CPT produces the complete hyperphosphorylation of Rpb1 in both primary and transformed cancer cells. Hyperphosphorylation is rapidly reversible following CPT removal. Hyperphosphorylation occurs selectively on the serine 5 residue of the conserved heptapeptide repeats in the Rpb1 carboxy-terminal domain and is mediated principally by the transcription factor IIH-associated cyclin-dependent kinase Cdk7. Hyperphosphorylated Rpb1 is not primarily targeted for proteosomal degradation and instead is subjected to cycles of phosphorylation and dephosphorylation as long as Top1 cleavage complexes are trapped by CPT. Finally, we show that transcription-induced degradation of Top1 is Brca1 dependent, suggesting a role for Brca1 in the repair or removal of transcription-blocking Top1-DNA cleavage complexes.
Collapse
Affiliation(s)
- Olivier Sordet
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Van Duyne R, Cardenas J, Easley R, Wu W, Kehn-Hall K, Klase Z, Mendez S, Zeng C, Chen H, Saifuddin M, Kashanchi F. Effect of transcription peptide inhibitors on HIV-1 replication. Virology 2008; 376:308-22. [PMID: 18455747 DOI: 10.1016/j.virol.2008.02.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/21/2007] [Accepted: 02/27/2008] [Indexed: 11/17/2022]
Abstract
HIV-1 manipulates cellular machineries such as cyclin dependent kinases (cdks) and their cyclin elements, to stimulate virus production and maintain latent infection. Specifically, the HIV-1 viral protein Tat increases viral transcription by binding to the TAR promoter element. This binding event is mediated by the phosphorylation of Pol II by complexes such as cdk9/Cyclin T and cdk2/Cyclin E. Recent studies have shown that a Tat 41/44 peptide derivative prevents the loading of cdk2 onto the HIV-1 promoter, inhibiting gene expression and replication. Here we show that Tat peptide analogs computationally designed to dock at the cyclin binding site of cdk2 have the ability to bind to cdk2 and inhibit the association of cdk2 with the HIV promoter. Specifically, the peptide LAALS dissociated the complex and decreased kinase activity in vitro. We also describe our novel small animal model which utilizes humanized Rag2(-/-)gamma(c)(-/-) mice. This small peptide inhibitor induces a decrease in HIV-1 viral transcription in vitro and minimizes viral loads in vivo.
Collapse
Affiliation(s)
- Rachel Van Duyne
- The George Washington University Medical Center, Department of Microbiology, Immunology, and Tropical Medicine, Washington, DC 20037, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wu W, Kehn-Hall K, Pedati C, Zweier L, Castro I, Klase Z, Dowd CS, Dubrovsky L, Bukrinsky M, Kashanchi F. Drug 9AA reactivates p21/Waf1 and Inhibits HIV-1 progeny formation. Virol J 2008; 5:41. [PMID: 18348731 PMCID: PMC2315641 DOI: 10.1186/1743-422x-5-41] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 03/18/2008] [Indexed: 11/26/2022] Open
Abstract
It has been demonstrated that the p53 pathway plays an important role in HIV-1 infection. Previous work from our lab has established a model demonstrating how p53 could become inactivated in HIV-1 infected cells through binding to Tat. Subsequently, p53 was inactivated and lost its ability to transactivate its downstream target gene p21/waf1. P21/waf1 is a well-known cdk inhibitor (CKI) that can lead to cell cycle arrest upon DNA damage. Most recently, the p21/waf1 function was further investigated as a molecular barrier for HIV-1 infection of stem cells. Therefore, we reason that the restoration of the p53 and p21/waf1 pathways could be a possible theraputical arsenal for combating HIV-1 infection. In this current study, we show that a small chemical molecule, 9-aminoacridine (9AA) at low concentrations, could efficiently reactivate p53 pathway and thereby restoring the p21/waf1 function. Further, we show that the 9AA could significantly inhibit virus replication in activated PBMCs, likely through a mechanism of inhibiting the viral replication machinery. A mechanism study reveals that the phosphorylated p53ser15 may be dissociated from binding to HIV-1 Tat protein, thereby activating the p21/waf1 gene. Finally, we also show that the 9AA-activated p21/waf1 is recruited to HIV-1 preintegration complex, through a mechanism yet to be elucidated.
Collapse
Affiliation(s)
- Weilin Wu
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Klase ZA, Van Duyne R, Kashanchi F. Identification of potential drug targets using genomics and proteomics: a systems approach. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:327-68. [PMID: 18086417 DOI: 10.1016/s1054-3589(07)56011-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zachary A Klase
- Department of Biochemistry, Medical Center, The George Washington University, Washington, DC 20037, USA
| | | | | |
Collapse
|
40
|
Orba Y, Sunden Y, Suzuki T, Nagashima K, Kimura T, Tanaka S, Sawa H. Pharmacological cdk inhibitor R-Roscovitine suppresses JC virus proliferation. Virology 2007; 370:173-83. [PMID: 17919676 DOI: 10.1016/j.virol.2007.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 08/22/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
The human Polyomavirus JC virus (JCV) utilizes cellular proteins for viral replication and transcription in the host cell nucleus. These cellular proteins represent potential targets for antiviral drugs against the JCV. In this study, we examined the antiviral effects of the pharmacological cyclin-dependent kinase (cdk) inhibitor R-Roscovitine, which has been shown to have antiviral activity against other viruses. We found that Roscovitine significantly inhibited the viral production and cytopathic effects of the JCV in a JCV-infected cell line. Roscovitine attenuated the transcriptional activity of JCV late genes, but not early genes, and also prevented viral replication via inhibiting phosphorylation of the viral early protein, large T antigen. These data suggest that the JCV requires cdks to transcribe late genes and to replicate its own DNA. That Roscovitine exhibited antiviral activity in JCV-infected cells suggests that Roscovitine might have therapeutic utility in the treatment of progressive multifocal leukoencephalopathy (PML).
Collapse
Affiliation(s)
- Yasuko Orba
- Department of Molecular Pathobiology, Hokkaido University Research Center for Zoonosis Control, N18, W9, Kita-ku, 060-0818, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Debebe Z, Ammosova T, Jerebtsova M, Kurantsin-Mills J, Niu X, Charles S, Richardson DR, Ray PE, Gordeuk VR, Nekhai S. Iron chelators ICL670 and 311 inhibit HIV-1 transcription. Virology 2007; 367:324-33. [PMID: 17631934 PMCID: PMC2077891 DOI: 10.1016/j.virol.2007.06.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 03/28/2007] [Accepted: 06/07/2007] [Indexed: 01/18/2023]
Abstract
HIV-1 replication is induced by an excess of iron and iron chelation by desferrioxamine (DFO) inhibits viral replication by reducing proliferation of infected cells. Treatment of cells with DFO and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) inhibit expression of proteins that regulate cell-cycle progression, including cycle-dependent kinase 2 (CDK2). Our recent studies showed that CDK2 participates in HIV-1 transcription and viral replication suggesting that inhibition of CDK2 by iron chelators might also affect HIV-1 transcription. Here we evaluated the effect of a clinically approved orally effective iron chelator, 4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid (ICL670) and 311 on HIV-1 transcription. Both ICL670 and 311 inhibited Tat-induced HIV-1 transcription in CEM-T cells, 293T and HeLa cells. Neither ICL670 nor 311 induced cytotoxicity at concentrations that inhibited HIV-1 transcription. The chelators decreased cellular activity of CDK2 and reduced HIV-1 Tat phosphorylation by CDK2. Neither ICL670A or 311 decreased CDK9 protein level but significantly reduced association of CDK9 with cyclin T1 and reduced phosphorylation of Ser-2 residues of RNA polymerase II C-terminal domain. In conclusion, our findings add to the evidence that iron chelators can inhibit HIV-1 transcription by deregulating CDK2 and CDK9. Further consideration should be given to the development of iron chelators for future anti-retroviral therapeutics.
Collapse
Affiliation(s)
- Zufan Debebe
- Center for Sickle Cell Disease, Howard University College of Medicine, Washington, DC 20060, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Biglione S, Byers SA, Price JP, Nguyen VT, Bensaude O, Price DH, Maury W. Inhibition of HIV-1 replication by P-TEFb inhibitors DRB, seliciclib and flavopiridol correlates with release of free P-TEFb from the large, inactive form of the complex. Retrovirology 2007; 4:47. [PMID: 17625008 PMCID: PMC1948018 DOI: 10.1186/1742-4690-4-47] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 07/11/2007] [Indexed: 01/07/2023] Open
Abstract
Background The positive transcription elongation factor, P-TEFb, comprised of cyclin dependent kinase 9 (Cdk9) and cyclin T1, T2 or K regulates the productive elongation phase of RNA polymerase II (Pol II) dependent transcription of cellular and integrated viral genes. P-TEFb containing cyclin T1 is recruited to the HIV long terminal repeat (LTR) by binding to HIV Tat which in turn binds to the nascent HIV transcript. Within the cell, P-TEFb exists as a kinase-active, free form and a larger, kinase-inactive form that is believed to serve as a reservoir for the smaller form. Results We developed a method to rapidly quantitate the relative amounts of the two forms based on differential nuclear extraction. Using this technique, we found that titration of the P-TEFb inhibitors flavopiridol, DRB and seliciclib onto HeLa cells that support HIV replication led to a dose dependent loss of the large form of P-TEFb. Importantly, the reduction in the large form correlated with a reduction in HIV-1 replication such that when 50% of the large form was gone, HIV-1 replication was reduced by 50%. Some of the compounds were able to effectively block HIV replication without having a significant impact on cell viability. The most effective P-TEFb inhibitor flavopiridol was evaluated against HIV-1 in the physiologically relevant cell types, peripheral blood lymphocytes (PBLs) and monocyte derived macrophages (MDMs). Flavopiridol was found to have a smaller therapeutic index (LD50/IC50) in long term HIV-1 infectivity studies in primary cells due to greater cytotoxicity and reduced efficacy at blocking HIV-1 replication. Conclusion Initial short term studies with P-TEFb inhibitors demonstrated a dose dependent loss of the large form of P-TEFb within the cell and a concomitant reduction in HIV-1 infectivity without significant cytotoxicity. These findings suggested that inhibitors of P-TEFb may serve as effective anti-HIV-1 therapies. However, longer term HIV-1 replication studies indicated that these inhibitors were more cytotoxic and less efficacious against HIV-1 in the primary cell cultures.
Collapse
Affiliation(s)
- Sebastian Biglione
- Interdisciplinary Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA, USA
- CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah A Byers
- Interdisciplinary Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA, USA
- Oregon Health & Science University, Department of Molecular and Medical Genetics, Portland, OR 97239, USA
| | - Jason P Price
- Department of Microbiology, University of Iowa, Iowa City, IA, USA
| | - Van Trung Nguyen
- Laboratoire de Regulation de l'Expression Genetique, Ecole Normale Superieure, Paris, France
| | - Olivier Bensaude
- Laboratoire de Regulation de l'Expression Genetique, Ecole Normale Superieure, Paris, France
| | - David H Price
- Interdisciplinary Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA, USA
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - Wendy Maury
- Interdisciplinary Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA, USA
- Department of Microbiology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
43
|
Schang LM, St Vincent MR, Lacasse JJ. Five years of progress on cyclin-dependent kinases and other cellular proteins as potential targets for antiviral drugs. Antivir Chem Chemother 2007; 17:293-320. [PMID: 17249245 DOI: 10.1177/095632020601700601] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In 1997-1998, the pharmacological cyclin-dependent kinase (CDK) inhibitors (PCIs) were independently discovered to inhibit replication of human cytomegalovirus, herpes simplex virus type 1 and HIV-1. The results from small clinical trials against cancer were then suggesting that PCIs could be safe enough to be used clinically. It was thus hypothesized that PCIs could have the potential to be developed as novel antivirals targeting cellular proteins. Consequently, Antiviral Chemistry & Chemotherapy published in 2001 the first review on the potential of CDKs, and cellular proteins in general, as potential targets for antivirals. The viral functions inhibited by PCIs, or their cellular targets, were then just starting to be characterized. The antiviral spectrum of PCIs and their effects on viral disease were still mostly untested. Even their actual specificity was not yet completely characterized. In addition, cellular proteins were not accepted as valid targets for antivirals. Significant progress has been made in the last 5 years in understanding the antiviral activities of PCIs and the potential roles of cellular proteins in general as targets for antivirals. The first clinical trials of the antiviral activities of PCIs and other inhibitors of cellular protein kinases have now been scheduled. Herein, we review the progress made since the publication of the first review on PCIs as potential antiviral drugs and on CDKs, and cellular proteins in general, as potential targets for antiviral drugs. We also highlight the major issues that still need to be addressed before PCIs or other drugs targeting cellular proteins can be developed as clinical antivirals.
Collapse
Affiliation(s)
- Luis M Schang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
44
|
Krystof V, Cankar P, Frysová I, Slouka J, Kontopidis G, Dzubák P, Hajdúch M, Srovnal J, de Azevedo WF, Orság M, Paprskárová M, Rolcík J, Látr A, Fischer PM, Strnad M. 4-arylazo-3,5-diamino-1H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects. J Med Chem 2006; 49:6500-9. [PMID: 17064068 DOI: 10.1021/jm0605740] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In a routine screening of our small-molecule compound collection we recently identified 4-arylazo-3,5-diamino-1H-pyrazoles as a novel group of ATP antagonists with moderate potency against CDK2-cyclin E. A preliminary SAR study based on 35 analogues suggests ways in which the pharmacophore could be further optimized, for example, via substitutions in the 4-aryl ring. Enzyme kinetics studies with the lead compound and X-ray crystallography of an inhibitor-CDK2 complex demonstrated that its mode of inhibition is competitive. Functional kinase assays confirmed the selectivity toward CDKs, with a preference for CDK9-cyclin T1. The most potent inhibitor, 4-[(3,5-diamino-1H-pyrazol-4-yl)diazenyl]phenol 31b (CAN508), reduced the frequency of S-phase cells of the cancer cell line HT-29 in antiproliferation assays. Further observed cellular effects included decreased phosphorylation of the retinoblastoma protein and the C-terminal domain of RNA polymerase II, inhibition of mRNA synthesis, and induction of the tumor suppressor protein p53, all of which are consistent with inhibition of CDK9.
Collapse
Affiliation(s)
- Vladimír Krystof
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Slechtitelů 11, 783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nekhai S, Jeang KT. Transcriptional and post-transcriptional regulation of HIV-1 gene expression: role of cellular factors for Tat and Rev. Future Microbiol 2006; 1:417-26. [PMID: 17661632 DOI: 10.2217/17460913.1.4.417] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The emergence of drug-resistant HIV-1 strains presents a challenge for the design of new therapy. Targeting host cell factors that regulate HIV-1 replication might be one way to overcome the propensity for HIV-1 to mutate in order to develop resistance to antivirals. This article reviews the interplay between viral proteins Tat and Rev and their cellular cofactors in the transcriptional and post-transcriptional regulation of HIV-1 gene expression. HIV-1 Tat regulates viral transcription by recruiting cellular factors to the HIV promoter. Tat interacts with protein kinase complexes Cdk9/cyclin T1 and Cdk2/cyclin E; acetyltransferases p300/CBP, p300/CBP-associated factor and hGCN5; protein phosphatases and other factors. HIV-1 Rev regulates post-transcriptional processing of viral mRNAs. Rev primarily functions to export unspliced and partially spliced viral RNAs from the nucleus into the cytoplasm. For this activity, Rev cooperates with cellular transport protein CRM1 and RNA helicases DDX1 and DDX3, amongst others.
Collapse
MESH Headings
- Gene Expression Regulation, Viral
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Gene Products, rev/physiology
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- Gene Products, tat/physiology
- HIV-1/genetics
- HIV-1/growth & development
- Humans
- Karyopherins/metabolism
- Protein Binding
- RNA Helicases/metabolism
- RNA Processing, Post-Transcriptional
- Receptors, Cytoplasmic and Nuclear/metabolism
- Transcription, Genetic
- Exportin 1 Protein
Collapse
Affiliation(s)
- Sergei Nekhai
- Center for Sickle Cell Disease & Department of Biochemistry & Molecular Biolology, Howard University, NW Washington, DC 20059, USA.
| | | |
Collapse
|
46
|
Engels BM, Hutvagner G. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 2006; 25:6163-9. [PMID: 17028595 DOI: 10.1038/sj.onc.1209909] [Citation(s) in RCA: 336] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are abundant regulatory RNAs involved in the regulation of many key biological processes. Recent advances in understanding the mechanism of RNA interference and miRNA-mediated mechanisms shed light on major principals of the formation of the regulatory complex and provide models to explain how these small regulatory RNA species interfere with gene expression and how they influence the translational status of the transcriptome.
Collapse
Affiliation(s)
- B M Engels
- Division of Gene regulation and Expression, College of Life Sciences, University of Dundee, Dundee, UK
| | | |
Collapse
|
47
|
Ammosova T, Berro R, Jerebtsova M, Jackson A, Charles S, Klase Z, Southerland W, Gordeuk VR, Kashanchi F, Nekhai S. Phosphorylation of HIV-1 Tat by CDK2 in HIV-1 transcription. Retrovirology 2006; 3:78. [PMID: 17083724 PMCID: PMC1636661 DOI: 10.1186/1742-4690-3-78] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 11/03/2006] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Transcription of HIV-1 genes is activated by HIV-1 Tat protein, which induces phosphorylation of RNA polymerase II (RNAPII) C-terminal domain (CTD) by CDK9/cyclin T1. Earlier we showed that CDK2/cyclin E phosphorylates HIV-1 Tat in vitro. We also showed that CDK2 induces HIV-1 transcription in vitro and that inhibition of CDK2 expression by RNA interference inhibits HIV-1 transcription and viral replication in cultured cells. In the present study, we analyzed whether Tat is phosphorylated in cultured cells by CDK2 and whether Tat phosphorylation has a regulatory effect on HIV-1 transcription. RESULTS We analyzed HIV-1 Tat phosphorylation by CDK2 in vitro and identified Ser16 and Ser46 residues of Tat as potential phosphorylation sites. Tat was phosphorylated in HeLa cells infected with Tat-expressing adenovirus and metabolically labeled with 32P. CDK2-specific siRNA reduced the amount and the activity of cellular CDK2 and significantly decreased phosphorylation of Tat. Tat co-migrated with CDK2 on glycerol gradient and co-immunoprecipitated with CDK2 from the cellular extracts. Tat was phosphorylated on serine residues in vivo, and mutations of Ser16 and Ser46 residues of Tat reduced Tat phosphorylation in vivo. Mutation of Ser16 and Ser46 residues of Tat reduced HIV-1 transcription in transiently transfected cells. The mutations of Tat also inhibited HIV-1 viral replication and Tat phosphorylation in the context of the integrated HIV-1 provirus. Analysis of physiological importance of the S16QP(K/R)19 and S46YGR49 sequences of Tat showed that Ser16 and Ser46 and R49 residues are highly conserved whereas mutation of the (K/R)19 residue correlated with non-progression of HIV-1 disease. CONCLUSION Our results indicate for the first time that Tat is phosphorylated in vivo; Tat phosphorylation is likely to be mediated by CDK2; and phosphorylation of Tat is important for HIV-1 transcription.
Collapse
Affiliation(s)
- Tatyana Ammosova
- Center for Sickle Cell Disease, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Reem Berro
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, 2300 I Street N.W., Washington, DC 20037, USA
| | - Marina Jerebtsova
- Children's National Medical Center, CRI Center III, 111 Michigan Ave., N.W. Washington, D.C. 20010-2970, USA
| | - Angela Jackson
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Sharroya Charles
- Program in Genetics, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Zachary Klase
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, 2300 I Street N.W., Washington, DC 20037, USA
| | - William Southerland
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Victor R Gordeuk
- Center for Sickle Cell Disease, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Fatah Kashanchi
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, 2300 I Street N.W., Washington, DC 20037, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, 2300 I Street N.W., Washington, DC 20037, USA
| |
Collapse
|
48
|
Epie N, Ammosova T, Turner W, Nekhai S. Inhibition of PP2A by LIS1 increases HIV-1 gene expression. Retrovirology 2006; 3:65. [PMID: 17018134 PMCID: PMC1615876 DOI: 10.1186/1742-4690-3-65] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 10/02/2006] [Indexed: 01/29/2023] Open
Abstract
Background Lissencephaly is a severe brain malformation in part caused by mutations in the LIS1 gene. LIS1 interacts with microtubule-associated proteins, and enhances transport of microtubule fragments. Previously we showed that LIS1 interacts with HIV-1 Tat protein and that this interaction was mediated by WD40 domains of LIS1. In the present study, we analyze the effect of LIS1 on Tat-mediated transcription of HIV-1 LTR. Results Tat-mediated HIV-1 transcription was upregulated in 293 cells transfected with LIS1 expression vector. The WD5 but not the N-terminal domain of LIS1 increases Tat-dependent HIV-1 transcription. The effect of LIS1 was similar to the effect of okadaic acid, an inhibitor of protein phosphatase 2A (PP2A). We then analyzed the effect of LIS1 on the activity of PP2A in vitro. We show that LIS1 and its isolated WD5 domain but not the N-terminal domain of LIS1 blocks PP2A activity. Conclusion Our results show that inhibition of PP2A by LIS1 induces HIV-1 transcription. Our results also point to a possibility that LIS1 might function in the cells as a yet unrecognized regulatory subunit of PP2A.
Collapse
Affiliation(s)
- Nicolas Epie
- Center for Sickle Cell Disease, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
- Department of Microbiology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Tatyana Ammosova
- Center for Sickle Cell Disease, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Willie Turner
- Department of Microbiology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| |
Collapse
|
49
|
Baba M. Recent status of HIV-1 gene expression inhibitors. Antiviral Res 2006; 71:301-6. [PMID: 16488488 DOI: 10.1016/j.antiviral.2006.01.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 01/12/2006] [Accepted: 01/13/2006] [Indexed: 11/16/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) gene expression and transcription is a crucial step in the viral replication cycle, which is considered to be a potential target for inhibition of HIV-1. Among the factors involved in this step, the cellular protein nuclear factor (NF)-kappaB is the most powerful inducer of HIV-1 gene expression. On the other hand, the viral protein Tat plays a central role in sustaining a high level of HIV-1 replication. Several compounds have been reported to selectively inhibit the functions of Tat and NF-kappaB. Tat inhibitors target either the Tat/TAR RNA interaction or the Tat cofactor cyclin-dependent kinase 9/cyclin T1. Antioxidants, protein kinase C inhibitors, and IkappaB kinase inhibitors are known to suppress the activation of NF-kappaB. Although some of the compounds inhibit HIV-1 replication in cell cultures at low concentrations, they also have considerable toxicity to the host cells. Considering the increase of treatment failure cases in highly active antiretroviral therapy due to the emergence of multidrug resistance, HIV-1 gene expression inhibitors should be extensively studied as alternative approach to effective anti-HIV-1 chemotherapy.
Collapse
Affiliation(s)
- Masanori Baba
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
| |
Collapse
|
50
|
Stevens M, De Clercq E, Balzarini J. The regulation of HIV-1 transcription: molecular targets for chemotherapeutic intervention. Med Res Rev 2006; 26:595-625. [PMID: 16838299 PMCID: PMC7168390 DOI: 10.1002/med.20081] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The regulation of transcription of the human immunodeficiency virus (HIV) is a complex event that requires the cooperative action of both viral and cellular components. In latently infected resting CD4(+) T cells HIV-1 transcription seems to be repressed by deacetylation events mediated by histone deacetylases (HDACs). Upon reactivation of HIV-1 from latency, HDACs are displaced in response to the recruitment of histone acetyltransferases (HATs) by NF-kappaB or the viral transcriptional activator Tat and result in multiple acetylation events. Following chromatin remodeling of the viral promoter region, transcription is initiated and leads to the formation of the TAR element. The complex of Tat with p-TEFb then binds the loop structures of TAR RNA thereby positioning CDK9 to phosphorylate the cellular RNA polymerase II. The Tat-TAR-dependent phosphorylation of RNA polymerase II plays an important role in transcriptional elongation as well as in other post-transcriptional events. As such, targeting of Tat protein (and/or cellular cofactors) provide an interesting perspective for therapeutic intervention in the HIV replicative cycle and may afford lifetime control of the HIV infection.
Collapse
Affiliation(s)
- Miguel Stevens
- Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| | - Jan Balzarini
- Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| |
Collapse
|